JP5235282B2 - Cathode active material and battery for non-aqueous electrolyte secondary battery - Google Patents

Cathode active material and battery for non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5235282B2
JP5235282B2 JP2006167960A JP2006167960A JP5235282B2 JP 5235282 B2 JP5235282 B2 JP 5235282B2 JP 2006167960 A JP2006167960 A JP 2006167960A JP 2006167960 A JP2006167960 A JP 2006167960A JP 5235282 B2 JP5235282 B2 JP 5235282B2
Authority
JP
Japan
Prior art keywords
positive electrode
active material
electrode active
secondary battery
solid solution
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006167960A
Other languages
Japanese (ja)
Other versions
JP2007335325A (en
Inventor
重人 岡田
枝美子 北島
朋子 岩永
準一 山木
主明 西島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Sharp Corp
Original Assignee
Kyushu University NUC
Sharp Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Sharp Corp filed Critical Kyushu University NUC
Priority to JP2006167960A priority Critical patent/JP5235282B2/en
Publication of JP2007335325A publication Critical patent/JP2007335325A/en
Application granted granted Critical
Publication of JP5235282B2 publication Critical patent/JP5235282B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、非水電解質二次電池用正極活物質及び電池に関する。更に詳しくは、電池の放電電圧の増加によりエネルギー密度を向上しうる非水電解質二次電池用正極活物質及び電池に関する。   The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a battery. More specifically, the present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery and a battery that can improve energy density by increasing the discharge voltage of the battery.

ポータブル電子機器用の二次電池として、リチウム二次電池が実用化されており、広く用いられている。その正極活物質としては、LiCoO2に代表される層状遷移金属酸化物が主に用いられている。しかし、これらの層状遷移金属酸化物は満充電状態において、150℃前後の比較的低温にて酸素脱離を起こしやすく、これが引火性電解液の酸化発熱反応を引き起こすことで電池の熱暴走反応のトリガーとなっている。 As secondary batteries for portable electronic devices, lithium secondary batteries have been put into practical use and are widely used. As the positive electrode active material, a layered transition metal oxide typified by LiCoO 2 is mainly used. However, these layered transition metal oxides are prone to oxygen desorption at a relatively low temperature of about 150 ° C. in a fully charged state, which causes an oxidative exothermic reaction of the flammable electrolyte, thereby causing a thermal runaway reaction of the battery. It is a trigger.

一方、3価/4価の酸化還元反応の代わりに2価/3価の酸化還元反応を用いることで熱安定性を改善し、更に中心金属の周りに電気陰性度の大きなヘテロ元素のポリアニオンを配することで高放電電圧を確保した系としてオリビン型LiCoPO4やLiMnPO4、LiFePO4等のリン酸塩(リン酸オリビン)が提案されている(例えば、非特許文献1参照)。しかしながらLiCoPO4を正極活物質として用いる非水電解質二次電池は、満充電に5V以上の電圧の印加を必要とし、電解液の酸化分解を併発するため、現時点では使用可能な電解液が存在しないという課題があった。また、リン酸ポリアニオンの大きな分子量のため、一連のLiMPO4型リン酸オリビンを活物質として含む正極の理論容量はいずれも約170mAh/gにとどまっていた。 On the other hand, by using a divalent / trivalent redox reaction instead of a trivalent / tetravalent redox reaction, the thermal stability is improved, and a hetero-element polyanion having a large electronegativity is formed around the central metal. As a system in which a high discharge voltage is ensured by arranging them, phosphates (olivine phosphate) such as olivine-type LiCoPO 4 , LiMnPO 4 , LiFePO 4 have been proposed (for example, see Non-Patent Document 1). However, non-aqueous electrolyte secondary batteries that use LiCoPO 4 as the positive electrode active material require the application of a voltage of 5 V or higher for full charge, and the oxidative decomposition of the electrolyte occurs simultaneously. There was a problem. Moreover, due to the large molecular weight of the phosphate polyanion, the theoretical capacity of a series of positive electrodes containing a series of LiMPO 4 type olivine phosphate as the active material was only about 170 mAh / g.

更に、LiMPO4型リン酸オリビンに類似する正極活物質として、単位格子中に二個のリチウム原子を有するLi2FeSiO2やLi2MnSiO4等の活物質が提案されている(例えば、特許文献1、非特許文献2参照)。 Further, as a positive electrode active material similar to LiMPO 4 type olivine phosphate, active materials such as Li 2 FeSiO 2 and Li 2 MnSiO 4 having two lithium atoms in a unit cell have been proposed (for example, Patent Documents). 1, refer to Non-Patent Document 2).

岡田重人、荒井創、山木準一、電気化学及び工業物理化学,65,No.10,802-808(1997)Okada Shigeto, Arai Hajime, Yamaki Junichi, Electrochemistry and Industrial Physical Chemistry, 65, No. 10, 802-808 (1997) R. Dominko, et al., Electrochem. Commun., 8, 217 (2006).R. Dominko, et al., Electrochem. Commun., 8, 217 (2006). 特願2001−266882号公報Japanese Patent Application No. 2001-266882

しかし、上記公報で提案された電池は、動作電位が3.5Vから2.4Vと低いという課題があった。
そのため本発明は、リン酸オリビンを含む正極よりも理論容量を増加し、かつ動作電位の高い、可逆容量密度に優れた電池特性をもつ非水電解質二次電池を提供することを課題とする。
However, the battery proposed in the above publication has a problem that the operating potential is as low as 3.5V to 2.4V.
Therefore, an object of the present invention is to provide a non-aqueous electrolyte secondary battery that has a theoretical capacity that is higher than that of a positive electrode containing olivine phosphate, a high operating potential, and battery characteristics that are excellent in reversible capacity density.

本発明者等は、上記の課題を達成するために、リン酸オリビンLiMPO4について種々の改良検討を重ねた。その結果、リン酸ポリアニオンPO4のヘテロ元素を5価のリンよりも電気陰性度の小さな4価のケイ素Siで置換することによって、理論容量を増加できることを見い出し本発明に至った。更に、本発明者等は、充電電圧を引き下げた場合、2価/3価だけでなく、3価/4価の2段のレドックス反応を充放電に利用しうることも見出している。 In order to achieve the above-described problems, the present inventors have made various improvements on olivine phosphate LiMPO 4 . As a result, the present inventors have found that the theoretical capacity can be increased by substituting the hetero element of the phosphate polyanion PO 4 with tetravalent silicon Si having a lower electronegativity than pentavalent phosphorus. Furthermore, the present inventors have also found that, when the charging voltage is lowered, not only the bivalent / trivalent but also the trivalent / tetravalent two-stage redox reaction can be used for charging / discharging.

かくして本発明によれば、一般式(Ia):Li2-xCo1-yM'ySiO4(式中、M'はNi、V、Tiであり、xは0≦x≦2を表し、yは0≦y<1を表す)で表される固溶体化合物と、該固溶体化合物と共に不活雰囲気中で300〜500℃で熱処理されて得られた炭素成分とを含むことを特徴とする非水電解質二次電池用正極活物質が提供される。
更に、本発明によれば、一般式(Ib):Li2-xMn1-yM''ySiO4(式中、M''はNi3+、Ni4+、Sc、Y、Zr、Nb、Mo、Agであり、xは0≦x≦2を表し、yは0≦y<1を表す)で表される固溶体化合物と、該固溶体化合物と共に不活雰囲気中で300〜500℃で熱処理されて得られた炭素成分とを含むことを特徴とする非水電解質二次電池用正極活物質が提供される。
また、本発明によれば、一般式(II):Li2-xCo1-yMnySiO4(式中、xは0≦x≦2を表し、yは0≦y<1を表す)で表される固溶体化合物と、該固溶体化合物と共に不活雰囲気中で300〜500℃で熱処理されて得られた炭素成分とを含むことを特徴とする非水電解質二次電池用正極活物質が提供される。
Thus, according to the present invention, the general formula (Ia): Li 2-x Co 1-y M ′ y SiO 4 (wherein M ′ is Ni, V, Ti, x represents 0 ≦ x ≦ 2) , Y represents 0 ≦ y <1) , and a carbon component obtained by heat treatment at 300 to 500 ° C. in an inert atmosphere together with the solid solution compound. A positive electrode active material for a water electrolyte secondary battery is provided.
Furthermore, according to the present invention, the general formula (Ib): Li 2-x Mn 1-y M ″ y SiO 4 (where M ″ is Ni 3+ , Ni 4+ , Sc, Y, Zr, Nb, Mo, Ag, x represents 0 ≦ x ≦ 2, y represents 0 ≦ y <1 , and a solid solution compound at 300 to 500 ° C. in an inert atmosphere together with the solid solution compound. There is provided a positive electrode active material for a nonaqueous electrolyte secondary battery comprising a carbon component obtained by heat treatment .
According to the present invention, the general formula (II): Li 2-x Co 1-y Mn y SiO 4 (wherein x represents 0 ≦ x ≦ 2 and y represents 0 ≦ y <1) And a carbon component obtained by heat treatment at 300 to 500 ° C. in an inert atmosphere together with the solid solution compound. Is done.

更に、本発明によれば、一般式(I):Li2-XMSiO4(式中、Mは少なくともCo又はMnを含む遷移金属を表し、Xは0≦X≦2を表す)で表される固溶体化合物と、炭素材料とを含む混合物を、不活性雰囲気中で300〜500℃で熱処理することで、前記固溶体化合物と前記炭素材料に由来する炭素成分とを含む非水電解質二次電池用正極活物質を製造することを特徴とする非水電解質二次電池用正極活物質の製造方法が提供される。
また、本発明によれば、上記正極活物質を含む正極を備えることを特徴とする非水電解質二次電池が提供される。
Furthermore, according to the present invention, it is represented by the general formula (I): Li 2-X MSiO 4 (wherein M represents a transition metal containing at least Co or Mn, and X represents 0 ≦ X ≦ 2). For a non-aqueous electrolyte secondary battery containing the solid solution compound and a carbon component derived from the carbon material by heat-treating a mixture containing the solid solution compound and the carbon material at 300 to 500 ° C. in an inert atmosphere. There is provided a method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery, characterized by producing a positive electrode active material.
Moreover, according to this invention, the nonaqueous electrolyte secondary battery provided with the positive electrode containing the said positive electrode active material is provided.

本発明によれば、高安全性及び大容量の実用性の高い非水電解質二次電池を提供できる。また、上記二次電池用の正極活物質及び正極を提供できる。
また、CoをNi、Mn、Fe等の遷移金属(特に、Mn)に部分置換することにより放電電圧を高電圧から低電圧に連続的に平行移動できる。そのため、使用回路や使用電解液に最適の充放電電圧の二次電池を自由に設計できる。
本発明の二次電池は大型電池の用途にも使用できる。
According to the present invention, it is possible to provide a highly safe non-aqueous electrolyte secondary battery with high capacity and high practicality. Moreover, the positive electrode active material and positive electrode for said secondary batteries can be provided.
Further, by partially substituting Co with a transition metal such as Ni, Mn, or Fe (particularly Mn), the discharge voltage can be continuously translated from a high voltage to a low voltage. Therefore, it is possible to freely design a secondary battery having a charge / discharge voltage optimum for the circuit used and the electrolyte used.
The secondary battery of the present invention can also be used for large batteries.

以下、本発明を更に詳しく説明する。以下では、非水電解質二次電池用正極活物質を正極活物質、非水電解質二次電池用正極を正極、非水電解質二次電池を二次電池と称する。(1)正極活物質
正極活物質には、一般式(I):Li2-XMSiO4 (一般式(Ia):Li 2-x Co 1-y M' y SiO 4 、一般式(Ib):Li 2-x Mn 1-y M'' y SiO 4 )で表され、ケイ酸オリビンと称される固溶体化合物が含まれている。Mは少なくともCo又はMnを含む遷移金属であり、Co単独又はMn単独であってもよいが、CoとMnとの混合物や、Co及びMn以外の他の遷移金属との混合物であってもよい。他の遷移金属としては、Fe、V、Ti、Ni等が挙げられる。特に、MにCoが含まれることで、動作電位を高くでき、その結果、エネルギー密度を向上できる。M'はNi、V又はTiであり、M''はNi 3+ 、Ni 4+ 、Sc、Y、Zr、Nb、Mo又はAgである。
Hereinafter, the present invention will be described in more detail. Hereinafter, the positive electrode active material for a nonaqueous electrolyte secondary battery is referred to as a positive electrode active material, the positive electrode for a nonaqueous electrolyte secondary battery is referred to as a positive electrode, and the nonaqueous electrolyte secondary battery is referred to as a secondary battery. (1) Positive electrode active material The positive electrode active material includes general formula (I): Li 2-x MSiO 4 (general formula (Ia): Li 2-x Co 1-y M ' y SiO 4 , general formula (Ib) : Li 2-x Mn 1-y M ″ y SiO 4 ) , which contains a solid solution compound called olivine silicate. M is a transition metal containing at least Co or Mn, and may be Co alone or Mn alone, but may be a mixture of Co and Mn, or a mixture of other transition metals other than Co and Mn. . Other transition metals include Fe, V, Ti, Ni and the like. In particular, when Co is contained in M, the operating potential can be increased, and as a result, the energy density can be improved. M ′ is Ni, V or Ti, and M ″ is Ni 3+ , Ni 4+ , Sc, Y, Zr, Nb, Mo or Ag.

Xは0≦X≦2の範囲から任意に選ばれる。通常はX=2の化合物が合成され初期状態の組成となる。また、X=2の場合、二次電池の組み立て直後において、放電から開始できるので、充電が不要となる利点がある。   X is arbitrarily selected from the range of 0 ≦ X ≦ 2. Usually, a compound with X = 2 is synthesized to have an initial composition. Further, in the case of X = 2, immediately after the secondary battery is assembled, it can be started from discharging, so that there is an advantage that charging is unnecessary.

Li2MSiO4の基本骨格を図1に示す。図1に示すようにLi2MSiO4は、斜方晶の結晶対称性をもち、Li3PO4と類似の結晶構造を有している。図中、丸印がリチウム、四面体は各々SiO4とMO4を示す。具体的には、Li2MSiO4は、中心金属MがSiO4(ケイ酸基)によって取り囲まれる形で孤立した構造を有している。
また、正極活物質は、一般式(II):Li2-XCo1-yMnySiO4(式中、Xは0≦X≦2を表し、Yは0≦Y≦1を表す)で表される固溶体化合物であることが好ましい。Coの一部を安価なMnで置換することで、低コストの正極活物質を提供できる。
The basic skeleton of Li 2 MSiO 4 is shown in FIG. As shown in FIG. 1, Li 2 MSiO 4 has orthorhombic crystal symmetry and has a crystal structure similar to Li 3 PO 4 . In the figure, circles indicate lithium, and tetrahedrons indicate SiO 4 and MO 4 , respectively. Specifically, Li 2 MSiO 4 has an isolated structure in which the central metal M is surrounded by SiO 4 (silicate group).
Further, the positive electrode active material is represented by the general formula (II): Li 2−X Co 1−y Mn y SiO 4 (wherein X represents 0 ≦ X ≦ 2 and Y represents 0 ≦ Y ≦ 1). It is preferable that it is a solid solution compound represented. By substituting a part of Co with inexpensive Mn, a low-cost positive electrode active material can be provided.

上記Li2MSiO4は、色々な合成法により合成可能であるが、以下の実施例に示すような通常の固相合成法(すなわち、Li、M及びSiのそれぞれの酸化物の混合物を焼成する方法)によっても量産可能である。
正極活物質の形状は、特に限定されないが、粒状であることが好ましい。具体的には、0.1〜100μmの平均粒径を有する粒状物であることが好ましい。この平均粒径は、レーザ回折・散乱法により測定した値である。
The Li 2 MSiO 4 can be synthesized by various synthesis methods, but a normal solid phase synthesis method as shown in the following examples (that is, firing a mixture of respective oxides of Li, M, and Si) (Method) can also be mass-produced.
The shape of the positive electrode active material is not particularly limited, but is preferably granular. Specifically, a granular material having an average particle diameter of 0.1 to 100 μm is preferable. This average particle diameter is a value measured by a laser diffraction / scattering method.

次に、正極活物質は、炭素成分を含むことが好ましい。この炭素成分は、上記一般式(I):Li2-XMSiO4又は一般式(II):Li2-XCo1-yMnySiO4で表される固溶体化合物と共に不活性雰囲気中で熱処理されて得られた炭素成分である。この炭素成分は、通常、固溶体化合物の表面をコートするように存在している。炭素成分を備えることで、正極活物質の導電性を向上できる。 Next, the positive electrode active material preferably contains a carbon component. The carbon component has the general formula (I): Li 2-X MSiO 4 or the general formula (II): heat treatment in an inert atmosphere with Li 2-X Co 1-y Mn y solid solution compound represented by SiO 4 This is a carbon component obtained. This carbon component is usually present so as to coat the surface of the solid solution compound. By providing the carbon component, the conductivity of the positive electrode active material can be improved.

固溶体化合物と炭素成分との重量比は、1:0.01〜0.50の範囲であることが好ましい。0.25より多い場合、アニール後の炭素の残量の増加のために、正極中の固溶体化合物の体積分率が低下し電池のエネルギー密度が低下するので好ましくない。0.05より少ない場合、還元能力が低下し導電性向上の効果が得にくいので好ましくない。より好ましい重量比は、1:0.05〜0.25の範囲である。   The weight ratio between the solid solution compound and the carbon component is preferably in the range of 1: 0.01 to 0.50. If it exceeds 0.25, the increase in the remaining amount of carbon after annealing is not preferable because the volume fraction of the solid solution compound in the positive electrode is lowered and the energy density of the battery is lowered. When it is less than 0.05, the reducing ability is lowered, and it is difficult to obtain the effect of improving the conductivity. A more preferred weight ratio is in the range of 1: 0.05 to 0.25.

炭素成分の形成方法としては、特に限定されず、公知の方法をいずれも使用できる。例えば、固溶体化合物と炭素材料とを機械的に混合することで、固溶体化合物の表面に炭素材料を付着させ、次いで不活性雰囲気中で熱処理することで付着した炭素材料から炭素成分を得ることができる。ここで、機械的に混合する方法としては、例えば、乾式遊星ミルによる方法が挙げられる。また、熱処理は、300〜500℃で、1〜12時間(例えば、500℃前後で1時間程度)行うことが好ましい。更に、不活性雰囲気とは、固溶体化合物及び炭素材料に対して、反応性のほとんどない不活性ガス雰囲気を意味し、そのような不活性ガスとしては、ヘリウム、アルゴン、窒素等が挙げられる。   The method for forming the carbon component is not particularly limited, and any known method can be used. For example, the carbon component can be obtained from the attached carbon material by mechanically mixing the solid solution compound and the carbon material to attach the carbon material to the surface of the solid solution compound and then performing heat treatment in an inert atmosphere. . Here, examples of the mechanical mixing method include a method using a dry planetary mill. The heat treatment is preferably performed at 300 to 500 ° C. for 1 to 12 hours (for example, around 500 ° C. for about 1 hour). Furthermore, the inert atmosphere means an inert gas atmosphere that has little reactivity with the solid solution compound and the carbon material, and examples of such an inert gas include helium, argon, nitrogen, and the like.

(2)正極
正極は、上記正極活物質のみからなっていてもよく、必要に応じて、他の添加剤を含んでいてもよい。他の添加剤としては、結着剤、導電剤等が挙げられる。
結着剤としては、特に限定されず、公知の剤をいずれも使用できる。具体的には、ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム、フッ素ゴム、ポリ酢酸ビニル、ポリメチルメタクリレート、ポリエチレン、ニトロセルロース等が挙げられる。
(2) Positive electrode The positive electrode may consist of only the said positive electrode active material, and may contain the other additive as needed. Examples of other additives include a binder and a conductive agent.
The binder is not particularly limited, and any known agent can be used. Specifically, polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, ethylene propylene diene polymer, styrene-butadiene rubber, acrylonitrile-butadiene rubber, fluoro rubber, polyvinyl acetate, polymethyl methacrylate, polyethylene, nitrocellulose, etc. Can be mentioned.

導電剤としては、特に限定されず、公知の剤をいずれも使用できる。具体的には、アセチレンブラック、カーボン、グラファイト、天然黒鉛、人造黒鉛、ニードルコークス等が挙げられる。
正極は、1〜1000μmの厚さであることが好ましく、10〜200μm程度の厚さであることがより好ましい。厚すぎると導電性が低下する傾向にあり、薄すぎると容量が低下する傾向にある。
なお、正極は、活物質の充填密度を上げるためローラープレス等により圧密してもよい。
The conductive agent is not particularly limited, and any known agent can be used. Specific examples include acetylene black, carbon, graphite, natural graphite, artificial graphite, and needle coke.
The positive electrode preferably has a thickness of 1 to 1000 μm, more preferably about 10 to 200 μm. If it is too thick, the conductivity tends to decrease, and if it is too thin, the capacity tends to decrease.
The positive electrode may be consolidated by a roller press or the like in order to increase the packing density of the active material.

正極の作製方法は、特に限定されず、公知の方法をいずれも使用できる。例えば、上記正極活物質を、必要に応じて結着材及び導電材と混合した後、得られた混合体をステンレス鋼製の支持体上に圧着成形する方法、混合体を金属製容器に充填する方法等により得ることができる。他の方法として、例えば、上記混合体を有機溶剤(例えば、N-メチルピロリドン、トルエン、シクロヘキサン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N−N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフラン等)と混合してスラリーを得、このスラリーをアルミニウム、ニッケル、ステンレス、銅等の金属基板上に塗布・乾燥する方法によっても正極を作製できる。
なお、正極活物質には、本発明の目的を阻害しない範囲で、公知の正極活物質(例えば、LiCoO2、LiCoPO4、LiMnPO4、LiFePO4、Li2FeSiO2、Li2MnSiO4等)が更に含まれていてもよい。
The method for producing the positive electrode is not particularly limited, and any known method can be used. For example, after mixing the positive electrode active material with a binder and a conductive material as necessary, a method of pressure-bonding the obtained mixture on a stainless steel support, filling the mixture into a metal container It can obtain by the method of doing. As another method, for example, the above mixture is mixed with an organic solvent (for example, N-methylpyrrolidone, toluene, cyclohexane, dimethylformamide, dimethylacetamide, methyl ethyl ketone, methyl acetate, methyl acrylate, diethyltriamine, NN-dimethylaminopropyl). (Amine, ethylene oxide, tetrahydrofuran, etc.) to obtain a slurry, and the positive electrode can also be produced by a method of applying and drying this slurry on a metal substrate such as aluminum, nickel, stainless steel, copper or the like.
The positive electrode active material may be a known positive electrode active material (for example, LiCoO 2 , LiCoPO 4 , LiMnPO 4 , LiFePO 4 , Li 2 FeSiO 2 , Li 2 MnSiO 4, etc.) as long as the object of the present invention is not impaired. Further, it may be included.

(3)二次電池
二次電池は、上記正極と非水電解質とを使用すること以外は、公知の非水電解質二次電池における構成要素を使用できる。二次電池は、通常、正極及び負極、両極間の非水電解質とからなる。
負極には、負極活物質が含まれている。負極活物質としては、公知の負極活物質を使用することが可能である。負極活物質として、黒鉛、カーボンブラック等の炭素材料や、リチウム金属、あるいはリチウムと他の金属の合金(例えば、アルミニウム-リチウム合金)等のほか、リチウム金属イオンを吸蔵・放出することが可能な材料(例えば、Li2.5Co0.5N、Li4Ti512等)が上げられる。
(3) Secondary battery The secondary battery can use the components in a known nonaqueous electrolyte secondary battery except that the positive electrode and the nonaqueous electrolyte are used. A secondary battery usually comprises a positive electrode, a negative electrode, and a nonaqueous electrolyte between both electrodes.
The negative electrode contains a negative electrode active material. As the negative electrode active material, a known negative electrode active material can be used. As a negative electrode active material, it is possible to occlude and release lithium metal ions in addition to carbon materials such as graphite and carbon black, lithium metal, or alloys of lithium and other metals (for example, aluminum-lithium alloys). The material (for example, Li 2.5 Co 0.5 N, Li 4 Ti 5 O 12 or the like) is raised.

負極の作製は公知の方法に従えばよく、例えば、前記正極と同様にして作製できる。例えば、上記負極活物質を、必要に応じて上記正極の欄に記載した結着材及び導電材と混合した後、得られた混合体をステンレス鋼や銅製の支持体(集電体)上に圧着成形する方法により得ることができる。他の方法として、例えば、上記混合体を上記正極の欄に記載した有機溶剤と混合してスラリーを得、このスラリーを銅等の金属基板上に塗布・乾燥する方法によっても負極を作製できる。   The negative electrode may be produced by a known method, and for example, it can be produced in the same manner as the positive electrode. For example, after the negative electrode active material is mixed with the binder and the conductive material described in the column of the positive electrode as necessary, the obtained mixture is placed on a stainless steel or copper support (current collector). It can be obtained by a method of pressure forming. As another method, for example, the negative electrode can be produced by a method in which the mixture is mixed with an organic solvent described in the column of the positive electrode to obtain a slurry, and this slurry is applied to a metal substrate such as copper and dried.

非水電解液は通常、電解質及び非水溶媒を含む。非水溶媒としては、特に制限されず、例えばカーボネート類、エーテル類、ケトン類、スルホラン系化合物、ラクトン類、ニトリル類、塩素化炭化水素類、エーテル類、アミン類、エステル類、アミド類、リン酸エステル化合物等が挙げられる。これらの代表的なものとして、1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、エチレンカーボネート、ビニレンカーボネート、メチルホルメート、ジメチルスルホキシド、プロピレンカーボネート、アセトニトリル、γ−ブチロラクトン、ジメチルホルムアミド、ジメチルカーボネート、ジエチルカーボネート、スルホラン、エチルメチルカーボネート、1,4−ジオキサン、4−メチル−2−ペンタノン、1,3−ジオキソラン、4−メチル−1,3−ジオキソラン、ジエチルエーテル、スルホラン、メチルスルホラン、プロピオニトリル、ベンゾニトリル、ブチロニトリル、バレロニトリル、1,2−ジクロロエタン、リン酸トリメチル、リン酸トリエチル等が挙げられる。これらは1種又は2種以上で用いることができる。   The non-aqueous electrolyte usually contains an electrolyte and a non-aqueous solvent. The non-aqueous solvent is not particularly limited. For example, carbonates, ethers, ketones, sulfolane compounds, lactones, nitriles, chlorinated hydrocarbons, ethers, amines, esters, amides, phosphorus Examples include acid ester compounds. Typical examples of these include 1,2-dimethoxyethane, 1,2-diethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, ethylene carbonate, vinylene carbonate, methyl formate, dimethyl sulfoxide, propylene carbonate, acetonitrile, γ- Butyrolactone, dimethylformamide, dimethyl carbonate, diethyl carbonate, sulfolane, ethyl methyl carbonate, 1,4-dioxane, 4-methyl-2-pentanone, 1,3-dioxolane, 4-methyl-1,3-dioxolane, diethyl ether, Examples include sulfolane, methyl sulfolane, propionitrile, benzonitrile, butyronitrile, valeronitrile, 1,2-dichloroethane, trimethyl phosphate, and triethyl phosphate. . These can be used alone or in combination of two or more.

非水電解液は、上記溶媒に、負極活物質中のリチウム金属イオンが、正極活物質又は正極活物質及び負極活物質と電気化学反応するための移動を行うことができる電解質を含んでいてもよい。電解質としては、例えば、LiClO4、LiPF6、LiBF4、LiCF3SO3、LiAsF6、LiB(C654 、LiCl、LiBr、CH3SO3Li、CF3SO3Li、LiN(SO2CF32、LiN(SO2252、LiC(SO2CF33、LiN(SO3CF32等が挙げられる。また、公知の固体電解質、例えば、ナシコン構造を有するLiTi2(PO43等も使用できる。 The non-aqueous electrolyte may include an electrolyte capable of performing migration for causing the lithium metal ion in the negative electrode active material to electrochemically react with the positive electrode active material or the positive electrode active material and the negative electrode active material in the solvent. Good. Examples of the electrolyte include LiClO 4 , LiPF 6 , LiBF 4 , LiCF 3 SO 3 , LiAsF 6 , LiB (C 6 H 5 ) 4 , LiCl, LiBr, CH 3 SO 3 Li, CF 3 SO 3 Li, LiN ( SO 2 CF 3) 2, LiN (SO 2 C 2 F 5) 2, LiC (SO 2 CF 3) 3, LiN (SO 3 CF 3) 2 and the like. A known solid electrolyte such as LiTi 2 (PO 4 ) 3 having a NASICON structure can also be used.

本発明の二次電池には、他の構成部材(例えば、セパレータ、電池ケース等)が含まれていてもよい。他の構成部材には、公知の非水電解質二次電池に使用されるものをいずれも使用できる。   Other constituent members (for example, a separator, a battery case, etc.) may be included in the secondary battery of the present invention. As the other constituent members, any of those used in known nonaqueous electrolyte secondary batteries can be used.

例えば、正極と負極との間にセパレータを使用してもよい。この場合は、微多孔性の高分子フィルムを用いることがこのましい。具体的には、ナイロン、セルロースアセテート、ニトロセルロース、ポリスルホン、ポリアクリロニトリル、ポリフッ化ビニリデン、ポリプロピレン、ポリエチレン、ポリブテン等のポリオレフィン高分子よりなるセパレータを使用できる。化学的及び電気化学的安定性の点から、セパレータはポリオレフィン製であることが好ましく、電池セパレータの目的の一つである自己閉塞温度の点からポリエチレン製であることが望ましい。   For example, a separator may be used between the positive electrode and the negative electrode. In this case, it is preferable to use a microporous polymer film. Specifically, a separator made of a polyolefin polymer such as nylon, cellulose acetate, nitrocellulose, polysulfone, polyacrylonitrile, polyvinylidene fluoride, polypropylene, polyethylene, or polybutene can be used. The separator is preferably made of polyolefin from the viewpoint of chemical and electrochemical stability, and is preferably made of polyethylene from the viewpoint of the self-closing temperature, which is one of the purposes of the battery separator.

セパレータがポリエチレンからなる場合、高温形状維持性の点から超高分子量ポリエチレンであることが好ましい。このポリエチレンの分子量の下限は、好ましくは50万、更に好ましくは100万、最も好ましくは150万である。他方、分子量の上限は、好ましくは500万、更に好ましくは400万、最も好ましくは300万である。分子量が大きすぎると、流動性が低すぎて加熱された時、セパレータの孔が閉塞しない場合がある。ここでの分子量は、クロマトグラフィー法により測定した数平均分子量を意味する。
電池は、上記構成部材を用いて公知の方法に従って組み立てればよい。電池の形状は、特に制限されることはなく、例えば円筒状、角型、コイン型等種々の形状、サイズを適宜採用できる。
When a separator consists of polyethylene, it is preferable that it is ultra high molecular weight polyethylene from the point of high temperature shape maintenance property. The lower limit of the molecular weight of this polyethylene is preferably 500,000, more preferably 1,000,000, and most preferably 1,500,000. On the other hand, the upper limit of the molecular weight is preferably 5 million, more preferably 4 million, and most preferably 3 million. If the molecular weight is too large, the pores of the separator may not close when heated due to low fluidity. The molecular weight here means a number average molecular weight measured by a chromatography method.
What is necessary is just to assemble a battery according to a well-known method using the said structural member. The shape of the battery is not particularly limited, and various shapes and sizes such as a cylindrical shape, a square shape, and a coin shape can be appropriately employed.

(4)電池の充放電方法
本発明においては、正極活物質(Li2-XMSiO4)における遷移金属Mの2価/3価間の酸化還元反応、及び3価/4価間の酸化還元反応を利用して二次電池の充放電を行える。従来のリン酸オリビン(LiMPO4等)のような正極活物質では、3価/2価の酸化還元反応しか利用できなかった。これに対して、本発明においては、ケイ酸ポリアニオンの導入により、2価/3価のみならず3価/4価の酸化還元反応を利用することができ、その分充放電容量を上昇できる。
(4) Battery Charging / Discharging Method In the present invention, the bivalent / trivalent oxidation-reduction reaction of the transition metal M in the positive electrode active material (Li 2-X MSiO 4 ), and the trivalent / tetravalent oxidation-reduction. The secondary battery can be charged and discharged using the reaction. Conventional positive electrode active materials such as olivine phosphate (LiMPO 4 etc.) can only use trivalent / divalent oxidation-reduction reactions. On the other hand, in the present invention, by introducing a silicate polyanion, not only a bivalent / trivalent but also a trivalent / tetravalent oxidation-reduction reaction can be used, and the charge / discharge capacity can be increased accordingly.

更には、4価でも安定に存在する遷移金属の導入量を調製することによって、容量を自由に設計できる利点もある。例えば、MとしてVやTi等の4価でも安定に存在する遷移金属の配合割合を変化させれば、3.5Vと2.5V間での容量を自由に設計できる。
本発明においては非水系二次電池の充放電の際に、4価でも安定に存在するCoやNi等の遷移金属の4価/3価の酸化還元反応及び3価/2価の酸化還元反応を利用することが好ましい。
Furthermore, there is an advantage that the capacity can be designed freely by adjusting the amount of the transition metal that is stably present even if it is tetravalent. For example, the capacity between 3.5V and 2.5V can be freely designed by changing the blending ratio of the transition metal that is stably present even if M is tetravalent such as V or Ti.
In the present invention, a tetravalent / trivalent oxidation-reduction reaction and a trivalent / divalent oxidation-reduction reaction of a transition metal such as Co or Ni that is stably present even in a tetravalent state during charging / discharging of a non-aqueous secondary battery. Is preferably used.

以下、実施例によって本発明を更に具体的に説明するが、本発明はこれらによりなんら制限されるものではない。なお、実施例において電池の作製及び測定は、アルゴン雰囲気下のドライボックス内で行った。
図2は実施例及び比較例で製造した電池の一具体例であるコイン型電池の断面図であり、図中、1は封口板、2はガスケット、3は正極ケース、4は負極、5はセパレータ、6は正極合剤ペレットを示す。
EXAMPLES Hereinafter, the present invention will be described more specifically with reference to examples, but the present invention is not limited to these examples. In the examples, the battery was manufactured and measured in a dry box under an argon atmosphere.
FIG. 2 is a cross-sectional view of a coin-type battery, which is a specific example of the battery manufactured in Examples and Comparative Examples. In the figure, 1 is a sealing plate, 2 is a gasket, 3 is a positive electrode case, 4 is a negative electrode, and 5 is a negative electrode. A separator 6 represents a positive electrode material mixture pellet.

実施例1
正極活物質用の固溶体化合物としてLi2Co1-yMnySiO4を以下の方法により合成する。
まず、出発原料にリチウム源としてLi2CO3、コバルト源としてCo3O4、マンガン源としてMnC2O4・2H2O、ケイ酸源として二酸化ケイ素SiO2を化学量論比(原子比Li:Co+Mn:Si=2:1:1)で混合した。得られた混合物を、大気中、650℃で12時間仮焼後、1100℃で24時間の本焼成を2回行うことで、単相のLi2Co1-yMnySiO4粉末(平均粒径50μm)である固溶体化合物を合成した。
なお、y=0、y=0.25、y=0.5、y=0.75、y=1.0の5種の固溶体化合物を合成し、それぞれを固溶体化合物a1、a2、a3、a4、a5とする。
Example 1
The Li 2 Co 1-y Mn y SiO 4 is synthesized by the following method as a solid solution compound for the cathode active material.
First, the starting material is Li 2 CO 3 as a lithium source, Co 3 O 4 as a cobalt source, MnC 2 O 4 · 2H 2 O as a manganese source, and silicon dioxide SiO 2 as a silicic acid source. : Co + Mn: Si = 2: 1: 1). The resulting mixture in the air, 12 hours later calcined at 650 ° C., by performing two times the firing for 24 hours at 1100 ° C., the single-phase Li 2 Co 1-y Mn y SiO 4 powder (average particle A solid solution compound having a diameter of 50 μm) was synthesized.
In addition, five kinds of solid solution compounds of y = 0, y = 0.25, y = 0.5, y = 0.75, and y = 1.0 are synthesized, and are designated as solid solution compounds a1, a2, a3, a4, and a5, respectively.

得られた固溶体化合物a1のX線回折図を図3に、固溶体化合物a5のX線回折図を図4に示す。図3及び4から、1回目の本焼成後ではわずかな不純物ピークの混入が2θ=36°付近に認められるが、2回目の本焼成後は完全な単相が得られた。図3に示す粉末X線回折パターンと格子定数(表1)は、文献値(ICDD No.24-611)とよく一致し、結晶群Pmnbの斜方晶と同定された。 FIG. 3 shows an X-ray diffraction pattern of the obtained solid solution compound a1, and FIG. 4 shows an X-ray diffraction pattern of the solid solution compound a5. 3 and 4, a slight impurity peak was mixed in the vicinity of 2θ = 36 ° after the first firing, but a complete single phase was obtained after the second firing. The powder X-ray diffraction pattern and the lattice constant (Table 1) shown in FIG. 3 agreed well with the literature values (IC D D No. 24-611), and were identified as orthorhombic crystals of the crystal group P mn b.

実施例2
80mlの遊星ボールミルのジルコニアポットにジルコニア製のボールと、実施例1で得られた固溶体化合物a1とアセチレンブラック(電気化学工業社製デンカ ブラック)を70:25の重量比で混合したものを10g入れ、密封した。その後、密封したポットをフリッチュ(FRITSCH)社製遊星型ボールミルにセットし、200rpmで24時間運転させ、乾式混合を行った。この方法で、固溶体化合物の表面を炭素成分でコートした正極活物質を得た。この正極活物質をb1とする。
Example 2
Into a zirconia pot of an 80 ml planetary ball mill, 10 g of zirconia balls, a mixture of the solid solution compound a1 obtained in Example 1 and acetylene black (Denka Black manufactured by Denki Kagaku Kogyo Co., Ltd.) in a weight ratio of 70:25 is added. And sealed. Thereafter, the sealed pot was set on a planetary ball mill manufactured by FRITSCH and operated at 200 rpm for 24 hours to perform dry mixing. In this way, a positive electrode active material in which the surface of the solid solution compound was coated with a carbon component was obtained. This positive electrode active material is designated as b1.

次に、正極活物質b1を、アルゴン気流中、300℃、500℃、700℃の温度で1時間アニールした。アニール温度に応じて得られた試料をそれぞれ正極活物質b1c、b1d、b1eとする。これらの試料のX線回折図を図5に示す。   Next, the positive electrode active material b1 was annealed at 300 ° C., 500 ° C., and 700 ° C. for 1 hour in an argon stream. Samples obtained in accordance with the annealing temperature are referred to as positive electrode active materials b1c, b1d, and b1e, respectively. The X-ray diffraction patterns of these samples are shown in FIG.

コート後、アニール前の場合、炭素が回りにコートされたためLi2CoSiO4本来のピークがほとんど見られなくなった。300℃のアニール処理後の正極活物質b1cでは、ピークの回復が見られた。但し、500℃では、炭素の還元作用により析出したCo金属のピークが観測されはじめ、700℃アニールの正極活物質b1eでは、Li2CoSiO4のピークが消滅しCoとLi2SiO3のみのピークが観測された。 In the case of after annealing and before annealing, the original peak of Li 2 CoSiO 4 was hardly seen because carbon was coated around. In the positive electrode active material b1c after annealing at 300 ° C., peak recovery was observed. However, at 500 ° C, the peak of Co metal precipitated due to the reduction action of carbon begins to be observed, and in the positive electrode active material b1e annealed at 700 ° C, the peak of Li 2 CoSiO 4 disappears and the peak of only Co and Li 2 SiO 3 Was observed.

固溶体化合物a5についても、上記と同様の手順で炭素成分で表面をコートして正極活物質b5を得、得られた正極活物質b5を、アルゴン気流中300℃、500℃、700℃の温度で1時間アニールした。アニール温度に応じて得られた試料をそれぞれ正極活物質b5c、b5d、b5eとする。これらの試料のX線回折結果を図6に示す。   Also for the solid solution compound a5, the surface was coated with a carbon component in the same procedure as above to obtain a positive electrode active material b5, and the obtained positive electrode active material b5 was heated at 300 ° C., 500 ° C., and 700 ° C. in an argon stream. Annealed for 1 hour. Samples obtained in accordance with the annealing temperature are referred to as positive electrode active materials b5c, b5d, and b5e, respectively. The X-ray diffraction results of these samples are shown in FIG.

コート後、アニール前の場合、炭素が回りにコートされたためLi2MnSiO4本来のピークがほとんど見られなくなった。300℃のアニール処理後の正極活物質b5cでは、ピークの回復が不十分であるのに対し、500℃、700℃とアニール温度の上昇につれてLi2MnSiO4のピークが回復した。また正極活物質b1cのアルゴンアニール処理でみられた炭素還元によるCoやLi2SiO3のピークは、Li2MnSiO4の場合にはみられなかった。 In the case of after annealing and before annealing, the original peak of Li 2 MnSiO 4 was hardly seen because carbon was coated around. In the positive electrode active material b5c after annealing at 300 ° C., the peak recovery was insufficient, whereas the peak of Li 2 MnSiO 4 recovered as the annealing temperature increased to 500 ° C. and 700 ° C. Further, the peak of Co or Li 2 SiO 3 due to carbon reduction observed in the argon annealing treatment of the positive electrode active material b1c was not observed in the case of Li 2 MnSiO 4 .

実施例3
次に、固溶体化合物a1、a2、a3、a4、a5それぞれを、実施例2と同様の手順で炭素成分で表面をコートして正極活物質b1、b2、b3、b4、b5を得た。正極活物質b1〜b3について300℃、b4とb5について500℃とすること以外は、実施例2と同様の手順でアニール処理した。アニール処理後の正極活物質をそれぞれc1、c2、c3、c4、c5とする。
上記正極活物質b1〜b5及びc1〜c5それぞれを、結着剤(ポリテトラフルオロエチレン)と共に重量比95:5重量比で混合した。得られた混合物を、ロール成形することで、10種の正極合剤ペレット6(厚さ0.5mm、直径15mm)を得た。
Example 3
Next, the surface of each of the solid solution compounds a1, a2, a3, a4, and a5 was coated with a carbon component in the same procedure as in Example 2 to obtain positive electrode active materials b1, b2, b3, b4, and b5. Annealing treatment was performed in the same procedure as in Example 2, except that the positive electrode active materials b1 to b3 were set to 300 ° C., and b4 and b5 were set to 500 ° C. The positive electrode active materials after the annealing treatment are designated as c1, c2, c3, c4, and c5, respectively.
Each of the positive electrode active materials b1 to b5 and c1 to c5 was mixed with a binder (polytetrafluoroethylene) at a weight ratio of 95: 5. Ten kinds of positive electrode mixture pellets 6 (thickness 0.5 mm, diameter 15 mm) were obtained by roll-forming the obtained mixture.

次に、ステンレス製の封口板1上に金属リチウムの負極4を加圧配置したものをポリプロピレン製ガスケット2の凹部に挿入した。負極4の上にポリプロピレン製で微孔性のセパレータ(セルガード社製セルガード)5、正極合剤ペレット6をこの順序に配置した。次いで、電解液として、エチレンカーボネートとジメチルカーボネートの1:1混合溶媒にLiPF6を溶解させた1規定溶液を適量注入して含浸させた。この後に、ステンレス製の正極ケース3を被せてかしめることにより、図2に示す厚さ2mm、直径23mmのコイン型リチウム電池を作製した。 Next, a metal lithium negative electrode 4 placed under pressure on a stainless steel sealing plate 1 was inserted into a recess of a polypropylene gasket 2. On the negative electrode 4, a polypropylene-made microporous separator (Celguard manufactured by Cellguard) 5 and a positive electrode mixture pellet 6 were arranged in this order. Next, as an electrolytic solution, an appropriate amount of 1N solution in which LiPF 6 was dissolved in a 1: 1 mixed solvent of ethylene carbonate and dimethyl carbonate was injected and impregnated. Thereafter, a coin-type lithium battery having a thickness of 2 mm and a diameter of 23 mm shown in FIG. 2 was produced by covering with a positive electrode case 3 made of stainless steel.

正極活物質b1〜b5及びc1〜c5を用いたコイン型リチウム電池の放電容量を表2に示す。また、正極活物質b1、c1、b5及びc5を用いたコイン型リチウム電池の室温における充放電曲線を図7、8、9、10に示す。電流密度は充放電共に0.2mA/cm2とし、4.5Vにて定電流充電から定電圧充電モードに切り替え、放電終止電圧を2Vにしてサイクル可逆性を測定した。 Table 2 shows the discharge capacities of the coin-type lithium batteries using the positive electrode active materials b1 to b5 and c1 to c5. In addition, FIGS. 7, 8, 9, and 10 show charge and discharge curves at room temperature of the coin-type lithium battery using the positive electrode active materials b1, c1, b5, and c5. The current density was 0.2 mA / cm 2 for both charging and discharging, switching from constant current charging to constant voltage charging mode at 4.5 V, and the cycle reversibility was measured with the discharge end voltage being 2 V.

表2、図7及び9から、炭素成分でコートしただけの正極活物質b1〜b5を使用した電池は少ないながらも放電容量を有することがわかる。
また、表2、図8及び10から、アルゴンアニール処理をおこなった正極活物質c1〜c5を使用した電池は、60〜130mAh/g程度の放電容量が得られている。よって、アルゴンアニール処理により大幅に放電容量が向上する事がわかる。
From Table 2 and FIGS. 7 and 9, it can be seen that the number of batteries using the positive electrode active materials b1 to b5 that are only coated with a carbon component has a small discharge capacity.
Further, from Table 2, FIGS. 8 and 10, the battery using the positive electrode active materials c1 to c5 subjected to the argon annealing treatment has a discharge capacity of about 60 to 130 mAh / g. Therefore, it can be seen that the discharge capacity is greatly improved by the argon annealing treatment.

Li2MSiO4の結晶構造を示す。The crystal structure of Li 2 MSiO 4 is shown. コイン型電池の概略構造断面図を示す。1 shows a schematic cross-sectional view of a coin-type battery. 実施例1のLi2CoSiO4(a1)のX線回折図である。 2 is an X-ray diffraction pattern of Li 2 CoSiO 4 (a1) in Example 1. FIG. 実施例1のLi2MnSiO4(a5)のX線回折図である。 2 is an X-ray diffraction pattern of Li 2 MnSiO 4 (a5) in Example 1. FIG. 実施例2の正極活物質b1、b1c、b1d、b1eのX線回折図である。3 is an X-ray diffraction pattern of positive electrode active materials b1, b1c, b1d, and b1e of Example 2. FIG. 実施例2の正極活物質b5、b5c、b5d、b5eのX線回折図である。3 is an X-ray diffraction pattern of positive electrode active materials b5, b5c, b5d, and b5e of Example 2. FIG. 実施例3の正極活物質b1を使用した電池の充放電曲線図である。FIG. 4 is a charge / discharge curve diagram of a battery using the positive electrode active material b1 of Example 3. 実施例3の正極活物質c1を使用した電池の充放電曲線図である。4 is a charge / discharge curve diagram of a battery using the positive electrode active material c1 of Example 3. FIG. 実施例3の正極活物質b5を使用した電池の充放電曲線図である。6 is a charge / discharge curve diagram of a battery using the positive electrode active material b5 of Example 3. FIG. 実施例3の正極活物質c5を使用した電池の充放電曲線図である。4 is a charge / discharge curve diagram of a battery using a positive electrode active material c5 of Example 3. FIG.

符号の説明Explanation of symbols

1 封口板
2 ガスケット
3 正極ケース
4 負極
5 セパレータ
6 正極合剤ペレット
1 Sealing plate 2 Gasket 3 Positive electrode case 4 Negative electrode 5 Separator 6 Positive electrode mixture pellet

Claims (5)

一般式(Ia):Li2-xCo1-yM'ySiO4(式中、M'はNi、V、Tiであり、xは0≦x≦2を表し、yは0≦y<1を表す)で表される固溶体化合物と、該固溶体化合物と共に不活雰囲気中で300〜500℃で熱処理されて得られた炭素成分とを含むことを特徴とする非水電解質二次電池用正極活物質。 General formula (Ia): Li 2-x Co 1-y M ′ y SiO 4 (wherein M ′ is Ni, V, Ti, x represents 0 ≦ x ≦ 2, y represents 0 ≦ y < and solid solution compounds represented 1 are expressed), for a non-aqueous electrolyte secondary battery you; and a carbon component obtained by the heat treatment at 300 to 500 ° C. in an inert atmosphere together with the solid solution compound Positive electrode active material. 一般式(Ib):Li2-xMn1-yM''ySiO4(式中、M''はNi3+、Ni4+、Sc、Y、Zr、Nb、Mo、Agであり、xは0≦x≦2を表し、yは0≦y<1を表す)で表される固溶体化合物と、該固溶体化合物と共に不活雰囲気中で300〜500℃で熱処理されて得られた炭素成分とを含むことを特徴とする非水電解質二次電池用正極活物質。 General formula (Ib): Li 2-x Mn 1-y M ″ y SiO 4 (where M ″ is Ni 3+ , Ni 4+ , Sc, Y, Zr, Nb, Mo, Ag, x represents 0 ≦ x ≦ 2 and y represents 0 ≦ y <1), and a carbon component obtained by heat treatment at 300 to 500 ° C. in an inert atmosphere together with the solid solution compound positive electrode active material for non-aqueous electrolyte secondary battery you comprising and. 一般式(II):Li2-xCo1-yMnySiO4(式中、xは0≦x≦2を表し、yは0≦y<1を表す)で表される固溶体化合物と、該固溶体化合物と共に不活雰囲気中で300〜500℃で熱処理されて得られた炭素成分とを含むことを特徴とする非水電解質二次電池用正極活物質。 A solid solution compound represented by the general formula (II): Li 2-x Co 1-y Mn y SiO 4 (wherein x represents 0 ≦ x ≦ 2 and y represents 0 ≦ y <1); positive electrode active material for non-aqueous electrolyte secondary battery you; and a carbon component obtained by the heat treatment at 300 to 500 ° C. in an inert atmosphere together with the solid solution compound. 一般式(I):Li2-xMSiO4(式中、Mは少なくともCo又はMnを含む遷移金属を表し、xは0≦x≦2を表す)で表される固溶体化合物と、炭素材料とを含む混合物を、不活性雰囲気中で300〜500℃で熱処理することで、前記固溶体化合物と前記炭素材料に由来する炭素成分とを含む非水電解質二次電池用正極活物質を製造することを特徴とする非水電解質二次電池用正極活物質の製造方法。 A solid solution compound represented by the general formula (I): Li 2-x MSiO 4 (wherein M represents a transition metal containing at least Co or Mn, and x represents 0 ≦ x ≦ 2), a carbon material, Producing a positive electrode active material for a non-aqueous electrolyte secondary battery containing the solid solution compound and a carbon component derived from the carbon material by heat-treating the mixture containing the carbon material at 300 to 500 ° C. in an inert atmosphere. A method for producing a positive electrode active material for a non-aqueous electrolyte secondary battery. 請求項1〜のいずれか1つに記載の正極活物質を含む正極を備えることを特徴とする非水電解質二次電池。 Non-aqueous electrolyte secondary battery, comprising a positive electrode containing a positive electrode active material according to any one of claims 1-3.
JP2006167960A 2006-06-16 2006-06-16 Cathode active material and battery for non-aqueous electrolyte secondary battery Expired - Fee Related JP5235282B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006167960A JP5235282B2 (en) 2006-06-16 2006-06-16 Cathode active material and battery for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006167960A JP5235282B2 (en) 2006-06-16 2006-06-16 Cathode active material and battery for non-aqueous electrolyte secondary battery

Related Child Applications (1)

Application Number Title Priority Date Filing Date
JP2012225312A Division JP5598684B2 (en) 2012-10-10 2012-10-10 Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode and battery

Publications (2)

Publication Number Publication Date
JP2007335325A JP2007335325A (en) 2007-12-27
JP5235282B2 true JP5235282B2 (en) 2013-07-10

Family

ID=38934577

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006167960A Expired - Fee Related JP5235282B2 (en) 2006-06-16 2006-06-16 Cathode active material and battery for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5235282B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048101A (en) * 2012-10-10 2013-03-07 Kyushu Univ Cathode active material for nonaqueous electrolyte secondary battery, cathode and battery
KR101527286B1 (en) * 2013-09-30 2015-06-09 고려대학교 산학협력단 Method of forming an anode for a lithium secondary battery

Families Citing this family (40)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009302044A (en) * 2008-05-14 2009-12-24 Tokyo Institute Of Technology Method for manufacturing inorganic particles, positive electrode of secondary battery using the same, and secondary battery
JP5493330B2 (en) * 2008-10-29 2014-05-14 株式会社豊田中央研究所 Water-based lithium secondary battery
US9269954B2 (en) 2009-02-04 2016-02-23 National Institute Of Advanced Industrial Science And Technology Production process for lithium-silicate-system compound
JP5350849B2 (en) * 2009-03-23 2013-11-27 株式会社豊田中央研究所 Lithium secondary battery
KR20110121725A (en) * 2009-03-31 2011-11-08 미츠비시 쥬고교 가부시키가이샤 Lithium ion secondary battery and battery system
JP5566723B2 (en) * 2010-03-01 2014-08-06 古河電気工業株式会社 Fine particle mixture, active material aggregate, positive electrode active material, positive electrode, secondary battery, and production method thereof
JP5653637B2 (en) * 2010-03-01 2015-01-14 古河電気工業株式会社 Positive electrode active material, positive electrode, secondary battery, and production method thereof
JP6057402B2 (en) * 2010-03-02 2017-01-11 住友大阪セメント株式会社 Electrode active material, method for producing the same, and lithium ion battery
JP5482303B2 (en) * 2010-03-04 2014-05-07 株式会社豊田中央研究所 Non-aqueous secondary battery active material and non-aqueous secondary battery
US9318741B2 (en) 2010-04-28 2016-04-19 Semiconductor Energy Laboratory Co., Ltd. Positive electrode active material of power storage device, power storage device, electrically propelled vehicle, and method for manufacturing power storage device
JPWO2011162348A1 (en) * 2010-06-25 2013-08-22 旭硝子株式会社 Silicate compound, positive electrode for secondary battery, and method for producing secondary battery
JP5116177B2 (en) 2010-06-28 2013-01-09 株式会社豊田自動織機 Method for producing lithium silicate compound
JP5917027B2 (en) 2010-06-30 2016-05-11 株式会社半導体エネルギー研究所 Method for producing electrode material
US20120003139A1 (en) 2010-06-30 2012-01-05 Semiconductor Energy Laboratory Co., Ltd. Method for manufacturing power storage device
US9419271B2 (en) 2010-07-02 2016-08-16 Semiconductor Energy Laboratory Co., Ltd. Electrode material and method for forming electrode material
JP5505868B2 (en) * 2010-07-08 2014-05-28 住友金属鉱山株式会社 Precursor of positive electrode active material for lithium secondary battery and method for producing the same
KR20120039472A (en) * 2010-10-15 2012-04-25 가부시키가이샤 한도오따이 에네루기 켄큐쇼 Method for manufacturing positive electrode active material for power storage device
JP5164287B2 (en) 2010-11-05 2013-03-21 株式会社豊田自動織機 Lithium silicate compound and method for producing the same
WO2012105039A1 (en) * 2011-02-04 2012-08-09 株式会社日立製作所 Positive electrode material for lithium secondary batteries, positive electrode for lithium secondary batteries, and lithium secondary battery
JP5608856B2 (en) * 2011-02-21 2014-10-15 株式会社豊田自動織機 Positive electrode active material for lithium ion secondary battery, method for producing the same, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5718111B2 (en) * 2011-03-16 2015-05-13 古河電気工業株式会社 Lithium transition metal silicate positive electrode active material and method for producing positive electrode for non-aqueous electrolyte secondary battery
WO2012133581A1 (en) * 2011-03-28 2012-10-04 旭硝子株式会社 Positive electrode active material for secondary battery, positive electrode for secondary battery, and method for producing secondary battery
JP5733805B2 (en) * 2011-05-26 2015-06-10 株式会社豊田自動織機 Positive electrode active material for non-aqueous electrolyte secondary battery and method for producing positive electrode active material for non-aqueous electrolyte secondary battery
JP5871211B2 (en) * 2011-06-09 2016-03-01 株式会社栗本鐵工所 Method for producing Li2MSiO4
JP5867505B2 (en) 2011-07-04 2016-02-24 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member, lithium ion secondary battery, and method for producing the positive electrode material
JP5939253B2 (en) * 2011-07-04 2016-06-22 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery and lithium ion secondary battery
JP5649069B2 (en) * 2011-08-03 2015-01-07 太平洋セメント株式会社 Cathode active material for lithium ion battery and method for producing the same
US9472805B2 (en) 2011-09-01 2016-10-18 Semiconductor Energy Laboratory Co., Ltd. Alkali metal silicate, alkali transition metal silicate, and method for synthesizing silicate
JP5760871B2 (en) 2011-09-05 2015-08-12 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, lithium ion secondary battery, and method for producing positive electrode material for lithium ion secondary battery
JP5637102B2 (en) 2011-09-05 2014-12-10 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery
JP5850058B2 (en) 2011-09-28 2016-02-03 昭栄化学工業株式会社 Positive electrode material for lithium ion secondary battery, positive electrode member for lithium ion secondary battery, and lithium ion secondary battery
JP5754808B2 (en) * 2011-10-13 2015-07-29 太平洋セメント株式会社 Positive electrode active material for secondary battery and method for producing the same
JP5252064B2 (en) * 2011-12-07 2013-07-31 株式会社豊田自動織機 Lithium silicate compound and method for producing the same
JPWO2013084862A1 (en) * 2011-12-07 2015-04-27 国立大学法人 東京大学 Active material for positive electrode, method for producing the same, and lithium ion secondary battery
JP5822197B2 (en) * 2011-12-16 2015-11-24 太平洋セメント株式会社 Method for producing positive electrode active material for lithium ion battery
JP5804427B2 (en) * 2012-10-12 2015-11-04 太平洋セメント株式会社 Method for producing positive electrode active material for secondary battery
CN103779560B (en) * 2012-10-24 2017-06-06 华为技术有限公司 A kind of rich lithium solid solution cathode material and preparation method thereof, anode material for lithium-ion batteries and lithium ion battery
JP5744827B2 (en) * 2012-12-17 2015-07-08 太平洋セメント株式会社 Method for producing secondary battery positive electrode active material
JP5759968B2 (en) * 2012-12-17 2015-08-05 太平洋セメント株式会社 Method for producing olivine-type silicate compound and method for producing positive electrode active material for secondary battery
JP5922748B1 (en) * 2014-11-27 2016-05-24 太平洋セメント株式会社 Olivine-type lithium silicate positive electrode active material and method for producing the same

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06342673A (en) * 1993-05-31 1994-12-13 Hitachi Maxell Ltd Lithium secondary battery
US6136472A (en) * 1998-06-26 2000-10-24 Valence Technology, Inc. Lithium-containing silicon/phosphates, method of preparation, and uses thereof including as electrodes for a battery
CA2270771A1 (en) * 1999-04-30 2000-10-30 Hydro-Quebec New electrode materials with high surface conductivity
CA2271354C (en) * 1999-05-10 2013-07-16 Hydro-Quebec Lithium insertion electrode materials based on orthosilicate derivatives
JP2003272632A (en) * 2002-03-15 2003-09-26 Mikuni Color Ltd Carbon-clad lithium transition metal oxide, electrode material for secondary battery and secondary battery
JP2004234977A (en) * 2003-01-29 2004-08-19 Matsushita Electric Ind Co Ltd Positive electrode material for lithium secondary battery, manufacturing method of same, and lithium secondary battery using same
JP2005203249A (en) * 2004-01-16 2005-07-28 Sanyo Electric Co Ltd Manufacturing method of positive electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013048101A (en) * 2012-10-10 2013-03-07 Kyushu Univ Cathode active material for nonaqueous electrolyte secondary battery, cathode and battery
KR101527286B1 (en) * 2013-09-30 2015-06-09 고려대학교 산학협력단 Method of forming an anode for a lithium secondary battery

Also Published As

Publication number Publication date
JP2007335325A (en) 2007-12-27

Similar Documents

Publication Publication Date Title
JP5235282B2 (en) Cathode active material and battery for non-aqueous electrolyte secondary battery
JP5268134B2 (en) Method for producing positive electrode active material and non-aqueous electrolyte battery using the same
KR101612566B1 (en) Mixed metal olivine electrode materials for lithium ion batteries
US9627681B2 (en) Silicon-based composite and production method thereof
JP4101435B2 (en) Positive electrode active material composition for lithium secondary battery and method for producing positive electrode using the same
US10361451B2 (en) Sulfide solid electrolyte material, lithium solid battery, and producing method for sulfide solid electrolyte material
JP4963330B2 (en) Lithium iron composite oxide for positive electrode active material of lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2008282819A (en) Manufacturing method of negative electrode active material for nonaqueous electrolyte secondary battery, and negative electrode active material for nonaqueous electrolyte secondary battery provided thereby
JP2007059213A (en) Nonaqueous electrolyte battery and negative active material
WO2009053823A2 (en) Positive electrode active material, lithium secondary battery, and manufacture methods therefore
US10205168B2 (en) Sodium transition metal silicates
JP6685228B2 (en) Doped nickelate compounds for hard carbon electrodes
JP2006155941A (en) Method of manufacture for electrode active material
JP2007042393A (en) Nonaqueous electrolyte battery and anode active material
WO2011117992A1 (en) Active material for battery, and battery
JP3624205B2 (en) Electrode active material for non-aqueous electrolyte secondary battery, electrode and battery including the same
JP2012151129A (en) Manufacturing method of negative electrode active material for nonaqueous electrolyte secondary battery, and negative electrode active material for nonaqueous electrolyte battery provided thereby
JP5586116B2 (en) Positive electrode mixture for lithium secondary battery and use thereof
JP4650774B2 (en) Lithium nickel composite oxide for positive electrode active material of lithium secondary battery and lithium secondary battery using the same
JP2002246025A (en) Electrode active material for non-aqueous electrolyte secondary battery, and electrode and battery containing the same
JPH07134988A (en) Nonaqueous electrolyte secondary battery
JP4170733B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP5189466B2 (en) Lithium secondary battery
JP5598684B2 (en) Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode and battery
JP2010135115A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090608

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120321

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120521

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120710

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121022

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121219

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130226

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130326

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160405

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees