JP5493330B2 - Water-based lithium secondary battery - Google Patents

Water-based lithium secondary battery Download PDF

Info

Publication number
JP5493330B2
JP5493330B2 JP2008277878A JP2008277878A JP5493330B2 JP 5493330 B2 JP5493330 B2 JP 5493330B2 JP 2008277878 A JP2008277878 A JP 2008277878A JP 2008277878 A JP2008277878 A JP 2008277878A JP 5493330 B2 JP5493330 B2 JP 5493330B2
Authority
JP
Japan
Prior art keywords
positive electrode
secondary battery
lithium secondary
active material
electrode active
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008277878A
Other languages
Japanese (ja)
Other versions
JP2010108676A (en
Inventor
広幸 中野
広規 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Central R&D Labs Inc
Original Assignee
Toyota Central R&D Labs Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Central R&D Labs Inc filed Critical Toyota Central R&D Labs Inc
Priority to JP2008277878A priority Critical patent/JP5493330B2/en
Publication of JP2010108676A publication Critical patent/JP2010108676A/en
Application granted granted Critical
Publication of JP5493330B2 publication Critical patent/JP5493330B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、水系リチウム二次電池に関する。   The present invention relates to an aqueous lithium secondary battery.

従来より、電解液として水溶液を用いた水系リチウム二次電池が知られている(例えば特許文献1参照)。この水系リチウム二次電池は、非水系リチウム二次電池が有する問題に対して以下の利点がある。即ち、水系リチウム二次電池は、電解液に有機溶媒を用いていないため、基本的には燃えることはない。また、製造工程においてドライ環境を必要としないため、製造にかかるコストを大幅に削減することができる。さらに、一般的に水系電解液は非水系電解液に比べて導電性が高いため、水系リチウム二次電池は、非水系リチウム二次電池に比べて内部抵抗が低くなる。このような利点を持つ反面、水系リチウム二次電池は、水の電気分解反応が起こらない電位範囲での使用が求められるため、非水系リチウム二次電池と比較して起電力が小さくなる。水の電気分解電圧から計算すると、起電力は1.2V程度が限界であるが、現実には電気分解してガスが発生するには過電圧が必要であるため、2V程度が限界であると予想される。このように、水系リチウム二次電池においては、高電圧・高エネルギー密度を犠牲として、高い安全性、低コスト及び低内部抵抗が確保される。そのため、水系リチウム二次電池は、比較的コストを重視し、大型の電池が必要とされる電気自動車やハイブリッド電気自動車や家庭用分散電源等の用途に適する。こうした水系リチウム二次電池において、特許文献1には、正極活物質としてLiFePO4を利用することにより、電池容量をより大きくしたものが提案されている。
特開2002−260722号公報
Conventionally, an aqueous lithium secondary battery using an aqueous solution as an electrolytic solution is known (see, for example, Patent Document 1). This aqueous lithium secondary battery has the following advantages with respect to the problems of non-aqueous lithium secondary batteries. That is, the water-based lithium secondary battery does not basically burn because an organic solvent is not used for the electrolyte. In addition, since a dry environment is not required in the manufacturing process, manufacturing costs can be significantly reduced. Furthermore, since an aqueous electrolyte generally has higher conductivity than a non-aqueous electrolyte, an aqueous lithium secondary battery has a lower internal resistance than a non-aqueous lithium secondary battery. On the other hand, the water-based lithium secondary battery is required to be used in a potential range where no water electrolysis reaction occurs, and therefore, the electromotive force is smaller than that of the non-aqueous lithium secondary battery. When calculated from the electrolysis voltage of water, the limit of electromotive force is about 1.2V. However, in reality, overvoltage is necessary to generate gas by electrolysis, so about 2V is expected to be the limit. Is done. Thus, in a water based lithium secondary battery, high safety, low cost, and low internal resistance are ensured at the expense of high voltage and high energy density. For this reason, the water-based lithium secondary battery is suitable for uses such as an electric vehicle, a hybrid electric vehicle, and a home-use distributed power source that require a large-sized battery with a relatively high priority on cost. In such an aqueous lithium secondary battery, Patent Document 1 proposes a battery having a larger battery capacity by using LiFePO 4 as a positive electrode active material.
JP 2002-260722 A

しかしながら、この特許文献1に記載された水系リチウム二次電池では、初期放電容量が小さく、繰り返し充放電を行うと容量低下が起きる問題があった。   However, the water-based lithium secondary battery described in Patent Document 1 has a problem in that the initial discharge capacity is small, and the capacity is reduced when repeated charging and discharging are performed.

本発明は、このような課題に鑑みなされたものであり、初期放電容量及び充放電サイクル特性をより向上することができる水系リチウム二次電池を提供することを主目的とする。   This invention is made | formed in view of such a subject, and it aims at providing the water-system lithium secondary battery which can improve an initial stage discharge capacity and charging / discharging cycling characteristics more.

上述した目的を達成するために鋭意研究したところ、本発明者らは、リチウム−遷移金属−珪素複合酸化物(但し、遷移金属はFe,Co,Ni,Mnのうち少なくとも1以上)を正極活物質とすると、初期放電容量及び充放電サイクル特性をより向上することができることを見いだし、本発明を完成するに至った。   As a result of diligent research to achieve the above-described object, the present inventors have found that a lithium-transition metal-silicon composite oxide (provided that the transition metal is at least one of Fe, Co, Ni, and Mn) is active in the positive electrode. As a material, it was found that the initial discharge capacity and charge / discharge cycle characteristics can be further improved, and the present invention has been completed.

