JPH09320593A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH09320593A
JPH09320593A JP8132109A JP13210996A JPH09320593A JP H09320593 A JPH09320593 A JP H09320593A JP 8132109 A JP8132109 A JP 8132109A JP 13210996 A JP13210996 A JP 13210996A JP H09320593 A JPH09320593 A JP H09320593A
Authority
JP
Japan
Prior art keywords
secondary battery
negative electrode
lithium
nonaqueous electrolyte
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP8132109A
Other languages
Japanese (ja)
Inventor
Norihito Kurisu
憲仁 栗栖
Takahisa Osaki
隆久 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
FDK Twicell Co Ltd
Original Assignee
Toshiba Battery Co Ltd
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Battery Co Ltd, Toshiba Corp filed Critical Toshiba Battery Co Ltd
Priority to JP8132109A priority Critical patent/JPH09320593A/en
Publication of JPH09320593A publication Critical patent/JPH09320593A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte lithium secondary battery that has a high capacity and is excellent in battery characteristics such as the flatness of its discharge voltage arid a high charge-discharge life. SOLUTION: In a nonaqueous electrolyte secondary battery having a negative electrode 3c made from a carbonaceous material that stores and releases lithium ions, a nonaqueous electrolyte, and a positive electrode 3a made from a lithium- cohtaining oxide, the negative electrode 3c made form the carbonaceous material is formed from carbon powders in which a graphite structure has a spacing d002 of 0.335 to 0.337nm on its (002) face by X-ray diffraction method, with the peak intensity ratio (P101 /P100 ) of a (101) diffraction peak P101 to a (100) diffraction peak P100 being 1.0 to 1.5, and with the ratio (La/Lc) of the length La of a crystallite in the direction of the (a)-axis to the length Lc of the crystallite in the direction of the (c)-axis being less than 1.5, and which immediately settles when dispersed in ethanol (ethyl alcohol) and held stationary.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に係り、さらに詳しくは負極を改良したリチウム二次電
池に関する。
TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a lithium secondary battery having an improved negative electrode.

【0002】[0002]

【従来の技術】近年、正極活物質として二酸化マンガン
(MnO2 ),フッ化炭素[(CF2)n]もしくは塩
化チオニル(SOCl2 )などを用いる一方、負極活物
質としてリチウムを用いた非水電解液電池は、高エネル
ギー密度の電池として注目されており、既に電卓や時計
の電源もしくはメモリ装置のバックアップ電池として多
用されている。
2. Description of the Related Art Recently, manganese dioxide (MnO 2 ), fluorocarbon [(CF 2 ) n], thionyl chloride (SOCl 2 ) or the like has been used as a positive electrode active material, while lithium-free non-aqueous material has been used as a negative electrode active material. BACKGROUND ART Electrolyte batteries have attracted attention as high energy density batteries, and have been widely used as power sources for calculators and watches or backup batteries for memory devices.

【0003】さらに、カメラ一体型VTR,携帯用電
話,ラップトップコンピュータなどの、新しい携帯型電
子機器の小型化や軽量化に伴って、それらの電源として
高エネルギー密度の二次電池の要求が一層高まり、リチ
ウムを負極活物質とするリチウム二次電池の研究が活発
に行われている。
Further, with the miniaturization and weight reduction of new portable electronic devices such as VTRs with built-in cameras, mobile phones, and laptop computers, the demand for high energy density secondary batteries as their power sources is increasing. As a result, lithium secondary batteries using lithium as a negative electrode active material have been actively researched.

【0004】ところで、非水電解液電池を二次電池化す
る場合、鉛電池,ニッケルカドミウム電池などの水系電
解液二次電池よりも高いエネルギー密度、すなわち高容
量、かつ高電圧のものが望まれる。そして、このような
高容量、かつ高電圧を満たす正極活物質として、LiC
oO2 やLiMn2 4 系の 4Vの高電圧を示すものが
挙げられる。一方、負極として、金属リチウムを始めリ
チウム合金やリチウムイオンを吸蔵・放出できる炭素質
材料などが検討されている。しかし、前記金属リチウム
には、充放電に伴う樹枝状生成物(デンドライト)によ
る短絡の問題があり、またリチウム合金には、充放電に
伴う膨脹収縮に起因する電極の崩壊などの問題がある。
By the way, when a non-aqueous electrolyte battery is used as a secondary battery, it is desired to have a higher energy density, that is, a higher capacity and a higher voltage than those of an aqueous electrolyte secondary battery such as a lead battery and a nickel-cadmium battery. . Then, as a positive electrode active material satisfying such high capacity and high voltage, LiC is used.
Examples thereof include oO 2 and LiMn 2 O 4 type materials that exhibit a high voltage of 4V. On the other hand, as the negative electrode, lithium alloys such as metallic lithium and carbonaceous materials capable of absorbing and releasing lithium ions are being studied. However, the metallic lithium has a problem of a short circuit due to a dendritic product (dendrites) associated with charge / discharge, and the lithium alloy has a problem of electrode collapse caused by expansion / contraction associated with charge / discharge.

