JP2000203817A - Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell - Google Patents

Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell

Info

Publication number
JP2000203817A
JP2000203817A JP11004785A JP478599A JP2000203817A JP 2000203817 A JP2000203817 A JP 2000203817A JP 11004785 A JP11004785 A JP 11004785A JP 478599 A JP478599 A JP 478599A JP 2000203817 A JP2000203817 A JP 2000203817A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
composite carbon
expanded graphite
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11004785A
Other languages
Japanese (ja)
Inventor
Koichi Takei
康一 武井
Yoshito Ishii
義人 石井
Takeshi Kami
猛 荷見
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP11004785A priority Critical patent/JP2000203817A/en
Publication of JP2000203817A publication Critical patent/JP2000203817A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To produce a composite carbon particle having a high charge and discharge capacity and suitable as a negative pole material for a lithium secondary battery or cell improved in problems such as deterioration of slurry characteristics, orientation of the particle in a collector planar direction, deterioration of cycle characteristics and an irreversible increase in capacity when using a conventional expanded graphite particle as the negative pole material for the lithium secondary battery or cell, to provide a method for producing the composite carbon particle, to obtain the negative pole material and to provide both the negative pole for the lithium secondary battery or cell and the lithium secondary battery or cell. SOLUTION: This composite carbon particle contains an expanded graphite part and an amorphous carbon part. The method for producing the composite carbon particle comprises dissolving an organic compound in a solvent, mixing and dispersing an expanded graphite particle in the resultant solution, removing the solvent, drying the resultant mixture and then carbonizing the organic compound. The negative pole material contains the above composite carbon particle or the composite carbon particle obtained by the above method for production. The negative pole for the lithium secondary battery or cell uses the negative pole material. The lithium secondary battery or cell has the negative pole for the lithium secondary battery or cell.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、リチウム二次電
池、その負極、負極材料及び前記負極材料に好適な複合
炭素粒子並びにその製造法に関し、特に充放電容量、サ
イクル特性に優れたリチウム二次電池、その負極、負極
材料及び前記負極材料に好適な複合炭素粒子並びにその
製造法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, a negative electrode thereof, a negative electrode material, a composite carbon particle suitable for the negative electrode material and a method for producing the same, and particularly to a lithium secondary battery having excellent charge / discharge capacity and cycle characteristics. The present invention relates to a battery, a negative electrode thereof, a negative electrode material, composite carbon particles suitable for the negative electrode material, and a method for producing the same.

【0002】[0002]

【従来の技術】近年、ポータブル機器、電気自動車、電
力貯蔵用として小型、軽量で高エネルギー密度を有する
二次電池に対する要望が高まっている。このような要望
に対し、リチウム二次電池はとりわけ高電圧、高エネル
ギー密度を有する電池として注目を集めている。
2. Description of the Related Art In recent years, there has been an increasing demand for small, lightweight, and high energy density secondary batteries for portable equipment, electric vehicles, and power storage. In response to such demands, lithium secondary batteries have attracted attention especially as batteries having high voltage and high energy density.

【0003】リチウム二次電池の負極材料としては、金
属リチウム、非晶質炭素粒子、高黒鉛化炭素粒子が使用
されている。金属リチウムは高い充放電容量を実現可能
であるが、その高い反応性のため充放電サイクルの経過
と共に電解液中の溶媒と反応し容量が低下する、また樹
枝状の金属リチウムが生成し易く、正・負極間に設けら
れるセパレータを貫通し短絡を引き起こし易いという問
題点を有している。
As a negative electrode material of a lithium secondary battery, lithium metal, amorphous carbon particles, and highly graphitized carbon particles are used. Metal lithium can achieve a high charge-discharge capacity, but due to its high reactivity, it reacts with the solvent in the electrolytic solution with the progress of the charge-discharge cycle, the capacity decreases, and dendritic metal lithium is easily generated, There is a problem that a short circuit is likely to occur through the separator provided between the positive electrode and the negative electrode.

【0004】非晶質炭素質材料は、電解液との反応性が
低い、樹枝状金属リチウムが生成しづらいという特徴を
有するが、充放電容量が一般に低く、また真密度が低い
ため体積当りの充放電容量が低いという難点を有し、高
エネルギー密度の二次電池を実現することは達成されて
いない。一方、高黒鉛化炭素粒子は、非晶質炭素粒子と
比較して高い充放電容量を有し、金属リチウムと比較し
て電解液との反応性が低く、樹枝状金属リチウムが生成
しづらいという特徴を有することから、近年、負極用材
料として盛んに検討が為されるようになってきている。
[0004] Amorphous carbonaceous materials are characterized by low reactivity with an electrolytic solution and difficulty in producing dendritic metal lithium, but generally have a low charge / discharge capacity and a low true density. It has a drawback of low charge / discharge capacity, and has not achieved a secondary battery with a high energy density. On the other hand, highly graphitized carbon particles have a higher charge / discharge capacity than amorphous carbon particles, have lower reactivity with an electrolytic solution than metal lithium, and are less likely to form dendritic metal lithium. Due to its characteristics, it has been actively studied in recent years as a negative electrode material.

【0005】高黒鉛化炭素粒子として、天然黒鉛粒子を
酸処理して層間化合物とし、これを加熱、膨張化させた
膨張黒鉛の負極材料への適用が検討されている。膨張黒
鉛は、一般に、天然黒鉛のような高度に黒鉛結晶が発達
した黒鉛粒子を濃硝酸や過酸化水素などの酸化剤を含む
濃硫酸溶液に接触させて黒鉛結晶層間に硫酸を挿入す
る、あるいは電気化学的に硫酸を黒鉛結晶層間に挿入
し、次いで急激に加熱して層間に挿入された硫酸を放出
させ、この際に膨張を行わせて製造されるものであり、
この膨張過程での膨張率は数百倍に達する場合がある。
得られた膨張黒鉛を粉砕し、残留する硫酸根を加熱処理
等によって除去して負極材料として用いると、黒鉛の理
論容量(372mAh/g)を越える高い充放電容量が得ら
れることが報告されている。
As highly graphitized carbon particles, natural graphite particles are subjected to an acid treatment to form an intercalation compound, which is heated and expanded to apply expanded graphite to a negative electrode material. Expanded graphite is generally used to insert graphite particles between graphite crystal layers by contacting graphite particles with highly developed graphite crystals, such as natural graphite, with a concentrated sulfuric acid solution containing an oxidizing agent such as concentrated nitric acid or hydrogen peroxide, or It is manufactured by electrochemically inserting sulfuric acid between graphite crystal layers, then rapidly heating to release the sulfuric acid inserted between the layers, and expanding at this time,
The expansion rate during this expansion process may reach several hundred times.
It has been reported that a high charge / discharge capacity exceeding the theoretical capacity of graphite (372 mAh / g) can be obtained when the obtained expanded graphite is pulverized and residual sulfate groups are removed by heat treatment or the like and used as a negative electrode material. I have.

【0006】負極材料用として粉砕された膨張黒鉛は、
その製法より、形状は薄片状となり、カサ密度が小さ
く、また高い比表面積を有するという特性を有する。こ
のため、膨張黒鉛を負極材料として用いた場合、以下の
ような問題が発生する。すなわち、電極作製に用いる膨
張黒鉛粒子、バインダー、溶剤等からなるスラリーの粘
度が高くなり、作業性が悪くなる、集電体にスラリーを
塗布、乾燥、加圧して電極を作製した場合、薄片状の粒
子が集電体面方向に高密度に配向し、その結果、負極層
内への電解液の浸透性が悪化し、電解液の注入に長時間
を必要とする、膨張黒鉛粒子へのリチウムイオンの吸蔵
・放出の繰り返しによって発生する厚さ方向の歪みによ
り粒子が剥離し易いためサイクル特性が悪化する、初回
充放電時の不可逆容量が大きいなどの問題があることが
明らかとなった。
The expanded graphite pulverized for the negative electrode material is
According to the manufacturing method, the shape becomes flaky, the bulk density is low, and the material has a high specific surface area. For this reason, when expanded graphite is used as a negative electrode material, the following problems occur. That is, the viscosity of the slurry made of expanded graphite particles, binder, solvent, and the like used for electrode production increases, and workability deteriorates. When the electrode is produced by applying the slurry to the current collector, drying, and pressing, the flakes are formed. Particles are oriented at high density in the direction of the current collector surface, and as a result, the permeability of the electrolytic solution into the negative electrode layer is deteriorated, and it takes a long time to inject the electrolytic solution. It has been clarified that there is a problem that the particles easily peel due to the strain in the thickness direction caused by the repetition of occlusion / release, and the cycle characteristics are deteriorated, and the irreversible capacity at the time of the first charge / discharge is large.

【0007】[0007]

【発明が解決しようとする課題】本発明は、高い充放電
容量を有し、且つ従来の膨張黒鉛粒子をリチウム二次電
池の負極材料として用いた場合の、スラリー特性悪化、
集電体面方向での粒子の配向、サイクル特性悪化、不可
逆容量増加等の課題が改善されたリチウム二次電池用負
極材料として好適な複合炭素粒子を提供するものであ
る。
DISCLOSURE OF THE INVENTION The present invention provides a high charge / discharge capacity, and deteriorates slurry characteristics when conventional expanded graphite particles are used as a negative electrode material of a lithium secondary battery.
An object of the present invention is to provide composite carbon particles suitable as a negative electrode material for a lithium secondary battery, in which problems such as orientation of particles in the direction of a current collector surface, deterioration of cycle characteristics, and increase in irreversible capacity have been improved.