即ち、本発明の水系リチウム二次電池は、
リチウム−遷移金属−珪素複合酸化物(但し、遷移金属はFe,Co,Ni,Mnのうち少なくとも1以上)を含む正極活物質を有する正極と、
リチウムを吸蔵・放出可能な負極活物質を有する負極と、
リチウム塩を主電解質とする水系電解液と、
を備えたものである。
That is, the aqueous lithium secondary battery of the present invention is
A positive electrode having a positive electrode active material containing a lithium-transition metal-silicon composite oxide (wherein the transition metal is at least one of Fe, Co, Ni, and Mn);
A negative electrode having a negative electrode active material capable of inserting and extracting lithium;
An aqueous electrolyte containing a lithium salt as a main electrolyte;
It is equipped with.

この水系リチウム二次電池では、初期放電容量及び充放電サイクル特性をより向上することができる。このような効果が得られる理由は明らかではないが、以下のように推測される。例えば、正極活物質であるリチウム−遷移金属−珪素複合酸化物は、Li2MeSiO4(但し、MeはFe,Co,Ni,Mnのうち少なくとも1以上)などであり、1個の遷移金属に対して2個のLi+を含んでおり、1個の遷移金属に対して1個のLi+を含むLiFePO4をなどよりも大きな充放電容量を示す。また、リチウム−遷移金属−珪素複合酸化物では、結晶構造の安定性が高いことから遷移金属の溶出が抑制されるため、より安定に充放電サイクルが繰り返されると推測される。 In this water based lithium secondary battery, the initial discharge capacity and charge / discharge cycle characteristics can be further improved. The reason why such an effect is obtained is not clear, but is presumed as follows. For example, a lithium-transition metal-silicon composite oxide that is a positive electrode active material is Li 2 MeSiO 4 (where Me is at least one of Fe, Co, Ni, and Mn). includes two Li + for, showing a large charge-discharge capacity than such a LiFePO 4 comprising one of Li + for one transition metal. In addition, since the lithium-transition metal-silicon composite oxide has a high crystal structure stability, the elution of the transition metal is suppressed, and it is assumed that the charge / discharge cycle is repeated more stably.

本発明の水系リチウム二次電池は、リチウム−遷移金属−珪素複合酸化物(但し、遷移金属はFe,Co,Ni,Mnのうち少なくとも1以上)を含む正極活物質を有する正極と、リチウムを吸蔵・放出可能な負極活物質を有する負極と、リチウム塩を主電解質とする水系電解液と、を備えている。   The aqueous lithium secondary battery of the present invention includes a positive electrode having a positive electrode active material containing a lithium-transition metal-silicon composite oxide (wherein the transition metal is at least one of Fe, Co, Ni, and Mn), lithium A negative electrode having a negative electrode active material that can be occluded / released, and an aqueous electrolyte containing a lithium salt as a main electrolyte.

本発明のリチウム二次電池の正極は、例えば正極活物質と導電材と結着材とを混合して正極材とし、集電体の表面に圧着してもよいし、この正極材に適当な溶剤を加えてペースト状としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。本発明の水系リチウム二次電池において、正極は、リチウム−遷移金属−珪素複合酸化物を含む正極活物質を有している。この正極活物質は、リチウムと遷移金属と珪素とを含む複合酸化物であり、例えば、基本組成がLi2MeSiO4であるものとすることができる。ここで、遷移金属(Me)は、Fe,Co,Ni,Mnのうち少なくとも1以上である。このリチウム−遷移金属−珪素複合酸化物うち、Li2MnSiO4を正極活物質とするのがより好ましい。こうすれば、好ましい電位領域で初期放電容量をより高めることができると共に、より安定したサイクル特性を得ることができる。この正極活物質は、Li2MnSiO4やLi2FeSiO4をなど2種類以上の複合酸化物を混合して用いてもよい。また、Li2Mn1-xFexSiO4(Xは正数)のように1つの遷移金属を他の遷移金属で置換したものとしてもよい。 The positive electrode of the lithium secondary battery of the present invention may be prepared by mixing a positive electrode active material, a conductive material, and a binder, for example, and may be pressure-bonded to the surface of the current collector. A paste obtained by adding a solvent may be applied and dried on the surface of the current collector, and may be compressed to increase the electrode density as necessary. In the water based lithium secondary battery of the present invention, the positive electrode has a positive electrode active material containing a lithium-transition metal-silicon composite oxide. This positive electrode active material is a composite oxide containing lithium, a transition metal, and silicon. For example, the basic composition may be Li 2 MeSiO 4 . Here, the transition metal (Me) is at least one of Fe, Co, Ni, and Mn. Of these lithium-transition metal-silicon composite oxides, Li 2 MnSiO 4 is more preferably used as the positive electrode active material. In this way, the initial discharge capacity can be further increased in a preferable potential region, and more stable cycle characteristics can be obtained. This positive electrode active material may be used by mixing two or more kinds of complex oxides such as Li 2 MnSiO 4 and Li 2 FeSiO 4 . Further, Li 2 Mn 1-x Fe x SiO 4 (X is a positive number) may be obtained by substitution of one transition metal in the other transition metals as.