【0005】前記問題に対して、リチウムを吸蔵・放出
する炭素質物、たとえばコークス,樹脂焼成体,炭素繊
維,熱分解気相炭素を素材とした負極をリチウム二次電
池に組み込むことが試みられている。すなわち、炭素質
製の負極を用いることによって、リチウムと非水電解液
との反応、さらには、デンドライド析出による負極特性
の劣化を改善することが提案されている。
In order to solve the above problem, it has been attempted to incorporate a negative electrode made of a carbonaceous material which absorbs and releases lithium into a lithium secondary battery, such as coke, a resin fired body, carbon fiber, and pyrolytic vapor phase carbon. There is. That is, it has been proposed to use a carbonaceous negative electrode to improve the reaction between lithium and the non-aqueous electrolyte, and further, to improve the deterioration of the negative electrode characteristics due to dendrite deposition.

【0006】[0006]

【発明が解決しようとする課題】前記炭素質製の負極
は、炭素質中でも、主に炭素原子からなる六角網面層が
積み重なった構造(黒鉛構造)の部分において、前記の
六角網面層間にリチウムイオンが出入りし、所要の充放
電を行うと考えられている。しかしながら、黒鉛化の進
んだ巨大結晶を粉末化した炭素質物を非水電解液中で負
極として用いると、非水電解液が分解し、結果として電
池の容量および充放電効率が低くなる。また、充放電サ
イクルが進むにしたがって、炭素質物の結晶構造あるい
は微細構造が崩れ、リチウムの吸蔵放出能が劣化して、
サイクル寿命が低下するという問題点があった。
The carbonaceous negative electrode has a structure (graphite structure) in which the hexagonal net-like layers mainly composed of carbon atoms are stacked among the carbonaceous materials. It is believed that lithium ions move in and out to perform the required charging and discharging. However, if a carbonaceous material obtained by powdering giant crystals that have advanced graphitization is used as a negative electrode in a non-aqueous electrolyte, the non-aqueous electrolyte decomposes, resulting in low battery capacity and charge / discharge efficiency. Further, as the charge / discharge cycle progresses, the crystal structure or the fine structure of the carbonaceous material collapses, and the lithium occlusion / desorption ability deteriorates,
There is a problem that the cycle life is reduced.

【0007】さらに、黒鉛化物においては、その粉末が
薄片状であるため、リチウムイオンが進入する黒鉛結晶
子のc軸方向の面が、電解液に対して露出する面積より
も小さいため、ハイレートの充放電サイクルで、急激に
容量が低下するという問題がある。そして、前記急激な
容量低下の問題に対しては、カーボンブラックなどを添
加して改善されるが、他方では負極の充填密度が低下す
る問題を生じ、結果的に高容量のリチウム二次電池を実
現できなかった。さらに、黒鉛化の進んだ炭素繊維にお
いても、粉末化すると非水電解液が分解し、巨大結晶の
粉末を用いたものと同様に、負極としての性能が大幅に
低下するなどの問題点を有していた。
Further, in the graphitized material, since the powder is flaky, the surface in the c-axis direction of the graphite crystallite into which lithium ions enter is smaller than the area exposed to the electrolytic solution. There is a problem that the capacity rapidly decreases during the charge / discharge cycle. Then, the problem of the sudden decrease in capacity is improved by adding carbon black or the like, but on the other hand, there arises a problem that the packing density of the negative electrode decreases, resulting in a high capacity lithium secondary battery. It couldn't be realized. Further, even in carbon fibers with advanced graphitization, when powdered, the non-aqueous electrolytic solution decomposes, and as with the case of using giant crystal powder, there is a problem that the performance as a negative electrode is significantly reduced. Was.

【0008】一方、黒鉛化度の低いコークスや炭素繊維
などの炭素化物製の負極では、非水電解液の分解をある
程度抑えられるものの、容量および充放電効率が低く、
しかも充放電の過電圧が大きいこと、電池の放電電圧の
平坦性が低いこと、さらにサイクル寿命が低いことなど
の問題点を有している。
On the other hand, in a negative electrode made of carbonized material such as coke or carbon fiber having a low degree of graphitization, decomposition of the non-aqueous electrolyte can be suppressed to some extent, but the capacity and charge / discharge efficiency are low,
In addition, there are problems that the overvoltage during charging and discharging is large, the flatness of the discharge voltage of the battery is low, and the cycle life is short.

