JPH05174872A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH05174872A
JPH05174872A JP3337447A JP33744791A JPH05174872A JP H05174872 A JPH05174872 A JP H05174872A JP 3337447 A JP3337447 A JP 3337447A JP 33744791 A JP33744791 A JP 33744791A JP H05174872 A JPH05174872 A JP H05174872A
Authority
JP
Japan
Prior art keywords
lithium
negative electrode
positive electrode
battery
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP3337447A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Ozaki
義幸 尾崎
Yukio Nishikawa
幸雄 西川
Teruyoshi Morita
彰克 守田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP3337447A priority Critical patent/JPH05174872A/en
Publication of JPH05174872A publication Critical patent/JPH05174872A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M10/00Secondary cells; Manufacture thereof
    • H01M10/05Accumulators with non-aqueous electrolyte
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To obtain a high voltage and a high energy intensity, and to prevent a deterioration of the battery performance even in an overdischarging, by forming a positive electrode with a lithium-including oxide as the main component, and a negative electrode with a carbonaceous material in which a lithium- including oxide is added and mixed as the main component. CONSTITUTION:This nonaqueous secondary battery is provided with a positive electrode 5 mainly of a lithium-including oxide, a negative electrode 6 mainly of a carbonaceous material to which a lithium-including oxide is added and mixed, and a nonaqueous electrolyte. The lithium-including oxide consists of LiCoO2, LiNiO2, LiFeO2, and LiMn2O4. In this case, a lithium-including oxide in which the Co, Ni, Fe, and Mn are replaced by other transition metals can be used to obtain the same effect. Consequently, a deterioration of the battery performance after an overdischarging can be prevented, and the over-discharge resisting property can be improved.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は非水電解液二次電池に関
するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、民生用電子機器のポータブル化、
コードレス化が進み、これにつれて駆動用電源の電池も
小形、軽量でかつ高エネルギー密度であることが要望さ
れている。このような観点から、非水系二次電池、とく
にリチウム二次電池は、高電圧、高エネルギー密度を有
する電池として、その開発には期待が大きい。
2. Description of the Related Art In recent years, portable electronic devices for consumer use,
With the progress of cordless technology, it has been demanded that the battery for the driving power source be small, lightweight and have high energy density. From this point of view, non-aqueous secondary batteries, especially lithium secondary batteries, are highly expected to be developed as batteries having high voltage and high energy density.

【0003】そして従来のリチウム二次電池は、正極活
物質は、二酸化マンガン、五酸化バナジウム、二硫化チ
タンなどが、負極にはリチウム、電解液には有機電解液
が用いられていた。ところが、一般に負極にリチウム金
属を用いた二次電池では充電時に生成するデンドライト
状リチウムによる内部短絡や活物質と電解液が副反応を
起こすなどの問題点があって、二次電池化には大きな障
害となっていた。さらには、高率充放電特性や過放電特
性においても満足するものは見い出されていなかった。
In the conventional lithium secondary battery, manganese dioxide, vanadium pentoxide, titanium disulfide, etc. are used as the positive electrode active material, lithium is used as the negative electrode, and an organic electrolytic solution is used as the electrolytic solution. However, in general, a secondary battery using lithium metal for the negative electrode has problems such as an internal short circuit due to dendrite-like lithium generated at the time of charging and a side reaction between the active material and the electrolytic solution, which is a major problem in forming a secondary battery. It was an obstacle. Further, no satisfactory one was found in the high rate charge / discharge characteristics and the overdischarge characteristics.

【0004】また昨今、リチウム電池の安全性が厳しく
指摘されており、負極にリチウム金属あるいはリチウム
合金を用いた電池系においては安全性の確保が問題とな
っている。
In recent years, the safety of lithium batteries has been pointed out severely, and ensuring safety is a problem in battery systems using lithium metal or lithium alloy for the negative electrode.