【0008】また本発明は、高い充放電容量を有し、且
つ従来の膨張黒鉛粒子をリチウム二次電池の負極材料と
して用いた場合の、スラリー特性悪化、集電体面方向で
の粒子の配向、サイクル特性悪化、不可逆容量増加等の
課題が改善されたリチウム二次電池用負極材料として好
適な複合炭素粒子を容易に製造する方法を提供するもの
である。
Further, the present invention provides a method for producing a negative electrode material for a lithium secondary battery, which has a high charge / discharge capacity and deteriorates the slurry characteristics, the orientation of the particles in the current collector surface direction, and the like. An object of the present invention is to provide a method for easily producing composite carbon particles suitable as a negative electrode material for a lithium secondary battery, in which problems such as deterioration of cycle characteristics and increase of irreversible capacity are improved.

【0009】また本発明は、高い充放電容量を有し、且
つ従来の膨張黒鉛粒子を用いた場合の、スラリー特性悪
化、集電体面方向での粒子の配向、サイクル特性悪化、
不可逆容量増加等の課題が改善された負極材料を提供す
るものである。
In addition, the present invention provides a high charge / discharge capacity and the use of the conventional expanded graphite particles, the deterioration of slurry characteristics, the orientation of particles in the direction of the current collector surface, the deterioration of cycle characteristics,
An object of the present invention is to provide a negative electrode material in which problems such as an increase in irreversible capacity are improved.

【0010】また本発明は、高い充放電容量を有し、且
つ従来の膨張黒鉛粒子を用いた場合の、集電体面方向で
の粒子の配向、サイクル特性悪化、不可逆容量増加等の
課題が改善されたリチウム二次電池用負極を提供するも
のである。また本発明は、高い充放電容量を有し、サイ
クル特性に優れ、不可逆容量の少ないリチウム二次電池
を提供するものである。
Further, the present invention improves the problems such as the orientation of particles in the direction of the current collector surface, the deterioration of cycle characteristics, and the increase of irreversible capacity when the conventional expanded graphite particles have a high charge / discharge capacity. To provide a negative electrode for a rechargeable lithium battery. The present invention also provides a lithium secondary battery having high charge / discharge capacity, excellent cycle characteristics, and low irreversible capacity.

【0011】[0011]

【課題を解決するための手段】本発明は、膨張黒鉛部分
及び非晶質炭素部分を含有してなる複合炭素粒子に関す
る。また本発明は、非晶質炭素に被覆された膨脹黒鉛粒
子が、複数凝集した構造を有する前記の複合炭素粒子に
関する。また本発明は、平均粒子径が2〜60μmであ
る前記の複合炭素粒子に関する。また本発明は、膨張黒
鉛部分の割合が、複合炭素粒子の重量に対して50〜9
8重量%である前記の複合炭素粒子に関する。また本発
明は、比表面積が1〜50m2/g、JIS1469に規定
されるタップ密度が0.15〜0.4g/cm3である前記
の複合炭素粒子に関する。
SUMMARY OF THE INVENTION The present invention relates to a composite carbon particle containing an expanded graphite portion and an amorphous carbon portion. Further, the present invention relates to the composite carbon particle having a structure in which a plurality of expanded graphite particles coated with amorphous carbon are aggregated. The present invention also relates to the composite carbon particles having an average particle diameter of 2 to 60 μm. Further, in the present invention, the ratio of the expanded graphite portion is 50 to 9 with respect to the weight of the composite carbon particles.
8% by weight of the composite carbon particles. The present invention also relates to the composite carbon particles having a specific surface area of 1 to 50 m 2 / g and a tap density defined by JIS 1469 of 0.15 to 0.4 g / cm 3 .

【0012】また本発明は、有機化合物を溶媒に溶解し
た溶液に、膨張黒鉛粒子を混合分散し、前記溶媒を除去
し乾燥した後、前記有機化合物を炭素化することを特徴
とする複合炭素粒子の製造法に関する。また本発明は、
用いる膨張黒鉛粒子の不純物含有量は2000ppm以下
である前記複合炭素粒子の製造法に関する。
The present invention also provides a composite carbon particle characterized in that expanded graphite particles are mixed and dispersed in a solution in which an organic compound is dissolved in a solvent, the solvent is removed and dried, and then the organic compound is carbonized. A method for producing the same. The present invention also provides
The present invention relates to a method for producing the composite carbon particles, wherein the expanded graphite particles used have an impurity content of 2000 ppm or less.

【0013】また本発明は、前記の何れかに記載の複合
炭素粒子又は前記の製造法により得られる複合炭素粒子
を含有してなる負極材料に関する。また本発明は、前記
の負極材料を用いてなるリチウム二次電池用負極に関す
る。また本発明は、前記のリチウム二次電池用負極を有
してなるリチウム二次電池に関する。
[0013] The present invention also relates to a negative electrode material comprising the composite carbon particles according to any of the above or the composite carbon particles obtained by the above-mentioned production method. The present invention also relates to a negative electrode for a lithium secondary battery using the above negative electrode material. The present invention also relates to a lithium secondary battery having the above-described negative electrode for a lithium secondary battery.

【0014】[0014]

【発明の実施の形態】本発明の複合炭素粒子は、膨脹黒
鉛部分と非晶質部分を含有してなる。ここで、複合と
は、膨脹黒鉛粒子と炭素質粒子の単なる混合物ではな
く、粒子一個の中に膨脹黒鉛部分と非晶質炭素部分が一
体化して含まれることを意味する。またここで、膨張黒
鉛とは、黒鉛粒子を酸と混合処理して層間化合物を形成
し、これを加熱、膨脹化して得られるものをいう。ここ
で、用いる黒鉛粒子としては、高い黒鉛化度を有するも
のがよく、天然黒鉛が好ましい。前記酸処理に用いる処
理剤としては、濃硝酸、過酸化水素、無水クロム酸、塩
素酸カリウム、過塩素酸カリウムなどの酸化剤を含有す
る濃硫酸、発煙硝酸などを用いることができ、それぞれ
硫酸、硝酸が黒鉛結晶層間に挿入された層間化合物が生
成する。各成分の混合割合、処理時間に特に制限はな
く、例えば、黒鉛100重量部に対して、硫酸(濃度2
0〜98%のもの)100〜250重量部、硝酸(濃度
30〜70%のもの)20〜100重量部を混合し、1
0分〜2時間程度処理することにより、製造することが
できる。
BEST MODE FOR CARRYING OUT THE INVENTION The composite carbon particles of the present invention contain an expanded graphite portion and an amorphous portion. Here, the term “composite” means that not only a simple mixture of expanded graphite particles and carbonaceous particles but also an expanded graphite portion and an amorphous carbon portion are integrally contained in one particle. Here, the expanded graphite is obtained by mixing graphite particles with an acid to form an intercalation compound, and heating and expanding the intercalation compound. Here, the graphite particles used are preferably those having a high degree of graphitization, and natural graphite is preferred. Examples of the treating agent used for the acid treatment include concentrated nitric acid, hydrogen peroxide, chromic anhydride, potassium chlorate, concentrated sulfuric acid containing an oxidizing agent such as potassium perchlorate, fuming nitric acid, and the like. Then, an intercalation compound in which nitric acid is inserted between the graphite crystal layers is generated. There is no particular limitation on the mixing ratio of each component and the processing time. For example, sulfuric acid (concentration of 2
100 to 250 parts by weight of nitric acid (those having a concentration of 30 to 70%) and 100 to 250 parts by weight of
It can be manufactured by treating for about 0 minutes to 2 hours.

【0015】次いで、酸処理して得られた黒鉛層間化合
物を加熱して膨脹化させる。加熱温度は700〜120
0℃の範囲が好ましい。昇温速度は特に制限はなく、1
℃以上/時間の昇温速度で昇温する方法、高温に保持し
た炉中に投入し急速加熱する方法等が採用できる。加熱
雰囲気としては空気雰囲気、不活性雰囲気、真空雰囲気
等が採用できる。
Then, the graphite intercalation compound obtained by the acid treatment is expanded by heating. Heating temperature is 700-120
A range of 0 ° C. is preferred. The heating rate is not particularly limited, and is 1
A method of increasing the temperature at a rate of not less than ° C./hour, a method of rapidly heating by putting the mixture in a furnace maintained at a high temperature, and the like can be adopted. As the heating atmosphere, an air atmosphere, an inert atmosphere, a vacuum atmosphere, or the like can be employed.

【0016】得られた膨張黒鉛は粉砕することが好まし
い。この粉砕では、膨張黒鉛をそのまま粉砕してもよい
が、シート状、ブロック状、リング状等の任意の形状に
一度圧縮成形した膨張黒鉛の圧縮成形体を粉砕した方
が、膨張黒鉛をそのまま粉砕するよりも効率がよいので
好ましい。粉砕は、公知の機械的な粉砕法により行うこ
とができる。なお、複合炭素粒子の材料としては、膨張
黒鉛を直接粉砕した粉砕物と膨張黒鉛の圧縮成形体を粉
砕した粉砕物とを組み合わせて用いてもよい。
The obtained expanded graphite is preferably ground. In this pulverization, the expanded graphite may be pulverized as it is, but it is better to pulverize the expanded graphite once compacted into an arbitrary shape such as a sheet, block, ring, etc. It is preferable because it is more efficient than doing. The pulverization can be performed by a known mechanical pulverization method. In addition, as a material of the composite carbon particles, a pulverized product obtained by directly pulverizing expanded graphite and a pulverized product obtained by pulverizing a compression molded product of expanded graphite may be used.

【0017】複合炭素粒子の材料とする膨張黒鉛粒子
は、体積平均粒子径が、0.1〜60μmとすることが
好ましい。平均粒子径が0.1μm未満であると、得ら
れる複合炭素粒子の比表面積が大きくなり、不可逆容量
の増加、電極作製での作業性低下等の問題が発生する傾
向にある。一方、平均粒子径が60μmを超えると、得
られる炭素との複合材の粒子径も過剰に大きくなり、電
極面に凸凹が発生し易くなり好ましくない。平均粒子径
は0.5〜20μmとすることが好ましい。体積平均粒
子径は、例えば、レーザー光散乱を利用した粒子径測定
装置により測定することができる。
The expanded graphite particles used as the material of the composite carbon particles preferably have a volume average particle diameter of 0.1 to 60 μm. When the average particle size is less than 0.1 μm, the specific surface area of the obtained composite carbon particles becomes large, and problems such as an increase in irreversible capacity and a decrease in workability in electrode production tend to occur. On the other hand, when the average particle diameter exceeds 60 μm, the particle diameter of the composite material obtained with carbon is excessively large, and irregularities are easily generated on the electrode surface, which is not preferable. The average particle diameter is preferably set to 0.5 to 20 μm. The volume average particle diameter can be measured by, for example, a particle diameter measuring device using laser light scattering.

【0018】用いる膨張黒鉛粒子の不純物含有量は20
00ppm以下とすることが好ましい。不純物含有量が2
000ppmを超えると、リチウム二次電池負極用材料と
して用いた場合、不可逆容量が増加する傾向にある。こ
の不純物含有量を実現する手法としては、公知の非酸化
性雰囲気中で高温で加熱する、ハロゲン含有雰囲気中で
高温加熱処理する、弗酸などを用いた湿式高純度化処理
等の高純度化処理が採用できる。この高純度化処理は、
膨脹黒鉛粒子の粉砕の前後いずれで行っても良い。な
お、不純物含有量は、膨脹黒鉛粒子を灰化した際の灰分
量として測定される。また、ここで用いる膨脹黒鉛粒子
は、d002が0.336nm以下であることが複合炭素
粒子の充放電容量を大きくするという点で好ましい。
The expanded graphite particles used have an impurity content of 20.
It is preferably at most 00 ppm. Impurity content is 2
If it exceeds 000 ppm, the irreversible capacity tends to increase when used as a negative electrode material for a lithium secondary battery. As a method for realizing this impurity content, high-purity treatment such as heating at a high temperature in a known non-oxidizing atmosphere, high-temperature heat treatment in a halogen-containing atmosphere, or wet purification using hydrofluoric acid or the like is used. Processing can be adopted. This high purity treatment
It may be performed before or after the pulverization of the expanded graphite particles. The impurity content is measured as an ash content when the expanded graphite particles are incinerated. The expanded graphite particles used herein preferably have a d002 of 0.336 nm or less from the viewpoint of increasing the charge / discharge capacity of the composite carbon particles.

【0019】本発明でいう非晶質炭素とは、無定形炭素
とも呼ばれ、結晶の発達の程度の低い炭素をいい、低黒
鉛化炭素と称される高温処理すれば高黒鉛炭素となるよ
うな易黒鉛化炭素の低温処理品(d002が大きく、L
c及びLaが小さいもの)及び高温処理しても高黒鉛化
炭素とならない難黒鉛化炭素を含むものである。
The amorphous carbon referred to in the present invention is also referred to as amorphous carbon, which is carbon having a low degree of crystal growth, and is called high graphitized carbon. Low graphitized carbonized product (d002 is large, L
c and La are small) and non-graphitizable carbon which does not become highly graphitizable carbon even when subjected to high temperature treatment.

【0020】本発明の複合炭素粒子は、膨脹黒鉛部分
と、非晶質炭素部分を含むものであり、その製造方法は
特に制限はないが、有機化合物を溶媒に溶解した溶液
に、膨脹黒鉛粒子を混合分散し、前記溶媒を除去し乾燥
して、膨脹黒鉛粒子・有機化合物複合体とした後、前記
有機化合物を炭素化する方法が、簡易に、微細な膨張黒
鉛粒子と非晶質炭素との均一な複合粒子を得ることがで
きるため好ましい。この方法によれば、非晶質炭素に被
覆された膨脹黒鉛粒子が、複数凝集した構造を有する複
合炭素粒子が得られる。
The composite carbon particles of the present invention contain an expanded graphite portion and an amorphous carbon portion, and the production method thereof is not particularly limited, but the expanded graphite particles are added to a solution in which an organic compound is dissolved in a solvent. After mixing and dispersing, removing the solvent and drying to form an expanded graphite particle / organic compound composite, the method of carbonizing the organic compound is simply, fine expanded graphite particles and amorphous carbon. Is preferable because it is possible to obtain uniform composite particles of According to this method, composite carbon particles having a structure in which a plurality of expanded graphite particles coated with amorphous carbon are aggregated can be obtained.

【0021】本発明で使用する有機化合物としては、特
に制限はなく、各種の樹脂、石油系ピッチ、石炭系ピッ
チ、合成ピッチ等の各種ピッチ、コールタール等のター
ル類、ポリ塩化ビニル等が使用できるが、これらの中で
石油系ピッチ、石炭系ピッチ、合成ピッチ等の各種ピッ
チが好ましい。
The organic compound used in the present invention is not particularly limited, and various resins, various pitches such as petroleum pitch, coal pitch, synthetic pitch, tars such as coal tar, polyvinyl chloride and the like can be used. Among them, various pitches such as petroleum pitch, coal pitch, and synthetic pitch are preferable.

【0022】膨張黒鉛粒子と複合化するこれらの有機化
合物の割合は、得られる膨張黒鉛粒子と有機化合物の炭
素化で生成する非晶質炭素との複合材における膨張黒鉛
粒子の割合が50〜98重量%(即ち非晶質炭素の割合
が2〜50重量%)となるように設定することが好まし
い。複合炭素粒子中の膨張黒鉛部分の割合が50重量%
未満であると放電容量が低下する傾向にあり、98重量
%を越えると炭素との複合化による効果が不十分とな
る。この割合は、膨脹黒鉛粒子・有機化合物複合体を加
熱し、有機化合物を炭素化したときの重量減少量によ
り、次式を用いて求めることができる。
The ratio of these organic compounds to be composited with the expanded graphite particles is such that the ratio of the expanded graphite particles in the composite material of the obtained expanded graphite particles and the amorphous carbon formed by carbonization of the organic compound is 50 to 98. It is preferable to set the weight ratio so as to be 2% by weight (that is, the ratio of amorphous carbon is 2 to 50% by weight). The ratio of the expanded graphite portion in the composite carbon particles is 50% by weight.
If the amount is less than the above, the discharge capacity tends to decrease. If the amount exceeds 98% by weight, the effect of complexing with carbon becomes insufficient. This ratio can be determined from the following equation based on the weight loss when the expanded graphite particles / organic compound composite is heated to carbonize the organic compound.

【0023】[0023]

【数1】 (Equation 1)

【0024】有機化合物の溶液を作製する際に用いる溶
媒としては、用いる有機化合物を溶解できるものであれ
ば特に制限はなく、有機化合物としてピッチ、タール類
を用いる場合にはキノリン、ピリジン、トルエン、ベン
ゼン、テトラヒドロフラン、クレオソート油等が使用で
き、ポリ塩化ビニルを用いる場合にはテトラヒドロフラ
ン、シクロヘキサノン、ニトロベンゼン等が使用でき
る。溶液中に未溶解部分がある場合には、濾過等の手段
で未溶解部分を除去することが、均一な複合炭素粒子を
作製する上で好ましい。有機化合物と溶媒の混合割合に
特に制限はないが、高濃度の場合粘度が高く膨脹黒鉛粒
子を均一に分散させることが困難となり、結果として均
一な膨脹黒鉛粒子・非晶質炭素複合粒子を得ることがで
きないため、有機化合物の量が2〜60重量%とするこ
とが好ましい。
The solvent used in preparing the solution of the organic compound is not particularly limited as long as it can dissolve the organic compound to be used. When pitch or tar is used as the organic compound, quinoline, pyridine, toluene, Benzene, tetrahydrofuran, creosote oil and the like can be used. When polyvinyl chloride is used, tetrahydrofuran, cyclohexanone, nitrobenzene and the like can be used. When there is an undissolved portion in the solution, it is preferable to remove the undissolved portion by means such as filtration in order to produce uniform composite carbon particles. There is no particular limitation on the mixing ratio of the organic compound and the solvent, but when the concentration is high, it is difficult to uniformly disperse the expanded graphite particles with high viscosity, and as a result, uniform expanded graphite particles / amorphous carbon composite particles are obtained. Therefore, the amount of the organic compound is preferably set to 2 to 60% by weight.

【0025】膨張黒鉛粒子と有機化合物の複合体を作成
した後、該有機化合物を炭素化させ、膨張黒鉛粒子と非
晶質炭素との複合炭素粒子とする方法としては、得られ
た有機化合物と膨張黒鉛粒子の混合物を加熱し、有機化
合物を炭素化させる方法が上げられる。これに先立っ
て、膨張黒鉛粒子・有機化合物の複合体を一旦解砕する
ことが好ましい。解砕にはカッターミル、ピンミル等の
粉砕機が使用できる。
After forming a composite of expanded graphite particles and an organic compound, the organic compound is carbonized to form composite carbon particles of expanded graphite particles and amorphous carbon. There is a method of heating a mixture of expanded graphite particles to carbonize an organic compound. Prior to this, it is preferable that the composite of the expanded graphite particles and the organic compound is once crushed. A pulverizer such as a cutter mill or a pin mill can be used for the pulverization.

【0026】前記炭素化に用いる雰囲気としては、不活
性雰囲気、真空雰囲気、低酸素含有雰囲気が採用でき
る。炭素化の際の最高温度は800〜2000℃とする
ことが好ましい。800℃未満では、得られる複合炭素
粒子中の非晶質炭素部分の不可逆容量が大きくなり、結
果として複合体全体の不可逆容量の増加を引き起こす傾
向にあり、一方、2000℃を超える温度に炭素化温度
を上げても炭素部分の不可逆容量の低減の効果は少な
く、むしろ黒鉛化の進行のため電解液の分解による不可
逆容量の増加が起こる可能性がある。最高温度までの昇
温速度は2℃/時間〜100℃/時間とすることが好ま
しい。2℃/時間未満の昇温速度は効果が充分ではな
く、またプロセス時間の増加を引き起こす傾向にあり、
100℃/時間を超える昇温速度では有機化合物の炭素
化の過程での発泡や得られる複合炭素粒子の比表面積の
増加を引き起こす傾向にある。
As the atmosphere used for the carbonization, an inert atmosphere, a vacuum atmosphere, or an atmosphere containing low oxygen can be employed. The maximum temperature during carbonization is preferably set to 800 to 2000 ° C. If the temperature is lower than 800 ° C., the irreversible capacity of the amorphous carbon portion in the obtained composite carbon particles tends to increase, and as a result, the irreversible capacity of the entire composite tends to increase. Even if the temperature is increased, the effect of reducing the irreversible capacity of the carbon portion is small, and the irreversible capacity may increase due to decomposition of the electrolyte solution due to the progress of graphitization. It is preferable that the rate of temperature rise to the maximum temperature is 2 ° C / hour to 100 ° C / hour. Heating rates of less than 2 ° C./hour are not effective enough and tend to cause an increase in process time,
If the heating rate exceeds 100 ° C./hour, foaming during the carbonization of the organic compound and an increase in the specific surface area of the obtained composite carbon particles tend to occur.

【0027】有機化合物としてピッチ、タール類を用い
る場合は、膨張黒鉛・有機化合物複合体を加熱・炭素化
する前に、有機化合物を不融化することができる。この
不融化工程により炭素化工程での粒子の融着が抑制でき
る。不融化方法としては、ピッチ系炭素繊維の製造にお
いて採用されているような公知の方法を用いることがで
き、例えば、酸化剤(空気、酸素、NO2、塩素、臭素
等)と接触させる乾式法、硝酸水溶液、塩素水溶液、硫
酸水溶液、過酸化水素水溶液等を用いた湿式法、これら
を組み合わせた方法などが挙げられる。酸化剤と接触さ
せる乾式法は、200〜300℃で0.1〜10時間、
酸化剤ガスと接触させることが好ましい。湿式法では1
0〜90℃の温度で0.1〜10時間、各種水溶液と接
触させることが好ましい。不融化処理の後、さらに必要
に応じて粉砕、分級処理を行ってもよい。
When pitches and tars are used as the organic compound, the organic compound can be made infusible before heating and carbonizing the expanded graphite / organic compound composite. By this infusibilization step, fusion of particles in the carbonization step can be suppressed. As the infusibilization method, a known method such as that employed in the production of pitch-based carbon fibers can be used, for example, a dry method of contacting with an oxidizing agent (air, oxygen, NO 2 , chlorine, bromine, etc.). , An aqueous solution of nitric acid, an aqueous solution of chlorine, an aqueous solution of sulfuric acid, an aqueous solution of hydrogen peroxide and the like, and a method combining these methods. The dry method of contacting with an oxidizing agent is performed at 200 to 300 ° C. for 0.1 to 10 hours,
Preferably, it is brought into contact with an oxidizing gas. 1 for wet method
It is preferable to contact with various aqueous solutions at a temperature of 0 to 90 ° C. for 0.1 to 10 hours. After the infusibilization treatment, pulverization and classification treatment may be further performed as necessary.

【0028】前記炭素化により得られた複合体は必要に
応じて、解砕、分級する。解砕にはカッターミル、ピン
ミル等の粉砕機が使用でき、分級には風力式、機械式分
級機等が使用できる。最終的に得られる複合炭素粒子の
体積平均粒子径は、リチウム二次電池負極材とする場
合、2〜60μmとすることが好ましい。体積平均粒子
径が2μm未満では比表面積が大きくなり電極作製時の
作業性、電池の安全性が低下する傾向にあり、60μm
を超えると電極作製時に電極表面に凸凹ができ易くな
る。
The complex obtained by the carbonization is crushed and classified, if necessary. A pulverizer such as a cutter mill or a pin mill can be used for pulverization, and a wind-type or mechanical classifier can be used for classification. The volume average particle diameter of the finally obtained composite carbon particles is preferably 2 to 60 μm when used as a negative electrode material for a lithium secondary battery. If the volume average particle diameter is less than 2 μm, the specific surface area tends to be large, and the workability at the time of manufacturing the electrode and the safety of the battery tend to be reduced.
If it exceeds, unevenness is likely to be formed on the electrode surface during electrode fabrication.

【0029】得られる複合炭素粒子の比表面積は、1〜
50m2/gとすることが好ましく、タップ密度は、0.1
5〜0.4g/cm3とすることが好ましい。ここで比表面
積は液体窒素沸点温度で窒素ガスを用いてBET法に従
って測定された値である。比表面積が1m2/g未満の複合
炭素粒子では、放電容量が小さくなる傾向にある。一
方、比表面積が50m2/gを超える複合炭素粒子では、不
可逆容量が大きくなる傾向にあり、また、電極作製時の
作業性が劣る傾向にある。
The specific surface area of the obtained composite carbon particles is from 1 to
The tap density is preferably 50 m 2 / g, and the tap density is 0.1
It is preferably 5 to 0.4 g / cm 3 . Here, the specific surface area is a value measured according to the BET method using a nitrogen gas at a liquid nitrogen boiling point. The composite carbon particles having a specific surface area of less than 1 m 2 / g tend to have a small discharge capacity. On the other hand, in the case of composite carbon particles having a specific surface area of more than 50 m 2 / g, the irreversible capacity tends to increase, and the workability at the time of manufacturing the electrode tends to deteriorate.

【0030】ここで、タップ密度とはJIS1469で
規定された方法で測定されたものである。これが0.1
5g/cm3未満では不可逆容量が大きくなる傾向にあり、
また電極作製時の作業性が劣る傾向にあり、一方、0.
4g/cm3を超えると、放電容量が小さくなる傾向にあ
る。
Here, the tap density is measured by a method specified in JIS1469. This is 0.1
If it is less than 5 g / cm 3 , the irreversible capacity tends to increase,
In addition, the workability at the time of manufacturing the electrode tends to be poor, while the workability at the time of 0.1.
If it exceeds 4 g / cm 3 , the discharge capacity tends to decrease.

【0031】このようにして得られる複合炭素粒子は、
リチウム二次電池の負極材料として用いることができ
る。本発明の負極材料は、例えば以下のようにしてリチ
ウム二次電池用負極成形体とすることができる。例え
ば、有機高分子結着剤と混練してペースト状にし、シー
ト状等の形状に成形できる。
The composite carbon particles thus obtained are:
It can be used as a negative electrode material of a lithium secondary battery. The negative electrode material of the present invention can be used as a negative electrode molded body for a lithium secondary battery, for example, as follows. For example, it can be kneaded with an organic polymer binder to form a paste and formed into a shape such as a sheet.

【0032】有機高分子結着剤としては、ポリエチレ
ン、ポリプロピレン、ポリエチレンテレフタレート、芳
香族ポリアミド、芳香族ポリイミド、セルロース、ポリ
弗化ビニリデン、ポリテトラフルオロエチレン、テトラ
フルオロエチレンを含む共重合フッ素ポリマーなどの高
分子材料、スチレン・ブタジエンゴム、イソプレンゴ
ム、ブタジエンゴム、エチレン・プロピレンゴム等のゴ
ム状高分子材料、エチレン・酢酸ビニル共重合体、プロ
ピレン・α−オレフィン共重合体等の軟質状高分子材
料、ポリエチレンオキサイド、ポリプロピレンオキサイ
ド、ポリエピクロロヒドリン、ポリファゼン、ポリ弗化
ビニリデン、ポリアクリロニトリル等の有機高分子材料
にリチウム塩又はリチウムを主体とするアルカリ金属塩
を複合化した系等のイオン導電性高分子材料を用いるこ
とができる。
Examples of the organic polymer binder include polyethylene, polypropylene, polyethylene terephthalate, aromatic polyamide, aromatic polyimide, cellulose, polyvinylidene fluoride, polytetrafluoroethylene, and copolymerized fluoropolymer containing tetrafluoroethylene. Polymer materials, rubbery polymer materials such as styrene / butadiene rubber, isoprene rubber, butadiene rubber, ethylene / propylene rubber, and soft polymer materials such as ethylene / vinyl acetate copolymer and propylene / α-olefin copolymer , Such as a system in which a lithium salt or an alkali metal salt mainly composed of lithium is combined with an organic polymer material such as polyethylene oxide, polypropylene oxide, polyepichlorohydrin, polyphazene, polyvinylidene fluoride, polyacrylonitrile, etc. A conductive polymer material can be used.

【0033】これらの有機高分子結着剤の他に、粘度調
整剤としてカルボキシメチルセルロース、ポリアクリル
酸ソーダ、その他のアクリル系ポリマー等を添加しても
よい。これらの有機高分子結着剤と本発明の負極材料と
の混合割合は、負極材料100重量部に対して有機高分
子結着剤が0.1〜30重量部が好ましく、0.5〜2
0重量部がより好ましく、1〜15重量部がさらに好ま
しい。
In addition to these organic polymer binders, carboxymethylcellulose, sodium polyacrylate, other acrylic polymers and the like may be added as a viscosity modifier. The mixing ratio of the organic polymer binder to the negative electrode material of the present invention is preferably 0.1 to 30 parts by weight, more preferably 0.5 to 2 parts by weight, based on 100 parts by weight of the negative electrode material.
0 parts by weight is more preferable, and 1 to 15 parts by weight is further preferable.

【0034】本発明の負極材料を上記の有機高分子結着
剤と混合し、そのままロール成形、圧縮成形などの方法
で電極の形状に成形して、負極成形体を作製することが
できる。また、本発明の負極材料の粉末と上記の有機高
分子結着剤の混合物を溶媒中に分散させ、スラリーと
し、これを金属製の集電体等に塗布しても良い。集電体
金属としては、圧延銅箔、電解銅箔、パンチング銅箔、
ニッケル箔等が用いられる。電極成形体の形状は、シー
ト状、ペレット状等、任意に設定できる。
The negative electrode material of the present invention can be mixed with the above-mentioned organic polymer binder and then molded as it is into a shape of an electrode by a method such as roll molding or compression molding to produce a molded negative electrode. Further, a mixture of the powder of the negative electrode material of the present invention and the above organic polymer binder may be dispersed in a solvent to form a slurry, which may be applied to a metal current collector or the like. Roller copper foil, electrolytic copper foil, punching copper foil,
Nickel foil or the like is used. The shape of the electrode molded body can be arbitrarily set, such as a sheet shape or a pellet shape.

【0035】前記溶剤としては、特に制限はなく、N−
メチル−2−ピロリドン、ジメチルホルムアミド、イソ
プロパノール等があげられ、その量に特に制限はない。
以上のようにして得られた負極を用いて電池を組み立て
るが、これに先立って又は組み立ての際に活物質である
リチウム金属を負極成形体に担持させることができる。
これにより初回充電時の不可逆容量が大幅に低減でき
る。この担持方法としては化学的方法、物理的方法、電
気化学的方法があり、例えばリチウムイオン含有電解液
に負極成形体を浸漬し、対極に金属リチウムを用いて電
気含浸する方法、負極成形体作製時に金属リチウム粉末
を混合する方法、金属リチウムと負極極成形体を電気的
に接触させる方法等がある。
The solvent is not particularly limited, and N-
Examples thereof include methyl-2-pyrrolidone, dimethylformamide, and isopropanol, and the amount is not particularly limited.
A battery is assembled using the negative electrode obtained as described above. Prior to or during the assembly, lithium metal as an active material can be supported on the negative electrode molded body.
Thereby, the irreversible capacity at the time of the first charging can be significantly reduced. Examples of the supporting method include a chemical method, a physical method, and an electrochemical method. For example, a method of immersing a negative electrode molded body in a lithium ion-containing electrolytic solution, and electrically impregnating the negative electrode with metallic lithium, and a method of preparing a negative electrode molded body Sometimes, a method of mixing metallic lithium powder, a method of electrically contacting metallic lithium and the molded negative electrode, and the like are available.

【0036】以上のようにして作製されたリチウム二次
電池用負極は、セパレータを介して正極と対向して配置
され、リチウム二次電池を構成する。正極材料として
は、特に限定しないが、例えばバナジウム酸化物、バナ
ジウム硫化物、モリブデン酸化物、モリブデン硫化物、
マンガン酸化物、マンガン硫化物、クロム酸化物、チタ
ン酸化物、チタン硫化物、これらの複合酸化物、複合硫
化物等の金属カルコゲン化合物、リチウムコバルト酸化
物(LiCoO2)、リチウムニッケル酸化物(LiN
iO2)、リチウムマンガン酸化物(LiMn2 4、L
iMnO3)、リチウムニッケルコバルト酸化物(Lix
NiyCo(1-y)2)等の複合酸化物、これらに他の金
属元素(Al、Fe、Mn、Mg、Co等)を添加した
複合酸化物等を用いることができる。また、ポリアニリ
ン、ポリピロール等の導電性ポリマーを用いることもで
きる。
The lithium secondary manufactured as described above
Battery negative electrode is placed facing the positive electrode with the separator interposed
Thus, a lithium secondary battery is formed. As a positive electrode material
Is not particularly limited, for example, vanadium oxide, vanadium
Disulfide, molybdenum oxide, molybdenum sulfide,
Manganese oxide, manganese sulfide, chromium oxide, titanium
Oxides, titanium sulfides, their composite oxides,
Metal chalcogen compounds such as chlorides, lithium cobalt oxidation
(LiCoOTwo), Lithium nickel oxide (LiN
iOTwo), Lithium manganese oxide (LiMn)TwoO Four, L
iMnOThree), Lithium nickel cobalt oxide (Lix
NiyCo(1-y)OTwo) And other complex oxides
Added elemental elements (Al, Fe, Mn, Mg, Co, etc.)
A composite oxide or the like can be used. Also, polyanily
And conductive polymers such as polypyrrole.
Wear.

【0037】電解液としては、非水系溶媒に電解質とな
るリチウム塩を溶解したものを用いる。電解質として
は、LiClO4、LiPF6、LiAsF6、LiB
4、LiSO3CF3、LiN(SO2CF3)2等のリチウ
ム金属塩、テトラアルキルアンモニウム塩等を用いるこ
とができる。リチウム塩の濃度は0.2〜2モル/リッ
トルが好ましく、より好ましくは0.3〜1.9モル/
リットルである。
As the electrolytic solution, a solution in which a lithium salt serving as an electrolyte is dissolved in a non-aqueous solvent is used. As the electrolyte, LiClO 4, LiPF 6, LiAsF 6, LiB
Lithium metal salts such as F 4 , LiSO 3 CF 3 , and LiN (SO 2 CF 3 ) 2 , and tetraalkylammonium salts can be used. The concentration of the lithium salt is preferably 0.2 to 2 mol / l, more preferably 0.3 to 1.9 mol / l.
Liters.

【0038】非水系溶媒としては、プロピレンカーボネ
ート、エチレンカーボネート、ブチレンカーボネート、
ビニレンカーボネート、γ−ブチロラクトン等の環状エ
ステル類、ジエチルカーボネート等の鎖状エステル類、
メチルエチルケトン等のケトン類、1,2−ジメトキシ
エタン、ジオキソラン、テトラヒドロフラン、1,2−
ジメチルテトラヒドロフラン、クラウンエーテル等のエ
ーテル類を用いることができる。また、上記塩類をポリ
エチレンオキサイド、ポリホスファゼン、ポリアジリジ
ン、ポリアクリロニトリル、ポリエチレンスルフィド等
やこれらの誘導体、混合物、複合体等に混合された固体
電解質を用いることもできる。この場合、固体電解質は
セパレータも兼ねることができ、セパレータは不要とな
る、
As the non-aqueous solvent, propylene carbonate, ethylene carbonate, butylene carbonate,
Vinylene carbonate, cyclic esters such as γ-butyrolactone, chain esters such as diethyl carbonate,
Ketones such as methyl ethyl ketone, 1,2-dimethoxyethane, dioxolan, tetrahydrofuran, 1,2-
Ethers such as dimethyltetrahydrofuran and crown ether can be used. In addition, a solid electrolyte in which the above salts are mixed with polyethylene oxide, polyphosphazene, polyaziridine, polyacrylonitrile, polyethylene sulfide, or the like, or a derivative, a mixture, or a complex thereof can also be used. In this case, the solid electrolyte can also serve as a separator, and the separator is not required.

【0039】負極と正極を分離し、電解液を保持するセ
パレータとしては、ポリエチレン、ポリプロピレン、ポ
リプロピレン/ポリプロピレン複合系、ポリプロピレン
/フッ素樹脂複合系等の微多孔質膜、不織布等を使用す
ることができる。
As the separator for separating the negative electrode and the positive electrode and holding the electrolytic solution, a microporous film of polyethylene, polypropylene, a composite of polypropylene / polypropylene, a composite of polypropylene / fluororesin, a nonwoven fabric, or the like can be used. .

【0040】[0040]

【実施例】以下、実施例を説明する。 実施例1 未溶解分を濾過除去したコールタールピッチのテトラヒ
ドロフラン溶液(コールタールピッチ:11重量部、テ
トラヒドロフラン:300重量部)に、膨張黒鉛粉砕物
を添加、混合し、沸点にて1時間還流しながら攪拌・混
合した。用いた膨張黒鉛粉砕物は、膨張黒鉛シートをピ
ンミルを用いて粉砕し、次いで塩素含有雰囲気中、27
00℃で1時間加熱して高純度化処理して作製した。こ
の膨脹黒鉛粉砕物の平均粒子径は12μm、不純物含有
量は20ppm、d002は0.3355nmであった。
Embodiments will be described below. Example 1 A powdered product of expanded graphite was added to a tetrahydrofuran solution of coal tar pitch (coal tar pitch: 11 parts by weight, tetrahydrofuran: 300 parts by weight) from which undissolved components were removed by filtration, mixed, and refluxed at the boiling point for 1 hour. While stirring and mixing. The pulverized expanded graphite used was obtained by pulverizing an expanded graphite sheet using a pin mill, and then crushing the expanded graphite sheet in an atmosphere containing chlorine.
It was manufactured by heating at 00 ° C. for 1 hour to perform a high-purification treatment. The average particle diameter of the expanded graphite pulverized product was 12 μm, the content of impurities was 20 ppm, and d002 was 0.3355 nm.

【0041】次いで、ロータリーエバポレータを用いて
テトラヒドロフランを除去し、100℃で3時間真空乾
燥した。得られた膨張黒鉛粉砕物とコールタールピッチ
からなる複合体をカッターミルで解砕し、200mesh以
下とした。得られた複合体粉末を空気中、3℃/分の速
度で250℃まで昇温し、1時間保持した。次いで、窒
素気流中、20℃/時間の速度で1300℃まで昇温
し、1時間保持して、非晶質炭素に被覆された膨脹黒鉛
粒子が複数凝集した構造の、非晶質炭素と膨張黒鉛の複
合体を得た。これをカッターミルで解砕し、200mesh
以下とした。
Next, tetrahydrofuran was removed by using a rotary evaporator, and the resultant was dried under vacuum at 100 ° C. for 3 hours. The resulting composite comprising the pulverized expanded graphite and coal tar pitch was pulverized with a cutter mill to 200 mesh or less. The obtained composite powder was heated to 250 ° C. at a rate of 3 ° C./min in the air and kept for 1 hour. Then, the temperature is raised to 1300 ° C. at a rate of 20 ° C./hour in a nitrogen gas stream, and the temperature is maintained for 1 hour to expand the amorphous carbon coated with the amorphous carbon. A graphite composite was obtained. This is crushed with a cutter mill and 200mesh
It was as follows.

【0042】上記加熱時の重量減少量より求めた複合体
中のコールタールピッチ由来の炭素量は6.2重量%で
あり、膨張黒鉛の含有量は93.8重量%であった。ま
た、窒素を用いたBET法で測定された比表面積は17
m2/gであり、タップ密度は0.20g/cm3であった。平
均粒子径は15μmであった。
The carbon content derived from coal tar pitch in the composite determined from the weight loss upon heating was 6.2% by weight, and the content of expanded graphite was 93.8% by weight. The specific surface area measured by the BET method using nitrogen is 17
m 2 / g, and the tap density was 0.20 g / cm 3 . The average particle size was 15 μm.

【0043】実施例2 コールタールピッチ配合量を27重量部とした以外は実
施例1と同様にして複合体粉末を作製した。得られた複
合体中の膨張黒鉛の含有量は86.6重量%であった。
比表面積、タップ密度はそれぞれ、15m2/g、0.25
g/cm3であった。平均粒子径は18μmであった。
Example 2 A composite powder was prepared in the same manner as in Example 1 except that the amount of coal tar pitch was changed to 27 parts by weight. The content of the expanded graphite in the obtained composite was 86.6% by weight.
Specific surface area and tap density are 15m 2 / g and 0.25 respectively.
g / cm 3 . The average particle size was 18 μm.

【0044】実施例3 コールタールピッチ配合量を78重量部とした以外は実
施例1と同様にして複合体粉末を作製した。得られた複
合体中の膨張黒鉛の含有量は79.0重量%であった。
比表面積、タップ密度はそれぞれ、10m2/g、0.31
g/cm3であった。平均粒子径は21μmであった。
Example 3 A composite powder was prepared in the same manner as in Example 1 except that the blending amount of the coal tar pitch was changed to 78 parts by weight. The content of the expanded graphite in the obtained composite was 79.0% by weight.
Specific surface area and tap density are 10m 2 / g and 0.31, respectively.
g / cm 3 . The average particle size was 21 μm.

【0045】実施例4 コールタールピッチ配合量を130重量部とした以外は
実施例1と同様にして複合体粉末を作製した。得られた
複合体粉末中の膨張黒鉛の含有量は57.5重量%であ
った。比表面積、タップ密度はそれぞれ、8m2/g、0.
35g/cm3であった。平均粒子径は25μmであった。
Example 4 A composite powder was prepared in the same manner as in Example 1 except that the amount of coal tar pitch was changed to 130 parts by weight. The content of the expanded graphite in the obtained composite powder was 57.5% by weight. The specific surface area and tap density are 8 m 2 / g and 0.
It was 35 g / cm 3 . The average particle size was 25 μm.

【0046】比較例1 実施例1〜4で用いた膨張黒鉛粉砕物をそのまま用い
た。比表面積は36m2/g、タップ密度は0.11g/cm3
であった。平均粒子径は12μmであった。
Comparative Example 1 The pulverized expanded graphite used in Examples 1 to 4 was used as it was. Specific surface area is 36m 2 / g, tap density is 0.11g / cm 3
Met. The average particle size was 12 μm.

【0047】実施例5 実施例1においてコールタールピッチ配合量を4重量部
とした以外は実施例1と同様にして膨張黒鉛粉砕物、炭
素からなる複合体粉末を作製した。得られた複合体粉末
中の膨張黒鉛の含有量は98.5重量%であった。比表
面積、タップ密度はそれぞれ、25m2/g、0.13g/cm
3であった。平均粒子径は16μmであった。
Example 5 A composite powder comprising pulverized expanded graphite and carbon was prepared in the same manner as in Example 1 except that the blending amount of coal tar pitch was changed to 4 parts by weight. The content of the expanded graphite in the obtained composite powder was 98.5% by weight. Specific surface area and tap density are 25m 2 / g and 0.13g / cm, respectively.
Was 3 . The average particle size was 16 μm.

【0048】実施例6 実施例1においてコールタールピッチ配合量を270重
量部とした以外は実施例1と同様にして複合体粉末を作
製した。得られた複合体粉末中の膨張黒鉛の含有量は4
0.3重量%であった。比表面積、タップ密度はそれぞ
れ、25m2/g、0.13g/cm3であった。平均粒子径は
30μmであった。
Example 6 A composite powder was prepared in the same manner as in Example 1 except that the blending amount of coal tar pitch was changed to 270 parts by weight. The content of expanded graphite in the obtained composite powder is 4
0.3% by weight. The specific surface area and tap density were 25 m 2 / g and 0.13 g / cm 3 , respectively. The average particle size was 30 μm.

【0049】実施例7 膨張黒鉛粉砕物を高純度化処理を施していないものに変
えた以外は実施例1と同様にして膨張黒鉛粉砕物、炭素
からなる複合体粉末を作製した。用いた膨張黒鉛粉砕物
の不純物含有量は2800ppmであり、d002は0.
3357nmであった。得られた複合体粉末中の膨張黒鉛
の含有量は86.5重量%であった。比表面積、タップ
密度はそれぞれ、19m2/g、0.19g/cm3であった。
平均粒子径は15μmであった。
Example 7 A composite powder composed of pulverized expanded graphite and carbon was prepared in the same manner as in Example 1 except that the pulverized expanded graphite was changed to a non-purified one. The impurity content of the pulverized expanded graphite product used was 2800 ppm, and d002 was 0.1%.
It was 3357 nm. The content of the expanded graphite in the obtained composite powder was 86.5% by weight. The specific surface area and tap density were 19 m 2 / g and 0.19 g / cm 3 , respectively.
The average particle size was 15 μm.

【0050】〔充放電容量測定〕得られた複合体粉末を
負極材料として、その90重量%に、N−メチル−2−
ピロリドンに溶解したポリ弗化ビニリデンを固形分で1
0重量%添加、混練しスラリーを作製した。このスラリ
ーを厚さ10μmの圧延銅箔に塗布し、更に乾燥して負
極とした。作製した試料電極を3端子法による定電流充
放電を行い、リチウムイオン二次電池負極としての評価
を行った。
[Measurement of Charge / Discharge Capacity] Using the obtained composite powder as a negative electrode material, 90% by weight of N-methyl-2-
1% polyvinylidene fluoride dissolved in pyrrolidone
0% by weight was added and kneaded to prepare a slurry. This slurry was applied to a rolled copper foil having a thickness of 10 μm and dried to obtain a negative electrode. The prepared sample electrode was charged and discharged at a constant current by a three-terminal method, and evaluated as a negative electrode of a lithium ion secondary battery.

【0051】図1はこの実験に用いたリチウムイオン二
次電池の概略図である。図1に示すようにガラスセル1
に、電解液2としてLiPF6をエチレンカーボネート
とジメチルカーボメートの等体積混合溶媒に1モル/リ
ットルの濃度になるように溶解した溶液を入れ、試料電
極(負極)3、セパレータ4及び対極(正極)5を積層
して配置し、さらに参照電極6を上部より吊るしてリチ
ウムイオン二次電池を作製した。対極及び参照極には金
属リチウムを使用し、セパレータにはポリエチレン微多
孔質膜を使用した。0.28mA/cm2の定電流で1.5V
(V vs Li/Li+)まで充電し、0V(V v
s Li/Li+)まで放電する試験を行った。表1に
測定された初回充放電時の充放電容量及び不可逆容量の
値を示す。
FIG. 1 is a schematic diagram of the lithium ion secondary battery used in this experiment. As shown in FIG.
A solution obtained by dissolving LiPF 6 in an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate so as to have a concentration of 1 mol / liter was added as an electrolytic solution 2 to the sample electrode (negative electrode) 3, separator 4 and counter electrode (positive electrode). 5) were stacked and arranged, and the reference electrode 6 was suspended from above to produce a lithium ion secondary battery. Metal lithium was used for the counter electrode and the reference electrode, and a polyethylene microporous membrane was used for the separator. 1.5 V at a constant current of 0.28 mA / cm 2
(V vs Li / Li + ), and 0V (V v
s Li / Li + ). Table 1 shows the measured values of the charge / discharge capacity and the irreversible capacity during the initial charge / discharge.

【0052】[0052]

【表1】 [Table 1]

【0053】(リチウムイオン二次電池の作製)図2に
円筒型リチウムイオン二次電池の一例の一部断面正面図
を示す。図2においては、7は正極、8は負極、9はセ
パレータ、10は正極タブ、11は負極タブ、12は正
極蓋、13は電池缶及び14はガスケットである。図2
に示すリチウムイオン二次電池は以下のようにして作製
した。
(Preparation of Lithium Ion Secondary Battery) FIG. 2 shows a partial cross-sectional front view of an example of a cylindrical lithium ion secondary battery. In FIG. 2, 7 is a positive electrode, 8 is a negative electrode, 9 is a separator, 10 is a positive electrode tab, 11 is a negative electrode tab, 12 is a positive electrode lid, 13 is a battery can, and 14 is a gasket. FIG.
The lithium ion secondary battery shown in was manufactured as follows.

【0054】(正極の作製)正極活物質としてLiCo
2 288重量部に、導電剤として平均粒子径が1μ
mの鱗片状天然黒鉛7重量部と、結着剤としてポリ弗化
ビニリデン5重量部を添加し、これにN−メチル−2−
ピロリドンを加え混合し正極合剤のスラリーを調製し
た。次いで、この正極合剤を正極集電体としてアルミニ
ウム箔(厚さ25μm)にドクターブレード法により両
面に塗布、乾燥、次いでローラープレスによって電極を
加圧成形した。これを幅40mmで長さ285mmの大きさ
に切り出しで正極10を作製した。但し、正極10の両
端の長さ10mmの部分は正極合剤が塗布されておらず、
アルミニウム箔が露出しており、この一方に正極タブ1
3を超音波接合によって圧着した。
(Preparation of Positive Electrode) LiCo as a positive electrode active material
An average particle size of 1 μm as a conductive agent was added to 288 parts by weight of O 2 .
m-scale natural graphite (7 parts by weight) and polyvinylidene fluoride (5 parts by weight) as a binder were added thereto, and N-methyl-2-
Pyrrolidone was added and mixed to prepare a slurry of the positive electrode mixture. Next, this positive electrode mixture was applied as a positive electrode current collector to an aluminum foil (thickness: 25 μm) on both sides by a doctor blade method, dried, and then pressure-formed by a roller press. This was cut out into a size having a width of 40 mm and a length of 285 mm to produce a positive electrode 10. However, the portion of the positive electrode 10 having a length of 10 mm at both ends is not coated with the positive electrode mixture,
The aluminum foil is exposed.
3 was pressed by ultrasonic bonding.

【0055】(負極の作製)試料の複合端子粒子と結着
剤としてのポリ弗化ビニリデンとを重量比90:10の
比率で混合し、これを溶剤(N−メチル−2−ピロリド
ン)に分散させてスラリーとした後、負極集電体として
の銅箔(厚さ10μm)の両面にドクターブレード法に
より塗付し、乾燥、次いでローラープレスによって電極
を加圧成形した。これを幅40mmで長さ290mmの大き
さに切り出しで負極を作製した。この負極を正極と同様
に、両端の長さ10mmの部分の負極合剤が塗布されてい
ない部分の一方に負極タブを超音波接合によって圧着し
た。
(Preparation of Negative Electrode) The composite terminal particles of the sample and polyvinylidene fluoride as a binder were mixed at a weight ratio of 90:10, and this was dispersed in a solvent (N-methyl-2-pyrrolidone). After the slurry was formed, both surfaces of a copper foil (thickness: 10 μm) as a negative electrode current collector were applied by a doctor blade method, dried, and then the electrodes were pressure-formed by a roller press. This was cut out to a size of 40 mm in width and 290 mm in length to produce a negative electrode. In the same manner as the positive electrode, the negative electrode was pressed by ultrasonic bonding to a negative electrode tab at one end of a portion having a length of 10 mm where the negative electrode mixture was not applied.

【0056】(電解液の調製)エチレンカーボネートと
ジメチルカーボネートとの等体積混合溶媒に、LiPF
6を1モル/リットル溶解し、電解液を調製した。
(Preparation of electrolyte solution) LiPF was added to an equal volume mixed solvent of ethylene carbonate and dimethyl carbonate.
6 was dissolved at 1 mol / liter to prepare an electrolytic solution.

【0057】(電池の作製)前記正極、ポリエチレン製
多孔質フィルム(厚さ25μm、幅44mm)からなるセ
パレータ、及び前記負極をこの順序で積層した後、前記
負極が外側に位置するように渦巻き状に捲回して電極群
を作製した。この電極群をステンレス製の電池缶に収納
し、負極タブを缶底溶接し、正極蓋をかしめるための絞
り部を設けた。この後、前記電解液を電池缶に注入し、
正極タブを正極蓋に溶接し、正極蓋をかしめて円筒型リ
チウムイオン二次電池を作製した。充放電電流を200
mAとし、各電池の充放電サイクル特性を測定した。その
結果を表2に示す。
(Preparation of Battery) The positive electrode, a separator made of a porous film made of polyethylene (thickness 25 μm, width 44 mm), and the negative electrode were laminated in this order, and then spirally wound so that the negative electrode was positioned outside. To form an electrode group. The electrode group was housed in a stainless steel battery can, the negative electrode tab was welded to the bottom of the can, and a throttle portion for caulking the positive electrode lid was provided. Thereafter, the electrolyte is poured into a battery can,
The positive electrode tab was welded to the positive electrode lid, and the positive electrode lid was crimped to produce a cylindrical lithium ion secondary battery. Charge / discharge current is 200
mA, the charge / discharge cycle characteristics of each battery were measured. Table 2 shows the results.

【0058】[0058]

【表2】 [Table 2]

【0059】[0059]

【発明の効果】本発明の複合炭素粒子は、高い充放電容
量を有し、且つ従来の膨張黒鉛粒子をリチウム二次電池
の負極材料として用いた場合の、スラリー特性悪化、集
電体面方向での粒子の配向、サイクル特性悪化、不可逆
容量増加等の課題が改善されたリチウム二次電池用負極
材料として好適なものである。
The composite carbon particles of the present invention have a high charge / discharge capacity and, when conventional expanded graphite particles are used as a negative electrode material of a lithium secondary battery, deteriorated slurry characteristics and reduced the current collector surface direction. It is suitable as a negative electrode material for a lithium secondary battery in which the problems such as particle orientation, cycle characteristics deterioration, and irreversible capacity increase have been improved.

【0060】本発明の複合炭素粒子の製造法によれば、
高い充放電容量を有し、且つ従来の膨張黒鉛粒子をリチ
ウム二次電池の負極材料として用いた場合の、スラリー
特性悪化、集電体面方向での粒子の配向、サイクル特性
悪化、不可逆容量増加等の課題が改善されたリチウム二
次電池用負極材料として好適な複合炭素粒子を容易に製
造できる。
According to the method for producing composite carbon particles of the present invention,
When the conventional expanded graphite particles have a high charge / discharge capacity and are used as a negative electrode material of a lithium secondary battery, the slurry characteristics deteriorate, the orientation of the particles in the current collector surface direction, the cycle characteristics deteriorate, and the irreversible capacity increases. Thus, composite carbon particles suitable as a negative electrode material for a lithium secondary battery in which the problem described above has been improved can be easily produced.

【0061】本発明の負極材料は、高い充放電容量を有
し、且つ従来の膨張黒鉛粒子を用いた場合の、スラリー
特性悪化、集電体面方向での粒子の配向、サイクル特性
悪化、不可逆容量増加等の課題が改善されたものであ
る。本発明のリチウム二次電池用負極は、高い充放電容
量を有し、且つ従来の膨張黒鉛粒子を用いた場合の、集
電体面方向での粒子の配向、サイクル特性悪化、不可逆
容量増加等の課題が改善されたものである。本発明のリ
チウム二次電池は、高い充放電容量を有し、サイクル特
性に優れ、不可逆容量の少ないものである。
The negative electrode material of the present invention has a high charge / discharge capacity and, when conventional expanded graphite particles are used, deteriorated slurry characteristics, particle orientation in the current collector surface direction, deteriorated cycle characteristics, and irreversible capacity. Issues such as increase have been improved. The negative electrode for a lithium secondary battery of the present invention has a high charge / discharge capacity, and in the case of using conventional expanded graphite particles, orientation of particles in the current collector surface direction, deterioration of cycle characteristics, increase in irreversible capacity, and the like. The task has been improved. The lithium secondary battery of the present invention has high charge / discharge capacity, excellent cycle characteristics, and low irreversible capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】黒鉛質粒子の単独での放電容量の測定に用いた
リチウム二次電池の概略図である。
FIG. 1 is a schematic view of a lithium secondary battery used for measuring the discharge capacity of graphite particles alone.

【図2】円筒型リチウム二次電池の一部断面正面図であ
る。
FIG. 2 is a partial cross-sectional front view of a cylindrical lithium secondary battery.

【符号の説明】[Explanation of symbols]

1 ガラスセル 2 電解液 3 試料電極 4 セパレータ 5 対極 6 参照極 7 正極 8 負極 9 セパレータ 10 正極タブ 11 負極タブ 12 正極蓋 13 電池缶 14 ガスケット DESCRIPTION OF SYMBOLS 1 Glass cell 2 Electrolyte 3 Sample electrode 4 Separator 5 Counter electrode 6 Reference electrode 7 Positive electrode 8 Negative electrode 9 Separator 10 Positive electrode tab 11 Negative electrode tab 12 Positive electrode cover 13 Battery can 14 Gasket

フロントページの続き (72)発明者 荷見 猛 茨城県日立市鮎川町三丁目3番1号 日立 化成工業株式会社山崎工場内 Fターム(参考) 4G046 CA00 CA04 CA05 CA07 CB02 CB09 CC01 CC05 5H003 AA02 AA04 BA01 BA03 BB01 BC01 BC05 BD02 BD05 BD06 5H014 AA01 BB01 BB03 BB06 CC01 CC07 EE08 HH01 HH06 HH08 5H029 AJ03 AJ05 AK02 AK03 AK05 AL06 AM03 AM04 AM05 AM07 BJ02 BJ14 CJ02 CJ08 CJ12 CJ28 DJ12 DJ16 DJ17 DJ18 HJ01 HJ05 HJ07 Continued on the front page (72) Inventor Takeshi Takeshi 3-3-1 Ayukawacho, Hitachi City, Hitachi, Ibaraki Prefecture Hitachi Chemical Co., Ltd. Yamazaki Plant F-term (reference) BA03 BB01 BC01 BC05 BD02 BD05 BD06 5H014 AA01 BB01 BB03 BB06 CC01 CC07 EE08 HH01 HH06 HH08 5H029 AJ03 AJ05 AK02 AK03 AK05 AL06 AM03 AM04 AM05 AM07 BJ02 BJ14 CJ02 CJ08 CJ12 HJ12 DJJ12 DJ14

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 膨張黒鉛部分及び非晶質炭素部分を含有
してなる複合炭素粒子。
1. Composite carbon particles comprising an expanded graphite portion and an amorphous carbon portion.
【請求項2】 非晶質炭素に被覆された膨脹黒鉛粒子
が、複数凝集した構造を有する請求項1記載の複合炭素
粒子。
2. The composite carbon particles according to claim 1, wherein the expanded graphite particles coated with the amorphous carbon have a plurality of aggregated structures.
【請求項3】 平均粒子径が2〜60μmである請求項
1又は2記載の複合炭素粒子。
3. The composite carbon particle according to claim 1, wherein the average particle diameter is 2 to 60 μm.
【請求項4】 膨張黒鉛部分の割合が、複合炭素粒子の
重量に対して50〜98重量%である請求項1、2又は
3記載の複合炭素粒子。
4. The composite carbon particle according to claim 1, wherein the proportion of the expanded graphite portion is 50 to 98% by weight based on the weight of the composite carbon particle.
【請求項5】 比表面積が1〜50m2/g、JIS146
9に規定されるタップ密度が0.15〜0.4g/cm3
ある請求項1、2、3又は4記載の複合炭素粒子。
5. Specific surface area of 1 to 50 m 2 / g, JIS146
5. The composite carbon particle according to claim 1, wherein the tap density specified in 9 is 0.15 to 0.4 g / cm 3 .
【請求項6】 有機化合物を溶媒に溶解した溶液に、膨
張黒鉛粒子を混合分散し、前記溶媒を除去し乾燥した
後、前記有機化合物を炭素化することを特徴とする複合
炭素粒子の製造法。
6. A method for producing composite carbon particles, comprising mixing and dispersing expanded graphite particles in a solution in which an organic compound is dissolved in a solvent, removing the solvent, drying, and then carbonizing the organic compound. .
【請求項7】 用いる膨張黒鉛粒子の不純物含有量は2
000ppm以下である請求項6記載の複合炭素粒子の製
造法。
7. The expanded graphite particles used have an impurity content of 2%.
The method for producing composite carbon particles according to claim 6, wherein the content is 000 ppm or less.
【請求項8】 請求項1〜5の何れかに記載の複合炭素
粒子又は請求項6若しくは7に記載の製造法により得ら
れる複合炭素粒子を含有してなる負極材料。
8. A negative electrode material comprising the composite carbon particles according to claim 1 or the composite carbon particles obtained by the production method according to claim 6 or 7.
【請求項9】 請求項8記載の負極材料を用いてなるリ
チウム二次電池用負極。
9. A negative electrode for a lithium secondary battery using the negative electrode material according to claim 8.
【請求項10】 請求項9記載のリチウム二次電池用負
極を有してなるリチウム二次電池。
10. A lithium secondary battery comprising the negative electrode for a lithium secondary battery according to claim 9.
JP11004785A 1999-01-12 1999-01-12 Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell Pending JP2000203817A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11004785A JP2000203817A (en) 1999-01-12 1999-01-12 Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11004785A JP2000203817A (en) 1999-01-12 1999-01-12 Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell

Publications (1)

Publication Number Publication Date
JP2000203817A true JP2000203817A (en) 2000-07-25

Family

ID=11593469

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11004785A Pending JP2000203817A (en) 1999-01-12 1999-01-12 Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell

Country Status (1)

Country Link
JP (1) JP2000203817A (en)

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147644A (en) * 2001-03-21 2003-05-21 Morinobu Endo Carbon fiber produced by vapor growth method, composite material and electrically conductive resin each using the same, and method for adjusting length of the same
JP2003147643A (en) * 2001-03-21 2003-05-21 Morinobu Endo Carbon fiber form produced by vapor growth method
JP2004327242A (en) * 2003-04-24 2004-11-18 Nissan Motor Co Ltd Polymer secondary battery
JP2005019397A (en) * 2003-06-05 2005-01-20 Showa Denko Kk Carbon material for battery electrode, its manufacturing method, and use
JP2005200276A (en) * 2004-01-16 2005-07-28 Hitachi Chem Co Ltd Method for producing graphite-amorphous carbon composite material, graphite-amorphous carbon composite material, negative electrode for battery, and battery
JP2012059708A (en) * 2003-06-05 2012-03-22 Showa Denko Kk Lithium secondary battery
KR101342600B1 (en) * 2011-05-11 2013-12-17 삼성에스디아이 주식회사 Negative active material, method for preparing the same, and lithium battery comprising the same
JP2014170724A (en) * 2013-02-05 2014-09-18 Jfe Chemical Corp Material for lithium ion secondary battery negative electrode, manufacturing method thereof, lithium ion secondary battery negative electrode, and lithium ion secondary battery
CN115448307A (en) * 2022-09-13 2022-12-09 季华实验室 Expanded graphite-based carbon composite material and preparation method and application thereof

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003147644A (en) * 2001-03-21 2003-05-21 Morinobu Endo Carbon fiber produced by vapor growth method, composite material and electrically conductive resin each using the same, and method for adjusting length of the same
JP2003147643A (en) * 2001-03-21 2003-05-21 Morinobu Endo Carbon fiber form produced by vapor growth method
JP2004327242A (en) * 2003-04-24 2004-11-18 Nissan Motor Co Ltd Polymer secondary battery
JP2005019397A (en) * 2003-06-05 2005-01-20 Showa Denko Kk Carbon material for battery electrode, its manufacturing method, and use
JP2012059708A (en) * 2003-06-05 2012-03-22 Showa Denko Kk Lithium secondary battery
JP2005200276A (en) * 2004-01-16 2005-07-28 Hitachi Chem Co Ltd Method for producing graphite-amorphous carbon composite material, graphite-amorphous carbon composite material, negative electrode for battery, and battery
KR101342600B1 (en) * 2011-05-11 2013-12-17 삼성에스디아이 주식회사 Negative active material, method for preparing the same, and lithium battery comprising the same
US9252427B2 (en) 2011-05-11 2016-02-02 Samsung Sdi Co., Ltd. Negative active material, method of preparing the same, and lithium battery including the same
JP2014170724A (en) * 2013-02-05 2014-09-18 Jfe Chemical Corp Material for lithium ion secondary battery negative electrode, manufacturing method thereof, lithium ion secondary battery negative electrode, and lithium ion secondary battery
CN115448307A (en) * 2022-09-13 2022-12-09 季华实验室 Expanded graphite-based carbon composite material and preparation method and application thereof

Similar Documents

Publication Publication Date Title
JP3556270B2 (en) Lithium secondary battery
CN100416894C (en) Negative electrode active material and its making method. negative electrode and nonaqueous electrolyte battery
JP2000272911A (en) Metal-carbon composite particle, its production, cathode material, cathode for lithium secondary battery and lithium secondary battery
JP2000203818A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2002348109A (en) Anode material for lithium secondary battery, method for producing the same and secondary battery using the same
JP2976299B2 (en) Anode material for lithium secondary battery
JP3658805B2 (en) Negative electrode for lithium battery and lithium battery using the same
JP4792618B2 (en) Carbonaceous particles for negative electrode of lithium secondary battery, manufacturing method thereof, negative electrode of lithium secondary battery and lithium secondary battery
JPH0785888A (en) Lithium secondary battery
JPH11219704A (en) Lithium secondary battery, its negative electrode and its manufacture
JP4354723B2 (en) Method for producing graphite particles
JP2000053408A (en) Expanded graphite particle, its production, lithium secondary cell, its negative pole and negative pole material
JP2000203817A (en) Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2020017437A (en) Sheet-shaped positive electrode composite material for lithium ion secondary battery, manufacturing method thereof, and lithium ion secondary battery
JPH06111818A (en) Carbon negative electrode for nonaqueous electrolyte secondary battery
JP2976300B1 (en) Method for producing negative electrode material for lithium secondary battery
JP2003263982A (en) Manufacturing method of graphite particle and negative electrode material for lithium ion secondary battery
JP2002241117A (en) Graphite based carbon material, manufacturing method therefor, negative electrode material for lithium secondary battery, and lithium secondary battery
JPH07302594A (en) Carbonaceous particle and negative electrode for nonaqueous lithium ion secondary battery using this carbonaceous particle
JPH11217266A (en) Graphite particle, its production and negative electrode for lithium secondary battery and lithium secondary battery
JP3651225B2 (en) Lithium secondary battery, negative electrode thereof and method for producing the same
JP4224731B2 (en) Graphite particles, production method thereof, lithium secondary battery and negative electrode thereof
JP3424419B2 (en) Method for producing negative electrode carbon material for non-aqueous electrolyte secondary battery
JP4643165B2 (en) Carbon material, negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP5001977B2 (en) Graphite particles, lithium ion secondary battery and negative electrode material thereof

Legal Events

Date Code Title Description
EXPY Cancellation because of completion of term