【0009】なお、前記炭素質製の負極については、種
々の炭素化物や黒鉛化物の黒鉛化度を制御し、最適な黒
鉛構造のパラメータが提案されていたが(たとえば特開
昭 62-268058号,特開平 2-82466号,特開平 4-61747
号,特開平4-115458号,特開平4-184862号,特開平4-19
0557号など)、十分な特性を有する負極は得られていな
い。また、炭素繊維の粉末化素材を用いた炭素質製負極
についても知られているが(たとえば特開平 4-79170
号,特開平 4-82172号など)、性能的に満足し得るもの
ではない。つまり、従来知られている非水電解液リチウ
ム二次電池の炭素質製負極は、いずれもサイクル特性,
ハイレート特性など電池としての全ての特性について満
足できるものではなかった。
Regarding the carbonaceous negative electrode, it has been proposed to control the degree of graphitization of various carbonized materials and graphitized materials, and to provide optimum parameters for the graphite structure (for example, Japanese Patent Laid-Open No. 62-268058). , JP-A-2-82466, JP-A-4-61747
No. 4-115458, No. 4-184862, No. 4-19
No. 0557), a negative electrode having sufficient characteristics has not been obtained. A carbonaceous negative electrode using a powdered material of carbon fiber is also known (see, for example, JP-A-4-79170).
No. 4, JP-A-4-82172, etc.), the performance is not satisfactory. That is, the carbonaceous negative electrodes of conventionally known non-aqueous electrolyte lithium secondary batteries all have cycle characteristics,
Not all the characteristics of the battery such as high rate characteristics were satisfactory.

【0010】本発明は、上記事情に対処してなされたも
ので、高容量で充放電効率、放電電圧の平坦性、高い充
放電寿命など電池特性のすぐれた非水電解液リチウム二
次電池の提供を目的とする。
The present invention has been made in consideration of the above circumstances, and provides a non-aqueous electrolyte lithium secondary battery having high capacity, excellent charge / discharge efficiency, flatness of discharge voltage, and excellent charge / discharge life. For the purpose of provision.

【0011】[0011]

【課題を解決するための手段】本発明に係る非水電解液
二次電池は、リチウムイオンを吸蔵・放出する炭素質製
の負極と、非水電解液と、リチウム含有酸化物からなる
正極とを備えた非水電解液二次電池において、前記炭素
質製の負極が、X線回折法による黒鉛構造の( 002)面
における面間隔d002 が 0.335〜 0.337nm、( 101)回
折ピークP101 および( 100)回折ピークP100 のピー
ク強度比(P101 /P100 )が 1.0〜 1.5、a軸方向の
結晶子の長さLaおよびc軸方向の結晶子の長さLcの
比(La/Lc)が 1.5未満で、かつエタノール(エチ
ルアルコール)中で分散・静置させたとき、直ちに沈降
する炭素粉末を主とした素材で形成されていることを特
徴とする。
A non-aqueous electrolyte secondary battery according to the present invention comprises a carbonaceous negative electrode which absorbs and releases lithium ions, a non-aqueous electrolyte, and a positive electrode comprising a lithium-containing oxide. In the non-aqueous electrolyte secondary battery provided with, the carbonaceous negative electrode has an interplanar spacing d 002 of 0.335 to 0.337 nm in the (002) plane of the graphite structure by the X-ray diffraction method, and a (101) diffraction peak P 101. And the peak intensity ratio (P 101 / P 100 ) of the (100) diffraction peak P 100 is 1.0 to 1.5, and the ratio of the crystallite length La in the a-axis direction to the crystallite length Lc in the c-axis direction (La / It is characterized in that Lc) is less than 1.5, and that it is formed of a material mainly composed of carbon powder that immediately precipitates when dispersed and allowed to stand in ethanol (ethyl alcohol).

【0012】本発明において、正極は正極活物質、導電
材および粘着材を適当な溶媒に懸濁し、この懸濁物を集
電体に塗布、乾燥して薄板状にすることにより作製され
る。ここで、正極活物質としては、たとえば二酸化マン
ガン、リチウムマンガン複合酸化物、リチウム含有ニッ
ケル酸化物、リチウム含有コバルト化合物、リチウム含
有ニッケルコバルト酸化物、リチウムを含むバナジウム
酸化物や、二硫化チタン、二硫化モリブテンなどのカル
コゲン化合物などを挙げることができる。中でも、リチ
ウムコバルト酸化物(LiCoO2 )、リチウムニッケ
ル酸化物(LiNiO2 )、リチウムマンガン酸化物
(LiMn2 4 、LiMnO2 )を用いると、高電圧
が得られるため好ましい。
In the present invention, the positive electrode is prepared by suspending a positive electrode active material, a conductive material and an adhesive material in a suitable solvent, applying the suspension to a current collector and drying it to form a thin plate. Here, examples of the positive electrode active material include manganese dioxide, lithium-manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt compound, lithium-containing nickel-cobalt oxide, lithium-containing vanadium oxide, titanium disulfide, and titanium disulfide. Examples thereof include chalcogen compounds such as molybdenum sulfide. Among them, lithium cobalt oxide (LiCoO 2 ), lithium nickel oxide (LiNiO 2 ), and lithium manganese oxide (LiMn 2 O 4 , LiMnO 2 ) are preferably used because a high voltage can be obtained.