正極に含まれる導電材は、正極の電池性能に悪影響を及ぼさない電子伝導性材料であれば特に限定されず、例えば、天然黒鉛(鱗状黒鉛、鱗片状黒鉛)や人造黒鉛などの黒鉛、アセチレンブラック、カーボンブラック、ケッチェンブラック、カーボンウィスカ、ニードルコークス、炭素繊維、金属(銅、ニッケル、アルミニウム、銀、金など)などの1種又は2種以上を混合したものを用いることができる。これらの中で、導電材としては、電子伝導性及び塗工性の観点より、カーボンブラック及びアセチレンブラックが好ましい。結着材は、活物質粒子及び導電材粒子を繋ぎ止める役割を果たすものであり、例えば、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、フッ素ゴム等の含フッ素樹脂、或いはポリプロピレン、ポリエチレン等の熱可塑性樹脂、エチレン−プロピレン−ジエンマー(EPDM)、スルホン化EPDM、天然ブチルゴム(NBR)、スチレンブタジエンゴム(SBR)、ポリアクリロニトリル(PAN)等を単独で、あるいは2種以上の混合物として用いることができる。正極活物質、導電材、結着材を分散させる溶剤としては、例えばN−メチルピロリドン、ジメチルホルムアミド、ジメチルアセトアミド、メチルエチルケトン、シクロヘキサノン、酢酸メチル、アクリル酸メチル、ジエチルトリアミン、N,N−ジメチルアミノプロピルアミン、エチレンオキシド、テトラヒドロフランなどの有機溶剤を用いることができる。塗布方法としては、例えば、アプリケータロールなどのローラコーティング、スクリーンコーティング、ドクターブレイド方式、スピンコーティング、バーコータなどが挙げられ、これらのいずれかを用いて任意の厚さ・形状とすることができる。集電体としては、アルミニウム、チタン、ステンレス鋼、ニッケル、焼成炭素、導電性高分子、導電性ガラスなどを用いることができる。集電体の形状については、箔状、フィルム状、シート状、ネット状、パンチ又はエキスパンドされたもの、ラス体、多孔質体、発泡体、繊維群の形成体などが挙げられる。集電体の厚さは、例えば1〜500μmのものが用いられる。   The conductive material contained in the positive electrode is not particularly limited as long as it is an electron conductive material that does not adversely affect the battery performance of the positive electrode. , Carbon black, ketjen black, carbon whisker, needle coke, carbon fiber, metal (copper, nickel, aluminum, silver, gold, etc.) or a mixture of two or more thereof can be used. Among these, as the conductive material, carbon black and acetylene black are preferable from the viewpoints of electron conductivity and coatability. The binder serves to bind the active material particles and the conductive material particles. For example, polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), fluorine-containing resin such as fluorine rubber, or polypropylene, Thermoplastic resins such as polyethylene, ethylene-propylene-dienemer (EPDM), sulfonated EPDM, natural butyl rubber (NBR), styrene butadiene rubber (SBR), polyacrylonitrile (PAN), etc. alone or as a mixture of two or more Can be used. Examples of the solvent for dispersing the positive electrode active material, the conductive material, and the binder include N-methylpyrrolidone, dimethylformamide, dimethylacetamide, methyl ethyl ketone, cyclohexanone, methyl acetate, methyl acrylate, diethyltriamine, and N, N-dimethylaminopropyl. Organic solvents such as amine, ethylene oxide, and tetrahydrofuran can be used. Examples of the application method include roller coating such as applicator roll, screen coating, doctor blade method, spin coating, bar coater, and the like, and any of these can be used to obtain an arbitrary thickness and shape. As the current collector, aluminum, titanium, stainless steel, nickel, baked carbon, a conductive polymer, conductive glass, or the like can be used. Examples of the shape of the current collector include foil, film, sheet, net, punched or expanded, lath, porous, foam, and formed fiber group. The thickness of the current collector is, for example, 1 to 500 μm.

本発明のリチウム二次電池の負極は、例えば負極活物質と導電材と結着材とを混合して負極材とし、集電体の表面に圧着してもよいし、この負極材に適当な溶剤を加えてペースト状としたものを、集電体の表面に塗布乾燥し、必要に応じて電極密度を高めるべく圧縮して形成してもよい。負極活物質は、リチウムイオンを吸蔵・放出する材料であれば特に限定されないが、水の電気分解による水素が生じない電位範囲において、できるだけ大量のリチウムイオンの吸蔵・放出が可逆的に可能であるものが好ましい。例えば、負極活物質としては、遷移金属を含有する複合酸化物などの無機化合物などが挙げられ、このうち、バナジウム、鉄、チタン、マンガン、モリブデン、タングステン等の遷移金属を含有する酸化物や水酸化物、また、これらの金属とリチウムとの複合酸化物等とすることが好ましい。こうした負極活物質としては、例えばバナジウムを含む酸化物(LiV24、LiV38、VO2など)やチタンを含むリン酸化合物(LiTi2(PO43やTiP27など)、オキシ水酸化鉄(FeOOH)が挙げられ、このうち、負極活物質は、LiTi2(PO43、TiP27及びLiV24から選ばれる1以上とするのがより好ましい。また、負極に用いられる導電材、結着材、溶剤などは、それぞれ正極で例示したものを用いることができる。負極の集電体には、ニッケル、ステンレス鋼、チタン、アルミニウム、焼成炭素、導電性高分子、導電性ガラスなどを用いることができる。集電体の形状は、正極と同様のものを用いることができる。 The negative electrode of the lithium secondary battery of the present invention may be, for example, a negative electrode material obtained by mixing a negative electrode active material, a conductive material, and a binder, and may be pressure-bonded to the surface of the current collector. A paste obtained by adding a solvent may be applied and dried on the surface of the current collector, and may be compressed to increase the electrode density as necessary. The negative electrode active material is not particularly limited as long as it is a material that occludes and releases lithium ions, but it can reversibly occlude and release as much lithium ions as possible in a potential range where hydrogen is not generated by electrolysis of water. Those are preferred. For example, the negative electrode active material includes an inorganic compound such as a composite oxide containing a transition metal, and among these, an oxide or water containing a transition metal such as vanadium, iron, titanium, manganese, molybdenum, or tungsten. It is preferable to use oxides or composite oxides of these metals and lithium. Examples of such negative electrode active materials include oxides containing vanadium (LiV 2 O 4 , LiV 3 O 8 , VO 2, etc.) and phosphate compounds containing titanium (LiTi 2 (PO 4 ) 3 , TiP 2 O 7, etc.). Among them, it is more preferable that the negative electrode active material is one or more selected from LiTi 2 (PO 4 ) 3 , TiP 2 O 7 and LiV 2 O 4 . In addition, as the conductive material, binder, solvent, and the like used for the negative electrode, those exemplified for the positive electrode can be used. For the current collector of the negative electrode, nickel, stainless steel, titanium, aluminum, calcined carbon, conductive polymer, conductive glass, or the like can be used. The shape of the current collector can be the same as that of the positive electrode.

