JPH07134988A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH07134988A
JPH07134988A JP5281159A JP28115993A JPH07134988A JP H07134988 A JPH07134988 A JP H07134988A JP 5281159 A JP5281159 A JP 5281159A JP 28115993 A JP28115993 A JP 28115993A JP H07134988 A JPH07134988 A JP H07134988A
Authority
JP
Japan
Prior art keywords
lithium
secondary battery
graphite powder
negative electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP5281159A
Other languages
Japanese (ja)
Other versions
JP3048808B2 (en
Inventor
Atsushi Otsuka
敦 大塚
Toyoji Sugimoto
豊次 杉本
Yoshiyuki Ozaki
義幸 尾崎
Toru Takai
徹 高井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP5281159A priority Critical patent/JP3048808B2/en
Publication of JPH07134988A publication Critical patent/JPH07134988A/en
Application granted granted Critical
Publication of JP3048808B2 publication Critical patent/JP3048808B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To provide a lithium secondary battery excellent in a high rate charge/ discharge property and a high temperature resistant storage property by improving a particle diameter or a specific surface area of the specific spherical graphite in a negative electrode active material. CONSTITUTION:A nonaqueous electrolyte secondary battery is provided with a positive electrode consisting of oxide containing lithium and a rechargeable negative electrode mainly consisting of graphite powder. The graphite powder, to which lithium can be intercalated, is a spherical substance, and also it is optically anisotropic granular substance having a lamella structure consisting of monophase, and in this granular formed by graphitizing a mesophase small spherical body generated in a heat treatment process of pitch at a low temperature, spacing of a 002 face (d002) by a wide angle X-ray diffraction method is 3.36-3.40Angstrom , while a specific surface area by a BET method is 0.7-5.0m<2>/g.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水電解質二次電池、
特にその負極に関するものである。
The present invention relates to a non-aqueous electrolyte secondary battery,
In particular, it relates to the negative electrode.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が急速に進んでいる。これにつれてそれら
の機器の駆動用電源を担う小形、軽量で、かつ高エネル
ギー密度を有する二次電池への要望も高まっている。こ
のような観点から、非水系二次電池、特にリチウム二次
電池は、とりわけ高電圧、高エネルギー密度を有する電
池としてその期待は大きく、開発が急がれている。従
来、リチウム二次電池の正極活物質には、二酸化マンガ
ン、五酸化バナジウム、二硫化チタンなどが用いられて
いた。これらの正極とリチウム負極および有機電解質に
より電池が構成されていた。ところが、一般に負極にリ
チウム金属を用いた二次電池は、充電時に生成するデン
ドライト状リチウムによる内部短絡や活物質と電解液の
副反応といった課題が二次電池化への大きな障害となっ
ている。さらには、高率充放電特性や過放電特性におい
ても満足するものが見い出されていない。
2. Description of the Related Art In recent years, portable electronic devices for consumer use,
Cordless is advancing rapidly. Along with this, there is an increasing demand for a small-sized, lightweight secondary battery having a high energy density, which serves as a power source for driving those devices. From this point of view, non-aqueous secondary batteries, especially lithium secondary batteries, have great expectations as batteries having high voltage and high energy density, and their development is urgently needed. Conventionally, manganese dioxide, vanadium pentoxide, titanium disulfide, etc. have been used as a positive electrode active material of a lithium secondary battery. A battery was composed of these positive electrode, lithium negative electrode and organic electrolyte. However, generally, in a secondary battery using lithium metal for the negative electrode, problems such as an internal short circuit due to dendrite-like lithium generated at the time of charging and a side reaction between an active material and an electrolytic solution are major obstacles to making the secondary battery. Furthermore, no one has been found to be satisfactory in high-rate charge / discharge characteristics and over-discharge characteristics.

【0003】また昨今、リチウム電池の安全性が厳しく
指摘されており、負極にリチウム金属あるいはリチウム
合金を用いた電池系においては、安全性の確保が非常に
困難な状態にある。最近になって、層状化合物のインタ
ーカレーション反応を利用した新しいタイプの電極活物
質が注目を集めており、層間化合物が二次電池の電極材
料として考えられている。特に、Liイオンをインター
カレート/ディインターカレートし得る炭素材料は、リ
チウム二次電池の負極材料として有望であり、その開発
が盛んに行われている。一方、負極に炭素材料を用いる
ことに伴い、正極活物質としてはより高電圧を有し、か
つリチウムを含む化合物であるLiCoO2やLiNi
2、さらにはこれらのCoおよびNiの一部を他元素
で置換した複合酸化物を用いることが提案されている。
しかしながら、かかる非水系電池においては、高エネル
ギー密度が得られるものの、水系電池に比べ高出力密度
を得ることが困難である。これは電解液のイオン伝導度
に起因するところが大きく、非水電解液では水溶液に比
べそのイオン伝導度は100分の1以下であるのが現状
である。
In recent years, the safety of lithium batteries has been pointed out severely, and it is very difficult to ensure safety in battery systems using lithium metal or lithium alloy for the negative electrode. Recently, a new type of electrode active material utilizing an intercalation reaction of a layered compound has been attracting attention, and an interlayer compound is considered as an electrode material for a secondary battery. In particular, a carbon material capable of intercalating / deintercalating Li ions is promising as a negative electrode material for a lithium secondary battery, and its development is being actively conducted. On the other hand, since a carbon material is used for the negative electrode, LiCoO 2 or LiNi, which is a compound having a higher voltage and containing lithium, is used as the positive electrode active material.
It has been proposed to use a complex oxide in which O 2 and further Co and Ni are partially replaced with other elements.
However, although such a non-aqueous battery can obtain a high energy density, it is difficult to obtain a high output density as compared with an aqueous battery. This is largely due to the ionic conductivity of the electrolytic solution, and the ionic conductivity of the non-aqueous electrolytic solution is 100 times less than that of the aqueous solution.