【0013】また、導電材としては、たとえばアセチレ
ンブラック、カーボンブラック、黒鉛などを挙げること
ができ、さらに結着材としては、たとえばポリテトラフ
ルオロエチレン(PTFE)、ポリフッ化ビニリデン
(PVDF)、エチレン−プロピレン−ジエン共重合体
(EPDM)、スチレン−ブタジエンゴム(SBR)な
どを用いることができる。
Examples of the conductive material include acetylene black, carbon black, graphite, and the like, and examples of the binder include polytetrafluoroethylene (PTFE), polyvinylidene fluoride (PVDF), ethylene-. Propylene-diene copolymer (EPDM), styrene-butadiene rubber (SBR), etc. can be used.

【0014】前記正極活物質、導電材および結着材の配
合割合は、正極活物質80〜95質量%、導電材 3〜20質量
%、結着材 2〜 7質量%の範囲にすることが好ましい。
また、集電体としては、たとえばアルミニウム箔、ステ
ンレス箔、ニッケル箔、チタン箔などを用いることがで
きる。
The mixing ratio of the positive electrode active material, the conductive material and the binder may be 80 to 95 mass% of the positive electrode active material, 3 to 20 mass% of the conductive material, and 2 to 7 mass% of the binder. preferable.
As the current collector, for example, aluminum foil, stainless steel foil, nickel foil, titanium foil or the like can be used.

【0015】本発明において、正極−負極間を電気的に
絶縁するセパレータとしては、たとえば合成樹脂製不織
布、ポリエチレン多孔質フィルム、ポリプロピレン多孔
質フィルムを用いることができる。
In the present invention, as the separator that electrically insulates between the positive electrode and the negative electrode, for example, a synthetic resin non-woven fabric, a polyethylene porous film, or a polypropylene porous film can be used.

【0016】本発明において、負極を形成する炭素質素
材は、たとえば以下のようにして作製することができ
る。先ず、メソフェーズピッチ系を主原料として、溶融
ブロー法によって繊維長が 0.5〜 1mの短繊維を紡糸し
た後、不融化して粉砕化できる程度に炭素化する。ここ
で、炭素化の熱処理は 600〜2000℃、好ましくは 600〜
800℃で行うことが望ましい。続いて、前記炭素化後、
粉砕処理を施した炭素繊維を2000℃以上、より好ましく
は2500〜3200℃で黒鉛化することにより、前述したメソ
フェーズピッチ系炭素繊維を製造する。この際、前記粉
砕、焼成工程が極めて重要であり、粉砕時にボールミル
やジェットミルなどを用いて炭素繊維が縦割れしにく
く、かつ均一に粉砕することにより、平均繊維長は10〜
100μm 、より好ましくは平均繊維長15〜50μm 、また
平均繊維径は 4〜15μm 、より好ましくは 7〜10μm で
あることが望ましい。
In the present invention, the carbonaceous material forming the negative electrode can be produced, for example, as follows. First, by using a mesophase pitch system as a main raw material, a short fiber having a fiber length of 0.5 to 1 m is spun by a melt blow method, and then carbonized to an extent that it can be infusibilized and pulverized. Here, the heat treatment for carbonization is 600 to 2000 ° C., preferably 600 to 2000 ° C.
It is desirable to carry out at 800 ° C. Then, after the carbonization,
The mesophase pitch carbon fiber described above is produced by graphitizing the crushed carbon fiber at 2000 ° C. or higher, more preferably 2500 to 3200 ° C. At this time, the crushing and firing steps are extremely important, and the carbon fibers are less likely to be longitudinally cracked by using a ball mill or a jet mill during crushing, and by uniformly crushing, the average fiber length is 10 to
It is desirable that the average fiber length is 100 μm, more preferably 15 to 50 μm, and the average fiber diameter is 4 to 15 μm, and more preferably 7 to 10 μm.

【0017】なお、平均繊維長が10μm 未満の場合は粉
砕によって炭素繊維が縦割れしやすくなり、一方、平均
繊維長が 100μm を越えると集電体への塗工ができない
ため好ましくない。また、平均繊維径が 4μm 未満の場
合は繊維の強度が脆くなり、一方、平均炭素繊維径が15
μm を超えるとと集電体への塗工ができないため好まし
くない。
If the average fiber length is less than 10 μm, the carbon fibers are liable to be longitudinally cracked by crushing, while if the average fiber length exceeds 100 μm, it is not preferable because the current collector cannot be coated. When the average fiber diameter is less than 4 μm, the strength of the fiber becomes brittle, while the average carbon fiber diameter is 15
If it exceeds μm, coating on the current collector cannot be performed, which is not preferable.

