JP3568247B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP3568247B2
JP3568247B2 JP21878094A JP21878094A JP3568247B2 JP 3568247 B2 JP3568247 B2 JP 3568247B2 JP 21878094 A JP21878094 A JP 21878094A JP 21878094 A JP21878094 A JP 21878094A JP 3568247 B2 JP3568247 B2 JP 3568247B2
Authority
JP
Japan
Prior art keywords
volume ratio
solvent
aqueous electrolyte
secondary battery
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21878094A
Other languages
Japanese (ja)
Other versions
JPH0883625A (en
Inventor
匡良 中島
義明 阿左美
隆久 大崎
則雄 高見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP21878094A priority Critical patent/JP3568247B2/en
Publication of JPH0883625A publication Critical patent/JPH0883625A/en
Application granted granted Critical
Publication of JP3568247B2 publication Critical patent/JP3568247B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells

Description

【0001】
【産業上の利用分野】
本発明は、非水電解液二次電池に関し、さらに詳しくは非水電解液の溶媒を改良して、サイクル特性および低温における容量特性が優れた二次電池に関する。
【0002】
【従来の技術】
近年、負極活物質としてリチウムを用いた非水電解液電池は高エネルギー密度電池として注目されており、正極活物質に二酸化マンガン(MnO )、フッ化炭素(CF )、塩化チオニル(SOCl )等を用いた一次電池は、すでに電卓、時計の電源やメモリのバックアップ電池として多用されている。
さらに、近年、カメラ一体型VTR、携帯電話、ラップトップコンピュータ等の新しいポータブル電子機器の小型化、軽量化に伴い、それらの電源として高エネルギー密度の二次電池の要求が高まり、リチウムを負極活物質とするリチウム二次電池の研究が活発に行われている。
【0003】
非水電解液電池を二次電池化する場合、鉛電池、ニッケルカドミウム電池等の水系電解液二次電池よりも高いエネルギー密度、すなわち高容量かつ高電圧のものが望まれる。この要望を満たすものとしてLiCoO やLiMn 系の4Vの高電圧を示す材料が用いられている。
【0004】
一方、負極として金属リチウムをはじめリチウム合金やリチウムイオンを吸蔵・放出できる炭素質物などが検討されている。しかし金属リチウムには充放電に伴う樹枝状生成物(デンドライト)による短絡の問題があり、リチウム合金には充放電に伴う膨張収縮に起因した電極の崩れなどの問題がある。
【0005】
このようなことから、リチウム二次電池に組み込まれる負極として、リチウムを吸蔵・放出する炭素質物、例えばコークス、樹脂焼成体、炭素繊維、熱分解気相炭素などを用いることによって、リチウムと非水電解液との反応、さらにはデンドライト析出による負極特性の劣化を改善することが提案されている。
【0006】
炭素質物を含む正極は、炭素質物の中でも主に炭素原子からなる六角網面層が積み重なった構造(黒鉛構造)部分において、前記の層と層の部分にリチウムイオンが出入りすることにより充放電を行うと考えられている。しかしながら、黒鉛化の進んだ巨大結晶を粉末化した炭素質物を非水電解液中で負極として用いると、非水電解液が分解し、結果として電池の容量および充放電効率が低くなる。また、充放電サイクルが進むに従い炭素質物の結晶構造あるいは微細構造が崩れ、リチウムの吸蔵放出能が劣化してサイクル寿命が低下するという問題点があった。
【0007】
また、黒鉛化物においてその粉末は薄片状であるため、リチウムイオンの挿入する黒鉛結晶子のc軸方向の面で、電解液に露出する面積がより小さくなるため、ハイレートの充放電サイクルにおいては急激に容量が低下する問題がある。このため、カーボンブラック等を添加して改善がなされているが、負極充填密度が低下するという問題が生じる。その結果、従来の黒鉛化物では高容量のリチウム二次電池を実現できなかった。さらに、黒鉛化の進んだ炭素繊維においても、粉末にすると非水電解液が分解し、巨大結晶の粉末を用いたものと同様に、負極としての性能が大幅に低下するなどの問題点を有していた。
【0008】
一方、黒鉛化度の低いコークスや炭素繊維等の炭素化物では、溶媒の分解はある程度抑えられるものの、容量および充放電効率が低く、しかも充放電の過電圧が大きいこと、電池の放電電圧の平坦性が低いこと、さらにサイクル寿命が低いことなどの問題を有している。
【0009】
従来、特開昭62−268058号、特開平2−82466号、特開平4−61747号、特開平4−115458号、特開平4−184862号、特開平4−190557号公報等に開示されているように、種々の炭素化物や黒鉛化物の黒鉛化度を制御し、最適な黒鉛構造のパラメータについて提案されているが、十分な特性を有する負極は得られていない。また、特開平4−79170号、特開平4−82172号公報には負極として用いる炭素繊維について開示されているが、それを粉末化した炭素質物を用いた負極の性能には問題がある。
【0010】
ところで、リチウム二次電池用の有機電解液としては、一種類の有機溶媒だけでは電池性能を満足させることができないので、1,2−ジメトキシエタン、ジエチルカーボネート等の低粘度溶媒との混合が必要不可欠である。また、特開昭57−1740463号公報には、エチレンカーボネートとプロピレンカーボネートとの混合溶媒を用いることが提案されている。
【0011】
【発明が解決しようとする課題】
しかしながら、これらの溶媒系を用いてもサイクル特性、低温特性、ハイレート特性など電池としての全ての特性について満足できるものではなかった。
本発明の目的は、高容量で充放電効率、ハイレート放電特性、放電電圧の平坦性、高い充放電寿命など電池特性が優れたリチウム二次電池を提供しようとするものである。
【0012】
【課題を解決するための手段及び作用】
本発明のリチウム二次電池は、リチウムイオンを吸蔵・放出する炭素質物からなる負極と、非水電解液と、リチウム含有酸化物からなる正極とを具備した非水電解液二次電池であって、前記炭素質物が、X線回折法による(002)面の面間隔d002 が0.338未満である、メソフェーズピッチ系炭素繊維粉末からなる炭素質物であり、
上記非水電解液の溶媒がエチレンカーボネート(EC)、メチルエチルカーボネート(MEC)及びジエチルカーボネート(DEC)、必要ならばさらにプロピレンカーボネート(PC)の混合溶媒であることを特徴とするものである。
以下、本発明のリチウム二次電池(例えば円筒形リチウム二次電池)を図1を参照して詳細に説明する。
【0013】
有底円筒状の容器1は、底部に絶縁体2が配置されている。電極群3は、前記容器1内に収納されている。前記電極群3は、正極4、セパレータ5及び負極6をこの順序で積層した帯状物を前記負極6が外側に位置するように渦巻き状に捲回した構造になっている。
【0014】
前記容器1内には、非水電解液が収納されている。中央部が開口された絶縁紙7は前記容器1内の前記電極群3の上方に載置されている。絶縁封口板8は、前記容器1の上部開口部に配置され、かつ前記上部開口部付近を内側にかしめ加工することにより、前記封口板8は前記容器1に液密に固定されている。正極端子9は、前記絶縁封口板8の中央に嵌合されている。正極リード10の一端は、前記正極4に、他端は前記正極端子9にそれぞれ接続されている。前記負極6は、図示しない負極リードを介して負極端子である前記容器1に接続されている。
【0015】
前記容器1は、例えばステンレスから作られる。
前記正極4は、正極活物質に導電材および結着材を適当な溶媒に懸濁し、この懸濁物を集電体に塗布、乾燥して薄板状にすることにより作製される。
【0016】
前記正極活物質としては、種々の酸化物、例えば二酸化マンガン、リチウムマンガン複合酸化物、リチウム含有ニッケル酸化物、リチウム含有コバルト化合物、リチウム含有ニッケルコバルト酸化物、リチウムを含むバナジウム酸化物や、二硫化チタン、二硫化モリブデンなどのカルコゲン化合物などを挙げることができる。中でも、リチウムコバルト酸化物(LiCoO )、リチウムニッケル酸化物(LiNiO )、リチウムマンガン複合酸化物(LiMn 、LiMnO )を用いると、高電圧が得られるため好ましい。
【0017】
前記導電材としては、例えばアセチレンブラック、カーボンブラック、黒鉛等を挙げることができる。
前記結着材としては、例えばポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)、エチレン−プロピレン−ジエン共重合体(EPDM)、スチレン−ブタジエンゴム(SBR)等を用いることができる。
【0018】
前記正極活物質、導電材および結着材の配合割合は、正極活物質80〜95重量%、導電材3〜20重量%、結着材2〜7重量%の範囲にすることが好ましい。
【0019】
前記集電体としては、例えばアルミニウム箔、ステンレス箔、ニッケル箔、チタン箔等を用いることができる。
【0020】
前記セパレータとしては、例えば合成樹脂製不織布、ポリエチレン多孔質フィルム、ポリプロピレン多孔質フィルムを用いることができる。
【0021】
前記負極6の炭素質物は以下のようにして作製する。
まず、メソフェーズピッチ系を主原料として溶融ブロー法により繊維長が200〜300μm の短繊維を紡糸した後、不融化して粉砕化できる程度に炭素化する。
【0022】
この炭素化の熱処理は600〜2,000℃、好ましくは800〜1,500℃で行うことが望ましい。前記炭素化したメソフェーズピッチ系炭素繊維のX線回折法による(002)面の面間隔d002 は、0.338未満であることが望ましい。つづいて、前記炭素化、粉砕処理を施した炭素繊維を2,000℃以上、より好ましくは2,500〜3,200℃で黒鉛化することにより前述したメソフェーズピッチ系炭素繊維を製造する。この際、前記粉砕、焼成工程が極めて重要であり、粉砕時にボールミルやジェットミルなどを用いて炭素繊維が縦割れしにくく、かつ均一に粉砕することにより、平均繊維長は10〜100μm 、より好ましくは平均繊維長30〜60μm 、また平均繊維径は4〜15μm 、より好ましくは6〜8μm であることが望ましい。なお、平均繊維長が10μm 未満の場合は粉砕によって炭素繊維が縦割れしやすくなり、一方、平均繊維長が100μm を越えると集電体への塗工ができないため好ましくない。また、平均繊維径が4μm 未満の場合は繊維の強度が脆くなり、一方、平均炭素繊維径が15μm を越えると集電体への塗工ができないため好ましくない。
【0023】
また、上記非水溶媒が、ECの体積比率が溶媒全体の30〜50%であり、PCの体積比率が溶媒全体の0〜20%であり、MECの体積比率が溶媒全体の20〜60%であり、DECの体積比率が溶媒全体の5〜20%であることが好ましい。
【0024】
ここで、ECの体積比率が溶媒全体の26.7%未満であるとサイクル特性が悪化し、53.3%を越えると低温特性が悪化する。これは、ECはサイクル特性は良いが、融点が約36℃と高いため、電池が−20℃の低温になった場合、電解液が凝固してしまい低温特性に悪影響を与える。また、PCの体積比率が溶媒全体の20%を越えると充放電効率が悪化する。PCは本発明のカーボン材料においてサイクル特性に悪影響を及ぼすことがあるため必須ではないが、PCを含む場合はその融点が−49℃であるため、電池が−20℃の低温になっても液として残り溶質の析出を妨げるため低温特性が良くなる。また、MECの体積比率が溶媒全体の20%未満であると低温特性が悪化し、60%を越えるとサイクル特性が悪化する。また、DECの体積比率が溶媒全体の20%を越えるとサイクル特性が悪化し、また、5%未満であると低温特性が悪化する。
以上のことより上記記載の体積比率を用いることにより、低温特性、サイクル特性、充放電効率に優れた非水電解液二次電池となる。
【0025】
前記非水電解液の溶質として、例えば過塩素酸リチウム(LiClO )、六フッ化リン酸リチウム(LiPF )、ホウフッ化リチウム(LiBF )、トリフルオロメタンスルホン酸リチウム(LiCF SO )などのリチウム塩(電解質)が挙げられる。この中で安全性、電池性能を考慮するとLiPF 、LiBF がとくに好ましい。これらの電解液中に溶解される濃度としては0.7〜1.7mol/L の範囲が望ましい。上記範囲をはずれる場合には、電解液の導電率が不十分となり、充放電効率が悪化するおそれがある。
