JPH04280068A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH04280068A
JPH04280068A JP3110607A JP11060791A JPH04280068A JP H04280068 A JPH04280068 A JP H04280068A JP 3110607 A JP3110607 A JP 3110607A JP 11060791 A JP11060791 A JP 11060791A JP H04280068 A JPH04280068 A JP H04280068A
Authority
JP
Japan
Prior art keywords
carbonaceous material
lithium
negative electrode
secondary battery
lithium secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP3110607A
Other languages
Japanese (ja)
Other versions
JP2637305B2 (en
Inventor
Norio Takami
則雄 高見
Takahisa Osaki
隆久 大崎
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toshiba Corp
Original Assignee
Toshiba Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toshiba Corp filed Critical Toshiba Corp
Priority to JP3110607A priority Critical patent/JP2637305B2/en
Priority to US07/819,224 priority patent/US5244757A/en
Priority to EP96200205A priority patent/EP0763865B1/en
Priority to DE69226667T priority patent/DE69226667T2/en
Priority to DE69233759T priority patent/DE69233759D1/en
Priority to EP92300286A priority patent/EP0495613B1/en
Publication of JPH04280068A publication Critical patent/JPH04280068A/en
Priority to US08/077,093 priority patent/US5312611A/en
Application granted granted Critical
Publication of JP2637305B2 publication Critical patent/JP2637305B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE:To obtain a lithium battery which has high capacity and excellent cycle life. CONSTITUTION:A lithium secondary battery contains a positive electrode 4 which is made of chalcogen compound, a negative electrode 6, in graphite disordered layers, which is made of carbonaceous material possible to store and release ball lithium ions with fine organization point-oriented, and lithium ion conductive electrolyte.

Description

【発明の詳細な説明】[Detailed description of the invention]

[発明の目的] [Purpose of the invention]

【0001】0001

【産業上の利用分野】本発明は、リチウム二次電池に関
し、特に負極を改良したリチウム二次電池に係わる。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to a lithium secondary battery with an improved negative electrode.

【0002】0002

【従来の技術】近年、負極活物質としてリチウムを用い
た非水電解液電池は高エネルギ―密度電池として注目さ
れており、正極活物質に二酸化マンガン(MnO2 )
、フッ化炭素[(CFn )]、塩化チオニル(SOC
l2 )等を用いた一次電池は既に電卓、時計の電源や
メモリのバックアップ電池として多用されている。更に
、近年、VTR、通信機器等の各種の電子機器の小形、
軽量化に伴い、それらの電源として高エネルギ―密度の
二次電池の要求が高まり、リチウムを負極活物質とする
リチウム二次電池の研究が活発に行われている。
[Prior Art] In recent years, non-aqueous electrolyte batteries using lithium as a negative electrode active material have attracted attention as high energy density batteries, and manganese dioxide (MnO2) is used as a positive electrode active material.
, fluorocarbon [(CFn)], thionyl chloride (SOC
Primary batteries using batteries such as 12) are already widely used as power sources for calculators and watches, and as backup batteries for memory. Furthermore, in recent years, various electronic devices such as VTRs and communication devices have become smaller and smaller.
With weight reduction, the demand for high energy density secondary batteries as a power source for these devices has increased, and research on lithium secondary batteries using lithium as the negative electrode active material is being actively conducted.

【0003】リチウム二次電池は、負極にリチウムを用
い、リチウムイオン伝導性電解質として炭酸プロピレン
(PC)、1,2−ジメトキシエタン(DME)、γ−
ブチロラクトン(γ−BL)、テトラヒドロフラン(T
HF)などの非水溶媒中にLiClO4 、LiBF4
 、LiAsF6 、LiPF6 等のリチウム塩を溶
解した非水電解液やリチウムイオン伝導性固体電解質か
ら構成され、正極活物質としては主にTiS2 、Mo
S2 、V2 O5 、V6 O13等のリチウムとの
間でトポケミカル反応する化合物が研究されている。
Lithium secondary batteries use lithium for the negative electrode, and propylene carbonate (PC), 1,2-dimethoxyethane (DME), and γ- as the lithium ion conductive electrolyte.
Butyrolactone (γ-BL), tetrahydrofuran (T
LiClO4, LiBF4 in a non-aqueous solvent such as HF)
It is composed of a nonaqueous electrolyte in which lithium salts such as , LiAsF6, and LiPF6 are dissolved, and a lithium ion conductive solid electrolyte, and the positive electrode active materials are mainly TiS2 and Mo.
Compounds that undergo topochemical reactions with lithium, such as S2, V2 O5, and V6 O13, have been studied.

【0004】しかしながら、上述した二次電池は現在、
未だ実用化されていない。この主な理由は、充放電効率
が低く、しかも充放電回数(サイクル)寿命が短いため
である。この原因は、負極リチウムと非水電解液との反
応によるリチウムの劣化によるところが大きいと考えら
れている。即ち、放電時にリチウムイオンとして非水電
解液中に溶解したリチウムは充電時に析出する際に溶媒
と反応し、その表面が一部不活性化される。このため、
充放電を繰返していくと、デンドライト状(樹枝状)の
リチウムが発生したり、小球状に析出したりリチウムが
集電体より脱離するなどの現象が生じる。
However, the above-mentioned secondary batteries are currently
It has not been put into practical use yet. The main reason for this is that the charging/discharging efficiency is low and the number of charging/discharging cycles (cycles) life is short. This is thought to be largely due to deterioration of lithium due to the reaction between the negative electrode lithium and the non-aqueous electrolyte. That is, lithium dissolved in the nonaqueous electrolyte as lithium ions during discharging reacts with the solvent when precipitated during charging, and its surface is partially inactivated. For this reason,
When charging and discharging are repeated, phenomena such as dendrite-like (dendritic) lithium, precipitation in small spheres, and lithium detachment from the current collector occur.

【0005】このようなことから、リチウム二次電池に
組込まれる負極としてリチウムを吸蔵・放出する炭素質
物、例えばコークス、樹脂焼成体、炭素繊維、熱分解気
相炭素体等を用いることによって、リチウムと非水電解
液との反応やデンドライト析出による負極劣化を改善す
ることが提案されている。しかしながら、かかる負極は
リチウムイオンの吸蔵・放出量が小さいため、負極比容
量が小さく、しかもリチウムイオンの吸蔵量を大きくす
る(充電容量を大きくする)と、例えば炭素質物の構造
が劣化したり非水電解液中の溶媒を分解する。更に、充
電電流密度を高くすると、リチウムイオンの吸蔵量が低
下し、リチウム金属が析出する問題がある。その結果、
前記負極を組み込んだリチウム二次電池はサイクル寿命
を向上させることが困難となる問題があった。
For this reason, it is possible to absorb lithium by using a carbonaceous material that occludes and releases lithium, such as coke, sintered resin, carbon fiber, and pyrolyzed gas-phase carbon material, as a negative electrode incorporated into a lithium secondary battery. It has been proposed to improve the negative electrode deterioration caused by the reaction between the metal and the non-aqueous electrolyte and dendrite precipitation. However, since such negative electrodes have a small amount of intercalation and desorption of lithium ions, the specific capacity of the negative electrode is small, and when the amount of intercalation of lithium ions is increased (increasing the charging capacity), for example, the structure of the carbonaceous material may deteriorate or Decomposes the solvent in the water electrolyte. Furthermore, when the charging current density is increased, there is a problem that the amount of lithium ions absorbed decreases and lithium metal precipitates. the result,
A lithium secondary battery incorporating the negative electrode has a problem in that it is difficult to improve the cycle life.

【0006】[0006]

【発明が解決しようとする課題】本発明は、上記従来の
問題点を解決するためになされたもので、高容量でサイ
クル寿命の優れたリチウム二次電池を提供しようとする
ものである。 [発明の構成]
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned conventional problems, and aims to provide a lithium secondary battery with high capacity and excellent cycle life. [Structure of the invention]

【0007】[0007]

【課題を解決するための手段】本発明に係わるリチウム
二次電池は、容器と、この容器内に収納された正極と、
前記容器内に収納され、リチウムイオンを吸蔵・放出す
ることが可能な炭素質物からなる負極と、リチウムイオ
ン伝導性電解質とを具備したリチウム二次電池において
、前記炭素質物は黒鉛構造と乱層構造からなり、かつ微
細組織が点配向された球状をなす粒子であることを特徴
とするものである。
[Means for Solving the Problems] A lithium secondary battery according to the present invention includes a container, a positive electrode housed in the container,
In a lithium secondary battery that is housed in the container and includes a negative electrode made of a carbonaceous material capable of occluding and releasing lithium ions, and a lithium ion conductive electrolyte, the carbonaceous material has a graphite structure and a turbostratic structure. and is characterized by being spherical particles with a point-oriented microstructure.

【0008】前記正極は、種々の酸化物、例えば二酸化
マンガン、リチウムマンガン複合酸化物、リチウム含有
ニッケル酸化物、リチウム含有コバルト酸化物、リチウ
ム含有ニッケルコバルト酸化物、リチウムを含む非晶質
五酸化バナジウムや、二硫化チタン、二硫化モリブデン
などのカルコゲン化合物等を挙げることができる。
The positive electrode is made of various oxides such as manganese dioxide, lithium manganese composite oxide, lithium-containing nickel oxide, lithium-containing cobalt oxide, lithium-containing nickel-cobalt oxide, and amorphous vanadium pentoxide containing lithium. and chalcogen compounds such as titanium disulfide and molybdenum disulfide.

【0009】前記炭素質物の黒鉛構造を規定する指標と
しては、X線回折により得られる(002)面の面間隔
(d002 )及びC軸方向の結晶子の大きさ(Lc 
)がある。前記負極材として適する炭素質物の黒鉛構造
は、前記面間隔(d002 )の平均値が0.337〜
0.380nm、前記結晶子の大きさ(Lc )の平均
値が1〜25nmであることが望ましい。このようなd
002 及びLc の値が、前記範囲を逸脱すると前記
炭素質物からなる負極のリチウムイオン吸蔵・放出量の
減少、黒鉛構造の劣化、非水電解液中の溶媒の還元分解
によるガス発生等を招き、二次電池の容量減少とサイク
ル寿命の低下を生じる恐れがある。より好ましい前記d
002及びLc は、夫々0.34〜0.355nm、
1〜10nmの範囲である。
As indicators for defining the graphite structure of the carbonaceous material, the interplanar spacing (d002) of the (002) plane obtained by X-ray diffraction and the crystallite size in the C-axis direction (Lc
). The graphite structure of the carbonaceous material suitable as the negative electrode material has an average value of the interplanar spacing (d002) of 0.337 to
It is desirable that the average value of the crystallite size (Lc) is 0.380 nm and 1 to 25 nm. d like this
If the values of 002 and Lc deviate from the above ranges, this will lead to a decrease in the amount of lithium ions absorbed and released in the negative electrode made of the carbonaceous material, deterioration of the graphite structure, gas generation due to reductive decomposition of the solvent in the non-aqueous electrolyte, etc. This may cause a decrease in the capacity and cycle life of the secondary battery. More preferable d
002 and Lc are respectively 0.34 to 0.355 nm,
It is in the range of 1 to 10 nm.

【0010】前記炭素質物を構成する黒鉛構造と乱層構
造の比率の尺度としては、アルゴンレーザ(波長;51
45nm)を光源として測定された炭素質物のラマンス
ペクトルがある。測定されるラマンスペクトルは、13
60cm−1付近に現れる乱層構造に由来するピークと
、1580cm−1付近に現れる黒鉛構造に由来するピ
ークとが存在し、そのピーク強度比(例えば乱層構造に
由来するラマン強度をR1、黒鉛構造に由来するラマン
強度をR2 とした場合の強度比R1 /R2 )又は
面積比を用いることが有効である。前記負極材として適
する炭素質物における黒鉛構造と乱層構造の比率は、前
記R1 /R2 が0.5〜1.5の範囲となるように
設定することが望ましい。前記強度比を0.5未満にす
ると、非水電解液中の溶媒の分解が生じ易くなり、一方
前記強度比が1.5を越えると炭素質物からなる負極の
リチウムイオン吸蔵・放出量の減少を伴い、いずれの場
合も充放電効率を低下する恐れがある。より好ましい強
度比(R1 /R2 )は、0.7〜1.3の範囲であ
る。
As a measure of the ratio of the graphite structure and the turbostratic structure constituting the carbonaceous material, argon laser (wavelength: 51
There is a Raman spectrum of a carbonaceous material measured using 45 nm) as a light source. The measured Raman spectrum is 13
There is a peak originating from the turbostratic structure that appears near 60 cm-1 and a peak originating from the graphite structure appearing near 1580 cm-1, and their peak intensity ratio (for example, the Raman intensity originating from the turbostratic structure is R1, It is effective to use the intensity ratio R1 /R2 ) or the area ratio, where R2 is the Raman intensity derived from the structure. The ratio of graphite structure to turbostratic structure in the carbonaceous material suitable as the negative electrode material is desirably set so that R1/R2 is in the range of 0.5 to 1.5. When the intensity ratio is less than 0.5, decomposition of the solvent in the non-aqueous electrolyte tends to occur, while when the intensity ratio exceeds 1.5, the amount of lithium ions absorbed and released by the negative electrode made of carbonaceous material is reduced. In either case, the charging/discharging efficiency may be reduced. A more preferable intensity ratio (R1/R2) is in the range of 0.7 to 1.3.

【0011】前記炭素質物中の未黒鉛化による残留水素
の比率は、水素/炭素の原子比(H/C)で規定される
。前記負極材として適する炭素質物は、前記H/Cが0
.15以下であることが望ましい。かかるH/Cが0.
15を越えると、負極のリチウムイオン吸蔵・放出量を
増大させることが困難となるばかりか、充放電効率も低
下する恐れがある。より好ましいH/Cは、0.04以
下である。
The ratio of residual hydrogen due to non-graphitization in the carbonaceous material is defined by the hydrogen/carbon atomic ratio (H/C). The carbonaceous material suitable as the negative electrode material has the H/C of 0.
.. It is desirable that it is 15 or less. Such H/C is 0.
If it exceeds 15, not only will it be difficult to increase the amount of lithium ions inserted into and released from the negative electrode, but there is also a risk that the charging and discharging efficiency will decrease. A more preferable H/C is 0.04 or less.

【0012】前記炭素質物における微細組織(結晶子の
集合形態)の点配向形態としては、図2のAに示す放射
型、同図のBに示すラメラ型又は同図のCに示すラメラ
(薄層)型と放射型とが複合されたブルックス−テーラ
ー型などにモデル化できる。なお、前記ブルックス−テ
ーラ型の定義については「Chmical&Phisi
cs  Carbon」Vol4、1968、p243
の文献、及び「Carbon」Vol3、1965、p
185の文献にそれぞれ記載されている。また、配向性
が同心球状のもの知られている。
The point orientation form of the microstructure (aggregation form of crystallites) in the carbonaceous material may be a radial type shown in A in FIG. It can be modeled as a Brooks-Taylor type, which is a combination of layer type and radial type. Regarding the definition of the Brooks-Taylor type, see “Chemical & Physiology”.
cs Carbon” Vol4, 1968, p243
and “Carbon” Vol. 3, 1965, p.
Each of them is described in 185 documents. Also, it is known that the orientation is concentric spheres.

【0013】前記球状をなす炭素質物粒子の平均粒径は
、1〜100μm、より好ましくは2〜40μmの範囲
にすることが望ましい。前記炭素質物粒子の平均粒径を
1μm未満にすると、炭素質物粒子がセパレータの孔を
通り易くなり、正極と負極の短絡を生じる恐れがあり、
一方その平均粒径が100μmを越えると炭素質物粒子
の比表面積が小さくなってリチウムイオンの吸蔵・放出
量を増大させることが困難となる恐れがある。
The average particle size of the spherical carbonaceous material particles is desirably in the range of 1 to 100 μm, more preferably 2 to 40 μm. If the average particle size of the carbonaceous material particles is less than 1 μm, the carbonaceous material particles will easily pass through the pores of the separator, which may cause a short circuit between the positive electrode and the negative electrode.
On the other hand, if the average particle size exceeds 100 μm, the specific surface area of the carbonaceous material particles becomes small, which may make it difficult to increase the amount of lithium ions absorbed and released.

【0014】前記球状をなす炭素質物粒子の短径/長径
は、1/10以上にすることが望ましい。より好ましく
は、1/2以上として真球状に近い形状にすることが望
ましい。このような真球状に近い炭素質物粒子を用いる
と、均一なリチウムイオンの吸蔵・放出反応が生じ、炭
素質物の構造的や、機械的な安定性が向上され、更に充
填密度も高くなるため、サイクル寿命の向上、高容量化
を図ることが可能となる。
[0014] It is desirable that the short axis/long axis of the spherical carbonaceous material particles be 1/10 or more. More preferably, it is desirable to have a shape close to a perfect sphere, with the diameter being 1/2 or more. When such carbonaceous material particles having a nearly perfect spherical shape are used, a uniform lithium ion intercalation/desorption reaction occurs, which improves the structural and mechanical stability of the carbonaceous material, and also increases the packing density. It is possible to improve cycle life and increase capacity.

【0015】前記特性を有する炭素質物粒子は、例えば
メソフェーズ小球体、石油ピッチ、コールタール、重質
油、有機樹脂、または合成高分子材等を原料として不活
性ガス中、常圧又は加圧下で炭素化(例えば800〜1
500℃)、又は黒鉛化(例えば1500℃以上)する
ことにより得られる。特に、石油ピッチ、コールタール
又は重質油を 350℃以上で熱処理することにより得
られる光学的異方性を持つ晶質相が生成初期において小
さな球(メソフェーズ小球体)を生成し、分離して、同
様に炭素化又は黒鉛化することにより真球状に近い炭素
質物粒子を製造することが可能となる。。
[0015] The carbonaceous material particles having the above-mentioned characteristics are produced by using, for example, mesophase spherules, petroleum pitch, coal tar, heavy oil, organic resin, or synthetic polymer materials as raw materials in an inert gas under normal pressure or pressurized conditions. Carbonization (e.g. 800-1
500°C) or graphitization (for example, at 1500°C or higher). In particular, the crystalline phase with optical anisotropy obtained by heat-treating petroleum pitch, coal tar, or heavy oil at temperatures above 350°C produces small spheres (mesophase spherules) in the initial stage of formation, and then separates. Similarly, by carbonizing or graphitizing, it is possible to produce carbonaceous material particles having a nearly perfect spherical shape. .

【0016】前記リチウムイオン伝導性電解質としては
、例えばエチレンカーボネート、プロピレンカーボネー
ト、ブチレンカーボネート、γ−ブチロラクトン、スル
ホラン、アセトニトリル、1,2−ジメトキシエタン、
1,3−ジメトキシプロパン、ジメチルエーテル、テト
ラヒドロフラン、2−メチルテトラヒドロフランから選
ばれる少なくと1種以上からなる非水溶媒に過塩素酸リ
チウム(LiClO4 )、六フッ化リン酸リチウム(
LiPF6 )、ホウフッ化リチウム(LiBF4 )
、六フッ化砒素リチウム(LiAsF6 )、トリフル
オロメタンスルホン酸リチウム(LiCF3 SO3 
)などのリチウム塩(電解質)を溶解した非水電解液を
挙げることができる。前記電解質の非水溶媒に対する溶
解量は、0.5〜1.5モル/lとすることが望ましい
。また、リチウムイオン伝導性の固体電解質を用いるこ
とができる。例えば、高分子化合物にリチウム塩を複合
した高分子固体電解質を挙げることができる。
Examples of the lithium ion conductive electrolyte include ethylene carbonate, propylene carbonate, butylene carbonate, γ-butyrolactone, sulfolane, acetonitrile, 1,2-dimethoxyethane,
Lithium perchlorate (LiClO4), lithium hexafluorophosphate (
LiPF6), lithium borofluoride (LiBF4)
, lithium arsenic hexafluoride (LiAsF6), lithium trifluoromethanesulfonate (LiCF3 SO3
) and other non-aqueous electrolytes in which lithium salts (electrolytes) are dissolved. The amount of the electrolyte dissolved in the nonaqueous solvent is preferably 0.5 to 1.5 mol/l. Moreover, a lithium ion conductive solid electrolyte can be used. For example, a solid polymer electrolyte in which a lithium salt is combined with a polymer compound can be mentioned.

【0017】また、本発明に係わる別のリチウム二次電
池は、容器と、この容器内に収納された正極と、前記容
器内に収納され、リチウムイオンを吸蔵・放出すること
が可能な炭素質物からなる負極と、リチウムイオン伝導
性電解質とを具備したリチウム二次電池において、
Another lithium secondary battery according to the present invention includes a container, a positive electrode housed in the container, and a carbonaceous material that is housed in the container and is capable of occluding and releasing lithium ions. In a lithium secondary battery comprising a negative electrode consisting of and a lithium ion conductive electrolyte,

【0
018】前記炭素質物は黒鉛構造と乱層構造からなり、
かつ微細組織の配向がラメラ型又はブルックス−テイラ
ー型の軸配向を有する炭素繊維であることを特徴とする
ものである。前記炭素質物における黒鉛構造、黒鉛構造
と乱層構造の比率及び水素/炭素の原子比は、前述した
のと同様である。
0
[018] The carbonaceous material has a graphite structure and a turbostratic structure,
The carbon fiber is characterized in that the microstructure has a lamellar or Brooks-Taylor axial orientation. The graphite structure, the ratio of graphite structure to turbostratic structure, and the hydrogen/carbon atomic ratio in the carbonaceous material are the same as described above.

【0019】前記炭素繊維の平均短径は、1〜100μ
m、より好ましくは2〜40μmの範囲にすることが望
ましい。前記炭素質物繊維の平均短径を1μm未満にす
ると、炭素質物粒子がセパレータの孔を通り易くなり、
正極と負極の短絡を生じる恐れがあり、一方その平均短
径が100μmを越えると炭素質物粒子の比表面積が小
さくなってリチウムイオンの吸蔵・放出量を増大させる
ことが困難となる恐れがある。前記炭素繊維を粉砕する
等の手段により平均粒径を前記範囲にすることも有効で
ある。
[0019] The average short axis of the carbon fibers is 1 to 100μ.
m, more preferably in the range of 2 to 40 μm. When the average short diameter of the carbonaceous material fibers is less than 1 μm, the carbonaceous material particles easily pass through the pores of the separator,
There is a risk of short-circuiting between the positive electrode and the negative electrode, and on the other hand, if the average short axis exceeds 100 μm, the specific surface area of the carbonaceous material particles becomes small, and it may become difficult to increase the amount of occlusion and release of lithium ions. It is also effective to bring the average particle size within the above range by means such as pulverizing the carbon fibers.

【0020】さらに、本発明に係わる別のリチウム二次
電池は、容器と、この容器内に収納された正極と、前記
容器内に収納され、リチウムイオンを吸蔵・放出するこ
とが可能な炭素質物からなる負極と、リチウムイオン伝
導性電解質とを具備したリチウム二次電池において、前
記炭素質物は微細組織が点配向された球状の粒子で、か
つ予め酸素の存在下で熱処理を施したものであることを
特徴とするものである。
Furthermore, another lithium secondary battery according to the present invention includes a container, a positive electrode housed in the container, and a carbonaceous material that is housed in the vessel and is capable of occluding and releasing lithium ions. In a lithium secondary battery comprising a negative electrode consisting of a lithium ion conductive electrolyte and a lithium ion conductive electrolyte, the carbonaceous material is a spherical particle with a point-oriented microstructure and has been previously heat-treated in the presence of oxygen. It is characterized by this.

【0021】前記熱処理温度は、300〜800℃、よ
り好ましくは400〜600℃の範囲とすることが望ま
しい。この理由は、前記熱処理温度を300℃未満にす
ると球状の炭素質物粒子の黒鉛化度の比較的高い表面層
の酸化除去等を効果的に行うことが困難となり、一方前
記熱処理温度が800℃を越えると前記球状の炭素質物
粒子が焼失する恐れがあるからである。前記熱処理は、
雰囲気が空気である場合、1〜10時間行うことが望ま
しい、ただし、雰囲気の酸素分圧を高くすれば前記加熱
処理時間を短縮することが可能である。
[0021] The heat treatment temperature is preferably in the range of 300 to 800°C, more preferably 400 to 600°C. The reason for this is that when the heat treatment temperature is lower than 300°C, it becomes difficult to effectively oxidize and remove the surface layer of the spherical carbonaceous material particles with a relatively high degree of graphitization. This is because if the temperature exceeds the limit, the spherical carbonaceous material particles may be burned out. The heat treatment is
When the atmosphere is air, it is desirable to carry out the heat treatment for 1 to 10 hours; however, the heat treatment time can be shortened by increasing the oxygen partial pressure of the atmosphere.

【0022】前記熱処理(酸化処理)後の炭素質物の表
面層における黒鉛構造と乱層構造の比率は、前記ラマン
スペクトルの強度比(R1 /R2)で0.8〜1.4
の範囲となるように設定することが望ましい。
[0022] The ratio of the graphite structure to the turbostratic structure in the surface layer of the carbonaceous material after the heat treatment (oxidation treatment) is 0.8 to 1.4 in terms of the intensity ratio (R1/R2) of the Raman spectrum.
It is desirable to set it within the range of .

【0023】[0023]

【作用】本発明に係わるリチウム二次電池よれば、負極
を黒鉛構造と乱層構造からなり、かつ微細組織が放射型
、ラメラ型又はブルックス−テーラー型等の点配向され
た球状をなす炭素質物粒子から形成することによって、
リチウムイオンの吸蔵・放出量を増大でき、かつ充放電
サイクル時での構造形態の劣化を抑制でき、更に形状面
から嵩密度を高めて負極の比容量(mAh/cc)を高
めることができる。特に、点配向を放射型、ラメラ型又
はブルックス−テーラー型とすることによって、リチウ
ムイオンの吸蔵・放出量を効果的に増大できる。従って
、かかる負極を正極、非水電解液と共に容器に収納する
ことによって、高容量で、充放電サイクル寿命の長いリ
チウム二次電池を得ることができる。
[Operation] According to the lithium secondary battery according to the present invention, the negative electrode is made of a carbonaceous material having a graphite structure and a turbostratic structure, and having a spherical microstructure with point orientation such as a radial type, lamellar type, or Brooks-Taylor type. By forming from particles,
It is possible to increase the amount of intercalation and desorption of lithium ions, suppress deterioration of the structural form during charging and discharging cycles, and further increase the bulk density in terms of shape and increase the specific capacity (mAh/cc) of the negative electrode. In particular, by making the point orientation radial, lamellar, or Brooks-Taylor, the amount of lithium ions absorbed and released can be effectively increased. Therefore, by housing such a negative electrode in a container together with a positive electrode and a non-aqueous electrolyte, a lithium secondary battery with high capacity and long charge/discharge cycle life can be obtained.

【0024】本発明に係わるリチウム二次電池において
、前記特性の他に黒鉛構造としてX線回折により得られ
る(002)面の面間隔(d002 )及びC軸方向の
結晶子の大きさ(Lc )がそれぞれ0.337〜0.
380nm、1〜25nmの範囲で、黒鉛構造と乱層構
造の比率の尺度がアルゴンレーザを光源として測定され
た1360cm−1のラマン強度R1 と1580cm
−1のラマン強度R2 の比(R1 /R2 )で0.
5〜1.5の範囲である炭素質物粒子から負極を形成す
れば、リチウムイオンの吸蔵・放出量をより一層増大で
き、かつ充放電サイクル時での構造形態の劣化を抑制で
き、更に非水電解液中の溶媒の分解を防止できる。更に
、球状をなす炭素質物粒子の平均粒径を1〜100μm
とすることによって、負極におけるリチウムイオンの吸
蔵・放出量を増大できる。従って、かかる負極を正極、
非水電解液と共に容器に収納することによって、より一
層高容量で、充放電サイクル寿命が著しく向上されたリ
チウム二次電池を得ることができる。
In the lithium secondary battery according to the present invention, in addition to the above-mentioned characteristics, the graphite structure has the interplanar spacing (d002) of the (002) plane obtained by X-ray diffraction and the crystallite size in the C-axis direction (Lc). are respectively 0.337 to 0.
380 nm, in the range 1 to 25 nm, the measure of the ratio of graphitic structure to turbostratic structure is the Raman intensity R1 of 1360 cm and 1580 cm measured with an argon laser as the light source.
-1 and the Raman intensity R2 ratio (R1/R2) is 0.
If the negative electrode is formed from carbonaceous material particles having a carbonaceous material particle size in the range of 5 to 1.5, it is possible to further increase the amount of intercalation and release of lithium ions, suppress the deterioration of the structural form during charge and discharge cycles, and furthermore Decomposition of the solvent in the electrolyte can be prevented. Furthermore, the average particle diameter of the spherical carbonaceous material particles is 1 to 100 μm.
By doing so, the amount of lithium ions absorbed and released in the negative electrode can be increased. Therefore, such a negative electrode is used as a positive electrode,
By storing it in a container together with a non-aqueous electrolyte, a lithium secondary battery with even higher capacity and significantly improved charge/discharge cycle life can be obtained.

【0025】また、本発明に係わる別のリチウム二次電
池よれば負極を黒鉛構造と乱層構造からなり、かつ微細
組織の配向がラメラ型又はブルックス−テーラー型の軸
配向を有する炭素繊維から形成することによって、リチ
ウムイオンの吸蔵・放出量を増大でき、かつ充放電サイ
クル時での構造形態の劣化を抑制できる。従って、かか
る負極を正極、非水電解液と共に容器に収納することに
よって、高容量で、充放電サイクル寿命の長いリチウム
二次電池を得ることができる。しかも、前記特性の他に
黒鉛構造として前記(002)面の面間隔(d002 
)及びC軸方向の結晶子の大きさ(Lc )がそれぞれ
0.337〜0.380nm、1〜25nmの範囲で、
黒鉛構造と乱層構造の比率の尺度が前記(R1 /R2
 )で0.5〜1.5の範囲である炭素質物粒子から負
極を形成すれば、前述したのと同様にリチウムイオンの
吸蔵・放出量をより一層増大でき、かつ充放電サイクル
時での構造形態の劣化を抑制でき、更に非水電解液中の
溶媒の分解を防止できる。
Further, according to another lithium secondary battery according to the present invention, the negative electrode is formed from carbon fibers having a graphite structure and a turbostratic structure, and having a lamellar or Brooks-Taylor axial microstructure orientation. By doing so, the amount of lithium ions absorbed and released can be increased, and deterioration of the structural form during charging and discharging cycles can be suppressed. Therefore, by housing such a negative electrode in a container together with a positive electrode and a non-aqueous electrolyte, a lithium secondary battery with high capacity and long charge/discharge cycle life can be obtained. Moreover, in addition to the above characteristics, the graphite structure has a lattice spacing (d002) of the (002) plane.
) and the crystallite size in the C-axis direction (Lc) are in the range of 0.337 to 0.380 nm and 1 to 25 nm, respectively,
The scale of the ratio of graphite structure to turbostratic structure is the above (R1 /R2
) If the negative electrode is formed from carbonaceous material particles with a carbonaceous material particle having a carbonaceous material particle size in the range of 0.5 to 1.5, the amount of intercalation and desorption of lithium ions can be further increased as described above, and the structure during charge and discharge cycles can be increased. Deterioration of the morphology can be suppressed, and furthermore, decomposition of the solvent in the non-aqueous electrolyte can be prevented.

【0026】更に、本発明に係わる別のリチウム二次電
池よれば負極を構成する炭素質物として微細組織が点配
向された球状の粒子で、かつ予め酸素の存在下で熱処理
を施したものを用いることによって、リチウムイオンの
吸蔵・放出量を増大でき、高容量化を達成できる。
Furthermore, according to another lithium secondary battery according to the present invention, the carbonaceous material constituting the negative electrode is made of spherical particles with point-oriented microstructures, which have been previously heat-treated in the presence of oxygen. By doing so, the amount of lithium ions absorbed and released can be increased, and a high capacity can be achieved.

【0027】すなわち、前記球状の炭素質物粒子は表面
側ほど黒鉛化度が高くなり、例えば前記黒鉛構造と乱層
構造の比率の尺度であるラマンスペクトルのピーク強度
比(R1 /R2 )は粒子の内部側に比べて小さくな
る特徴を有する。本発明に係わる負極を構成する球状の
炭素質物粒子は、粉砕しないで用いることができるため
、粒子表面の黒鉛構造と乱層構造がリチウムイオンの吸
蔵・放出量や効率に大きく影響する。このようなことか
ら、予め酸素の存在下で熱処理を施することによって比
較的黒鉛化度が高すぎる炭素質物粒子の表面層を酸化除
去することができるため、最適な黒鉛構造と乱層構造の
比率を有する粒子内部を表面に露出することができる。 また、前記熱処理により前記球状の炭素質物粒子表面に
吸着された不純物や官能基等を除去することができる。 従って、リチウムイオンの吸蔵・放出量を効果的に増大
でき、高容量のリチウム二次電池を得ることができる。
That is, the degree of graphitization of the spherical carbonaceous material particles increases toward the surface, and for example, the peak intensity ratio (R1 /R2) of the Raman spectrum, which is a measure of the ratio of the graphite structure to the turbostratic structure, It has the characteristic of being smaller than the inner side. Since the spherical carbonaceous material particles constituting the negative electrode according to the present invention can be used without being crushed, the graphite structure and turbostratic structure on the particle surface greatly affect the amount and efficiency of lithium ion intercalation and desorption. For this reason, by performing heat treatment in the presence of oxygen in advance, it is possible to oxidize and remove the surface layer of carbonaceous material particles, which have a relatively high degree of graphitization, thereby creating an optimal graphite structure and turbostratic structure. The interior of the particle having the ratio can be exposed to the surface. Moreover, impurities, functional groups, etc. adsorbed on the surface of the spherical carbonaceous material particles can be removed by the heat treatment. Therefore, the amount of lithium ions absorbed and released can be effectively increased, and a high capacity lithium secondary battery can be obtained.

【0028】[0028]

【実施例】以下、本発明を円筒形非水溶媒二次電池に適
用した例を図1を参照して詳細に説明する。 実施例1
[Example] Hereinafter, an example in which the present invention is applied to a cylindrical non-aqueous solvent secondary battery will be described in detail with reference to FIG. Example 1

【0029】図中の1は、底部に絶縁体2が配置された
有底円筒状のステンレス容器である。この容器1内には
、電極群3が収納されている。この電極群3は、正極4
、セパレ―タ5及び負極6をこの順序で積層した帯状物
を該負極6が外側に位置するように渦巻き状に巻回した
構造になっている。
Reference numeral 1 in the figure is a cylindrical stainless steel container with an insulator 2 disposed at the bottom. In this container 1, an electrode group 3 is housed. This electrode group 3 includes a positive electrode 4
, a separator 5 and a negative electrode 6 are laminated in this order, and the strip is spirally wound so that the negative electrode 6 is located on the outside.

【0030】前記正極4は、リチウムコバルト酸化物(
LiCoO2 )粉末80重量%をアセチレンブラック
15重量%およびポリテトラフルオロエチレン粉末5重
量%と共に混合し、シート化し、エキスパンドメタル集
電体に圧着した形状を有する。前記セパレ―タ5は、ポ
リプロピレン性多孔質フィルムから形成されている。
The positive electrode 4 is made of lithium cobalt oxide (
It has a shape in which 80% by weight of LiCoO2) powder is mixed with 15% by weight of acetylene black and 5% by weight of polytetrafluoroethylene powder, formed into a sheet, and pressed onto an expanded metal current collector. The separator 5 is made of a polypropylene porous film.

【0031】前記負極6は、ピッチから熱処理、分離さ
れたメソフェーズ小球体を炭素化して得られた微細組織
がラメラ状(薄層状)に点配向され、平均粒径が10μ
mの球状炭素質物粒子98重量%をエチレンプロピレン
共重合体2重量%と共にに混合し、これを集電体として
のステンレス箔に10mg/cm2 の量で塗布したも
のである。なお、前記炭素質物粒子はX線回折による各
種のパラメータがd002=0.3508nm、Lc 
=2.50nmで、アルゴンレーザを光源として測定さ
れた1360cm−1のラマン強度R1 と1580c
m−1のラマン強度R2 の比(R1 /R2 )が1
.1である。また、前記炭素質物粒子は水素/炭素の原
子比が0.003である。
The negative electrode 6 has a microstructure obtained by carbonizing mesophase spherules separated from the pitch by heat treatment, and is point-oriented in a lamellar (thin layer) manner, with an average particle size of 10 μm.
In this example, 98% by weight of spherical carbonaceous material particles of 100% by weight were mixed with 2% by weight of ethylene propylene copolymer, and the mixture was applied to a stainless steel foil as a current collector in an amount of 10mg/cm2. The carbonaceous material particles have various parameters determined by X-ray diffraction: d002=0.3508 nm, Lc
= 2.50nm, Raman intensity R1 of 1360cm-1 measured using an argon laser as a light source and 1580c
The ratio (R1 /R2) of Raman intensity R2 of m-1 is 1
.. It is 1. Further, the carbonaceous material particles have a hydrogen/carbon atomic ratio of 0.003.

【0032】前記容器1内には、六フッ化リン酸リチウ
ム(LiPF6 )をエチレンカーボネートとプロピレ
ンカーボネートと1,2−ジメトキシエタンの混合溶媒
(混合体積比率25:25:50)に1.0モル/l溶
解した組成の電解液が収容されている。前記電極群3上
には、中央部が開口された絶縁紙7が載置されている。 更に、前記容器 1の上部開口部には、絶縁封口板8が
該容器1へのかしめ加工等により液密に設けられており
、かつ該絶縁封口板8の中央には正極端子9が嵌合され
ている。この正極端子9は、前記電極群3の正極4に正
極リ―ド10を介して接続されている。なお、電極群3
の負極6は図示しない負極リ―ドを介して負極端子であ
る前記容器1に接続されている。 実施例2
In the container 1, 1.0 mol of lithium hexafluorophosphate (LiPF6) was added to a mixed solvent of ethylene carbonate, propylene carbonate, and 1,2-dimethoxyethane (mixed volume ratio 25:25:50). An electrolytic solution having a dissolved composition of /l is contained. An insulating paper 7 with an opening in the center is placed on the electrode group 3. Further, an insulating sealing plate 8 is provided at the upper opening of the container 1 in a fluid-tight manner by caulking the container 1, and a positive electrode terminal 9 is fitted in the center of the insulating sealing plate 8. has been done. This positive electrode terminal 9 is connected to the positive electrode 4 of the electrode group 3 via a positive electrode lead 10. Note that electrode group 3
The negative electrode 6 is connected to the container 1, which is a negative electrode terminal, via a negative electrode lead (not shown). Example 2

【0033】X線回折による各種のパラメータとしての
d002 =0.3452nm、Lc =2.50nm
、前記R1 /R2 が1.0の球状炭素質物粒子を有
する負極を用いた以外、実施例1と同構成のリチウム二
次電池を組み立てた。 実施例3
[0033] d002 = 0.3452 nm, Lc = 2.50 nm as various parameters by X-ray diffraction
A lithium secondary battery having the same configuration as in Example 1 was assembled, except that a negative electrode having spherical carbonaceous material particles with R1 /R2 of 1.0 was used. Example 3

【0034】X線回折による各種のパラメータとしての
d002 =0.3410nm、Lc =5.00nm
、前記R1 /R2 が0.75、水素/炭素の原子比
が0.001である平均粒径が20μmの球状炭素質物
粒子を有する負極を用いた以外、実施例1と同構成のリ
チウム二次電池を組み立てた。 実施例4
[0034] d002 = 0.3410 nm, Lc = 5.00 nm as various parameters by X-ray diffraction
, a lithium secondary having the same configuration as in Example 1 except that a negative electrode having spherical carbonaceous material particles with an average particle size of 20 μm and having R1 /R2 of 0.75 and a hydrogen/carbon atomic ratio of 0.001 was used. Assembled the battery. Example 4

【0035】X線回折による各種のパラメータとしての
d002 =0.347nm、Lc =2.00nm、
前記R1 /R2 が0.95、平均粒径が5μmの球
状炭素質物粒子を有する負極を用いた以外、実施例1と
同構成のリチウム二次電池を組み立てた。 実施例5
Various parameters determined by X-ray diffraction: d002 = 0.347 nm, Lc = 2.00 nm,
A lithium secondary battery having the same configuration as in Example 1 was assembled, except that a negative electrode having spherical carbonaceous material particles with R1 /R2 of 0.95 and an average particle size of 5 μm was used. Example 5

【0036】X線回折による各種のパラメータとしての
d002 =0.3508nm、Lc =2.20nm
、前記R1 /R2 が1.1、平均粒径が60μmの
球状炭素質物粒子を有する負極を用いた以外、実施例1
と同構成のリチウム二次電池を組み立てた。 実施例6
[0036] d002 = 0.3508 nm, Lc = 2.20 nm as various parameters by X-ray diffraction
, Example 1 except that a negative electrode having spherical carbonaceous material particles with R1/R2 of 1.1 and an average particle size of 60 μm was used.
A lithium secondary battery with the same configuration was assembled. Example 6

【0037】X線回折による各種のパラメータとしての
d002 =0.3508nm、Lc =2.20nm
、前記R1 /R2 が1.1、微細組織の点配向が放
射型、水素/炭素の原子比が0.001である平均粒径
が3μmの球状炭素質物粒子を有する負極を用いた以外
、実施例1と同構成のリチウム二次電池を組み立てた。 比較例1
[0037] d002 = 0.3508 nm, Lc = 2.20 nm as various parameters by X-ray diffraction
, except that a negative electrode having R1/R2 of 1.1, a radial point orientation of the microstructure, a hydrogen/carbon atomic ratio of 0.001, and spherical carbonaceous material particles with an average particle size of 3 μm was used. A lithium secondary battery having the same configuration as Example 1 was assembled. Comparative example 1

【0038】フェノール樹脂粉末を黒鉛化して得られた
微細組織が無配向で、平均粒径が10μmの炭素質物粒
子98重量%をエチレンプロピレン共重合体 2重量%
と共に混合し、これを集電体としてのステンレス箔に1
0mg/cm2 の量で塗布した構造の負極を用いた以
外、実施例1と同構成のリチウム二次電池を組み立てた
。なお、前記炭素質物のX線回折による各種パラメータ
はd002 =0.3500nm、Lc =2.30n
m、前記R1 /R2 が1.1であった。
[0038] 98% by weight of carbonaceous material particles having a non-oriented microstructure and an average particle size of 10 μm obtained by graphitizing phenolic resin powder were mixed with 2% by weight of ethylene propylene copolymer.
Mix this with stainless steel foil as a current collector.
A lithium secondary battery having the same structure as in Example 1 was assembled, except that a negative electrode having a structure coated in an amount of 0 mg/cm2 was used. In addition, various parameters determined by X-ray diffraction of the carbonaceous material are d002 = 0.3500 nm, Lc = 2.30n
m, and the above R1/R2 was 1.1.

【0039】しかして、本実施例1〜6及び比較例1の
リチウム二次電池について充電電流50mAで4.2V
まで充電し、50mAの電流で2.5Vまで放電する充
放電を繰り返し行い、各電池の放電容量とサイクル寿命
をそれぞれ測定した。その結果を図3に示す。
[0039]The lithium secondary batteries of Examples 1 to 6 and Comparative Example 1 had a voltage of 4.2V at a charging current of 50mA.
The battery was repeatedly charged and discharged to 2.5 V at a current of 50 mA, and the discharge capacity and cycle life of each battery were measured. The results are shown in FIG.

【0040】図3から明らかなように本実施例1〜6の
リチウム二次電池では、比較例1の電池に比べて容量が
増大し、かつサイクル寿命が格段に向上することがわか
る。特に、実施例1、4、6の電池は容量とサイクル寿
命が格段に向上されることがわかる。 実施例7
As is clear from FIG. 3, the lithium secondary batteries of Examples 1 to 6 have increased capacity and significantly improved cycle life compared to the battery of Comparative Example 1. In particular, it can be seen that the capacity and cycle life of the batteries of Examples 1, 4, and 6 are significantly improved. Example 7

【0041】コールタールから熱処理、分離されたメソ
フェーズ小球体を炭素化して得られた微細組織の点配向
がブルックス−テーラー型で、平均粒径10μm、短径
/長径が2/3以上の球状炭素質物粒子98重量%をエ
チレンプロピレン共重合体2重量%と共に混合し、これ
を集電体としてのステンレス箔に10mg/cm2 の
量で塗布した構造の負極を用いた以外、実施例1と同構
成のリチウム二次電池を組み立てた。なお、前記炭素質
物のX線回折による各種パラメータはd002 =0.
3500nm、Lc =2.20nmで、前記R1 /
R2 が1.1で、水素/炭素の原子比が0.002で
あった。 実施例8
[0041] Spherical carbon with a Brooks-Taylor type point orientation in the fine structure obtained by carbonizing mesophase spherules separated by heat treatment from coal tar, with an average particle size of 10 μm and a short axis/long axis of 2/3 or more. Same structure as Example 1, except that a negative electrode having a structure in which 98% by weight of solid particles were mixed with 2% by weight of ethylene propylene copolymer and this was applied to stainless steel foil as a current collector in an amount of 10mg/cm2 was used. assembled a lithium secondary battery. In addition, various parameters determined by X-ray diffraction of the carbonaceous material are d002 = 0.
3500 nm, Lc = 2.20 nm, and the R1/
R2 was 1.1 and the hydrogen/carbon atomic ratio was 0.002. Example 8

【0042】X線回折による各種のパラメータとしての
d002 =0.3452nm、Lc =2.50nm
、前記R1 /R2 が1.0、平均粒径20μmの球
状炭素質物粒子を有する負極を用いた以外、前記実施例
1と同構成のリチウム二次電池を組み立てた。 実施例9
[0042] d002 = 0.3452 nm, Lc = 2.50 nm as various parameters by X-ray diffraction
A lithium secondary battery having the same structure as in Example 1 was assembled, except that a negative electrode having spherical carbonaceous material particles with R1 /R2 of 1.0 and an average particle size of 20 μm was used. Example 9

【0043】X線回折による各種のパラメータとしての
d002 =0.3410nm、Lc =5.00nm
、前記R1 /R2 が0.75の球状炭素質物粒子を
有する負極を用いた以外、実施例1と同構成のリチウム
二次電池を組み立てた。 実施例10
[0043] d002 = 0.3410 nm, Lc = 5.00 nm as various parameters by X-ray diffraction
A lithium secondary battery having the same configuration as in Example 1 was assembled, except that a negative electrode having spherical carbonaceous material particles with R1 /R2 of 0.75 was used. Example 10

【0044】X線回折による各種のパラメータとしての
d002 =0.3560nm、Lc =2.00nm
、前記R1 /R2 が0.95、平均粒径5μm、短
径/長径が3/4以上の球状炭素質物粒子を有する負極
を用いた以外、実施例1と同構成のリチウム二次電池を
組み立てた。 実施例11
[0044] d002 = 0.3560 nm, Lc = 2.00 nm as various parameters by X-ray diffraction
A lithium secondary battery was assembled with the same configuration as in Example 1, except that a negative electrode having spherical carbonaceous material particles with R1 /R2 of 0.95, average particle size of 5 μm, and breadth/major axis of 3/4 or more was used. Ta. Example 11

【0045】X線回折による各種のパラメータとしての
d002 =0.3452nm、Lc =2.50nm
、前記R1 /R2 が1.0、平均粒径100μmの
球状炭素質物粒子を有する負極を用いた以外、実施例1
と同構成のリチウム二次電池を組み立てた。
[0045] d002 = 0.3452 nm, Lc = 2.50 nm as various parameters by X-ray diffraction
, Example 1 except that a negative electrode having spherical carbonaceous material particles with R1/R2 of 1.0 and an average particle size of 100 μm was used.
A lithium secondary battery with the same configuration was assembled.

【0046】しかして、本実施例7〜11のリチウム二
次電池について充電電流50mAで4.2Vまで充電し
、50mAの電流で2.5Vまで放電する充放電を繰り
返し行い、各電池のサイクル寿命と放電容量をそれぞれ
測定した。その結果を図4に示す。なお、図4には前記
比較例1の電池における同サイクル寿命と放電容量の測
定結果を併記した。
The lithium secondary batteries of Examples 7 to 11 were repeatedly charged and discharged by charging to 4.2V with a charging current of 50mA and discharging to 2.5V with a current of 50mA, and the cycle life of each battery was determined. and discharge capacity were measured. The results are shown in FIG. Note that FIG. 4 also shows the measurement results of the cycle life and discharge capacity of the battery of Comparative Example 1.

【0047】図4から明らかなように本実施例7〜11
のリチウム二次電池では、比較例1の電池に比べて容量
が増大し、かつサイクル寿命が格段に向上することがわ
かる。特に、実施例7、10の電池は容量とサイクル寿
命が格段に向上されることがわかる。 実施例12
As is clear from FIG. 4, Examples 7 to 11
It can be seen that the lithium secondary battery has an increased capacity and a significantly improved cycle life compared to the battery of Comparative Example 1. In particular, it can be seen that the capacity and cycle life of the batteries of Examples 7 and 10 are significantly improved. Example 12

【0048】メソフェーズピッチを炭素化して得られた
炭素繊維の断面の微細組織の配向性がブルックス−テー
ラー型で、平均短径が10μmの炭素質物繊維98重量
%をエチレンプロピレン共重合体2重量%と共にに混合
し、これを集電体としてのステンレス箔に10mg/c
m2 の量で塗布した構造の負極を用いた以外、実施例
1と同構成のリチウム二次電池を組み立てた。なお、前
記炭素繊維のX線回折による各種パラメータはd002
 =0.3480nm、Lc =3.00nmで、前記
R1 /R2 が0.88で、水素/炭素の原子比が0
.001であった。 実施例13
[0048] Carbon fibers obtained by carbonizing mesophase pitch have a Brooks-Taylor microstructure orientation in cross section, and 98% by weight of carbonaceous fibers with an average minor axis of 10 μm are composed of 2% by weight of ethylene propylene copolymer. 10mg/c of this was mixed with stainless steel foil as a current collector.
A lithium secondary battery having the same structure as in Example 1 was assembled, except that a negative electrode having a structure coated in an amount of 2 m2 was used. In addition, various parameters determined by X-ray diffraction of the carbon fiber are d002
= 0.3480 nm, Lc = 3.00 nm, the above R1 /R2 is 0.88, and the hydrogen/carbon atomic ratio is 0.
.. It was 001. Example 13

【0049】X線回折による各種のパラメータとしての
d002 =0.3490nm、Lc =2.80nm
、前記R1 /R2 が0.90、平均短径5μmの炭
素繊維を有する負極を用いた以外、実施例1と同構成の
リチウム二次電池を組み立てた。 実施例14
[0049] d002 = 0.3490 nm, Lc = 2.80 nm as various parameters by X-ray diffraction
A lithium secondary battery having the same configuration as in Example 1 was assembled, except that a negative electrode having carbon fibers with R1 /R2 of 0.90 and an average minor axis of 5 μm was used. Example 14

【0050】X線回折による各種のパラメータとしての
d002 =0.3500nm、Lc =2.80nm
、前記R1 /R2 が0.91、の炭素繊維を有する
負極を用いた以外、実施例1と同構成のリチウム二次電
池を組み立てた。 実施例15
[0050] d002 = 0.3500 nm, Lc = 2.80 nm as various parameters by X-ray diffraction
A lithium secondary battery having the same configuration as in Example 1 was assembled, except that a negative electrode having carbon fiber with R1 /R2 of 0.91 was used. Example 15

【0051】X線回折による各種のパラメータとしての
d002 =0.3680nm、Lc =1.20nm
、前記R1 /R2 が1.1、平均短径20μmの炭
素繊維を有する負極を用いた以外、実施例1と同構成の
リチウム二次電池を組み立てた。 比較例2
[0051] d002 = 0.3680 nm, Lc = 1.20 nm as various parameters by X-ray diffraction
A lithium secondary battery having the same configuration as in Example 1 was assembled, except that a negative electrode having carbon fibers with R1 /R2 of 1.1 and an average minor axis of 20 μm was used. Comparative example 2

【0052】X線回折による各種のパラメータとしての
d002 =0.3500nm、Lc =2.50nm
、前記R1 /R2 が0.95、微細組織がランダム
状で選択的に配向性がない炭素繊維を有する負極を用い
た以外、実施例1と同構成のリチウム二次電池を組み立
てた。
[0052] d002 = 0.3500 nm, Lc = 2.50 nm as various parameters by X-ray diffraction
A lithium secondary battery having the same configuration as in Example 1 was assembled, except that a negative electrode having R1 /R2 of 0.95, a carbon fiber having a random microstructure and selectively non-oriented carbon fibers was used.

【0053】しかして、本実施例12〜15及び比較例
2のリチウム二次電池について充電電流50mAで4.
2Vまで充電し、50mAの電流で2.5Vまで放電す
る充放電を繰り返し行い、各電池のサイクル寿命と放電
容量をそれぞれ測定した。その結果を図5に示す。
For the lithium secondary batteries of Examples 12 to 15 and Comparative Example 2, the charging current was 4.4 mA at a charging current of 50 mA.
The cycle life and discharge capacity of each battery were measured by repeatedly charging and discharging the battery to 2V and discharging to 2.5V at a current of 50 mA. The results are shown in FIG.

【0054】図5から明らかなように本実施例12〜1
5のリチウム二次電池では、比較例2の電池に比べて容
量が増大し、かつサイクル寿命が格段に向上することが
わかる。特に、実施例12、13、14の電池は容量と
サイクル寿命が格段に向上されることがわかる。 実施例16
As is clear from FIG. 5, Examples 12 to 1
It can be seen that the lithium secondary battery of No. 5 has an increased capacity and a significantly improved cycle life compared to the battery of Comparative Example 2. In particular, it can be seen that the capacity and cycle life of the batteries of Examples 12, 13, and 14 are significantly improved. Example 16

【0055】ピッチから熱処理、分離されたメソフェー
ズ小球体を炭素化して得られた微細組織がラメラ状(薄
層状)に点配向され、平均粒径が10μmの球状炭素質
物粒子を空気中で500℃、5時間熱処理したもの98
重量%をエチレンプロピレン共重合体2重量%と共にに
混合し、これを集電体としてのステンレス箔に10mg
/cm2 の量で塗布した構造の負極を用いた以外、実
施例1と同構成のリチウム二次電池を組み立てた。なお
、前記熱処理前の炭素質物粒子はX線回折による各種の
パラメータがd002 =0.3508nm、Lc =
2.50nmで、アルゴンレーザを光源として測定され
た1360cm−1のラマン強度R1 と1580cm
−1のラマン強度R2 の比(R1 /R2 )が1.
1である。また、前記炭素質物粒子は水素/炭素の原子
比が0.003である。また、熱処理後の前記R1 /
R2 は1.2である。 実施例17
[0055] The fine structure obtained by carbonizing the mesophase small spheres separated by heat treatment from pitch is point-oriented in a lamellar shape (thin layer), and the spherical carbonaceous material particles with an average particle size of 10 μm are heated at 500° C. in air. , heat treated for 5 hours98
% by weight was mixed with 2% by weight of ethylene propylene copolymer, and 10 mg of this was placed on stainless steel foil as a current collector.
A lithium secondary battery having the same structure as in Example 1 was assembled, except that a negative electrode having a structure coated in an amount of /cm2 was used. The carbonaceous material particles before the heat treatment have various parameters determined by X-ray diffraction: d002 = 0.3508 nm, Lc =
Raman intensity R1 of 1360 cm and 1580 cm measured at 2.50 nm using an argon laser as a light source
-1 Raman intensity R2 ratio (R1 /R2) is 1.
It is 1. Further, the carbonaceous material particles have a hydrogen/carbon atomic ratio of 0.003. Moreover, the above R1 / after heat treatment
R2 is 1.2. Example 17

【0056】X線回折による各種のパラメータとしての
d002 =0.348nm、Lc =2.40nm、
前記R1 /R2 が1.0の球状炭素質物粒子を前記
実施例16と同様な熱処理を行って前記R1 /R2 
を1.1としたものを有する負極を用いた以外、実施例
1と同構成のリチウム二次電池を組み立てた。 実施例18
Various parameters determined by X-ray diffraction: d002 = 0.348 nm, Lc = 2.40 nm,
The spherical carbonaceous material particles with R1 /R2 of 1.0 were subjected to the same heat treatment as in Example 16 to obtain R1 /R2 of 1.0.
A lithium secondary battery having the same configuration as in Example 1 was assembled, except that a negative electrode having a ratio of 1.1 was used. Example 18

【0057】X線回折による各種のパラメータとしての
d002 =0.345nm、Lc =3.00nm、
前記R1 /R2 が0.85の球状炭素質物粒子を前
記実施例16と同様な熱処理を行って前記R1 /R2
 を1.0としたものを有する負極を用いた以外、実施
例1と同構成のリチウム二次電池を組み立てた。 実施例19
Various parameters determined by X-ray diffraction: d002 = 0.345 nm, Lc = 3.00 nm,
The spherical carbonaceous material particles with R1 /R2 of 0.85 were subjected to the same heat treatment as in Example 16 to obtain the R1 /R2 of 0.85.
A lithium secondary battery having the same configuration as in Example 1 was assembled, except that a negative electrode having 1.0 was used. Example 19

【0058】X線回折による各種のパラメータとしての
d002 =0.342nm、Lc =4.20nm、
前記R1 /R2 が0.75の球状炭素質物粒子を前
記実施例16と同様な熱処理を行って前記R1 /R2
 を0.9としたものを有する負極を用いた以外、実施
例1と同構成のリチウム二次電池を組み立てた。
Various parameters determined by X-ray diffraction: d002 = 0.342 nm, Lc = 4.20 nm,
The spherical carbonaceous material particles with R1 /R2 of 0.75 were subjected to the same heat treatment as in Example 16 to obtain R1 /R2 of 0.75.
A lithium secondary battery having the same configuration as in Example 1 was assembled, except that a negative electrode having 0.9 was used.

【0059】しかして、本実施例16〜19のリチウム
二次電池について充電電流50mAで4.2Vまで充電
し、50mAの電流で2.5Vまで放電する充放電を繰
り返し行い、各電池のサイクル寿命と放電容量をそれぞ
れ測定した。その結果を図6に示す。なお、図6には前
記実施例1、4の電池における同サイクル寿命と放電容
量の測定結果を併記した。
The lithium secondary batteries of Examples 16 to 19 were repeatedly charged and discharged by charging to 4.2V with a charging current of 50mA and discharging to 2.5V with a current of 50mA, and the cycle life of each battery was determined. and discharge capacity were measured. The results are shown in FIG. Note that FIG. 6 also shows the measurement results of the cycle life and discharge capacity of the batteries of Examples 1 and 4.

【0060】図6から明らかなように本実施例16〜1
9のリチウム二次電池では、熱処理を施さない球状炭素
質物粒子を有する負極を備えた実施例1、4の電池に比
べて容量が著しく増大することがわかる。特に、実施例
16、17の電池は容量が格段に増大することがわかる
As is clear from FIG. 6, Examples 16-1
It can be seen that the capacity of the lithium secondary battery No. 9 is significantly increased compared to the batteries of Examples 1 and 4, which were equipped with negative electrodes having spherical carbonaceous particles that were not subjected to heat treatment. In particular, it can be seen that the capacity of the batteries of Examples 16 and 17 is significantly increased.

【0061】なお、前記実施例16〜19では点配向が
ラメラ状の球状炭素質物粒子を負極材料として用いたが
、配向が放射状とブルクス−テーラー型の球状炭素質物
粒子を負極材料として用いたリチウム二次電池でも同様
な容量増大を図ることができた。
In Examples 16 to 19, spherical carbonaceous particles with a lamellar dot orientation were used as the negative electrode material, but lithium spherical carbonaceous particles with a radial and Brux-Taylor orientation were used as the negative electrode material. A similar capacity increase was also possible with secondary batteries.

【0062】[0062]

【発明の効果】以上詳述した如く、本発明によれば高容
量でサイクル寿命の優れたリチウム二次電池を提供でき
る。また、本発明によれば極めて高容量のリチウム二次
電池を提供できる。
As described in detail above, according to the present invention, a lithium secondary battery with high capacity and excellent cycle life can be provided. Further, according to the present invention, a lithium secondary battery with extremely high capacity can be provided.

【図面の簡単な説明】[Brief explanation of the drawing]

【図1】本発明の実施例1における円筒形リチウム二次
電池を示す部分断面図。
FIG. 1 is a partial cross-sectional view showing a cylindrical lithium secondary battery in Example 1 of the present invention.

【図2】炭素質物の微細組織の配向例を示す概略図。FIG. 2 is a schematic diagram showing an example of orientation of a microstructure of a carbonaceous material.

【図3】実施例1〜7及び比較例1のリチウム二次電池
における充放電サイクルと放電容量との関係を示す特性
図。
FIG. 3 is a characteristic diagram showing the relationship between charge/discharge cycles and discharge capacity in lithium secondary batteries of Examples 1 to 7 and Comparative Example 1.

【図4】実施例8〜11及び比較例1のリチウム二次電
池における充放電サイクルと放電容量との関係を示す特
性図。
FIG. 4 is a characteristic diagram showing the relationship between charge/discharge cycles and discharge capacity in lithium secondary batteries of Examples 8 to 11 and Comparative Example 1.

【図5】実施例12〜15及び比較例2のリチウム二次
電池における充放電サイクルと放電容量との関係を示す
特性図。
FIG. 5 is a characteristic diagram showing the relationship between charge/discharge cycles and discharge capacity in lithium secondary batteries of Examples 12 to 15 and Comparative Example 2.

【図6】実施例16〜19及び実施例1、4のリチウム
二次電池における充放電サイクルと放電容量との関係を
示す特性図。
FIG. 6 is a characteristic diagram showing the relationship between charge/discharge cycles and discharge capacity in the lithium secondary batteries of Examples 16 to 19 and Examples 1 and 4.

【符号の説明】[Explanation of symbols]

1…ステンレス容器、3…電極群、4…正極、5…セパ
レ―タ、6…負極、8…封口板、9…正極端子。
DESCRIPTION OF SYMBOLS 1... Stainless steel container, 3... Electrode group, 4... Positive electrode, 5... Separator, 6... Negative electrode, 8... Sealing plate, 9... Positive electrode terminal.

Claims (3)

【特許請求の範囲】[Claims] 【請求項1】  容器と、この容器内に収納された正極
と、前記容器内に収納され、リチウムイオンを吸蔵・放
出することが可能な炭素質物からなる負極と、リチウム
イオン伝導性電解質とを具備したリチウム二次電池にお
いて、前記炭素質物は黒鉛構造と乱層構造からなり、か
つ微細組織が点配向された球状をなす粒子であることを
特徴とするリチウム二次電池。
1. A container, a positive electrode housed in the container, a negative electrode housed in the vessel and made of a carbonaceous material capable of intercalating and deintercalating lithium ions, and a lithium ion conductive electrolyte. The lithium secondary battery is characterized in that the carbonaceous material is a spherical particle having a graphite structure and a turbostratic structure and having a point-oriented fine structure.
【請求項2】  容器と、この容器内に収納された正極
と、前記容器内に収納され、リチウムイオンを吸蔵・放
出することが可能な炭素質物からなる負極と、リチウム
イオン伝導性電解質とを具備したリチウム二次電池にお
いて、前記炭素質物は黒鉛構造と乱層構造からなり、か
つ微細組織の配向がラメラ型又はブルックス−テーラー
型の炭素繊維であることを特徴とするリチウム二次電池
2. A container, a positive electrode housed in the container, a negative electrode housed in the vessel and made of a carbonaceous material capable of intercalating and deintercalating lithium ions, and a lithium ion conductive electrolyte. The lithium secondary battery is characterized in that the carbonaceous material is carbon fiber having a graphite structure and a turbostratic structure, and having a lamellar or Brooks-Taylor microstructure orientation.
【請求項3】  容器と、この容器内に収納された正極
と、前記容器内に収納され、リチウムイオンを吸蔵・放
出することが可能な炭素質物からなる負極と、リチウム
イオン伝導性電解質とを具備したリチウム二次電池にお
いて、前記炭素質物は微細組織が点配向された球状の粒
子で、かつ予め酸素の存在下で熱処理を施したものであ
ることを特徴とするリチウム二次電池。
3. A container, a positive electrode housed in the container, a negative electrode housed in the vessel and made of a carbonaceous material capable of intercalating and deintercalating lithium ions, and a lithium ion conductive electrolyte. 1. A lithium secondary battery comprising: the carbonaceous material being spherical particles having a point-oriented microstructure and previously heat-treated in the presence of oxygen.
JP3110607A 1991-01-14 1991-05-15 Lithium secondary battery Expired - Fee Related JP2637305B2 (en)

Priority Applications (7)

Application Number Priority Date Filing Date Title
JP3110607A JP2637305B2 (en) 1991-01-14 1991-05-15 Lithium secondary battery
US07/819,224 US5244757A (en) 1991-01-14 1992-01-13 Lithium secondary battery
DE69226667T DE69226667T2 (en) 1991-01-14 1992-01-14 Lithium secondary battery and carbon material therefor
DE69233759T DE69233759D1 (en) 1991-01-14 1992-01-14 Lithium secondary cell and carbonaceous material used therein
EP96200205A EP0763865B1 (en) 1991-01-14 1992-01-14 Lithium secondary battery and carbonaceous material useful therein
EP92300286A EP0495613B1 (en) 1991-01-14 1992-01-14 Lithium secondary battery and carbonaceous material useful therein
US08/077,093 US5312611A (en) 1991-01-14 1993-06-16 Lithium secondary battery process for making carbonaceous material for a negative electrode of lithium secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP3-2859 1991-01-14
JP285991 1991-01-14
JP3110607A JP2637305B2 (en) 1991-01-14 1991-05-15 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH04280068A true JPH04280068A (en) 1992-10-06
JP2637305B2 JP2637305B2 (en) 1997-08-06

Family

ID=26336333

Family Applications (1)

Application Number Title Priority Date Filing Date
JP3110607A Expired - Fee Related JP2637305B2 (en) 1991-01-14 1991-05-15 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2637305B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2714214A1 (en) * 1993-12-22 1995-06-23 Accumulateurs Fixes Graphite carbon anode for rechargeable lithium cell
EP0660432A1 (en) * 1993-12-22 1995-06-28 Saft Carbon anode for rechargeable electrochemical lithium generator and method of manufacturing
FR2722119A1 (en) * 1994-07-05 1996-01-12 Accumulateurs Fixes Graphite carbon anode for rechargeable lithium cell
EP0697747A1 (en) 1994-07-21 1996-02-21 Sharp Kabushiki Kaisha Carbon electrode for nonaqueous secondary battery, fabrication method for the same and nonaqueous secondary battery using the same
US7288342B2 (en) * 1996-08-08 2007-10-30 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
JP2018049770A (en) * 2016-09-23 2018-03-29 プライムアースEvエナジー株式会社 Lithium ion secondary battery
CN110268553A (en) * 2016-12-20 2019-09-20 纳米技术仪器公司 Flexible and conformal shape cable-type alkali metal battery

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252053A (en) * 1990-02-28 1991-11-11 Sony Corp Nonaqueous electrolyte secondary battery
JPH04188559A (en) * 1990-11-21 1992-07-07 Bridgestone Corp Non-aqueous electrolyte secondary battery

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH03252053A (en) * 1990-02-28 1991-11-11 Sony Corp Nonaqueous electrolyte secondary battery
JPH04188559A (en) * 1990-11-21 1992-07-07 Bridgestone Corp Non-aqueous electrolyte secondary battery

Cited By (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2714214A1 (en) * 1993-12-22 1995-06-23 Accumulateurs Fixes Graphite carbon anode for rechargeable lithium cell
EP0660432A1 (en) * 1993-12-22 1995-06-28 Saft Carbon anode for rechargeable electrochemical lithium generator and method of manufacturing
WO1995017770A1 (en) * 1993-12-22 1995-06-29 Saft Carbon anode for a rechargeable electrochemical lithium generator, and method for making same
US5554462A (en) * 1993-12-22 1996-09-10 Saft Carbon anode for a lithium rechargeable electrochemical cell and a process for its production
FR2722119A1 (en) * 1994-07-05 1996-01-12 Accumulateurs Fixes Graphite carbon anode for rechargeable lithium cell
EP0697747A1 (en) 1994-07-21 1996-02-21 Sharp Kabushiki Kaisha Carbon electrode for nonaqueous secondary battery, fabrication method for the same and nonaqueous secondary battery using the same
US7410727B2 (en) 1996-08-08 2008-08-12 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US8129051B2 (en) 1996-08-08 2012-03-06 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7378191B2 (en) 1996-08-08 2008-05-27 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7399553B2 (en) 1996-08-08 2008-07-15 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7288342B2 (en) * 1996-08-08 2007-10-30 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7700239B2 (en) 1996-08-08 2010-04-20 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7947395B2 (en) 1996-08-08 2011-05-24 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US7335447B2 (en) 1996-08-08 2008-02-26 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US8580437B2 (en) 1996-08-08 2013-11-12 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US8802297B2 (en) 1996-08-08 2014-08-12 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative electrode
US9508980B2 (en) 1996-08-08 2016-11-29 Hitachi Chemical Company, Ltd. Graphite particles and lithium secondary battery using the same as negative
JP2018049770A (en) * 2016-09-23 2018-03-29 プライムアースEvエナジー株式会社 Lithium ion secondary battery
CN110268553A (en) * 2016-12-20 2019-09-20 纳米技术仪器公司 Flexible and conformal shape cable-type alkali metal battery
CN110268553B (en) * 2016-12-20 2023-09-12 纳米技术仪器公司 Flexible and conformal cable-type alkali metal cell

Also Published As

Publication number Publication date
JP2637305B2 (en) 1997-08-06

Similar Documents

Publication Publication Date Title
US5312611A (en) Lithium secondary battery process for making carbonaceous material for a negative electrode of lithium secondary battery
JP3556270B2 (en) Lithium secondary battery
US5340670A (en) Lithium secondary battery and method of manufacturing carbonaceous material for negative electrode of the battery
US6156457A (en) Lithium secondary battery and method for manufacturing a negative electrode
JP3499584B2 (en) Lithium secondary battery
JP3162531B2 (en) Lithium secondary battery
JP3311104B2 (en) Lithium secondary battery
JP3241850B2 (en) Lithium secondary battery
JP3840087B2 (en) Lithium secondary battery and negative electrode material
JP3727666B2 (en) Lithium secondary battery
JP2637305B2 (en) Lithium secondary battery
JPH10312807A (en) Lithium secondary battery and manufacture of negative electrode
JP3406843B2 (en) Lithium secondary battery
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP3135613B2 (en) Lithium secondary battery
JP3568247B2 (en) Non-aqueous electrolyte secondary battery
JPH08162096A (en) Lithium secondary battery
JPH08162097A (en) Nonaqueous electrolytic secondary battery
JPH09320593A (en) Nonaqueous electrolyte secondary battery
JP3410291B2 (en) Coin type non-aqueous solvent secondary battery
JPH11250910A (en) Lithium secondary battery
JPH0831410A (en) Lithium secondary battery
JP2637305C (en)
JPH0536440A (en) Lithium secondary battery
JPH1173961A (en) Manufacture of lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080425

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090425

Year of fee payment: 12

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100425

Year of fee payment: 13

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110425

Year of fee payment: 14

LAPS Cancellation because of no payment of annual fees