【0018】本発明において、非水電解液を一成分を成
す溶質としては、たとえば過塩素酸リチウム(LiCl
4 )、六フッ化リン酸リチウム(LiPF6 )、ホウ
フッ化リチウム(LiBF4 )、トリフルオロメタスル
ホン酸リチウム(LiCF3SO3 )などのリチウム塩
(電解質)が挙げられる。この中で安全性、電池性能を
顧慮するとLiPF6 、LiBF4 がさらに好ましい。
これらの電解液中に溶解される濃度としては 0.7〜 1.7
mol/ lの範囲が望ましい。上記範囲を外れた場合には、
電解液の導電率が不十分となり、充放電効率が悪化する
恐れがある。
In the present invention, the solute which constitutes the nonaqueous electrolytic solution as one component is, for example, lithium perchlorate (LiCl).
Examples thereof include lithium salts (electrolytes) such as O 4 ), lithium hexafluorophosphate (LiPF 6 ), lithium borofluoride (LiBF 4 ), and lithium trifluorometasulfonate (LiCF 3 SO 3 ). Of these, LiPF 6 and LiBF 4 are more preferable in consideration of safety and battery performance.
The concentration dissolved in these electrolytes is 0.7 to 1.7.
The mol / l range is preferred. If it is out of the above range,
The conductivity of the electrolytic solution may be insufficient, and the charge / discharge efficiency may deteriorate.

【0019】本発明に係る非水電解液二次電池が具備す
る負極は、黒鉛構造においてリチウムイオンの進入など
行い易い面間隔や面の性状選択がなされ、かつエタノー
ル(エチルアルコール)中に分散・静置させたとき、直
ちに(一般的には、常温でsec,以内に)沈降する炭素質
粉末を素材として形成されている。つまり、エタノール
中で浮遊するようなサブミクロンオーダーの超微粉を含
まない(微粉松を除いた)炭素質粉末を素材として負極
を形成しているため、電解液の分解も容易に抑制・防止
され、結果的には電池容量およびび充放電効率の低下を
招くことのない良好な負極として機能する。
The negative electrode provided in the non-aqueous electrolyte secondary battery according to the present invention has a graphite structure in which the interplanar spacing and surface properties are selected so that lithium ions can easily enter, and the negative electrode is dispersed in ethanol (ethyl alcohol). It is formed from a carbonaceous powder that settles immediately (generally, at room temperature within seconds) when left to stand. In other words, because the negative electrode is made of carbonaceous powder that does not contain submicron-order ultrafine powder (excluding fine pine) that floats in ethanol, the decomposition of the electrolyte can be easily suppressed and prevented. As a result, it functions as a good negative electrode without causing a decrease in battery capacity and charge / discharge efficiency.

【0020】[0020]

【発明の実施の形態】以下、図1を参照して本発明の実
施例を説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS An embodiment of the present invention will be described below with reference to FIG.

【0021】この実施例は円筒形リチウム二次電池の場
合であり、1はたとえばステンレス鋼製の有底円筒状の
容器で、その底部に絶縁体2が配置されている。3は電
極群で、前記容器1内に収納されている。ここで電極群
3は、正極3a,セパレータ3bおよび負極3cで形成されて
おり、前記正極3a,セパレータ3bおよび負極3cの順序で
積層した帯状物を、負極3cが外側に位置するように渦巻
き状に捲回した構造になっている。
This embodiment is a case of a cylindrical lithium secondary battery, and 1 is a bottomed cylindrical container made of, for example, stainless steel, and an insulator 2 is arranged at the bottom thereof. Reference numeral 3 denotes an electrode group, which is housed in the container 1. Here, the electrode group 3 is formed of a positive electrode 3a, a separator 3b, and a negative electrode 3c, and a strip-shaped material in which the positive electrode 3a, the separator 3b, and the negative electrode 3c are stacked in this order is spirally formed so that the negative electrode 3c is located outside. It has a structure wound around.

【0022】また、前記円筒状容器内1内には、電極群
3とともに非水電解液が収納され、さらに、円筒状容器
1内の電極群3上方に中央部が開口された絶縁紙4、お
よび絶縁封口板5が装着・配置されている。なお、円筒
状容器1の上部開口部に装着・配置された絶縁封口板5
は、前記上部開口部付近を内側にかしめ加工することに
より、前記円筒状容器1に液密に固定されている。そし
て、正極端子6は、前記絶縁封口板5の中央には嵌合さ
れ、正極リード7を介して正極3aに接続されている。一
方、負極3cは、図示しない負極リードを介して、負極端
子を成す円筒状容器1に接続されている。
In the cylindrical container 1, a non-aqueous electrolyte is stored together with the electrode group 3, and further, an insulating paper 4 having a central opening above the electrode group 3 in the cylindrical container 1, And the insulating sealing plate 5 is attached and arranged. In addition, the insulating sealing plate 5 mounted and arranged in the upper opening of the cylindrical container 1
Is fixed to the cylindrical container 1 in a liquid-tight manner by caulking in the vicinity of the upper opening. The positive electrode terminal 6 is fitted in the center of the insulating sealing plate 5 and is connected to the positive electrode 3 a via the positive electrode lead 7. On the other hand, the negative electrode 3c is connected to the cylindrical container 1 forming the negative electrode terminal via a negative electrode lead (not shown).

【0023】上記構成において、正極3aは、次のように
製造されたものである。先ず、リチウムコバルト酸化物
(Lix CoO2 [ 0.8≦x≦ 1])粉末91質量%をア
セチレンブラック 3.5質量%,グラファイト 3.5質量%
およびエチレンプロピレンジエンモノマー粉末 2質量%
に、トルエンを加えてともに混合し、アルミニウム箔
(30μm)集電体に塗布した後、プレスすることにより
作製したものである。
In the above structure, the positive electrode 3a is manufactured as follows. First, 91% by mass of lithium cobalt oxide (Li x CoO 2 [0.8 ≦ x ≦ 1]) powder was added to 3.5% by mass of acetylene black and 3.5% by mass of graphite.
And ethylene propylene diene monomer powder 2% by mass
Toluene was added to and mixed with each other, and the mixture was coated on an aluminum foil (30 μm) current collector, and then pressed.

【0024】また、負極3cは、以下に記載するような2
種の炭素質A(90質量%),B(10質量%)の混合体96
質量%、スチレンブタジエンゴム 2.5質量%、カルボキ
シメチルセルロース 1.5質量%をともに混合し、これを
集電体としての銅箔に塗布し、乾燥することにより負極
を作製した。
Further, the negative electrode 3c has a 2
Mixture of carbonaceous A (90% by mass) and B (10% by mass) 96
%, Styrene-butadiene rubber 2.5% by mass, and carboxymethylcellulose 1.5% by mass were mixed together, and the mixture was applied to a copper foil as a current collector and dried to prepare a negative electrode.

【0025】炭素質A;650℃で炭素化、粉砕後、3000
℃で焼成して、平均繊維長20μm 、平均繊維径8μm 、
2 ガス吸着BET法による比表面積 1.0 m2 /g、X線
回折法による黒鉛構造の( 002)面の面間隔d002 が0.
3364nmのメソフェーズピッチ系炭素繊維の粉末で、か
つ、この炭素粉末 1 gを試験管に採取し、この試験管に
エタノールを10mlを入れ、ゴム栓をし振り混ぜた後、静
置させたとき、速やかに沈降するものであることを確か
めた粉末。
Carbonaceous material A; carbonized at 650 ° C., pulverized, and then 3000
Firing at ℃, average fiber length 20μm, average fiber diameter 8μm,
The specific surface area by the N 2 gas adsorption BET method is 1.0 m 2 / g, and the interplanar spacing d 002 of the (002) plane of the graphite structure by the X-ray diffraction method is 0.
3364 nm mesophase pitch carbon fiber powder, and 1 g of this carbon powder was sampled in a test tube, 10 ml of ethanol was put in this test tube, and the mixture was shaken with a rubber stopper and allowed to stand, A powder that has been confirmed to settle quickly.

【0026】炭素質B 15μm 以下の粒子が92.2体積%でd002 が0.3365nm、比
表面積8.6m2 /gのブロック状の形状を有する人造黒
鉛。
Carbonaceous B Artificial graphite having a block-like shape having a particle size of 15 μm or less, 92.2% by volume, d 002 of 0.3365 nm, and a specific surface area of 8.6 m 2 / g.

【0027】そして、前記正極3a、ポリエチレン製多孔
質フィルムからなるセパレータ3bおよび負極3cを、それ
ぞれこの順序で積層した後、負極3cが外側に位置するよ
うに渦巻き状に捲回し電極群3を作製した。
The positive electrode 3a, the separator 3b made of a polyethylene porous film, and the negative electrode 3c are laminated in this order, and then spirally wound so that the negative electrode 3c is located outside to form the electrode group 3. did.

【0028】さらに、上記構成において、非水電解液は
六フッ化リン酸リチウム(LiPF6 )を、エチルカー
ボネート(EC)、プロピレンカーボネート(PC)、
メチルエチルカーボネート(MEC)およびジエチルカ
ーベネート(DEC)の混合溶媒(混合体積率40:10:
40:10)に1.0mol/lの割合で溶解して調製したものであ
る。
Further, in the above-mentioned constitution, the non-aqueous electrolyte is lithium hexafluorophosphate (LiPF 6 ), ethyl carbonate (EC), propylene carbonate (PC),
Mixed solvent of methyl ethyl carbonate (MEC) and diethyl carbenate (DEC) (mixed volume ratio 40:10:
It was prepared by dissolving it in 40:10) at a ratio of 1.0 mol / l.

【0029】比較例 前記実施例の場合において、炭素質Aの代りにエタノー
ル中での分散・静置後に、超微粉が浮遊し沈降すること
がなかった炭素質粉末を用いた外は、実施例の場合と同
様の円筒形リチウム二次電池を組み立てた。
Comparative Example In the case of the above-mentioned Examples, except that the carbonaceous powder was used in which the ultrafine powder did not float and did not settle after the carbonaceous A was dispersed and allowed to stand in ethanol. A cylindrical lithium secondary battery similar to the above was assembled.

【0030】これら実施例の円筒形リチウム二次電池、
および比較例の円筒形リチウム二次電池について、20
℃、 500mAで4.2Vまで 3時間充電、 500mAで2.7Vまで放
電の充放電条件で、それぞれサイクル特性を評価した。
その結果、実施例の円筒形リチウム二次電池場合は、図
2および図3にそれぞれ示すごとく、容量維持率が高
く、また、充放電効率も良好てあったのに対して、比較
例の円筒形リチウム二次電池は、図2および図3にそれ
ぞれ比較して示すごとく、容量維持率が低く、また、充
放電効率も劣っていた。
Cylindrical lithium secondary battery of these examples,
And about the cylindrical lithium secondary battery of Comparative Example, 20
The cycle characteristics were evaluated under the charge and discharge conditions of ℃, 500mA for 3 hours charging to 4.2V, and 500mA discharging to 2.7V.
As a result, in the case of the cylindrical lithium secondary battery of the example, as shown in FIG. 2 and FIG. 3, respectively, the capacity retention rate was high and the charge / discharge efficiency was also good, whereas the cylindrical lithium secondary battery of the comparative example. As shown in comparison with FIG. 2 and FIG. 3, the lithium secondary battery was low in capacity retention and inferior in charge / discharge efficiency.

【0031】上記では、円筒形リチウム二次電池の構成
例を説明したが、本発明は、前記例示に限定されるもの
でなく、発明の趣旨を逸脱しない範囲でいろいろの変形
を採ることができる。たとえば、リチウム二次電池の形
態・構造は円盤型,ボタン型もしくは角型であってもよ
い。
Although the configuration example of the cylindrical lithium secondary battery has been described above, the present invention is not limited to the above examples, and various modifications can be made without departing from the spirit of the invention. . For example, the form / structure of the lithium secondary battery may be a disc type, a button type or a square type.

【0032】[0032]

【発明の効果】上記実施例の説明からも分かるように、
リチウムイオンの吸蔵・放出を行う負極を、X線回折に
よる黒鉛構造の( 002)面の面間隔d002 を 0.335〜
0.337nm、( 101)回折ピークP101 と( 100)回折ピ
ークP100 とのピーク強度比(P101 /P100 ) 1.0〜
1.5、a軸方向の結晶子の長さLaとc軸方向の結晶子
の長さLcの比(La/Lc) 1.5未満の粉末で、か
つ、エタノール中に分散・静置させたとき直ちに沈降す
る炭素粉末を素材として構成した本発明のリチウム二次
電池によれば、高容量でハイレート特性、サイクル特性
のすぐれたリチウム二次電池として機能する。つまり、
カメラ一体型VTR,携帯電話,ラップトップコンピュ
ータなどの小型・軽量化に対応した高エネルギー密度の
リチウム二次電池を提供することができる。
As can be seen from the description of the above embodiment,
The negative electrode that occludes and releases lithium ions has a graphite structure (002) plane spacing d 002 of 0.335 to
0.337 nm, peak intensity ratio of (101) diffraction peak P 101 and (100) diffraction peak P 100 (P 101 / P 100 ) 1.0 to
1.5, a ratio (La / Lc) of the crystallite length La in the a-axis direction to the crystallite length Lc in the c-axis direction (La / Lc) less than 1.5, and immediately settles when dispersed and allowed to stand in ethanol. According to the lithium secondary battery of the present invention formed by using the carbon powder as a raw material, it functions as a lithium secondary battery having a high capacity, excellent high rate characteristics, and excellent cycle characteristics. That is,
It is possible to provide a high-energy-density lithium secondary battery that is compatible with downsizing and weight reduction of camera-integrated VTRs, mobile phones, laptop computers, and the like.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例の円筒形リチウム二次電池の構成を示す
部分断面図。
FIG. 1 is a partial cross-sectional view showing the configuration of a cylindrical lithium secondary battery of an example.

【図2】実施例の円筒形リチウム二次電池の容量維持率
を本発明外の円筒形リチウム二次電池の容量維持率と比
較して示す特性図。
FIG. 2 is a characteristic diagram showing the capacity retention rate of the cylindrical lithium secondary battery of the embodiment in comparison with the capacity retention rate of the cylindrical lithium secondary battery other than the present invention.

【図3】実施例の円筒形リチウム二次電池の充放電効率
を本発明外の円筒形リチウム二次電池の充放電効率と比
較して示す特性図。
FIG. 3 is a characteristic diagram showing the charging / discharging efficiency of the cylindrical lithium secondary battery of the embodiment in comparison with the charging / discharging efficiency of the cylindrical lithium secondary battery outside the present invention.

【符号の説明】[Explanation of symbols]

1………円筒状容器 2………底部絶縁体 3………電極群 3a………正極 3b………セパレーター 3c………負極 4………絶縁紙 5………絶縁封口板 6………正極端子 7………正極リード 1 ………… Cylindrical container 2 ……… Bottom insulator 3 ……… Electrode group 3a ……… Positive electrode 3b ……… Separator 3c ……… Negative electrode 4 ……… Insulating paper 5 ……… Insulating sealing plate 6… …… Positive electrode terminal 7 ………… Positive electrode lead

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウムイオンを吸蔵・放出する炭素質
製の負極と、非水電解液と、リチウム含有酸化物からな
る正極とを備えた非水電解液二次電池において、 前記炭素質製の負極が、X線回折法による黒鉛構造の
( 002)面における面間隔d002 が 0.335〜 0.337nm、
( 101)回折ピークP101 および( 100)回折ピークP
100 のピーク強度比(P101 /P100 )が 1.0〜 1.5、
a軸方向の結晶子の長さLaおよびc軸方向の結晶子の
長さLcの比(La/Lc)が 1.5未満で、かつエタノ
ール中で分散・静置させたとき、直ちに沈降する炭素粉
末を主とする素材で形成されていることを特徴とする非
水電解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a carbonaceous negative electrode that occludes and releases lithium ions, a non-aqueous electrolyte, and a positive electrode comprising a lithium-containing oxide. The negative electrode has an interplanar spacing d 002 of 0.335 to 0.337 nm in the (002) plane of the graphite structure by X-ray diffraction,
(101) diffraction peak P 101 and (100) diffraction peak P
The peak intensity ratio of 100 (P 101 / P 100 ) is 1.0 to 1.5,
Carbon powder having a ratio (La / Lc) of the crystallite length La in the a-axis direction and the crystallite length Lc in the c-axis direction of less than 1.5, and immediately settling when dispersed / stood in ethanol. A non-aqueous electrolyte secondary battery, which is formed of a material mainly containing.
JP8132109A 1996-05-27 1996-05-27 Nonaqueous electrolyte secondary battery Withdrawn JPH09320593A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8132109A JPH09320593A (en) 1996-05-27 1996-05-27 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8132109A JPH09320593A (en) 1996-05-27 1996-05-27 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH09320593A true JPH09320593A (en) 1997-12-12

Family

ID=15073659

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8132109A Withdrawn JPH09320593A (en) 1996-05-27 1996-05-27 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH09320593A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015170A (en) * 1999-06-29 2001-01-19 Sony Corp Nonaqueous electrolyte battery
JP2002088250A (en) * 2000-09-12 2002-03-27 Polymatech Co Ltd Thermoconductive polymer composition and thermoconductive molded body
JP2002088256A (en) * 2000-09-18 2002-03-27 Polymatech Co Ltd Thermally conductive polymeric composition and thermally conductive molded product
JP2018156931A (en) * 2017-03-17 2018-10-04 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
US10615406B2 (en) 2017-03-17 2020-04-07 Tdk Corporation Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001015170A (en) * 1999-06-29 2001-01-19 Sony Corp Nonaqueous electrolyte battery
JP2002088250A (en) * 2000-09-12 2002-03-27 Polymatech Co Ltd Thermoconductive polymer composition and thermoconductive molded body
JP2002088256A (en) * 2000-09-18 2002-03-27 Polymatech Co Ltd Thermally conductive polymeric composition and thermally conductive molded product
JP2018156931A (en) * 2017-03-17 2018-10-04 Tdk株式会社 Negative electrode for lithium ion secondary battery and lithium ion secondary battery
US10615406B2 (en) 2017-03-17 2020-04-07 Tdk Corporation Negative electrode for lithium ion secondary battery and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
US5612155A (en) Lithium ion secondary battery
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
JP5329858B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
US5576121A (en) Llithium secondary battery and process for preparing negative-electrode active material for use in the same
JP3499584B2 (en) Lithium secondary battery
JPH103920A (en) Lithium secondary battery, and manufacture of the same
JP5992198B2 (en) Method for producing negative electrode active material for nonaqueous electrolyte secondary battery and negative electrode active material for nonaqueous electrolyte battery obtained thereby
WO1998054780A1 (en) Nonaqueous electrolyte secondary battery and method for manufacturing negative electrode of the same
JPH0927314A (en) Nonaqueous electrolyte secondary battery
JP2965450B2 (en) Electrodes for non-aqueous electrolyte secondary batteries
JP3499739B2 (en) Lithium secondary battery and method of manufacturing lithium secondary battery
JPH06215761A (en) Nonaqueous electrolyte secondary battery graphite electrode and nonaqueous electrolyte secondary battery using it
JPH09245830A (en) Nonaqueous electrolyte secondary battery
JP3480764B2 (en) Non-aqueous electrolyte secondary battery
JP4085244B2 (en) Non-aqueous secondary battery
JP4120771B2 (en) Non-aqueous secondary battery
JPH09320593A (en) Nonaqueous electrolyte secondary battery
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JPH11111297A (en) Lithium secondary battery
JPH04280068A (en) Lithium secondary battery
JP3350114B2 (en) Non-aqueous electrolyte secondary battery
JPH05283107A (en) Laminated battery and its manufacture
JPH09129232A (en) Nonaqueous electrolytic secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20030805