【0004】これらの問題点を解決するための方法とし
て、電極面積を大きくする、即ち薄形で大面積の極板を
用いることが考えられる。とりわけ、集電体である金属
箔に電極活物質を結着剤溶液や分散媒に分散させたペー
ストを塗着、乾燥するといった製造法がよく知られてお
り、比較的容易に薄形、大面積の極板を得ることが可能
である。
As a method for solving these problems, it is conceivable to increase the electrode area, that is, to use a thin and large-area electrode plate. In particular, a manufacturing method in which a metal foil, which is a current collector, is coated with a paste in which an electrode active material is dispersed in a binder solution or a dispersion medium and dried, is relatively well known. It is possible to obtain an area plate.

【0005】[0005]

【発明が解決しようとする課題】負極の炭素材料とし
て、従来から各種のものが検討されているが、低結晶性
の黒鉛は、すぐれたサイクル可逆性を示すものの、イン
ターカレートされ得るリチウム量が少なく、電極電位も
比較的貴であるところから高エネルギー密度は期待でき
ない。一方、高結晶性の黒鉛材料は、比較的高容量を与
えるが、リチウムのインターカレート/ディインターカ
レート反応により黒鉛のc軸方向の膨張、収縮が繰り返
され、かつ高容量であるためその変化量も大きく、サイ
クル特性が好ましくない結果となる。
Various carbon materials have been studied as the carbon material for the negative electrode. Low crystalline graphite exhibits excellent cycle reversibility, but the amount of lithium that can be intercalated is low. However, the high energy density cannot be expected because the electrode potential is relatively noble. On the other hand, a highly crystalline graphite material gives a relatively high capacity, but since the graphite is repeatedly expanded and contracted in the c-axis direction due to the intercalation / deintercalation reaction of lithium, and has a high capacity. The amount of change is large and the cycle characteristics are unfavorable.

【0006】また、前述のような電極製造法において、
黒鉛粉末のペースを集電体の例えば銅箔の両面に塗着、
乾燥するといった手法により負極板を製造した場合、薄
形、大面積の極板を得ることは容易であるが、黒鉛粉末
の物性値、特に粒径あるいは比表面積が電池特性に与え
る影響は極めて大きく、とりわけ電池の放電容量や高率
充放電特性、耐高温保存特性などが影響を受ける。これ
に対して、従来より黒鉛粉末の粒径に関しては、平均粒
径を規制することが提案されている。しかしながら、平
均粒径のみの規制では、必要以上に大きいものや小さい
ものが多く含まれることがありうるため、問題の解決に
は不十分である。
In addition, in the electrode manufacturing method as described above,
Apply the pace of graphite powder to both sides of the current collector, for example, copper foil,
When a negative electrode plate is manufactured by a method such as drying, it is easy to obtain a thin, large-area electrode plate, but the physical properties of the graphite powder, especially the particle size or specific surface area, have an extremely large effect on battery characteristics. Especially, the discharge capacity of the battery, the high rate charge / discharge characteristics, and the high temperature resistant storage characteristics are affected. On the other hand, regarding the particle size of graphite powder, it has been conventionally proposed to regulate the average particle size. However, regulation of only the average particle size is not sufficient for solving the problem, because it may include a large amount of particles and small particles that are larger than necessary.

【0007】この課題に対して、発明者らは、多岐にわ
たる実験の結果、黒鉛粉末の粒径、比表面積に対して以
下のことを見出したのである。例えば、粒径が小さい場
合、特に3μm以下の場合には、黒鉛粉末は完全な球状
形態にはならないといわれている。この場合、高温で黒
鉛化しても結晶性が低く、層構造が未発達なものしか得
られない。そのため、インターカレート、ディインター
カレートし得るリチウムの量が少なく、100〜150
mAh/g程度の容量しか得ることができない。また、
粒径が大きすぎる場合には、上記のような方法で薄形の
極板を作成すると、粒子間に隙間ができやすく充填密度
を上げることができない。仮に圧延により無理に密度を
あげた場合、集電体から合剤が剥離してしまい、電池を
構成できないといった問題がある。一方、比表面積につ
いては、一般に小さい程、反応面積が小さいため分極が
大きくなり、高率充放電特性の点で不利になる。しかし
ながら比表面積が大きくなる程、粒径が小さいものが多
くなるか、粉末の形状が球状ではなく、表面に凹凸が多
くなり表面の活性度が必要以上に高くなるため、電池を
高温で保存した場合に電解液と反応を起こし、ガス発生
するなどして劣化するという問題がある。
In order to solve this problem, the inventors have found out the following with respect to the particle size and specific surface area of the graphite powder as a result of various experiments. For example, it is said that the graphite powder does not have a perfect spherical shape when the particle size is small, particularly when it is 3 μm or less. In this case, even if it is graphitized at a high temperature, the crystallinity is low, and only a layer structure with an undeveloped layer is obtained. Therefore, the amount of lithium that can be intercalated or deintercalated is small, and thus 100 to 150
Only a capacity of about mAh / g can be obtained. Also,
When the particle size is too large, when a thin electrode plate is prepared by the above method, a gap is likely to be formed between the particles and the packing density cannot be increased. If the density is forcibly increased by rolling, the mixture will peel off from the current collector, and there is a problem that the battery cannot be constructed. On the other hand, with respect to the specific surface area, generally, the smaller the reaction area is, the larger the polarization becomes, which is disadvantageous in terms of high rate charge / discharge characteristics. However, the larger the specific surface area, the larger the number of particles with a smaller particle size, or the shape of the powder is not spherical, and the surface has more irregularities and the surface activity becomes higher than necessary, so the battery was stored at high temperature. In this case, there is a problem that it reacts with the electrolytic solution, and gas is generated to cause deterioration.

【0008】[0008]

【課題を解決するための手段】これらの課題を解決する
ため、本発明は、黒鉛粉末として、リチウムをインター
カレートし得る球状の物質で、光学的に異方性で、単一
の相からなるラメラ構造を持った粒状物であって、ピッ
チの低温での熱処理過程で生じるメソフェーズ小球体を
黒鉛化したもので、広角X線回折法による002面の面
間隔(d002)が3.36オングストローム以上3.4
0オングストローム以下であり、BET法による比表面
積測定において0.7〜5.0m2/gであるものを用
いるものである。ここにおいて、前記黒鉛粉末は、直径
3μm以下のものが体積比で30%以下であり、かつ1
5μm以上のものが体積比で20%以下であることが好
ましい。
In order to solve these problems, the present invention relates to a graphite powder, which is a spherical substance capable of intercalating lithium and which is optically anisotropic and has a single phase. Is a granular material having a lamellar structure, which is obtained by graphitizing mesophase spherules generated in a heat treatment process at a low temperature of pitch, and has a 002 plane spacing (d 002 ) of 3.36 by a wide-angle X-ray diffraction method. Angstrom or higher 3.4
It is 0 angstrom or less, and the specific surface area measured by the BET method is 0.7 to 5.0 m 2 / g. Here, the graphite powder has a diameter of 3 μm or less in a volume ratio of 30% or less, and 1
Those having a volume ratio of 5 μm or more are preferably 20% or less by volume.

【0009】[0009]

【作用】光学的に異方性で、しかも単一の相からなるラ
メラ構造をもつ黒鉛粒状物は、代表的には、ピッチの炭
素化過程で生じるメソフェーズ小球体を高温で熱処理し
黒鉛化した球状のメソカーボンマイクロビーズ(MCM
B)であり、これは石油学会誌第6巻第5号(1973
年)に開示されている。さらに、このMCMBは、その
黒鉛化度が重要な因子であり、炭素の物性パラメータで
表すと、002面の面間隔(d002)が3.36〜3.
42オングストロームのものがよい結果を与える。ちな
みに、このMCMBにおいても、黒鉛化温度が低い場合
はd002が3.43オングストローム以上の擬黒鉛質状
態のものが得られ、この場合は他の擬黒鉛材料と同様に
容量が小さく、炭素電極としての電位が貴になるため好
ましくない。好ましいd002のものを得るためには、不
活性ガス雰囲気中における黒鉛化の熱処理温度は200
0℃以上とする必要があり、2800〜3000℃でそ
の黒鉛化度はほぼ飽和する。なお、3000℃以上の熱
処理は物性的な変化を伴わず、むしろ不経済である。す
なわち、MCMBの黒鉛化の熱処理温度は不活性ガス雰
囲気中で2000℃〜3000℃にすることが好ましい
と考えられる。さらに好ましい熱処理条件としては、そ
の温度が約2800℃であり、処理時間が10〜14時
間である。
The graphite granules, which are optically anisotropic and have a lamellar structure consisting of a single phase, are typically graphitized by heat-treating the mesophase spheres generated during the carbonization process of pitch at high temperature. Spherical mesocarbon micro beads (MCM
B), which is Vol. 6, No. 5 (1973).
Year). Furthermore, the degree of graphitization of this MCMB is an important factor, and in terms of physical properties of carbon, the interplanar spacing (d 002 ) of 002 planes is 3.36 to 3.
The 42 Angstrom one gives good results. By the way, also in this MCMB, when the graphitization temperature is low, a pseudographitic state in which d 002 is 3.43 angstroms or more is obtained, and in this case, the capacity is small like other pseudographite materials and the carbon electrode This is not preferable because the electric potential as is noble. In order to obtain preferable d 002 , the heat treatment temperature for graphitization in an inert gas atmosphere is 200.
The temperature must be 0 ° C or higher, and the graphitization degree is almost saturated at 2800 to 3000 ° C. It should be noted that heat treatment at 3000 ° C. or higher does not cause any change in physical properties and is rather uneconomical. That is, it is considered that the heat treatment temperature for graphitization of MCMB is preferably 2000 ° C. to 3000 ° C. in an inert gas atmosphere. More preferable heat treatment conditions are a temperature of about 2800 ° C. and a treatment time of 10 to 14 hours.

【0010】元来、この炭素材料は易黒鉛化の炭素材料
であり、高温で熱処理を施しても元のメソフェーズ小球
体の形状を維持したほとんど球形の黒鉛粒状物となる。
なお、メソフェーズ小球体はその平均粒径が1〜80μ
mとかなり小さな球状粒子であるが、熱処理後の黒鉛粒
状物もその平均粒径はほぼ同等となる。細かいメソフェ
ーズ小球体を得る製法としては、ピッチの炭素化熱処理
過程において、ピッチを300〜500℃程度の低温で
熱処理した溶融ピッチ中に生じる球状の粒子を選択する
方法がある。さらに好ましくはピッチを約400℃で3
〜6時間保ち、この条件で生じる球状の粒子を選択する
ことである。
Originally, this carbon material is a graphitizable carbon material, and becomes a substantially spherical graphite granular material that retains the original shape of the mesophase spherules even when heat-treated at a high temperature.
Mesophase spheres have an average particle size of 1 to 80 μm.
Although the spherical particles are as small as m, the average particle size of the graphite particles after heat treatment is almost the same. As a manufacturing method for obtaining fine mesophase small spheres, there is a method of selecting spherical particles generated in a molten pitch obtained by heat-treating the pitch at a low temperature of about 300 to 500 ° C. in the heat treatment for carbonizing the pitch. More preferably, the pitch is 3 at about 400 ° C.
Hold for ~ 6 hours and select the spherical particles produced under these conditions.

【0011】さらに、この黒鉛粒状物の特徴は、その黒
鉛粒子がきわめて均一な単一の相からなるところにあ
り、例えば粒子の断面を偏光顕微鏡で見るとほとんど境
界のない均一相となっていることが観察される。特に、
高結晶性でかつ単一相であるため、負極の充放電反応に
おいて電位が卑でかつ電位変化が平坦となり、電池電圧
特性の面からも有利となる。ちなみに、この黒鉛粒状物
の場合、リチウムのインターカレーションおよびディイ
ンターカレーション反応は金属リチウムに対して0.0
5〜0.20Vときわめて卑な電位で進行する。この黒
鉛は、整然とした結晶相を有する異方性黒鉛であり、さ
らにラメラ構造、すなわち、球状粒子内のc軸に垂直な
結晶相が円板を重ねたように配向した構造を有するもの
で、Liのインターカレーションはこの結晶相間へのリ
チウムの挿入となる。すなわち、このようなラメラ構造
であるために、リチウムの侵入は粒子表面のすべての場
所で可能となり、きわめてスムーズかつ高容量を確保し
うるインターカレーション反応が実現できる。さらに、
このような理想的なインターカレーション反応が実現で
きることに加えて、この黒鉛粒状物はほとんど真球状で
あり、黒鉛のc軸方向の膨張および収縮に対して粒子内
に物理的な歪みが生じにくい形状であることもすぐれた
サイクル可逆性を維持できる要因であると考えられる。
Further, the characteristic feature of the graphite granules is that the graphite particles are composed of a very uniform single phase. For example, when the cross section of the particles is viewed with a polarizing microscope, it is a uniform phase with almost no boundaries. Is observed. In particular,
Since it has high crystallinity and a single phase, the potential is base and the potential change is flat in the charge and discharge reaction of the negative electrode, which is also advantageous in terms of battery voltage characteristics. Incidentally, in the case of this graphite granule, the intercalation and deintercalation reactions of lithium are 0.0
It progresses at an extremely low potential of 5 to 0.20V. This graphite is an anisotropic graphite having a well-ordered crystal phase, and further has a lamellar structure, that is, a structure in which the crystal phase perpendicular to the c-axis in the spherical particles is oriented like a stack of discs, Intercalation of Li results in the insertion of lithium between the crystal phases. That is, because of such a lamellar structure, lithium can be penetrated at all locations on the particle surface, and an extremely smooth intercalation reaction that can secure a high capacity can be realized. further,
In addition to the fact that such an ideal intercalation reaction can be realized, the graphite granules are almost spherical, and physical distortion is unlikely to occur in the particles due to expansion and contraction of graphite in the c-axis direction. The shape is also considered to be a factor that can maintain excellent cycle reversibility.

【0012】次に、前述のような製造法による薄形で大
面積の黒鉛電極を得る場合、その黒鉛粉末の粒径を直径
3μm以下のものが体積比で30%以下かつ15μm以
上のものが体積比で20%以下とし、BET法による比
表面積が0.7〜5.0m2/gとしたものを用いるこ
とにより、充填密度が高く、高率充放電特性および高温
保存特性に優れた極板を得ることが可能である。加える
バインダーは、微粒子の粉末を溶液に分散させた状態で
使用することが好ましく、分散剤としては水溶液であっ
ても非水溶媒であってもかまわないが、製造工程上水溶
液である方が極板化が用意である。また、黒鉛合剤をペ
ースト化するに際して、例えばカルボキシメチルセルロ
ースなどの増粘剤を若干量加えることもできる。
Next, when a thin, large-area graphite electrode is obtained by the above-mentioned manufacturing method, the graphite powder having a particle diameter of 3 μm or less and a volume ratio of 30% or less and 15 μm or more is used. By using a material having a volume ratio of 20% or less and a specific surface area by BET method of 0.7 to 5.0 m 2 / g, the packing density is high, and the high rate charge / discharge characteristics and the high temperature storage characteristics are excellent. It is possible to obtain a plate. The binder to be added is preferably used in a state in which fine particle powder is dispersed in a solution, and the dispersant may be an aqueous solution or a non-aqueous solvent, but an aqueous solution is more preferable in the manufacturing process. Boarding is ready. Further, when the graphite mixture is made into a paste, a slight amount of a thickening agent such as carboxymethyl cellulose can be added.

【0013】電解液としては、従来より公知のものが使
用できるが、黒鉛材料を負極に使用した場合、プロピレ
ンカーボネートは充電時に分解反応を起こし、ガス発生
を伴う傾向があるために好ましくなく、同様な環状カー
ボネートであるエチレンカーボネートがプロピレンカー
ボネートの場合のような副反応をほとんど伴わないため
に適していると言える。しかしながら、エチレンカーボ
ネートは非常に高融点であり、常温では固体であるため
に単独溶媒での使用は困難である。従って、低融点であ
りかつ低粘性の溶媒である1,2−ジメトキシエタンや
ジエチルカーボネートなどの脂肪族カルボン酸エステル
を混合した混合溶媒を用いることが好ましい。また、こ
れらの溶媒に溶解するリチウム塩としては六フッ化リン
酸リチウム、ホウフッ化リチウム、六フッ化ヒ酸リチウ
ム、過塩素酸リチウムなど従来より公知のものがいずれ
も使用できる。
As the electrolytic solution, a conventionally known electrolytic solution can be used, but when a graphite material is used for the negative electrode, propylene carbonate is not preferable because it tends to cause a decomposition reaction during charging and generate gas. It can be said that ethylene carbonate, which is a simple cyclic carbonate, is suitable because it hardly causes a side reaction as in the case of propylene carbonate. However, since ethylene carbonate has a very high melting point and is solid at room temperature, it is difficult to use it as a single solvent. Therefore, it is preferable to use a mixed solvent in which an aliphatic carboxylic acid ester such as 1,2-dimethoxyethane or diethyl carbonate having a low melting point and a low viscosity is mixed. Further, as the lithium salt which is soluble in these solvents, any conventionally known ones such as lithium hexafluorophosphate, lithium borofluoride, lithium hexafluoroarsenate and lithium perchlorate can be used.

【0014】一方、正極にはリチウムイオンを含む化合
物であるLiCoO2、LiNiO2、LiFeO 2、L
iMn24などが使用可能である。これらの複合酸化物
は、例えばリチウムやコバルトの炭酸塩あるいは酸化物
を原料として、目的組成に応じてこれらを混合し焼成す
ることによって容易に得ることができる。もちろん他の
原料を用いた場合においても同様に合成できる。なかで
もLiCoO2は充放電可能容量が最も大きく、かつ上
記電解液中において化学的に安定である。通常その焼成
温度は650℃〜1200℃の間で設定される。
On the other hand, for the positive electrode, LiCoO 2 , LiNiO 2, LiFeO 2 and L , which are compounds containing lithium ions, are used.
iMn 2 O 4 or the like can be used. These composite oxides can be easily obtained, for example, by using a carbonate or oxide of lithium or cobalt as a raw material, and mixing and firing them according to the target composition. Of course, similar synthesis can be performed when other raw materials are used. Among them, LiCoO 2 has the largest chargeable / dischargeable capacity and is chemically stable in the electrolytic solution. Usually, the firing temperature is set between 650 ° C and 1200 ° C.

【0015】[0015]

【実施例】以下、本発明をその実施例により詳しく説明
する。 [実施例1]図1は、本実施例で用いた円筒形電池の縦
断面図を示す。ただし、極板群は一部のみを断面で示し
ている。図において、1は耐有機電解液性の鋼板を加工
した電池ケースである。2は安全弁を組み込むとともに
正極端子を兼ねる封口板である。3は絶縁パッキングで
ある。4は極板群であり、正極および負極がセパレータ
を介して複数回渦巻状に巻回されてケース1内に収納さ
れている。そして上記正極からは正極リード5が引き出
されて封口板2に接続され、負極からは負極リード6が
引き出されて電池ケース1の底部に接続されている。7
および8は絶縁リングで極板群4の上下部にそれぞれ設
けられている。以下に正、負極板等について説明する。
The present invention will be described in detail below with reference to its examples. [Embodiment 1] FIG. 1 is a vertical sectional view of a cylindrical battery used in this embodiment. However, only a part of the electrode plate group is shown in cross section. In the figure, reference numeral 1 denotes a battery case formed by processing a steel plate having organic electrolyte resistance. Reference numeral 2 is a sealing plate which incorporates a safety valve and also serves as a positive electrode terminal. 3 is an insulating packing. Reference numeral 4 denotes an electrode plate group, in which the positive electrode and the negative electrode are spirally wound a plurality of times with the separator interposed therebetween and are housed in the case 1. A positive electrode lead 5 is drawn out from the positive electrode and connected to the sealing plate 2, and a negative electrode lead 6 is drawn out from the negative electrode and connected to the bottom of the battery case 1. 7
Insulating rings 8 and 8 are provided on the upper and lower portions of the electrode plate group 4, respectively. The positive and negative electrode plates will be described below.

【0016】正極は次のようにして作製する。まず、L
2CO3とCo34との混合物を900℃で焼成して合
成したLiCoO2の粉末に、アセチレンブラックおよ
びポリ四フッ化エチレンの水性ディスパージョンを混合
し、これをカルボキシメチルセルロースの水溶液に懸濁
させてペースト状にする。次いで、このペーストを厚さ
0.03mmのアルミ箔の両面に塗着し、乾燥後、圧延
して厚さ0.19mm、幅40mm、長さ250mmの
極板とする。負極は次のようにして作製する。まず、ピ
ッチの低温における熱処理過程で生成するメソフェーズ
小球体を原料としたメソカーボンマイクロビーズ(以下
MCMBと略す)を2800℃で熱処理を施し黒鉛化し
たもので、d002が3.37オングストロームの粉末を
分級して粒度を表1に示すように調整したものに、スチ
レン−ブタジエンゴムの水性ディスパージョンを混合
し、これをカルボキシメチルセルロースの水溶液に懸濁
させてペースト状にする。なお、粒度分布の測定は、レ
ーザー回折式粒度分布測定装置(島津(株)製SALD
−2000)を用い、0.01%の界面活性剤水溶液を
分散媒として使用した。次に、上記のペーストを厚さ
0.02mmの銅箔の両面に塗着し、乾燥後、圧延して
厚さ0.20〜0.22mm、幅42mm、長さ285
mmの極板とする。表2に各粒度に調整したMCMBを
用いた場合の負極の充填密度を示す。
The positive electrode is manufactured as follows. First, L
LiCoO 2 powder synthesized by firing a mixture of i 2 CO 3 and Co 3 O 4 at 900 ° C. was mixed with an aqueous dispersion of acetylene black and polytetrafluoroethylene, and this was added to an aqueous solution of carboxymethylcellulose. Suspend into a paste. Next, this paste is applied to both sides of an aluminum foil having a thickness of 0.03 mm, dried, and rolled to obtain an electrode plate having a thickness of 0.19 mm, a width of 40 mm and a length of 250 mm. The negative electrode is manufactured as follows. First, mesocarbon micro beads (hereinafter abbreviated as MCMB) made from mesophase spherules produced in a heat treatment process at a low temperature of pitch were heat-treated at 2800 ° C. to be graphitized, and a powder having d 002 of 3.37 angstroms. Was mixed with an aqueous dispersion of styrene-butadiene rubber, and the mixture was suspended in an aqueous solution of carboxymethyl cellulose to form a paste. The particle size distribution is measured by a laser diffraction particle size distribution measuring device (SALD manufactured by Shimadzu Corporation).
-2000) and a 0.01% aqueous surfactant solution was used as the dispersion medium. Next, the above paste is applied to both sides of a copper foil having a thickness of 0.02 mm, dried and rolled to a thickness of 0.20 to 0.22 mm, a width of 42 mm, and a length of 285.
mm plate. Table 2 shows the packing density of the negative electrode when using MCMB adjusted to each particle size.

【0017】上記の正、負極にそれぞれリードを取り付
け、ポリエチレン製セパレータを介して渦巻き状に巻回
し、直径14.0mm、高さ50mmの電池ケースに収
納入する。電解液には、エチレンカーボネートと1,2
−ジメトキシエタンを体積比50:50の割合で混合し
た溶媒に1モル/lのLiPF4を溶解したものを用い
る。この電解液を上記の電池ケースに注液した後封口
し、試験電池とする。試験電池の評価は、20℃の環境
下において100mAで終止電圧4.1Vの定電流充電
を行い、放電は放電電流100mA、放電終止電圧3.
0Vの定電流放電を行った。その結果を図2に示す。
Leads are attached to the positive electrode and the negative electrode, respectively, and they are spirally wound with a polyethylene separator interposed therebetween and housed in a battery case having a diameter of 14.0 mm and a height of 50 mm. The electrolyte contains ethylene carbonate and 1,2
-Using 1 mol / l of LiPF 4 dissolved in a solvent in which dimethoxyethane is mixed at a volume ratio of 50:50. After pouring this electrolyte solution into the above battery case and sealing it, a test battery is obtained. The test battery was evaluated by performing constant current charging with a final voltage of 4.1 V at 100 mA in an environment of 20 ° C., and discharging was a discharge current of 100 mA and a final discharge voltage of 3.
A constant current discharge of 0 V was performed. The result is shown in FIG.

【0018】[0018]

【表1】 [Table 1]

【0019】[0019]

【表2】 [Table 2]

【0020】表2の極板の充填密度の結果より、直径が
15μm以上の粉末を25%含む負極を用いた電池C
は、極板への充填密度が低くなっている。これは粒子間
に隙間ができているためと考えられる。また、圧延によ
りこれ以上に密度を上げようとしたところ、合剤と集電
体である銅箔との間で圧延による歪みから滑りが生じ、
合剤が剥離してしまい、電池を構成することができなく
なってしまった。図2に示したように、3μm以下の粉
末の割合が35%の負極を用いた電池Eは、他のものに
比較して放電容量が少なくなっている。この理由は、3
μm以下の粉末は高温で黒鉛化しても層構造が未発達の
ため、あまり多くのリチウムイオンをインターカレート
できなっかたり、またはインターカレートしても、放電
の際にディインターカレートできなくなったりするため
と考えられる。
From the results of the packing density of the electrode plates shown in Table 2, Battery C using a negative electrode containing 25% of powder having a diameter of 15 μm or more.
Has a low packing density in the electrode plate. This is probably because there are gaps between the particles. Further, when trying to increase the density further by rolling, slip occurs between the mixture and the copper foil as the current collector due to strain due to rolling,
The mixture was peeled off and it became impossible to construct a battery. As shown in FIG. 2, the battery E using the negative electrode in which the proportion of powder of 3 μm or less is 35% is smaller in discharge capacity than other batteries. The reason for this is 3
Since the layer structure of powders of μm or less is not developed even when graphitized at high temperature, too many lithium ions cannot be intercalated, or even if intercalated, they cannot be deintercalated during discharge. It is thought that it will disappear.

【0021】図3に各電池を常温において100mAで
終止電圧を4.1Vとした充電を行った後に、放電を終
止電圧3.0Vで100mAと1000mAでそれぞれ
行い、1000mAで放電したときの容量Cap(10
00)の100mAで放電したときの容量Cap(10
0)に対する割合を示す。図3に示した結果により、直
径15μm以上の粉末を25%含む負極を用いた電池C
は、著しく高率放電特性が劣っている。この理由につい
ては、直径15μm以上の粉末が多くなると、反応面積
が小さくなるのと合剤間に隙間ができてしまい集電性が
低下するため、分極が大きくなるためではないかと推測
される。なお、高率充電特性についても、放電特性と同
様な結果が得られた。以上の結果より、黒鉛粉末の粒径
は、直径3μm以下のものが体積比で30%以下かつ1
5μm以上ものもが体積比で20%以下とすることが最
適であることがわかる。
In FIG. 3, each battery was charged at 100 mA at room temperature with a final voltage of 4.1 V, and then discharged at a final voltage of 3.0 V at 100 mA and 1000 mA, respectively. (10
00), the capacity Cap (10
The ratio to 0) is shown. According to the results shown in FIG. 3, Battery C using a negative electrode containing 25% of powder having a diameter of 15 μm or more
Are remarkably inferior in high rate discharge characteristics. It is presumed that the reason for this is that when the amount of powder having a diameter of 15 μm or more increases, the reaction area decreases and a gap is formed between the mixture to reduce the current collecting property, resulting in increased polarization. The high-rate charge characteristic was also similar to the discharge characteristic. From the above results, the particle size of the graphite powder is 30% or less by volume and 1
It can be seen that it is optimal that the volume ratio of those having a thickness of 5 μm or more is 20% or less.

【0022】[実施例2]負極の炭素材料に表3に示す
比表面積の異なる、MCMBを用い、それ以外は実施例
1と同様に電池を構成し、試験を行った。なお、比表面
積の測定はBETの1点法測定装置(日機装(株)製4
200型マイクロトラックベータソープ自動表面積計)
により行った。
Example 2 A battery was constructed and tested in the same manner as in Example 1 except that MCMB having different specific surface areas shown in Table 3 was used as the carbon material of the negative electrode. The specific surface area is measured by the BET one-point method measuring device (manufactured by Nikkiso Co., Ltd. 4
200 type Microtrac beta soap automatic surface area meter)
Went by.

【0023】[0023]

【表3】 [Table 3]

【0024】図4に各電池を常温において100mAで
終止電圧を4.1Vとした充電を行った後に、放電を終
止電圧3.0Vで100mAと1000mAでそれぞれ
行い、1000mAで放電したときの容量Cap(10
00)の100mAで放電したときの容量Cap(10
0)に対する割合を示す。比表面積が小さいものほど、
高率放電特性が劣っており、特に電池Fは著しく劣って
いるのがわかる。この理由は、比表面積が小さいほど、
反応面積が減少し、放電の際の分極が大きくなるためで
はないかと推測される。また、図5にそれぞれの電池を
充電状態で60℃において1ヵ月間保存した後に、常温
において100mAで終止電圧を4.1Vとする定電流
充電を行い、100mAで終止電圧3.0Vとする定電
流放電を行った時の5サイクル目の放電容量の保存前に
同一条件で充放電を行った際の放電容量に対する割合を
示す。この結果より、比表面積が大きい粉末を用いた電
池程劣化の割合が大きく、特に電池Kは保存による容量
の劣化割合が著しく大きいことがわかる。
In FIG. 4, each battery was charged at 100 mA at room temperature with a final voltage of 4.1 V, and then discharged at a final voltage of 3.0 V at 100 mA and 1000 mA, respectively, and the capacity Cap when discharged at 1000 mA was measured. (10
00), the capacity Cap (10
The ratio to 0) is shown. The smaller the specific surface area,
It can be seen that the high-rate discharge characteristics are inferior, and especially battery F is extremely inferior. The reason for this is that the smaller the specific surface area,
It is speculated that this may be because the reaction area decreases and the polarization during discharge increases. Further, in FIG. 5, each battery was stored in a charged state at 60 ° C. for 1 month, and then subjected to constant current charging at 100 mA at room temperature to a final voltage of 4.1 V, and at 100 mA to a final voltage of 3.0 V. The ratio of the discharge capacity at the 5th cycle when current discharge is performed to the discharge capacity at the time of charge / discharge under the same conditions before storage is shown. From this result, it can be seen that the battery using the powder having the larger specific surface area has a larger deterioration rate, and particularly the battery K has a significantly larger capacity deterioration rate due to storage.

【0025】この理由については確かではないが、比表
面積の大きい粉末は粒径が小さいか、あるいは形状が球
形ではなく凹凸が多いと考えられる。この場合、表面が
過剰に活性となり、電池を高温で保存した場合に電解液
と反応して電池の劣化を起こすと推測される。また、粒
径が小さい場合には、層構造が未発達なため、リチウム
がインターカレートした状態で保存されることにより層
構造が破壊され、電池が劣化するものと推測される。以
上の結果により、粉末の比表面積は0.7〜5.0m2
/gが最適であると言える。なお、実施例1および2で
は正極にLiCoO2を用いたが、上述の他のリチウム
含有酸化物を用いた場合も若干の容量の差は見られるも
ののほぼ同様な効果が得られた。
Although the reason for this is not certain, it is considered that the powder having a large specific surface area has a small particle size or has a large number of irregularities instead of a spherical shape. In this case, it is presumed that the surface becomes excessively active, and when the battery is stored at a high temperature, it reacts with the electrolytic solution to deteriorate the battery. Further, when the particle size is small, the layer structure is undeveloped, and it is presumed that the layer structure is destroyed and the battery is deteriorated by storing lithium in an intercalated state. From the above results, the specific surface area of the powder is 0.7 to 5.0 m 2.
It can be said that / g is optimal. Although LiCoO 2 was used for the positive electrode in Examples 1 and 2, almost the same effect was obtained when the above-mentioned other lithium-containing oxide was used, although a slight difference in capacity was observed.

【0026】[0026]

【発明の効果】以上の実施例の説明から明らかなよう
に、本発明によれば、高容量、高エネルギー密度を有
し、保存特性にも優れた非水電解質二次電池を提供する
ことができる。
As is clear from the above description of the embodiments, according to the present invention, it is possible to provide a non-aqueous electrolyte secondary battery having high capacity, high energy density and excellent storage characteristics. it can.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の実施例における円筒形電池の縦断面図
である。
FIG. 1 is a vertical sectional view of a cylindrical battery according to an embodiment of the present invention.

【図2】実施例1における放電曲線の比較を示す図であ
る。
FIG. 2 is a diagram showing a comparison of discharge curves in Example 1.

【図3】実施例1における高率放電特性の比較を示す図
である。
3 is a diagram showing a comparison of high rate discharge characteristics in Example 1. FIG.

【図4】実施例2における高率放電特性の比較を示す図
である。
FIG. 4 is a diagram showing a comparison of high rate discharge characteristics in Example 2.

【図5】実施例2における保存特性の比較を示す図であ
る。
5 is a diagram showing a comparison of storage characteristics in Example 2. FIG.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極リード 6 負極リード 7 絶縁リング 8 絶縁リング 1 Battery Case 2 Sealing Plate 3 Insulating Packing 4 Electrode Plate Group 5 Positive Electrode Lead 6 Negative Electrode Lead 7 Insulating Ring 8 Insulating Ring

───────────────────────────────────────────────────── フロントページの続き (72)発明者 高井 徹 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Toru Takai 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム含有酸化物を活物質とする正
極、黒鉛粉末を主とする再充電可能な負極および非水電
解質を具備し、前記黒鉛粉末がリチウムをインターカレ
ートし得る球状の物質であり、光学的に異方性で、単一
の相からなるラメラ構造を持った粒状物であって、かつ
この粒状物は、ピッチの低温での熱処理過程で生じるメ
ソフェーズ小球体を黒鉛化したもので、広角X線回折法
による002面の面間隔(d002)が3.36オングス
トローム以上3.40オングストローム以下であり、B
ET法による比表面積が0.7〜5.0m2/gである
ことを特徴とする非水電解質二次電池。
1. A positive electrode using a lithium-containing oxide as an active material, a rechargeable negative electrode mainly containing graphite powder, and a non-aqueous electrolyte, wherein the graphite powder is a spherical substance capable of intercalating lithium. And is optically anisotropic and has a lamellar structure consisting of a single phase, and this granular material is a graphitized mesophase sphere produced during the heat treatment process at a low temperature of the pitch. And the interplanar spacing (d 002 ) of the 002 plane by the wide-angle X-ray diffraction method is 3.36 angstroms or more and 3.40 angstroms or less, and B
A non-aqueous electrolyte secondary battery having a specific surface area of 0.7 to 5.0 m 2 / g according to the ET method.
【請求項2】 前記黒鉛粉末が、直径3μm以下のもの
が体積比で30%以下であり、かつ15μm以上のもの
が体積比で20%以下である請求項1記載の非水電解質
二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the graphite powder having a diameter of 3 μm or less has a volume ratio of 30% or less and the graphite powder having a diameter of 15 μm or more has a volume ratio of 20% or less. .
JP5281159A 1993-11-10 1993-11-10 Non-aqueous electrolyte secondary battery Expired - Lifetime JP3048808B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP5281159A JP3048808B2 (en) 1993-11-10 1993-11-10 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP5281159A JP3048808B2 (en) 1993-11-10 1993-11-10 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH07134988A true JPH07134988A (en) 1995-05-23
JP3048808B2 JP3048808B2 (en) 2000-06-05

Family

ID=17635183

Family Applications (1)

Application Number Title Priority Date Filing Date
JP5281159A Expired - Lifetime JP3048808B2 (en) 1993-11-10 1993-11-10 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3048808B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050292A (en) * 1996-05-09 1998-02-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH10116604A (en) * 1996-10-15 1998-05-06 Nec Corp Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery using it
WO1998054780A1 (en) * 1997-05-30 1998-12-03 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing negative electrode of the same
WO1998054779A1 (en) 1997-05-30 1998-12-03 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
US6447956B2 (en) 1996-08-08 2002-09-10 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
WO2003073537A1 (en) * 2002-02-26 2003-09-04 Sony Corporation Nonaqueous electrolyte battery
US6713217B2 (en) 1996-05-09 2004-03-30 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery with a polyolefin microporous membrane separator
WO2012029505A1 (en) 2010-08-31 2012-03-08 株式会社Adeka Nonaqueous electrolyte secondary battery
US10651458B2 (en) 2004-01-16 2020-05-12 Hitachi Chemical Company, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery
CN111602274A (en) * 2018-02-26 2020-08-28 株式会社Lg化学 Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery comprising same
CN112055904A (en) * 2018-04-27 2020-12-08 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1050292A (en) * 1996-05-09 1998-02-20 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US6713217B2 (en) 1996-05-09 2004-03-30 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery with a polyolefin microporous membrane separator
US9508980B2 (en) 1996-08-08 2016-11-29 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative
US7410727B2 (en) 1996-08-08 2008-08-12 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US8129051B2 (en) 1996-08-08 2012-03-06 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US6447956B2 (en) 1996-08-08 2002-09-10 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7947395B2 (en) 1996-08-08 2011-05-24 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US8802297B2 (en) 1996-08-08 2014-08-12 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7700239B2 (en) 1996-08-08 2010-04-20 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US6953640B2 (en) 1996-08-08 2005-10-11 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US8580437B2 (en) 1996-08-08 2013-11-12 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7288342B2 (en) 1996-08-08 2007-10-30 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7335447B2 (en) 1996-08-08 2008-02-26 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7378191B2 (en) 1996-08-08 2008-05-27 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7399553B2 (en) 1996-08-08 2008-07-15 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
JPH10116604A (en) * 1996-10-15 1998-05-06 Nec Corp Nonaqueous electrolyte secondary battery negative electrode and nonaqueous electrolyte secondary battery using it
WO1998054779A1 (en) 1997-05-30 1998-12-03 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery
WO1998054780A1 (en) * 1997-05-30 1998-12-03 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing negative electrode of the same
US6455199B1 (en) 1997-05-30 2002-09-24 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery and method for manufacturing negative electrode of the same
US6403259B1 (en) 1997-05-30 2002-06-11 Matsushita Electric Industrial Co., Ltd. Nonaqueous electrolyte secondary battery comprising carbon particles with a plural-layer structure
WO2003073537A1 (en) * 2002-02-26 2003-09-04 Sony Corporation Nonaqueous electrolyte battery
US7749659B2 (en) 2002-02-26 2010-07-06 Sony Corporation Nonaqueous electrolyte battery
CN1316651C (en) * 2002-02-26 2007-05-16 索尼公司 Nonaqueous electrolyte battery
US10651458B2 (en) 2004-01-16 2020-05-12 Hitachi Chemical Company, Ltd. Negative electrode for lithium secondary battery and lithium secondary battery
KR20130105806A (en) 2010-08-31 2013-09-26 가부시키가이샤 아데카 Nonaqueous electrolyte secondary battery
WO2012029505A1 (en) 2010-08-31 2012-03-08 株式会社Adeka Nonaqueous electrolyte secondary battery
US9379411B2 (en) 2010-08-31 2016-06-28 Adeka Corporation Non-aqueous electrolyte secondary battery
CN111602274A (en) * 2018-02-26 2020-08-28 株式会社Lg化学 Negative electrode active material for lithium secondary battery, and negative electrode for lithium secondary battery and lithium secondary battery comprising same
CN112055904A (en) * 2018-04-27 2020-12-08 松下知识产权经营株式会社 Nonaqueous electrolyte secondary battery
US11923543B2 (en) 2018-04-27 2024-03-05 Panasonic Intellectual Property Management Co., Ltd. Nonaqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP3048808B2 (en) 2000-06-05

Similar Documents

Publication Publication Date Title
JP2884746B2 (en) Non-aqueous electrolyte secondary battery
JP5235282B2 (en) Cathode active material and battery for non-aqueous electrolyte secondary battery
JP3499584B2 (en) Lithium secondary battery
JP5245201B2 (en) Negative electrode, secondary battery
EP3117474A1 (en) Cathode for lithium batteries
JP3532016B2 (en) Organic electrolyte secondary battery
JP2016076496A (en) Method of producing anode material for large output lithium ion battery
JP3196226B2 (en) Non-aqueous electrolyte secondary battery
JP3311104B2 (en) Lithium secondary battery
JPH07226204A (en) Manufacture of nonaqueous electrolyte secondary battery
JP3440638B2 (en) Non-aqueous electrolyte secondary battery
JP3048808B2 (en) Non-aqueous electrolyte secondary battery
JP2012079470A (en) Nonaqueous electrolyte secondary battery
JP2004234977A (en) Positive electrode material for lithium secondary battery, manufacturing method of same, and lithium secondary battery using same
JPH06215761A (en) Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JP3663864B2 (en) Non-aqueous electrolyte secondary battery
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JP2004299944A (en) Graphite particle, its producing method, lithium ion secondary battery and negative electrode material for it
JPH11279785A (en) Composite carbon material for electrode, its production and nonaqueous electrolytic solution secondary cell using that
JP2002164051A (en) Lithium secondary battery and negative electrode material
JP3406843B2 (en) Lithium secondary battery
KR102320977B1 (en) Anode Active Material including Silicon Composite and Lithium Secondary Battery Comprising the Same
JP2003346786A (en) Non-aqueous electrolyte battery and its manufacturing method
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JPH05174872A (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080324

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090324

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100324

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110324

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120324

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130324

Year of fee payment: 13