【0026】
【実施例】
以下、本発明の実施例を前述した図1を参照して詳細に説明する。
実施例1
まず、リチウムコバルト酸化物〔Li CoO (0.8≦x≦1)〕粉末91重量%をアセチレンブラック3.5重量%、グラファイト3.5重量%及びエチレンプロピレンジエンモノマー粉末2重量%とトルエンを加えて共に混合し、アルミニウム箔(30μm )集電体に塗布した後、プレスすることにより正極を作製した。
【0027】
また、900℃で炭素化、粉砕後、3,000℃で焼成して、平均繊維長40μm 、平均繊維径7μm 、N ガス吸着BET法による比表面積4m/g、X線回折法による黒鉛構造の(002)面の面間隔d002 が0.336nmのメソフェーズピッチ系炭素繊維の粉末と、15μm 以下の粒子が92.2体積%でd002 が0.3365nm、比表面積8.6m/gのブロック状の形状を有する人造黒鉛を、90:10重量%で混合した炭素質物96重量%、スチレンブタジエンゴム2.5重量%、カルボキシメチルセルロース1.5重量%を共に混合し、これを集電体としての銅箔に塗布し、乾燥することにより負極を作製した。
【0028】
前記正極、ポリエチレン製多孔質フィルムからなるセパレータおよび前記負極をそれぞれこの順序で積層した後、前記負極が外側に位置するように渦巻き状に捲回して電極群を作製した。
さらに六フッ化リン酸リチウム(LiPF )を、EC、PC、MEC及びDECの混合溶媒(混合体積率40:10:40:10)に1.0mol/L 溶解して非水電解液を調製した。
前記電極群及び前記電解液をステンレス製の有底円筒状容器内にそれぞれ収納して前述した図1に示す円筒形リチウム二次電池A1を組み立てた。
【0029】
実施例2
非水電解液の溶媒として、ECの体積比率が溶媒全体の50%であり、かつ、PC:MEC:DECの体積比率が(1:4:1)である以外は、実施例1と同様にして前述した図1に示す円筒形リチウム二次電池B1を組み立てた。
【0030】
実施例3
非水電解液の溶媒として、ECの体積比率が溶媒全体の30%である以外は、実施例2と同様にして前述した図1に示す円筒形リチウム二次電池B2を組み立てた。
【0031】
比較例1
非水電解液の溶媒として、ECの体積比率が溶媒全体の60%である以外は、実施例2と同様にして前述した図1に示す円筒形リチウム二次電池B3を組み立てた。
【0032】
比較例2
非水電解液の溶媒として、ECの体積比率が溶媒全体の20%である以外は、実施例2と同様にして前述した図1に示す円筒形リチウム二次電池B4を組み立てた。
【0033】
実施例1〜3及び比較例1、2についての低温特性とサイクル特性を評価した。
低温特性の試験条件は、500mAで4.2Vまで3時間充電、500mAで2.7Vまで放電の充放電条件で初期の数サイクルを20℃で充放電をした後、充電状態で試験を停止し、温度を−20℃に変えて放電し、その容量の大きさで評価した。また、サイクル特性は、低温特性と同様の条件で20℃で充放電を行った。
【0034】
図2は低温特性を、図3はサイクル特性を示したグラフである。図2より、本発明において、PC:MEC:DEC=1:4:1の体積比率を用いる場合、ECの体積比率が溶媒全体の50%以下が優れていることが分かる。また、図3より、ECの体積比率が溶媒全体の30%以上が優れていることが分かる。
したがって、本発明において、PC:MEC:DEC=1:4:1の体積比率を用いた場合、ECの体積比率が溶媒全体の30〜50%の範囲が最適である。
【0035】
実施例4
非水電解液の溶媒として、PCの体積比率が溶媒全体の20%であり、かつ、EC:MEC:DECの体積比率が(4:4:1)である以外は、実施例1と同様にして前述した図1に示す円筒形リチウム二次電池C1を組み立てた。
【0036】
実施例5
非水電解液の溶媒として、PCの体積比率が溶媒全体の5%である以外は、実施例4と同様にして前述した図1に示す円筒形リチウム二次電池C2を組み立てた。
【0037】
実施例6
非水電解液の溶媒として、PCの体積比率が溶媒全体の0%である以外は、実施例4と同様にして前述した図1に示す円筒形リチウム二次電池C3を組み立てた。
【0038】
比較例3
非水電解液の溶媒として、PCの体積比率が溶媒全体の30%である以外は、実施例4と同様にして前述した図1に示す円筒形リチウム二次電池C4を組み立てた。
【0039】
実施例4〜6及び比較例3について、低温特性とサイクル特性を上記と同じ条件で評価した。
図4は低温特性を、図5はサイクル特性を示したグラフである。図4より、本発明において、EC:MEC:DEC=4:4:1の体積比率を用いる場合、PCの体積比率が溶媒全体の0%以上が優れていることが分かる。また、図5より、PCの体積比率が溶媒全体の20%以下が優れていることが分かる。
したがって、本発明において、EC:MEC:DEC=4:4:1の体積比率を用いる場合、PCの体積比率が溶媒全体の0〜20%の範囲が最適である。
【0040】
実施例7
非水電解液の溶媒として、MECの体積比率が溶媒全体の60%であり、かつ、EC:PC:DECの体積比率が(4:1:1)である以外は、実施例1と同様にして前述した図1に示す円筒形リチウム二次電池D1を組み立てた。
【0041】
実施例8
非水電解液の溶媒として、MECの体積比率が溶媒全体の20%である以外は、実施例7と同様にして前述した図1に示す円筒形リチウム二次電池D2を組み立てた。
【0042】
比較例5
非水電解液の溶媒として、MECの体積比率が溶媒全体の70%である以外は、実施例7と同様にして前述した図1に示す円筒形リチウム二次電池D3を組み立てた。
【0043】
比較例6
非水電解液の溶媒として、MECの体積比率が溶媒全体の10%である以外は、実施例7と同様にして前述した図1に示す円筒形リチウム二次電池D4を組み立てた。
【0044】
実施例7、8及び比較例5、6についての低温特性と初期サイクル特性を上記と同じ条件で評価した。
図6は低温特性を、図7はサイクル特性を示したグラフである。図6より、本発明において、EC:PC:DEC=4:1:1の体積比率を用いる場合、MECの体積比率が溶媒全体の20%以上が優れていることが分かる。また、図7より、MECの体積比率が溶媒全体の60%以下が優れていることが分かる。
したがって、本発明において、EC:PC:DEC=4:1:1の体積比率を用いた場合、MECの体積比率が溶媒全体の20〜60%の範囲が最適である。
【0045】
実施例9
非水電解液の溶媒として、DECの体積比率が溶媒全体の20%であり、かつ、EC:PC:MECの体積比率が(4:1:4)である以外は、実施例1と同様にして前述した図1に示す円筒形リチウム二次電池E1を組み立てた。
【0046】
実施例10
非水電解液の溶媒として、DECの体積比率が溶媒全体の5%である以外は、実施例9と同様にして前述した図1に示す円筒形リチウム二次電池E2を組み立てた。
【0047】
比較例7
非水電解液の溶媒として、DECの体積比率が溶媒全体の30%である以外は、実施例9と同様にして前述した図1に示す円筒形リチウム二次電池E3を組み立てた。
【0048】
比較例8
非水電解液の溶媒として、DECの体積比率が溶媒全体の0%である以外は、実施例9と同様にして前述した図1に示す円筒形リチウム二次電池E4を組み立てた。
【0049】
実施例9、10及び比較例7、8についての低温特性とサイクル特性を上記と同じ条件で評価した。
図8は低温特性を、図9はサイクル特性を示したグラフである。図8より、本発明において、EC:PC:MEC=4:1:4の体積比率を用いる場合、DECの体積比率が溶媒全体の5%以上が優れていることが分かる。また、図9より、DECの体積比率が溶媒全体の20%以下が優れていることが分かる。
したがって、本発明において、EC:PC:MEC=4:1:4の体積比率を用いた場合、DECの体積比率が溶媒全体の5〜20%の範囲が最適である。
【0050】
【発明の効果】
高容量でハイレート特性、低温特性、サイクル特性の優れたリチウム二次電池を提供することができる。
【図面の簡単な説明】
【図1】本発明に係る円筒形リチウム二次電池を示す部分断面図。
【図2】ECの体積比率の低温特性図。
【図3】ECの体積比率のサイクル特性図。
【図4】PCの体積比率の低温特性図。
【図5】PCの体積比率のサイクル特性図。
【図6】MECの体積比率の低温特性図。
【図7】MECの体積比率のサイクル特性図。
【図8】DECの体積比率の低温特性図。
【図9】DECの体積比率のサイクル特性図。
【符号の説明】
1…容器
3…電極群
4…正極
6…負極
8…封口板
[0001]
[Industrial applications]
The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly, to a secondary battery in which a solvent of a non-aqueous electrolyte is improved to have excellent cycle characteristics and low-temperature capacity characteristics.
[0002]
[Prior art]
In recent years, non-aqueous electrolyte batteries using lithium as a negative electrode active material have attracted attention as high energy density batteries, and manganese dioxide (MnO 2 ), carbon fluoride (CF 2 ), and thionyl chloride (SOCl 2 ) have been used as positive electrode active materials. The primary battery using the) or the like is already widely used as a backup battery for a calculator, a clock power supply, and a memory.
Further, in recent years, as new portable electronic devices such as camera-integrated VTRs, mobile phones, and laptop computers have become smaller and lighter, the demand for high-energy-density rechargeable batteries has increased, and lithium has been used as a negative electrode. Research on lithium secondary batteries as materials has been actively conducted.
[0003]
When a non-aqueous electrolyte battery is formed into a secondary battery, a battery having a higher energy density, that is, a higher capacity and a higher voltage than an aqueous electrolyte secondary battery such as a lead battery or a nickel cadmium battery is desired. In order to satisfy this demand, a LiCoO 2 or LiMn 2 O 4 based material showing a high voltage of 4 V is used.
[0004]
On the other hand, carbonaceous materials capable of occluding and releasing lithium ions, lithium alloys, and lithium ions, as well as metallic lithium, are being studied. However, lithium metal has a problem of short-circuiting due to dendritic products (dendrite) during charging and discharging, and lithium alloy has a problem such as collapse of electrodes due to expansion and contraction due to charging and discharging.