本発明の水系リチウム二次電池において、水系電解液は、リチウム塩を主電解質とするものであれば、特に限定されない。リチウム塩としては、例えばLiNO3、Li2SO4、LiOH、LiCl、及びCH3COOLi等が挙げられ、このうちLiNO3が溶解性の観点から好ましい。これらのリチウム塩は、それぞれ単独で用いることもできるが、2種以上を併用することもできる。水系電解液のpHは、4〜10であることが好ましい。水系電解液のpHが4以上では、一般に正極活物質や負極活物質の化学酸化が起こりにくく、プロトンによるLi挿入脱離の阻害も起こりにくく、電池の容量や充放電サイクル特性が向上する。一方、pHが10以下では、水の電気分解電位、即ち酸素発生がほとんど起きない電位で正極活物質の充放電反応が進行するため、正極での酸素の発生をより抑制することができる。 In the aqueous lithium secondary battery of the present invention, the aqueous electrolyte solution is not particularly limited as long as it has a lithium salt as a main electrolyte. Examples of the lithium salt include LiNO 3 , Li 2 SO 4 , LiOH, LiCl, and CH 3 COOLi. Among these, LiNO 3 is preferable from the viewpoint of solubility. These lithium salts can be used alone or in combination of two or more. The pH of the aqueous electrolyte is preferably 4-10. When the pH of the aqueous electrolyte is 4 or more, generally, chemical oxidation of the positive electrode active material and the negative electrode active material does not easily occur, and inhibition of Li insertion / release by protons hardly occurs, and the battery capacity and charge / discharge cycle characteristics are improved. On the other hand, when the pH is 10 or less, the charge / discharge reaction of the positive electrode active material proceeds at an electrolysis potential of water, that is, a potential at which almost no oxygen is generated, so that generation of oxygen at the positive electrode can be further suppressed.

本発明の水系リチウム二次電池において、正極と負極との間にセパレータを備えていてもよい。セパレータとしては、例えば高分子化合物の微多孔フィルムなど、リチウム二次電池の使用範囲に耐えうる材質であれば、特に限定されずに用いることができる。例えば、ポリエチレン、ポリプロピレン、ポリフッ化ビニリデン、ポリ塩化ビニリデン、ポリアクリロニトリル、ポリアクリルアミド、ポリテトラフルオロエチレン、ポリスルホン、ポリエーテルスルホン、ポリカーボネート、ポリアミド、ポリイミド、ポリエチレンオキシド、ポリプロピレンオキシドなどのポリエーテル類、カルボキシメチルセルロースやヒドロキシプロピルセルロースなどのセルロース類、ポリ(メタ)アクリル酸及びその種々のエステル類等を主体とする高分子化合物やその誘導体、これらの共重合体や混合物からなるフィルムなどが挙げられる。また、これらは、単独で用いてもよいし、複数のフィルムを重ね合わせた複層フィルムとして用いてもよい。また、これらのフィルムには、例えばイオンの伝導性を高める添加剤や強度・耐食性を高めるような種々の添加剤を添加してもよい。この微多孔フィルムのうち、ポリエチレンやポリプロピレン、ポリフッ化ビニリデン、ポリスルホンなどが好ましく用いられる。このセパレータは、水系電解液が浸透してイオンが透過しやすいように、親水処理を施したり微多孔化を施すのが好ましい。   In the aqueous lithium secondary battery of the present invention, a separator may be provided between the positive electrode and the negative electrode. The separator is not particularly limited as long as it is a material that can withstand the use range of the lithium secondary battery, such as a microporous film of a polymer compound. For example, polyethylene, polypropylene, polyvinylidene fluoride, polyvinylidene chloride, polyacrylonitrile, polyacrylamide, polytetrafluoroethylene, polysulfone, polyethersulfone, polycarbonate, polyamide, polyimide, polyethylene oxide, polypropylene oxide and other polyethers, carboxymethylcellulose And celluloses such as hydroxypropyl cellulose, polymer compounds mainly composed of poly (meth) acrylic acid and various esters thereof, derivatives thereof, and films made of copolymers or mixtures thereof. Moreover, these may be used independently and may be used as a multilayer film which piled up the some film. Further, for example, an additive for enhancing ion conductivity and various additives for enhancing strength and corrosion resistance may be added to these films. Of these microporous films, polyethylene, polypropylene, polyvinylidene fluoride, polysulfone and the like are preferably used. This separator is preferably subjected to a hydrophilic treatment or microporosity so that the aqueous electrolyte solution can permeate and ions can easily pass therethrough.

本発明の水系リチウム二次電池の形状は、特に限定されないが、例えばコイン型、ボタン型、シート型、積層型、円筒型、偏平型、角型などが挙げられる。また、こうした水系リチウム二次電池を複数直列に接続して電気自動車用電源としてもよい。電気自動車としては、例えば、電池のみで駆動する電気自動車や内燃機関とモータ駆動とを組み合わせたハイブリッド電気自動車、燃料電池で発電する燃料電池自動車等が挙げられる。この水系リチウム二次電池の一例を図1に示す。図1は、コイン型電池20の構成の概略を表す断面図である。このコイン型電池20は、カップ形状の電池ケース21と、正極活物質を有しこの電池ケース21の下部に設けられた正極22と、負極活物質を有し正極22に対してセパレータ24を介して対向する位置に設けられた負極23と、電解質を含む水系電解液28と、絶縁材により形成されたガスケット25と、電池ケース21の開口部に配設されガスケット25を介して電池ケース21を密封する封口板26と、を備えている。ここでは、正極22は、正極活物質としてのLi2MeSiO4(但し、MeはFe,Co,Ni,Mnのうち少なくとも1以上)を有している。 The shape of the aqueous lithium secondary battery of the present invention is not particularly limited, and examples thereof include a coin type, a button type, a sheet type, a laminated type, a cylindrical type, a flat type, and a square type. A plurality of such water-based lithium secondary batteries may be connected in series to serve as a power source for an electric vehicle. Examples of the electric vehicle include an electric vehicle that is driven only by a battery, a hybrid electric vehicle that combines an internal combustion engine and a motor drive, and a fuel cell vehicle that generates power using a fuel cell. An example of this water-based lithium secondary battery is shown in FIG. FIG. 1 is a cross-sectional view schematically showing the configuration of the coin-type battery 20. The coin-type battery 20 includes a cup-shaped battery case 21, a positive electrode 22 having a positive electrode active material provided at a lower portion of the battery case 21, and a negative electrode active material having a positive electrode 22 via a separator 24. The battery case 21 is disposed in the opening of the battery case 21 via the gasket 25, the negative electrode 23 provided in the opposite position, the aqueous electrolyte solution 28 containing the electrolyte, the gasket 25 formed of an insulating material, and the gasket 25. A sealing plate 26 for sealing. Here, the positive electrode 22 has Li 2 MeSiO 4 (wherein Me is at least one of Fe, Co, Ni, and Mn) as a positive electrode active material.

以上詳述した本実施形態の水系リチウム二次電池では、正極活物質としてLi2MeSiO4(但し、MeはFe,Co,Ni,Mnのうち少なくとも1以上)を有しており、初期放電容量及び充放電サイクル特性をより向上することができる。これは、単位格子中に2個のLi+を含んでおり大きな充放電容量を示すことや、含まれているSiが作用するなどして遷移金属の溶出が抑制されるためであると考えられる。 The water-based lithium secondary battery of the present embodiment described in detail above has Li 2 MeSiO 4 (wherein Me is at least one of Fe, Co, Ni, and Mn) as the positive electrode active material, and the initial discharge capacity. In addition, the charge / discharge cycle characteristics can be further improved. This is considered to be due to the fact that the unit cell contains two Li + and exhibits a large charge / discharge capacity, or the contained Si acts to suppress elution of transition metals. .

なお、本発明は上述した実施形態に何ら限定されることはなく、本発明の技術的範囲に属する限り種々の態様で実施し得ることはいうまでもない。   It should be noted that the present invention is not limited to the above-described embodiment, and it goes without saying that the present invention can be implemented in various modes as long as it belongs to the technical scope of the present invention.

以下には、リチウム−遷移金属−珪素複合酸化物(但し、遷移金属はFe,Co,Ni,Mnのうち少なくとも1以上)を正極活物質とする正極を備えた水系リチウム二次電池を具体的に作製した例を、実施例として説明する。まず、活物質の作製方法について説明する。   The following is a specific example of a water-based lithium secondary battery including a positive electrode using a lithium-transition metal-silicon composite oxide (wherein the transition metal is at least one of Fe, Co, Ni, and Mn) as a positive electrode active material. Examples prepared in the following will be described as examples. First, a method for manufacturing an active material will be described.

<Li2MnSiO4の作製>
Arバブリングを行った水/エタノール混合溶媒の255mLにCH3COOLiを0.0375mol、(CH3COO)2Mnを0.0188mol、Si(OC254を0.01875mol加え、Ar雰囲気下で80℃で6時間還流を行い、沈殿物を得た。ロータリーエバポレータで沈殿物を回収し、105℃で12時間真空乾燥させた後、4vol%のH2を含むAr雰囲気下で600℃で8時間焼成を行うことによりLi2MnSiO4を作製した。
<Preparation of Li 2 MnSiO 4 >
To 255 mL of the water / ethanol mixed solvent subjected to Ar bubbling, 0.0375 mol of CH 3 COOLi, 0.0188 mol of (CH 3 COO) 2 Mn, 0.01875 mol of Si (OC 2 H 5 ) 4 were added, and Ar atmosphere was added. Was refluxed at 80 ° C. for 6 hours to obtain a precipitate. The precipitate was collected by a rotary evaporator, vacuum-dried at 105 ° C. for 12 hours, and then baked at 600 ° C. for 8 hours in an Ar atmosphere containing 4 vol% H 2 to prepare Li 2 MnSiO 4 .

<LiV24の作製>
炭酸リチウム(Li2CO3)および五酸化バナジウム(V25)を上記組成式の化学量論比に従って秤量し自動乳鉢で20分間混合した。その後カーボンブラック(東海カーボン製TB−5500)を混合物100重量部に対し2重量部添加し、さらに自動乳鉢で20分混合した。その混合物をアルゴン気流中750℃で24時間焼成後、急冷することによりLiV24を作製した。
<Production of LiV 2 O 4 >
Lithium carbonate (Li 2 CO 3 ) and vanadium pentoxide (V 2 O 5 ) were weighed according to the stoichiometric ratio of the above composition formula and mixed in an automatic mortar for 20 minutes. Thereafter, 2 parts by weight of carbon black (TB-5500 manufactured by Tokai Carbon Co., Ltd.) was added to 100 parts by weight of the mixture, and further mixed for 20 minutes in an automatic mortar. The mixture was baked in an argon stream at 750 ° C. for 24 hours, and then rapidly cooled to prepare LiV 2 O 4 .

<LiTi2(PO43の作製>
酸化チタン(TiO2(アナターゼ))、炭酸リチウム(Li2CO3)及びリン酸二水素アンモニウム(NH42PO4)を両論組成となるように量り取り、乳鉢で十分に混合した。混合粉末をペレット状に成形し、大気中300℃で6時間仮焼した。ペレットを取り出し、十分に乳鉢で粉砕してから、再度ペレット状に成形し、大気中600℃で24時間仮焼した。ペレットを取り出し、十分に乳鉢で粉砕してから、再度ペレット状に成形し、大気中900℃で24時間、本焼成を行うことによりLiTi2(PO43を作製した。
<Preparation of LiTi 2 (PO 4 ) 3 >
Titanium oxide (TiO 2 (anatase)), lithium carbonate (Li 2 CO 3 ), and ammonium dihydrogen phosphate (NH 4 H 2 PO 4 ) were weighed so as to have a reciprocal composition and mixed thoroughly in a mortar. The mixed powder was formed into pellets and calcined at 300 ° C. for 6 hours in the atmosphere. The pellet was taken out and sufficiently pulverized in a mortar, then formed into a pellet again and calcined at 600 ° C. for 24 hours in the atmosphere. The pellets were taken out and sufficiently pulverized in a mortar, and then formed into pellets again, and then subjected to main firing at 900 ° C. for 24 hours in the air to produce LiTi 2 (PO 4 ) 3 .

<LiFePO4の作製>
出発原料として鉄の価数が2価であるシュウ酸鉄、炭酸リチウム、リン酸二水素アンモニウムをモル比でLi:Fe:Pが1.2:1:1となるように混合し、ペレット状に成形して650℃、Ar雰囲気下で24時間焼成することによりLiFePO4を作製した。
<Preparation of LiFePO 4 >
As a starting material, iron oxalate having a valence of iron, lithium carbonate, and ammonium dihydrogen phosphate are mixed so that a molar ratio of Li: Fe: P is 1.2: 1: 1, and pelletized. LiFePO 4 was produced by molding into 650 ° C. and firing in an Ar atmosphere for 24 hours.

[実施例1]
水系リチウム二次電池として2016型コイン電池を作製した。正極活物質であるLi2MnSiO4を70重量%、導電剤であるカーボンを25重量%、結着剤であるポリテトラフルオロエチレン(PTFE)5重量%をよく混合した。この混合粉末14.3mg(活物質量10mg)をあらかじめコインセルの内側に溶接したSUS製メッシュ上に約0.6ton/cm2で圧着して電極とした。負極活物質としては上記作製したLiV24を用いた。LiV24を70重量%、導電剤であるカーボンを25重量%、結着剤であるPTFEを5重量%としてよく混合した。この混合粉末21.5mg(活物質量15mg)をあらかじめコインセルの内側に溶接したSUS製メッシュ上に約0.6ton/cm2で圧着して電極とした。親水処理を施したポリエチレン製のセパレータ(東燃化学(株)製E25MMS)を用いて正極と負極を隔て、電解液には6mol/LのLiNO3、0.1mol/LのCH3COOH、0.9mol/LのCH3COOKを含む水溶液を用いた。電解液をコイン電池に導入し、密封して試験用コイン電池を得た。
[Example 1]
A 2016 type coin battery was prepared as a water based lithium secondary battery. 70% by weight of Li 2 MnSiO 4 as a positive electrode active material, 25% by weight of carbon as a conductive agent, and 5% by weight of polytetrafluoroethylene (PTFE) as a binder were mixed well. This mixed powder 14.3 mg (active material amount 10 mg) was pressed onto an SUS mesh previously welded to the inside of the coin cell at about 0.6 ton / cm 2 to obtain an electrode. LiV 2 O 4 produced as described above was used as the negative electrode active material. LiV 2 O 4 was 70% by weight, carbon as a conductive agent was 25% by weight, and PTFE as a binder was 5% by weight and mixed well. This mixed powder 21.5 mg (active material amount 15 mg) was pressure-bonded at about 0.6 ton / cm 2 onto a SUS mesh previously welded to the inside of the coin cell to obtain an electrode. Using a polyethylene separator (E25MMS manufactured by Tonen Chemical Co., Ltd.) with a hydrophilic treatment, the positive electrode and the negative electrode were separated, and the electrolyte contained 6 mol / L LiNO 3 , 0.1 mol / L CH 3 COOH,. An aqueous solution containing 9 mol / L CH 3 COOK was used. The electrolytic solution was introduced into a coin battery and sealed to obtain a test coin battery.

[実施例2]
負極活物質として上記LiTi2(PO43を用いる以外は実施例1と同様の方法でコイン電池を作製し、これを実施例2とした。
[Example 2]
A coin battery was produced in the same manner as in Example 1 except that the above LiTi 2 (PO 4 ) 3 was used as the negative electrode active material.

[比較例1,2]
正極活物質としてLiFePO4を用いる以外は実施例1と同様の方法でコイン電池を作製し、これを比較例1とした。また、正極活物質としてLiFePO4を用いる以外は実施例2と同様の方法でコイン電池を作製し、これを比較例2とした。
[Comparative Examples 1 and 2]
A coin battery was produced in the same manner as in Example 1 except that LiFePO 4 was used as the positive electrode active material. A coin battery was produced in the same manner as in Example 2 except that LiFePO 4 was used as the positive electrode active material.

(電池性能評価)
20℃の環境下において、定電流方式、電流密度0.162mA/cm2でLiの挿入・脱離試験を20回繰り返し行った。カットオフ電圧は、実施例1が0.8V〜1.4V、実施例2及び比較例1が0.7V〜1.3V、比較例2が0.6V〜1.2Vであった。充放電サイクル試験の1サイクル目の放電容量を初期放電容量CAP1(mAh/g)とし、n回目のサイクルでの放電容量をCAPn(mAh/g)としたとき、容量維持率CAPma(%)を、CAPn/CAP1×100の式を用いて算出した。
(Battery performance evaluation)
Under an environment of 20 ° C., the Li insertion / extraction test was repeated 20 times with a constant current method and a current density of 0.162 mA / cm 2 . The cut-off voltage was 0.8 V to 1.4 V in Example 1, 0.7 V to 1.3 V in Example 2 and Comparative Example 1, and 0.6 V to 1.2 V in Comparative Example 2. When the discharge capacity at the first cycle of the charge / discharge cycle test is the initial discharge capacity CAP 1 (mAh / g) and the discharge capacity at the nth cycle is CAP n (mAh / g), the capacity maintenance ratio CAPma (% ) Was calculated using the formula CAP n / CAP 1 × 100.

(実験結果)
表1に実施例1,2及び比較例1,2の電極構成、カットオフ電圧、初期放電容量及び20サイクル目の容量維持率を示す。また、図2にサイクル数に対する電池の容量維持率の関係を示す。表1に示すように、正極にLiFePO4を正極に用いた比較例1,2が115mAh/g未満であったのに比して、Li2MnSiO4を用いた水系リチウム二次電池(実施例1,2)は、130mAh/g以上と高い初期放電容量を示した。また、図2に示すように、負極の種類によらず、正極にLi2MnSiO4を用いた電池(実施例1,2)はLiFePO4を用いた比較例1,2よりも良好なサイクル特性を示した。以上の結果から、Li2MnSiO4を正極活物質として用いた水系リチウム二次電池はこれまでにない大きな放電容量と高いサイクル安定性を備えた水系リチウム二次電池を実現しうることがわかった。
(Experimental result)
Table 1 shows the electrode configurations, cut-off voltages, initial discharge capacities, and 20th cycle capacity retention rates of Examples 1 and 2 and Comparative Examples 1 and 2. FIG. 2 shows the relationship between the number of cycles and the capacity retention rate of the battery. As shown in Table 1, compared to Comparative Examples 1 and 2 using LiFePO 4 as the positive electrode and less than 115 mAh / g, an aqueous lithium secondary battery using Li 2 MnSiO 4 (Example) 1, 2) showed a high initial discharge capacity of 130 mAh / g or more. In addition, as shown in FIG. 2, regardless of the type of the negative electrode, the batteries (Examples 1 and 2) using Li 2 MnSiO 4 for the positive electrode have better cycle characteristics than Comparative Examples 1 and 2 using LiFePO 4. showed that. From the above results, it was found that an aqueous lithium secondary battery using Li 2 MnSiO 4 as a positive electrode active material can realize an aqueous lithium secondary battery having an unprecedented large discharge capacity and high cycle stability. .

Figure 0005493330
Figure 0005493330

本発明は、電池産業に利用可能である。   The present invention is applicable to the battery industry.

コイン型電池20の構成の概略を表す断面図である。2 is a cross-sectional view illustrating a schematic configuration of a coin-type battery 20. FIG. サイクル数に対する電池出力の容量維持率の関係を表す図である。It is a figure showing the relationship of the capacity maintenance rate of the battery output with respect to the cycle number.

符号の説明Explanation of symbols

20 コイン型電池、21 電池ケース、22 正極、23 負極、24 セパレータ、25 ガスケット、26 封口板、28 水系電解液。   20 coin-type battery, 21 battery case, 22 positive electrode, 23 negative electrode, 24 separator, 25 gasket, 26 sealing plate, 28 aqueous electrolyte.

Claims (2)

リチウム−遷移金属−珪素複合酸化物(但し、遷移金属はFe,Co,Ni,Mnのうち少なくとも1以上)を含む正極活物質を有する正極と、
リチウムを吸蔵・放出可能なLiTi 2 (PO 4 3 及びTiP 2 7 から選ばれる1以上の負極活物質を有する負極と、
リチウム塩を主電解質とする水系電解液と、
を備えた水系リチウム二次電池。
A positive electrode having a positive electrode active material containing a lithium-transition metal-silicon composite oxide (wherein the transition metal is at least one of Fe, Co, Ni, and Mn);
A negative electrode having one or more negative electrode active materials selected from LiTi 2 (PO 4 ) 3 and TiP 2 O 7 capable of inserting and extracting lithium;
An aqueous electrolyte containing a lithium salt as a main electrolyte;
A water based lithium secondary battery.
前記正極は、リチウム−遷移金属−珪素複合酸化物としてのLi2MnSiO4を正極活物質とする、請求項1に記載の水系リチウム二次電池。 The water based lithium secondary battery according to claim 1, wherein the positive electrode uses Li 2 MnSiO 4 as a lithium-transition metal-silicon composite oxide as a positive electrode active material.
JP2008277878A 2008-10-29 2008-10-29 Water-based lithium secondary battery Expired - Fee Related JP5493330B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008277878A JP5493330B2 (en) 2008-10-29 2008-10-29 Water-based lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008277878A JP5493330B2 (en) 2008-10-29 2008-10-29 Water-based lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2010108676A JP2010108676A (en) 2010-05-13
JP5493330B2 true JP5493330B2 (en) 2014-05-14

Family

ID=42297936

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008277878A Expired - Fee Related JP5493330B2 (en) 2008-10-29 2008-10-29 Water-based lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5493330B2 (en)

Families Citing this family (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5769140B2 (en) * 2014-01-30 2015-08-26 住友金属鉱山株式会社 Method for producing positive electrode active material for lithium secondary battery
EP3667805A1 (en) * 2016-02-01 2020-06-17 Kabushiki Kaisha Toshiba Secondary battery, battery module, battery pack and vehicle
US10727540B2 (en) 2016-02-01 2020-07-28 Kabushiki Kaisha Toshiba Secondary battery, battery module, battery pack and vehicle
JP6839264B2 (en) * 2017-03-08 2021-03-03 富士フイルム株式会社 A method for producing a solid electrolyte-containing sheet, a solid electrolyte composition and an all-solid-state secondary battery, and a solid electrolyte-containing sheet and an all-solid-state secondary battery.
JP6662353B2 (en) 2017-07-18 2020-03-11 トヨタ自動車株式会社 Negative electrode current collector, negative electrode, and aqueous lithium ion secondary battery
WO2020066256A1 (en) * 2018-09-25 2020-04-02 パナソニックIpマネジメント株式会社 Secondary battery positive electrode active material and secondary battery
US20220045319A1 (en) * 2018-09-27 2022-02-10 Panasonic Intellectual Property Management Co., Ltd. Secondary battery positive electrode active material and secondary battery
JP7308459B2 (en) * 2018-09-27 2023-07-14 パナソニックIpマネジメント株式会社 Positive electrode active material for secondary battery and secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007172986A (en) * 2005-12-21 2007-07-05 Toyota Central Res & Dev Lab Inc Aqueous solution based lithium secondary cell
JP5235282B2 (en) * 2006-06-16 2013-07-10 国立大学法人九州大学 Cathode active material and battery for non-aqueous electrolyte secondary battery
JP5293926B2 (en) * 2007-02-24 2013-09-18 国立大学法人九州大学 Secondary battery
JP5156946B2 (en) * 2007-03-07 2013-03-06 国立大学法人九州大学 Method for producing positive electrode active material for secondary battery
JPWO2008123311A1 (en) * 2007-03-27 2010-07-15 国立大学法人東京工業大学 Method for producing positive electrode material for secondary battery

Also Published As

Publication number Publication date
JP2010108676A (en) 2010-05-13

Similar Documents

Publication Publication Date Title
KR101264332B1 (en) Cathode active material and lithium battery using the same
KR101699568B1 (en) Accumulator device and positive electrode
JP5757148B2 (en) Negative electrode active material for lithium ion secondary battery and lithium ion secondary battery using the negative electrode active material
JP5454426B2 (en) Aqueous secondary battery
JP5348170B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery
JP5493330B2 (en) Water-based lithium secondary battery
JP5897971B2 (en) Electrode active material, electrode for non-aqueous secondary battery, non-aqueous secondary battery and method for producing electrode for non-aqueous secondary battery
JP5263115B2 (en) Aqueous secondary battery
JP2018116930A (en) Positive electrode active material and battery
JP4706090B2 (en) Positive electrode material and positive electrode for lithium secondary battery, and lithium secondary battery
JP6978234B2 (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2015079685A (en) Aqueous solution-based secondary battery
JP6260218B2 (en) Aqueous secondary battery
JP2012174546A (en) Nonaqueous electrolyte secondary battery
JP5194979B2 (en) Water-based lithium ion secondary battery
JP2016076342A (en) Electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP5187350B2 (en) Aqueous secondary battery
JP5300370B2 (en) Cathode active material for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JPWO2013146864A1 (en) Active material, electrode using the same, and lithium ion secondary battery
CN113054184A (en) Symmetric sodium-ion battery and preparation method thereof
JP2012156087A (en) Nonaqueous electrolyte secondary battery
JP2012059527A (en) Positive electrode for lithium ion battery and lithium ion battery using the same
JP6346733B2 (en) Electrode, non-aqueous secondary battery and electrode manufacturing method
JP2006073259A (en) Positive electrode active material and water dissolving lithium secondary battery
JP2008282665A (en) Aqueous lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110704

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121228

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130129

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130301

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20131203

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140108

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20140204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20140217

LAPS Cancellation because of no payment of annual fees