【0005】一方、層状化合物のインターカレーション
反応を利用した新しいタイプの電極活物質が注目を集め
ており、古くから黒鉛層間化合物が二次電池の電極材料
として用いられている。とくにClO4 - 、PF6 -
BF4 - イオンなどのアニオンを取りこんだ黒鉛層化合
物が正極として用いられる。
On the other hand, a new type of electrode active material utilizing the intercalation reaction of a layered compound has been attracting attention, and a graphite intercalation compound has been used as an electrode material for secondary batteries for a long time. In particular, ClO 4 -, PF 6 -,
A graphite layer compound incorporating anions such as BF 4 ions is used as the positive electrode.

【0006】他方、Li+ 、Na+ などのカチオンを取
りこんだ黒鉛層間化合物は負極として考えられている。
とりわけLiとの層間化合物を生成する炭素(黒鉛)
は、理論上372mAh/g(C6 Li)の容量を有す
ることから、リチウム二次電池の負極材料として注目さ
れており、その研究開発が盛んに行われている。
On the other hand, graphite intercalation compounds incorporating cations such as Li + and Na + are considered as negative electrodes.
Especially carbon (graphite) that forms an intercalation compound with Li
Theoretically has a capacity of 372 mAh / g (C 6 Li), and is therefore attracting attention as a negative electrode material for lithium secondary batteries, and its research and development has been actively conducted.

【0007】また、炭素材料を負極に用いることに伴
い、正極活物質としては、より高電圧を有し、かつLi
を含む化合物であるLiCoO2 やLiMn2 4 、さ
らにはこれらのCoおよびMnの一部を他元素で置換し
た複合酸化物を用いることが提案されている。
Further, since a carbon material is used for the negative electrode, the positive electrode active material has a higher voltage and Li
It has been proposed to use a compound containing LiCoO 2 or LiMn 2 O 4 , and further a composite oxide in which some of Co and Mn are replaced with other elements.

【0008】そしてLiCoO2 などのリチウム含有酸
化物を正極に、Liとの層間化合物を生成し得る炭素材
料を負極に用いた非水電解液二次電池は4V近い高電圧
を有し、高エネルギー密度の二次電池を得ることが可能
である。しかしながらこの電池系を0Vまで過放電させ
た場合、再び充電を行っても元の容量まで回復せず、ま
たその後の充放電におけるサイクル劣化も顕著となる。
これは過放電時の正、負極それぞれの単極挙動を追跡し
たところ、0V到達時の両極はLiの電位に対して2.5
V付近であるがその後の時間の経過と共に両極の電位は
変化し、正極側の電位に誘起され3V以上にまで達す
る。従って、負極に使用している集電体、例えば銅など
は溶解し、セパレータおよび正極表面に析出するように
なる。また、負極の炭素材はおおむね3V以上の電位に
保持されると、アニオンのインターカレーションの影響
を受けて結晶構造の破壊を生じる。従って、再び充電を
行ってもLiをインターカレートしにくくなり容量劣化
が顕著となる。
A non-aqueous electrolyte secondary battery using a lithium-containing oxide such as LiCoO 2 as a positive electrode and a carbon material capable of forming an intercalation compound with Li as a negative electrode has a high voltage close to 4 V and high energy. It is possible to obtain a secondary battery having a high density. However, when this battery system is over-discharged to 0 V, the original capacity is not restored even if the battery is charged again, and the cycle deterioration in the subsequent charge / discharge becomes significant.
This was traced to the positive and negative unipolar behavior during overdischarge, and both polarities at 0 V reached 2.5 with respect to the Li potential.
Although it is near V, the potentials of both electrodes change with the lapse of time thereafter, and are induced by the potential on the positive electrode side to reach 3V or more. Therefore, the current collector used for the negative electrode, such as copper, is dissolved and deposited on the surfaces of the separator and the positive electrode. Further, when the carbon material of the negative electrode is held at a potential of approximately 3 V or higher, the crystal structure is destroyed due to the influence of anion intercalation. Therefore, even if the battery is charged again, it becomes difficult to intercalate Li and the capacity deterioration becomes remarkable.

【0009】一般にLiCoO2 などのリチウム含有酸
化物からなる正極と炭素材からなる負極とで構成された
リチウム二次電池においては、リチウム源は正極中に含
まれているリチウムに限られており、放電時、特に過放
電時においては負極炭素材中にはLiは存在せず、その
ために負極の電位は正極側に誘起され、3V以上にまで
達するようになる。そこで過放電時の負極の電位を3V
以下の卑な電位に保つために、予め負極炭素材中にLi
を吸蔵させる試みがなされている。例えば、電気化学的
にLiをインターカレートする方法、気相あるいは固相
反応でLiを化学的にインターカレートする方法などが
考えられる。しかしながら、これらの方法はいずれの場
合も工程上の負担が大きく、またLiをインターカレー
トした炭素材は非常に不安定であり、その取扱いが困難
である。
Generally, in a lithium secondary battery composed of a positive electrode made of a lithium-containing oxide such as LiCoO 2 and a negative electrode made of a carbon material, the lithium source is limited to lithium contained in the positive electrode. At the time of discharging, especially at the time of over-discharging, Li does not exist in the negative electrode carbon material, so that the potential of the negative electrode is induced on the positive electrode side and reaches 3 V or more. Therefore, the potential of the negative electrode during overdischarge is 3V
In order to maintain the base electric potential below, Li was previously added to the negative electrode carbon material.
Attempts have been made to occlude. For example, a method of electrochemically intercalating Li, a method of chemically intercalating Li by a gas phase or solid phase reaction, and the like can be considered. However, in any of these methods, the burden on the process is large, and the carbon material in which Li is intercalated is extremely unstable, and its handling is difficult.

【0010】[0010]

【発明が解決しようとする課題】従来のリチウム含有酸
化物からなる正極と炭素材からなる負極を用いた非水電
解液二次電池の問題点は、過放電をした時は、再び充電
しても元の容量まで回復せず、電池特性が低下すること
である。
The problem of the non-aqueous electrolyte secondary battery using the conventional positive electrode made of a lithium-containing oxide and the negative electrode made of a carbon material is that when the battery is over-discharged, it is charged again. Is that the original capacity is not restored and the battery characteristics are deteriorated.

【0011】本発明はこの従来の問題点を解決し、高電
圧、高エネルギー密度を有し、過放電をしても電池特性
の低下を引き起こさない非水電解液二次電池を容易に提
供することを目的としたものである。
The present invention solves this conventional problem, and easily provides a non-aqueous electrolyte secondary battery which has a high voltage and a high energy density and does not cause deterioration of the battery characteristics even if it is over-discharged. This is the purpose.

【0012】[0012]

【課題を解決するための手段】本発明は前記する課題を
解決するために、リチウム含有酸化物を主体とする正極
と、リチウム含有酸化物を添加、混合した炭素質材料を
主体とする負極と、非水電解液とを備えた非水電解液二
次電池としたものである。
In order to solve the above-mentioned problems, the present invention provides a positive electrode mainly composed of a lithium-containing oxide and a negative electrode mainly composed of a carbonaceous material to which a lithium-containing oxide is added and mixed. , A non-aqueous electrolyte secondary battery including a non-aqueous electrolyte.

【0013】[0013]

【作用】本発明は前記する構成であるため、過放電時の
負極の電位を3V以下の卑な電位に保つことができる。
従って、負極の集電体の溶解や炭素材の結晶構造の破壊
といった副反応を防ぐことができ、再充電することによ
って元の状態に回復でき、電池特性の低下は見られない
ものである。また、負極材料中に予めLiを吸蔵するの
ではなく炭素材にリチウム含有酸化物、中でも正極と同
様又は異なるリチウム含有酸化物を添加、混合するもの
であるから、電極作製工程上の不都合がなく大気中でも
安定であるために扱いやすい。この点リチウムその物を
扱う手段とでは工程上随分異るものである。
Since the present invention has the above-mentioned structure, the potential of the negative electrode during over-discharging can be maintained at a base potential of 3 V or less.
Therefore, side reactions such as dissolution of the current collector of the negative electrode and destruction of the crystal structure of the carbon material can be prevented, the original state can be restored by recharging, and no deterioration in battery characteristics can be seen. In addition, since lithium-containing oxide, particularly lithium-containing oxide similar to or different from that of the positive electrode, is added to and mixed with the carbon material instead of occluding Li in the negative electrode material in advance, there is no inconvenience in the electrode manufacturing process. It is stable in the atmosphere and easy to handle. In this respect, the method of handling lithium itself is quite different in the process.

【0014】なお、本発明で用いる負極炭素材はLiの
インターカレート/デインターカレートを可逆的に容易
に行うために易黒鉛化性で比較的黒鉛化の進んだ材料が
好ましく、その一例を示せばコークスの高温焼成体が挙
げられる。また気相成長系炭素繊維やメソフェーズピッ
チ系炭素繊維などの炭素繊維類も使用できる。
The negative electrode carbon material used in the present invention is preferably a graphitizable material and a relatively graphitized material in order to reversibly and easily intercalate / deintercalate Li. If it shows, a high temperature calcined body of coke can be mentioned. Further, carbon fibers such as vapor grown carbon fibers and mesophase pitch carbon fibers can also be used.

【0015】一方、正極および負極に添加するリチウム
含有酸化物は、例えばLiCoO2 では、リチウムやコ
バルトの炭酸塩あるいは酸化物を原料として、目的組成
に応じてこれらを混合、焼成することによって容易に得
ることができる。勿論他の原料を用いた場合においても
同様に合成できる。通常その焼成温度は650℃〜12
00℃の間で設定される。他のリチウム含有酸化物にお
いても上記に準じた方法により合成できる。
On the other hand, as the lithium-containing oxide to be added to the positive electrode and the negative electrode, for example, LiCoO 2 can be easily prepared by using a carbonate or oxide of lithium or cobalt as a raw material and mixing and firing them according to the target composition. Obtainable. Of course, similar synthesis can be performed when other raw materials are used. Usually, the firing temperature is 650 ° C to 12
It is set between 00 ° C. Other lithium-containing oxides can also be synthesized by the method according to the above.

【0016】[0016]

【実施例】以下、実施例により本発明を詳しく述べる。
図1に本発明の1実施例で用いた円筒形電池の縦断面図
を示す。図において、1は耐有機電解液性のステンレス
鋼板を加工した電池ケース、2は安全弁を設けた封口
板、3は絶縁パッキングを示す。4は極板群であり、正
極および負極がセパレータを介して複数回渦巻状に巻回
されてケース1内に収納されている。そして上記正極か
らは正極リード5が引き出されて封口板2に接続され、
負極からは負極リード6が引き出されて電池ケース1の
底部に接続されている。7は絶縁リングで極板群4の上
下部にそれぞれ設けられている。以下正、負極板、電解
液等について詳しく説明する。
EXAMPLES The present invention will be described in detail below with reference to examples.
FIG. 1 shows a vertical sectional view of a cylindrical battery used in one embodiment of the present invention. In the figure, 1 is a battery case formed by processing a stainless steel plate resistant to organic electrolyte, 2 is a sealing plate provided with a safety valve, and 3 is an insulating packing. Reference numeral 4 denotes an electrode plate group, in which the positive electrode and the negative electrode are spirally wound a plurality of times with a separator interposed therebetween and are housed in the case 1. Then, the positive electrode lead 5 is pulled out from the positive electrode and connected to the sealing plate 2,
A negative electrode lead 6 is drawn out from the negative electrode and connected to the bottom of the battery case 1. Insulating rings 7 are provided on the upper and lower portions of the electrode plate group 4, respectively. The positive and negative electrode plates, the electrolytic solution and the like will be described in detail below.

【0017】正極はLi2 CO3 とCO3 4 とを混合
し、900℃で10時間焼成して合成したLiCoO2
の粉末100重量部に、アセチレンブラック3重量部、
グラファイト4重量部、フッ素樹脂系結着剤7重量部を
混合し、カルボキシメチルセルロース水溶液に懸濁させ
てペースト状にした。このペーストを厚さ0.03mmの
アルミ箔の両面に塗着し、乾燥後圧延して厚さ0.18m
m、幅40mm、長さ260mmの極板とした。
For the positive electrode, LiCoO 2 was prepared by mixing Li 2 CO 3 and CO 3 O 4 and firing at 900 ° C. for 10 hours.
100 parts by weight of powder of acetylene black, 3 parts by weight of
4 parts by weight of graphite and 7 parts by weight of a fluororesin-based binder were mixed and suspended in a carboxymethylcellulose aqueous solution to form a paste. This paste is applied to both sides of 0.03 mm thick aluminum foil, dried and rolled to a thickness of 0.18 m.
m, width 40 mm, length 260 mm.

【0018】負極は2800℃での熱処理を施した石油
コークス100重量部に正極で使用したものと同一のL
iCoO2 5重量部を添加、混合したものにフッ素樹脂
系結着剤5重量部を混合し、カルボキシメチルセルロー
ス水溶液に懸濁させてペースト状にした。そしてこのペ
ーストを厚さ0.02mmの銅箔の両面に塗着し、乾燥後
圧延して厚さ0.19mm、幅40mm、長さ280mm
の極板とした。
The negative electrode was the same as that used for the positive electrode in 100 parts by weight of petroleum coke heat-treated at 2800 ° C.
5 parts by weight of a fluororesin-based binder was mixed with a mixture of 5 parts by weight of iCoO 2 , and the mixture was suspended in an aqueous carboxymethyl cellulose solution to form a paste. This paste is applied to both sides of a 0.02 mm thick copper foil, dried and rolled to a thickness of 0.19 mm, a width of 40 mm and a length of 280 mm.
It was used as an electrode plate.

【0019】そして正、負極板それぞれにリードを取り
つけ、厚さ0.025mm、幅46mm、長さ700mm
のポリプロピレン製のセパレータを介して渦巻状に巻回
し、直径13.8mm、高さ50mmの電池ケース内に収
納し、本発明の実施例の電池とした。電解液には炭酸プ
ロピレンと炭酸エチレンの等容積混合溶媒に、過塩素酸
リチウムを1モル/リットルの割合で溶解したものを用
いた。
Leads are attached to each of the positive and negative plates, and the thickness is 0.025 mm, the width is 46 mm, and the length is 700 mm.
It was wound in a spiral shape through the polypropylene separator of No. 1 and was housed in a battery case having a diameter of 13.8 mm and a height of 50 mm to obtain a battery of an example of the present invention. As the electrolytic solution, a solution prepared by dissolving lithium perchlorate in a mixed solvent of equal volume of propylene carbonate and ethylene carbonate at a rate of 1 mol / liter was used.

【0020】過放電特性は以下の試験方法で評価を行っ
た。まず、電池を構成して20℃で100mAの定電流
充放電を50サイクル繰り返した。充電終止電圧は4.1
V、放電終止電圧は3.0Vとした。その後、電池を放電
状態として更に1kΩの定抵抗放電を行い、電池電圧が
0Vを示した状態で更に2週間放置した。その後、再び
100mAの定電流充放電を50サイクル繰り返した。
ここで容量回復性およびサイクル特性を過放電の前後で
比較した。また過放電後の電池を分解し、極板やセパレ
ータ等の観察および分析を行った。
The over-discharge characteristics were evaluated by the following test method. First, a battery was constructed and a constant current charge / discharge of 100 mA at 20 ° C. was repeated 50 cycles. The end-of-charge voltage is 4.1
V and the final voltage of discharge were set to 3.0V. Then, the battery was placed in a discharged state and further subjected to constant resistance discharge of 1 kΩ, and the battery was allowed to stand for another 2 weeks in a state where the battery voltage was 0V. Then, the constant current charge / discharge of 100 mA was repeated again for 50 cycles.
Here, the capacity recovery and cycle characteristics were compared before and after over-discharge. The battery after over-discharging was disassembled, and the electrode plate, separator, etc. were observed and analyzed.

【0021】一方、本発明の実施例と比較する従来例と
して負極には本発明の実施例で用いた石油コークスを使
用し、リチウム含有酸化物は全く添加せず負極板とし
た。それ以外は本発明の実施例と全く同様に電池を構成
し、従来例の電池とした。
On the other hand, as a conventional example for comparison with the examples of the present invention, the petroleum coke used in the examples of the present invention was used for the negative electrode, and a lithium-containing oxide was not added at all to obtain a negative electrode plate. Other than that, the battery was constructed exactly as in the example of the present invention, and the battery of the conventional example was obtained.

【0022】図2に本発明の実施例および従来例の電池
について過放電前後のサイクル特性の比較を示した。従
来例の電池では過放電後は容量が50%しか回復せず、
その後のサイクル特性も著しく低下する。しかしながら
本発明の実施例の電池においては過放電後の容量が95
%まで回復し、その後のサイクル劣化も極めて少ないこ
とがわかる。
FIG. 2 shows a comparison of cycle characteristics before and after over-discharging of the batteries of the example of the present invention and the conventional example. With the battery of the conventional example, the capacity recovers only 50% after over discharge,
Subsequent cycle characteristics also deteriorate significantly. However, in the batteries of the examples of the present invention, the capacity after overdischarge was 95
It can be seen that the cycle recovers up to%, and the cycle deterioration thereafter is extremely small.

【0023】また、過放電後の電池を分解し、分析を行
ったところ、従来例の電池においては負極の集電体であ
る銅が溶解し、セパレータおよび正極板の表面に析出し
ていた。一方、本発明の実施例の電池においては目立っ
た変化は観察されず、セパレータおよび正極板からは銅
は検出されなかった。
Further, when the battery after over-discharging was disassembled and analyzed, in the battery of the conventional example, copper as the negative electrode current collector was dissolved and deposited on the surfaces of the separator and the positive electrode plate. On the other hand, no noticeable change was observed in the batteries of Examples of the present invention, and copper was not detected in the separator and the positive electrode plate.

【0024】本発明の実施例では負極にLiCoO2
添加したが、LiNiO2 、LiFeO2 、LiMn2
4 を添加した場合も同様な効果が得られた。
In the examples of the present invention, LiCoO 2 was added to the negative electrode, but LiNiO 2 , LiFeO 2 , LiMn 2 were added.
Similar effects were obtained when O 4 was added.

【0025】また、本発明の実施例では正極にLiCo
2 を用いたが、上述の他のリチウム含有酸化物とかC
o、Ni、Fe、Mnなどの一部を他の遷移金属に置換
したリチウム含有酸化物を用いた場合も、更には正極活
物質と負極に添加する酸化物が異なる場合においても同
様な効果が得られた。
In the embodiment of the present invention, the positive electrode is made of LiCo.
O 2 was used, but the above-mentioned other lithium-containing oxides or C
Similar effects are obtained when a lithium-containing oxide in which a part of o, Ni, Fe, Mn, etc. is replaced with another transition metal is used, and further, when the oxide added to the positive electrode active material and the oxide added to the negative electrode are different. Was obtained.

【0026】[0026]

【発明の効果】以上の本発明の実施例の説明から明らか
なように、負極炭素材に正極と同様もしくは異なるリチ
ウム含有酸化物を添加、混合する本発明の非水電解液二
次電池は、過放電時の負極電位を卑な電位に保つことに
よって、過放電後の特性の低下を防ぎ、耐過放電特性を
向上するといった効果がある。
As is apparent from the above description of the embodiments of the present invention, the non-aqueous electrolyte secondary battery of the present invention in which a lithium-containing oxide similar to or different from the positive electrode is added to and mixed with the negative electrode carbon material is By maintaining the negative electrode potential during over-discharging at a base potential, it is possible to prevent the deterioration of characteristics after over-discharging and to improve the over-discharge resistance.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の1実施例における円筒形電池の縦断面
FIG. 1 is a vertical sectional view of a cylindrical battery according to an embodiment of the present invention.

【図2】本発明の1実施例の円筒形電池と従来例の円筒
形電池とのサイクル特性の比較を示す図
FIG. 2 is a diagram showing a comparison of cycle characteristics between a cylindrical battery according to one embodiment of the present invention and a cylindrical battery according to a conventional example.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 絶縁パッキング 4 極板群 5 正極リード 6 負極リード 7 絶縁リング 1 Battery Case 2 Sealing Plate 3 Insulation Packing 4 Electrode Plate Group 5 Positive Electrode Lead 6 Negative Electrode Lead 7 Insulation Ring

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】リチウム含有酸化物を主体とする正極と、
リチウム含有酸化物を混入した炭素質材料を主体とする
負極と、有機電解液を主体とする電解液とを備えた非水
電解液二次電池。
1. A positive electrode containing a lithium-containing oxide as a main component,
A non-aqueous electrolyte secondary battery comprising a negative electrode mainly composed of a carbonaceous material mixed with a lithium-containing oxide, and an electrolyte mainly composed of an organic electrolyte.
【請求項2】LiCoO2 、LiNiO2 、LiFeO
2 、LiMn2 4 からなる群のうちから選ばれた1種
もしくは2種以上のリチウム含有酸化物を主体として正
極とした請求項1記載の非水電解液二次電池。
2. LiCoO 2 , LiNiO 2 , LiFeO
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode is composed mainly of one or more lithium-containing oxides selected from the group consisting of 2 and LiMn 2 O 4 .
【請求項3】LiCoO2 、LiNiO2 、LiFeO
2 、LiMn2 4 の夫々の一部を他の遷移金属で置換
してなる群のうちから選ばれた1種もしくは2種以上の
リチウム含有酸化物を主体として正極とした請求項2記
載の非水電解液二次電池。
3. LiCoO 2 , LiNiO 2 , LiFeO
3. The positive electrode mainly composed of one or more lithium-containing oxides selected from the group consisting of substituting a part of each of 2 and LiMn 2 O 4 with another transition metal. Non-aqueous electrolyte secondary battery.
【請求項4】LiCoO2 、LiNiO2 、LiFeO
2 、LiMn2 4 からなる群のうちから選ばれたリチ
ウム含有酸化物を混入した炭素質材質を主体として負極
とした請求項1乃至3のいずれかに記載の非水電解液二
次電池。
4. LiCoO 2 , LiNiO 2 , LiFeO
The non-aqueous electrolyte secondary battery according to any one of claims 1 to 3, wherein the negative electrode is composed mainly of a carbonaceous material mixed with a lithium-containing oxide selected from the group consisting of 2 and LiMn 2 O 4 .
JP3337447A 1991-12-20 1991-12-20 Nonaqueous electrolyte secondary battery Pending JPH05174872A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP3337447A JPH05174872A (en) 1991-12-20 1991-12-20 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP3337447A JPH05174872A (en) 1991-12-20 1991-12-20 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH05174872A true JPH05174872A (en) 1993-07-13

Family

ID=18308722

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3337447A Pending JPH05174872A (en) 1991-12-20 1991-12-20 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH05174872A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831408A (en) * 1994-05-13 1996-02-02 Matsushita Electric Ind Co Ltd Positive electrode for non-aqueous electrolyte lithium secondary battery and manufacture thereof
WO1997043794A1 (en) * 1996-05-10 1997-11-20 Institute Of Physics, Chinese Academy Of Sciences A method of preparing positive material for lithium secondary cell by microwave energy
WO2001017046A1 (en) * 1999-08-27 2001-03-08 Mitsubishi Chemical Corporation Positive electrode material for lithium secondary cell
JP2001273899A (en) * 1999-08-27 2001-10-05 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery
US6596439B1 (en) 2000-04-26 2003-07-22 Quallion Llc Lithium ion battery capable of being discharged to zero volts
US7177691B2 (en) 1999-07-30 2007-02-13 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
WO2007086289A1 (en) * 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, manufacturing method thereof, and mounting method thereof

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0831408A (en) * 1994-05-13 1996-02-02 Matsushita Electric Ind Co Ltd Positive electrode for non-aqueous electrolyte lithium secondary battery and manufacture thereof
WO1997043794A1 (en) * 1996-05-10 1997-11-20 Institute Of Physics, Chinese Academy Of Sciences A method of preparing positive material for lithium secondary cell by microwave energy
US7177691B2 (en) 1999-07-30 2007-02-13 Advanced Bionics Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US7818068B2 (en) 1999-07-30 2010-10-19 Boston Scientific Neuromodulation Corporation Implantable pulse generators using rechargeable zero-volt technology lithium-ion batteries
US7248929B2 (en) 1999-07-30 2007-07-24 Advanced Bionics Corporation Implantable devices using rechargeable zero-volt technology lithium-ion batteries
US7184836B1 (en) 1999-07-30 2007-02-27 Advanced Bionics Corporation Implantable devices using rechargeable zero-volt technology lithium-ion batteries
JP2001273899A (en) * 1999-08-27 2001-10-05 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery
WO2001017046A1 (en) * 1999-08-27 2001-03-08 Mitsubishi Chemical Corporation Positive electrode material for lithium secondary cell
US7101642B2 (en) 2000-04-26 2006-09-05 Quallion Llc Rechargeable lithium battery for tolerating discharge to zero volts
US6596439B1 (en) 2000-04-26 2003-07-22 Quallion Llc Lithium ion battery capable of being discharged to zero volts
US8637184B2 (en) 2000-04-26 2014-01-28 Quallion Llc Rechargeable lithium battery for tolerating discharge to zero volts
WO2007086289A1 (en) * 2006-01-25 2007-08-02 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell, manufacturing method thereof, and mounting method thereof
JPWO2007086289A1 (en) * 2006-01-25 2009-06-18 パナソニック株式会社 Non-aqueous electrolyte secondary battery, manufacturing method and mounting method thereof

Similar Documents

Publication Publication Date Title
JP2884746B2 (en) Non-aqueous electrolyte secondary battery
JP3978881B2 (en) Non-aqueous electrolyte and lithium secondary battery using the same
JP2007200865A (en) Nonaqueous electrolyte secondary battery
JPH07296853A (en) Method for charging
JP3033175B2 (en) Non-aqueous electrolyte secondary battery
JP3003431B2 (en) Non-aqueous electrolyte secondary battery
JP2751624B2 (en) Non-aqueous electrolyte secondary battery
JP3048808B2 (en) Non-aqueous electrolyte secondary battery
JPH06349493A (en) Secondary battery
JPH06215761A (en) Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JPH06111818A (en) Carbon negative electrode for nonaqueous electrolyte secondary battery
WO2013061922A1 (en) Positive electrode active material for nonaqueous electrolyte rechargeable battery, manufacturing method for same, and nonaqueous electrolyte rechargeable battery
JPH05174872A (en) Nonaqueous electrolyte secondary battery
JPH0737618A (en) Nonaqueous electrolyte secondary battery
JPH07288124A (en) Nonaqueous electrolyte secondary battery
JP2001052760A (en) Charging method of nonaqueous electrolyte secondary battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JPH05314977A (en) Nonaqueous electrolytic secondary battery
JPH11176421A (en) Nonaqueous electrolyte secondary battery
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery
CN114586194B (en) Lithium ion battery and method for manufacturing lithium ion battery
JPS63114065A (en) Organic electrolyte secondary battery
CN114556617B (en) Lithium ion battery and method for manufacturing lithium ion battery
JPH04332480A (en) Nonaqueous secondary battery