[0005]
For this reason, by using a carbonaceous substance that absorbs and releases lithium, such as coke, a resin fired body, carbon fiber, and pyrolytic gas phase carbon, as a negative electrode incorporated in a lithium secondary battery, lithium and non-aqueous It has been proposed to improve the reaction with the electrolyte and the deterioration of the negative electrode characteristics due to the precipitation of dendrite.
[0006]
The positive electrode containing a carbonaceous material has a structure (graphite structure) in which hexagonal mesh layers mainly composed of carbon atoms are stacked in a carbonaceous material (graphite structure). It is thought to do. However, when a carbonaceous material obtained by pulverizing a graphitized giant crystal is used as a negative electrode in a non-aqueous electrolyte, the non-aqueous electrolyte is decomposed, and as a result, the capacity and charge / discharge efficiency of the battery are reduced. Further, as the charge / discharge cycle progresses, the crystal structure or microstructure of the carbonaceous material is destroyed, and there is a problem that the ability to insert and extract lithium is deteriorated and the cycle life is shortened.
[0007]
In addition, since the powder of the graphitized material is flaky, the area exposed to the electrolyte on the c-axis direction surface of the graphite crystallite into which lithium ions are inserted becomes smaller, and therefore, in a high-rate charge / discharge cycle, There is a problem that the capacity is reduced. For this reason, although improvement has been made by adding carbon black or the like, there is a problem that the packing density of the negative electrode is reduced. As a result, a high-capacity lithium secondary battery could not be realized with the conventional graphite. Furthermore, even with graphitized carbon fibers, when powdered, the non-aqueous electrolyte is decomposed, and as in the case of using macrocrystalline powder, there is a problem that the performance as a negative electrode is greatly reduced. Was.
[0008]
On the other hand, in the case of carbonized materials such as coke and carbon fiber with a low degree of graphitization, the decomposition of the solvent can be suppressed to some extent, but the capacity and charge / discharge efficiency are low, and the overvoltage of charge / discharge is large, and the flatness of the discharge voltage of the battery is low. And the cycle life is low.
[0009]
Conventionally, it is disclosed in JP-A-62-268058, JP-A-2-82466, JP-A-4-61747, JP-A-4-115458, JP-A-4-184862, JP-A-4-190557 and the like. As described above, although the degree of graphitization of various carbonized materials and graphitized materials is controlled and parameters of an optimal graphite structure are proposed, a negative electrode having sufficient characteristics has not been obtained. Japanese Patent Application Laid-Open Nos. 4-79170 and 4-82172 disclose carbon fibers used as a negative electrode. However, there is a problem in the performance of a negative electrode using a carbonaceous material obtained by pulverizing the carbon fiber.
[0010]
By the way, as an organic electrolyte for a lithium secondary battery, battery performance cannot be satisfied with only one kind of organic solvent, so it is necessary to mix with a low-viscosity solvent such as 1,2-dimethoxyethane and diethyl carbonate. It is essential. Japanese Patent Application Laid-Open No. 57-174463 proposes to use a mixed solvent of ethylene carbonate and propylene carbonate.
[0011]
[Problems to be solved by the invention]
However, even with the use of these solvent systems, all of the battery characteristics such as cycle characteristics, low-temperature characteristics, and high-rate characteristics have not been satisfactory.
An object of the present invention is to provide a lithium secondary battery having high capacity and excellent battery characteristics such as charge / discharge efficiency, high-rate discharge characteristics, flatness of discharge voltage, and long charge / discharge life.
[0012]
Means and Action for Solving the Problems
The lithium secondary battery of the present invention is a non-aqueous electrolyte secondary battery including a negative electrode made of a carbonaceous material that occludes and releases lithium ions, a non-aqueous electrolyte, and a positive electrode made of a lithium-containing oxide. Wherein the carbonaceous material is a carbonaceous material comprising a mesophase pitch-based carbon fiber powder having a (002) plane spacing d 002 of less than 0.338 by X-ray diffraction;
The solvent of the non-aqueous electrolyte is a mixed solvent of ethylene carbonate (EC), methyl ethyl carbonate (MEC) and diethyl carbonate (DEC) and, if necessary, propylene carbonate (PC).
Hereinafter, a lithium secondary battery (for example, a cylindrical lithium secondary battery) of the present invention will be described in detail with reference to FIG.
[0013]
The insulator 2 is arranged at the bottom of the bottomed cylindrical container 1. The electrode group 3 is housed in the container 1. The electrode group 3 has a structure in which a band formed by laminating a positive electrode 4, a separator 5, and a negative electrode 6 in this order is spirally wound so that the negative electrode 6 is located outside.
[0014]
A non-aqueous electrolyte is stored in the container 1. The insulating paper 7 having a central portion opened is placed above the electrode group 3 in the container 1. The insulating sealing plate 8 is arranged at the upper opening of the container 1 and the vicinity of the upper opening is caulked inward so that the sealing plate 8 is fixed to the container 1 in a liquid-tight manner. The positive electrode terminal 9 is fitted in the center of the insulating sealing plate 8. One end of the positive electrode lead 10 is connected to the positive electrode 4, and the other end is connected to the positive electrode terminal 9. The negative electrode 6 is connected to the container 1 serving as a negative terminal via a negative lead (not shown).
[0015]
The container 1 is made of, for example, stainless steel.
The positive electrode 4 is manufactured by suspending a conductive material and a binder in an appropriate solvent in a positive electrode active material, applying the suspension to a current collector, and drying the resultant to form a thin plate.
[0016]
Examples of the positive electrode active material include various oxides such as manganese dioxide, lithium manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt compound, lithium-containing nickel-cobalt oxide, lithium-containing vanadium oxide, and disulfide. Chalcogen compounds such as titanium and molybdenum disulfide can be exemplified. Among them, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium manganese composite oxide (LiMn 2 O 4 , LiMnO 2 ) are preferably used because a high voltage can be obtained.
[0017]
Examples of the conductive material include acetylene black, carbon black, and graphite.
Examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene-propylene-diene copolymer (EPDM), and styrene-butadiene rubber (SBR).
[0018]
The mixing ratio of the positive electrode active material, the conductive material and the binder is preferably in the range of 80 to 95% by weight of the positive electrode active material, 3 to 20% by weight of the conductive material, and 2 to 7% by weight of the binder.
[0019]
As the current collector, for example, an aluminum foil, a stainless steel foil, a nickel foil, a titanium foil, or the like can be used.
[0020]
As the separator, for example, a synthetic resin nonwoven fabric, a polyethylene porous film, or a polypropylene porous film can be used.
[0021]
The carbonaceous material of the negative electrode 6 is produced as follows.
First, short fibers having a fiber length of 200 to 300 μm are spun from a mesophase pitch system as a main raw material by a melt blow method, and then are infused and carbonized to an extent that they can be pulverized.
[0022]
This heat treatment for carbonization is desirably performed at 600 to 2,000 ° C, preferably 800 to 1,500 ° C. It is desirable that the plane distance d 002 of the (002) plane of the carbonized mesophase pitch-based carbon fiber by X-ray diffraction is less than 0.338. Subsequently, the carbon fiber subjected to the carbonization and pulverization treatment is graphitized at 2,000 ° C. or more, more preferably 2,500 to 3,200 ° C., to produce the above-mentioned mesophase pitch-based carbon fiber. At this time, the pulverization and baking steps are extremely important, and the carbon fibers are hardly longitudinally cracked using a ball mill or a jet mill at the time of pulverization, and the average fiber length is 10 to 100 μm, more preferably by pulverizing uniformly. The average fiber length is preferably 30 to 60 μm, and the average fiber diameter is preferably 4 to 15 μm, more preferably 6 to 8 μm. When the average fiber length is less than 10 μm, the carbon fibers are liable to be vertically cracked by pulverization. On the other hand, when the average fiber length exceeds 100 μm, it is not preferable because the coating on the current collector cannot be performed. On the other hand, if the average fiber diameter is less than 4 μm, the fiber strength becomes brittle. On the other hand, if the average carbon fiber diameter exceeds 15 μm, coating on the current collector cannot be performed, which is not preferable.
[0023]
Further, in the non-aqueous solvent, the volume ratio of EC is 30 to 50% of the whole solvent, the volume ratio of PC is 0 to 20% of the whole solvent, and the volume ratio of MEC is 20 to 60% of the whole solvent. It is preferable that the volume ratio of DEC is 5 to 20% of the whole solvent.
[0024]
Here, when the EC volume ratio is less than 26.7% of the entire solvent, the cycle characteristics deteriorate, and when it exceeds 53.3% , the low-temperature characteristics deteriorate. This is because the EC has good cycle characteristics, but has a high melting point of about 36 ° C., so that when the battery becomes low at −20 ° C., the electrolyte solidifies and adversely affects the low-temperature characteristics. On the other hand, if the volume ratio of PC exceeds 20% of the entire solvent, the charge / discharge efficiency deteriorates. PC is not essential because the carbon material of the present invention may adversely affect the cycle characteristics. However, when PC is included, the melting point of the carbon material is -49 ° C. As a result, the low-temperature characteristics are improved because the precipitation of the remaining solutes is hindered. When the volume ratio of MEC is less than 20% of the whole solvent, the low-temperature characteristics deteriorate, and when it exceeds 60%, the cycle characteristics deteriorate. When the volume ratio of DEC exceeds 20% of the entire solvent, the cycle characteristics deteriorate, and when it is less than 5%, the low-temperature characteristics deteriorate.
As described above, by using the volume ratio described above, a non-aqueous electrolyte secondary battery having excellent low-temperature characteristics, cycle characteristics, and charge / discharge efficiency can be obtained.
[0025]
Examples of the solute of the nonaqueous electrolyte include lithium perchlorate (LiClO 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), and lithium trifluoromethanesulfonate (LiCF 3 SO 3 ). Lithium salt (electrolyte). Among these, LiPF 6 and LiBF 4 are particularly preferable in consideration of safety and battery performance. The concentration dissolved in these electrolytes is preferably in the range of 0.7 to 1.7 mol / L. When the ratio is out of the above range, the conductivity of the electrolytic solution becomes insufficient, and the charge / discharge efficiency may be deteriorated.
[0026]
【Example】
Hereinafter, an embodiment of the present invention will be described in detail with reference to FIG.
Example 1
First, 91% by weight of lithium cobalt oxide [Li x CoO 2 (0.8 ≦ x ≦ 1)] powder was mixed with 3.5% by weight of acetylene black, 3.5% by weight of graphite, and 2% by weight of ethylene propylene diene monomer powder. Toluene was added and mixed together, applied to an aluminum foil (30 μm) current collector, and then pressed to produce a positive electrode.
[0027]
After carbonization at 900 ° C., pulverization, firing at 3,000 ° C., average fiber length of 40 μm, average fiber diameter of 7 μm, specific surface area of 4 m 2 / g by N 2 gas adsorption BET method, graphite by X-ray diffraction method Mesophase pitch-based carbon fiber powder having a spacing d 002 of the structure (002) plane of 0.336 nm, particles having a particle size of 15 μm or less of 92.2% by volume, d 002 of 0.3365 nm, and a specific surface area of 8.6 m 2 / g of artificial graphite having a block shape was mixed at 90: 10% by weight, and 96% by weight of a carbonaceous material, 2.5% by weight of styrene-butadiene rubber, and 1.5% by weight of carboxymethylcellulose were mixed together and collected. A negative electrode was produced by applying the composition to a copper foil as an electric body and drying it.
[0028]
After laminating the positive electrode, the separator made of a porous film made of polyethylene, and the negative electrode in this order, they were spirally wound so that the negative electrode was located outside, thereby producing an electrode group.
Further, 1.0 mol / L of lithium hexafluorophosphate (LiPF 6 ) is dissolved in a mixed solvent of EC, PC, MEC and DEC (mixed volume ratio of 40: 10: 40: 10) to prepare a non-aqueous electrolyte. did.
The electrode group and the electrolytic solution were respectively housed in a stainless steel bottomed cylindrical container to assemble the above-described cylindrical lithium secondary battery A1 shown in FIG.
[0029]
Example 2
The same procedure as in Example 1 was carried out except that the volume ratio of EC was 50% of the entire solvent and the volume ratio of PC: MEC: DEC was (1: 4: 1) as the solvent of the nonaqueous electrolyte. Thus, the cylindrical lithium secondary battery B1 shown in FIG. 1 was assembled.
[0030]
Example 3
The above-described cylindrical lithium secondary battery B2 shown in FIG. 1 was assembled in the same manner as in Example 2 except that the volume ratio of EC was 30% of the whole solvent as the solvent of the nonaqueous electrolyte.
[0031]
Comparative Example 1
The cylindrical lithium secondary battery B3 shown in FIG. 1 described above was assembled in the same manner as in Example 2 except that the volume ratio of EC as the solvent of the nonaqueous electrolyte was 60% of the entire solvent.
[0032]
Comparative Example 2
The cylindrical lithium secondary battery B4 shown in FIG. 1 described above was assembled in the same manner as in Example 2 except that the volume ratio of EC was 20% of the whole solvent as the solvent of the nonaqueous electrolyte.
[0033]
Low temperature characteristics and cycle characteristics of Examples 1 to 3 and Comparative Examples 1 and 2 were evaluated.
The test conditions for the low-temperature characteristics were as follows: charge and discharge at 500 mA for 4.2 hours to 4.2 V, discharge at 500 mA to 2.7 V for several initial cycles at 20 ° C., and then stop the test in the charged state. The temperature was changed to −20 ° C., and discharge was performed, and the capacity was evaluated. Regarding the cycle characteristics, charging and discharging were performed at 20 ° C. under the same conditions as the low-temperature characteristics.
[0034]
FIG. 2 is a graph showing low-temperature characteristics, and FIG. 3 is a graph showing cycle characteristics. FIG. 2 shows that in the present invention, when a volume ratio of PC: MEC: DEC = 1: 4: 1 is used, the volume ratio of EC is excellent when it is 50% or less of the entire solvent. Further, FIG. 3 shows that the volume ratio of EC is excellent at 30% or more of the whole solvent.
Therefore, in the present invention, when a volume ratio of PC: MEC: DEC = 1: 4: 1 is used, the volume ratio of EC is optimally in the range of 30 to 50% of the whole solvent.
[0035]
Example 4
As the solvent of the non-aqueous electrolyte, the same procedure as in Example 1 was carried out except that the volume ratio of PC was 20% of the whole solvent and the volume ratio of EC: MEC: DEC was (4: 4: 1). Thus, the above-described cylindrical lithium secondary battery C1 shown in FIG. 1 was assembled.
[0036]
Example 5
The cylindrical lithium secondary battery C2 shown in FIG. 1 described above was assembled in the same manner as in Example 4, except that the volume ratio of PC as the solvent of the nonaqueous electrolyte was 5% of the whole solvent.
[0037]
Example 6
The cylindrical lithium secondary battery C3 shown in FIG. 1 described above was assembled in the same manner as in Example 4 except that the volume ratio of PC as the solvent of the nonaqueous electrolyte was 0% of the entire solvent.
[0038]
Comparative Example 3
The above-described cylindrical lithium secondary battery C4 shown in FIG. 1 was assembled in the same manner as in Example 4 , except that the volume ratio of PC as the solvent of the nonaqueous electrolyte was 30% of the entire solvent.
[0039]
For Examples 4 to 6 and Comparative Example 3, low-temperature characteristics and cycle characteristics were evaluated under the same conditions as described above.
FIG. 4 is a graph showing low-temperature characteristics, and FIG. 5 is a graph showing cycle characteristics. FIG. 4 shows that, in the present invention, when a volume ratio of EC: MEC: DEC = 4: 4: 1 is used, the volume ratio of PC is excellent when the volume ratio of the solvent is 0% or more. FIG. 5 shows that the volume ratio of PC is excellent when the volume ratio is 20% or less of the whole solvent.
Therefore, in the present invention, when using a volume ratio of EC: MEC: DEC = 4: 4: 1, the volume ratio of PC is optimally in the range of 0 to 20% of the whole solvent.
[0040]
Example 7
As the solvent of the non-aqueous electrolyte, the same as in Example 1 except that the volume ratio of MEC was 60% of the whole solvent and the volume ratio of EC: PC: DEC was (4: 1: 1). Thus, the above-described cylindrical lithium secondary battery D1 shown in FIG. 1 was assembled.
[0041]
Example 8
The above-described cylindrical lithium secondary battery D2 shown in FIG. 1 was assembled in the same manner as in Example 7, except that the volume ratio of MEC as the solvent of the nonaqueous electrolyte was 20% of the whole solvent.
[0042]
Comparative Example 5
The cylindrical lithium secondary battery D3 shown in FIG. 1 described above was assembled in the same manner as in Example 7 , except that the volume ratio of MEC as the solvent of the nonaqueous electrolyte was 70% of the whole solvent.
[0043]
Comparative Example 6
The cylindrical lithium secondary battery D4 shown in FIG. 1 described above was assembled in the same manner as in Example 7 , except that the volume ratio of MEC as the solvent of the nonaqueous electrolyte was 10% of the whole solvent.
[0044]
The low-temperature characteristics and the initial cycle characteristics of Examples 7 and 8 and Comparative Examples 5 and 6 were evaluated under the same conditions as described above.
FIG. 6 is a graph showing low-temperature characteristics, and FIG. 7 is a graph showing cycle characteristics. FIG. 6 shows that, in the present invention, when a volume ratio of EC: PC: DEC = 4: 1: 1 is used, the volume ratio of MEC is better than 20% of the whole solvent. FIG. 7 shows that the volume ratio of MEC is excellent when the volume ratio is 60% or less of the whole solvent.
Therefore, in the present invention, when a volume ratio of EC: PC: DEC = 4: 1: 1 is used, the optimal volume ratio of MEC is 20 to 60% of the entire solvent.
[0045]
Example 9
As the solvent of the non-aqueous electrolyte, the same as Example 1 except that the volume ratio of DEC was 20% of the whole solvent and the volume ratio of EC: PC: MEC was (4: 1: 4). Thus, the cylindrical lithium secondary battery E1 shown in FIG. 1 was assembled.
[0046]
Example 10
The cylindrical lithium secondary battery E2 shown in FIG. 1 described above was assembled in the same manner as in Example 9 except that the volume ratio of DEC was 5% of the whole solvent as the solvent of the nonaqueous electrolyte.
[0047]
Comparative Example 7
The cylindrical lithium secondary battery E3 shown in FIG. 1 described above was assembled in the same manner as in Example 9 , except that the volume ratio of DEC was 30% of the whole solvent as the solvent of the nonaqueous electrolyte.
[0048]
Comparative Example 8
The above-described cylindrical lithium secondary battery E4 shown in FIG. 1 was assembled in the same manner as in Example 9 except that the volume ratio of DEC as the solvent of the nonaqueous electrolyte was 0% of the entire solvent.
[0049]
The low-temperature characteristics and the cycle characteristics of Examples 9 and 10 and Comparative Examples 7 and 8 were evaluated under the same conditions as described above.
FIG. 8 is a graph showing low-temperature characteristics, and FIG. 9 is a graph showing cycle characteristics. FIG. 8 shows that, in the present invention, when a volume ratio of EC: PC: MEC = 4: 1: 4 is used, the volume ratio of DEC is excellent when the volume ratio is 5% or more of the whole solvent. FIG. 9 shows that the volume ratio of DEC is excellent when the volume ratio is 20% or less of the whole solvent.
Therefore, in the present invention, when a volume ratio of EC: PC: MEC = 4: 1: 4 is used, the optimum DEC volume ratio is 5 to 20% of the entire solvent.
[0050]
【The invention's effect】
A lithium secondary battery having high capacity, excellent high-rate characteristics, low-temperature characteristics, and excellent cycle characteristics can be provided.
[Brief description of the drawings]
FIG. 1 is a partial cross-sectional view showing a cylindrical lithium secondary battery according to the present invention.
FIG. 2 is a low-temperature characteristic diagram of a volume ratio of EC.
FIG. 3 is a cycle characteristic diagram of a volume ratio of EC.
FIG. 4 is a low-temperature characteristic diagram of a volume ratio of PC.
FIG. 5 is a cycle characteristic diagram of a volume ratio of PC.
FIG. 6 is a low-temperature characteristic diagram of a volume ratio of MEC.
FIG. 7 is a cycle characteristic diagram of a volume ratio of MEC.
FIG. 8 is a low-temperature characteristic diagram of a volume ratio of DEC.
FIG. 9 is a cycle characteristic diagram of the volume ratio of DEC.
[Explanation of symbols]
DESCRIPTION OF SYMBOLS 1 ... Container 3 ... Electrode group 4 ... Positive electrode 6 ... Negative electrode 8 ... Sealing plate

Claims (2)

リチウムイオンを吸蔵・放出する炭素質物からなる負極と、非水電解液と、リチウム含有酸化物からなる正極とを具備した非水電解液二次電池であって、前記炭素質物が、X線回折法による(002)面の面間隔d002が0.338未満であり、かつ平均繊維長が10〜60μ 、平均繊維径が4〜8μ であるメソフェーズピッチ系炭素繊維粉末からなる炭素質物であり、
上記非水電解液の溶媒が、エチレンカーボネート、メチルエチルカーボネート及びジエチルカーボネート、必要ならばさらにプロピレンカーボネートの混合溶媒であり、該混合溶媒のエチレンカーボネートの体積比率が溶媒全体の26.7〜53.3%であり、プロピレンカーボネートの体積比率が溶媒全体の0〜20%であり、メチルエチルカーボネートの体積比率が溶媒全体の20〜60%であり、ジエチルカーボネートの体積比率が溶媒全体の5〜20%であることを特徴とする非水電解液二次電池。
A non-aqueous electrolyte secondary battery comprising a negative electrode made of a carbonaceous material that occludes and releases lithium ions, a non-aqueous electrolyte, and a positive electrode made of a lithium-containing oxide, wherein the carbonaceous material has an X-ray diffraction pattern. plane spacing d 002 of the by law (002) plane Ri der less than 0.338 and an average fiber length of 10~60Myu m, carbonaceous material having an average fiber diameter of from mesophase pitch based carbon fiber powder is 4~8Myu m And
The solvent of the non-aqueous electrolyte is a mixed solvent of ethylene carbonate, methyl ethyl carbonate, diethyl carbonate, and, if necessary, propylene carbonate, and the volume ratio of ethylene carbonate in the mixed solvent is 26.7 to 53. 3 %, the volume ratio of propylene carbonate is 0 to 20% of the whole solvent, the volume ratio of methyl ethyl carbonate is 20 to 60% of the whole solvent, and the volume ratio of diethyl carbonate is 5 to 20% of the whole solvent. % Of the non-aqueous electrolyte secondary battery.
非水電解液が、その溶質に六フッ化リン酸リチウムもしくはホウフッ化リチウムのうち少なくとも一つを含む請求項1記載の非水電解液二次電池。2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte contains at least one of lithium hexafluorophosphate and lithium borofluoride in its solute.
JP21878094A 1994-09-13 1994-09-13 Non-aqueous electrolyte secondary battery Expired - Fee Related JP3568247B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21878094A JP3568247B2 (en) 1994-09-13 1994-09-13 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21878094A JP3568247B2 (en) 1994-09-13 1994-09-13 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JPH0883625A JPH0883625A (en) 1996-03-26
JP3568247B2 true JP3568247B2 (en) 2004-09-22

Family

ID=16725266

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21878094A Expired - Fee Related JP3568247B2 (en) 1994-09-13 1994-09-13 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP3568247B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3482591B2 (en) * 1998-07-31 2003-12-22 日本電池株式会社 Non-aqueous electrolyte battery
JP4231145B2 (en) * 1999-04-02 2009-02-25 三井化学株式会社 Non-aqueous electrolyte and secondary battery using the same
JP2009054284A (en) * 2007-08-23 2009-03-12 Hitachi Maxell Ltd Nonaqueous secondary battery
JPWO2014136729A1 (en) * 2013-03-04 2017-02-09 日本電気株式会社 Power storage device

Also Published As

Publication number Publication date
JPH0883625A (en) 1996-03-26

Similar Documents

Publication Publication Date Title
EP0688057B1 (en) Lithium ion secondary battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US5576121A (en) Llithium secondary battery and process for preparing negative-electrode active material for use in the same
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
JP3499584B2 (en) Lithium secondary battery
JPH103920A (en) Lithium secondary battery, and manufacture of the same
EP3503267B1 (en) Negative electrode active material for lithium secondary battery, negative electrode including the same, and lithium secondary battery including the negative electrode
US11784314B2 (en) Negative electrode for lithium secondary battery and lithium secondary battery including the same
JP5245201B2 (en) Negative electrode, secondary battery
JP3532016B2 (en) Organic electrolyte secondary battery
JPH08148185A (en) Nonaqueous electrolyte secondary battery and negative electrode therefor
JP3440638B2 (en) Non-aqueous electrolyte secondary battery
JP3641648B2 (en) Lithium secondary battery
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JP3840087B2 (en) Lithium secondary battery and negative electrode material
JPH07134988A (en) Nonaqueous electrolyte secondary battery
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JP4085244B2 (en) Non-aqueous secondary battery
JP4120771B2 (en) Non-aqueous secondary battery
JP3406843B2 (en) Lithium secondary battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JPH09320593A (en) Nonaqueous electrolyte secondary battery
JPH09129232A (en) Nonaqueous electrolytic secondary battery
JP4043806B2 (en) Non-aqueous electrolyte secondary battery
JPH11250910A (en) Lithium secondary battery

Legal Events

Date Code Title Description
TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20040615

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20040615

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees