JP2005200276A - Method for producing graphite-amorphous carbon composite material, graphite-amorphous carbon composite material, negative electrode for battery, and battery - Google Patents

Method for producing graphite-amorphous carbon composite material, graphite-amorphous carbon composite material, negative electrode for battery, and battery Download PDF

Info

Publication number
JP2005200276A
JP2005200276A JP2004009130A JP2004009130A JP2005200276A JP 2005200276 A JP2005200276 A JP 2005200276A JP 2004009130 A JP2004009130 A JP 2004009130A JP 2004009130 A JP2004009130 A JP 2004009130A JP 2005200276 A JP2005200276 A JP 2005200276A
Authority
JP
Japan
Prior art keywords
graphite
amorphous carbon
composite material
carbon composite
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2004009130A
Other languages
Japanese (ja)
Inventor
Takao Yoshii
孝雄 吉居
Koichi Takei
康一 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2004009130A priority Critical patent/JP2005200276A/en
Publication of JP2005200276A publication Critical patent/JP2005200276A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide: a graphite-amorphous carbon composite material for manufacturing a battery which has excellent quick charge and discharge characteristics, cycle characteristics, and electrode density characteristics, hardly causes decomposition of an electrolyte, and has excellent safety, and a method for producing the same; a negative electrode for a battery which is expected to achieve a high capacity and a high energy density; and the battery. <P>SOLUTION: In the method for producing the graphite-amorphous carbon composite material obtained by combining a graphite part with an amorphous carbon part, the polymerization of the precursor of the amorphous carbon part is carried out in the presence of a dehydrogenation acid catalyst. A preferable dehydrogenation acid catalyst contains a sulfonic acid including an aromatic compound. Further, it is preferable that the material of the graphite part contains artificial graphite, the artificial graphite consisting of graphite particles wherein a plurality of plate-like particles assemble or combine with each other in a nonparallel state. <P>COPYRIGHT: (C)2005,JPO&NCIPI

Description

本発明は、黒鉛−非晶質炭素複合材料の製造法、黒鉛−非晶質炭素複合材料、電池用負極及び電池に関する。   The present invention relates to a method for producing a graphite-amorphous carbon composite material, a graphite-amorphous carbon composite material, a negative electrode for a battery, and a battery.

リチウムイオン2次電池は、高電圧、高エネルギー密度を有し、メモリー効果が無いことから、携帯機器のバックアップ電源、車載バッテリー等の用途に使用されている。
携帯機器用のリチウムイオン2次電池は、リチウム遷移金属酸化物及び炭素系材料を、それぞれ2つの電極として備えている。これらの2つの電極がセパレータにより分離され、それぞれ正極及び負極として作用するよう構成されている。このようなリチウムイオン2次電池の負極材には、真密度が高い黒鉛系材料が用いられている。
しかしながら、黒鉛系材料は、優れた初回充放電効率を実現出来るという利点があるものの、炭素6個当りリチウムイオンが最大1個までしか挿入することが出来ず、理論容量は372mAh/gが最大となるため、単位重量当たりの放電容量を大幅に増加させることは、事実上不可能である。また、黒鉛系材料は電解液の分解が生じやすいという問題がある。一方、現在の民生用負極材の状況としては、携帯機器の高機能化に伴い、高容量化が重要な要求特性に取り上げられている。しかし、黒鉛系材料では理論容量に上限があるため、黒鉛系材料を超える容量を達成可能で電解液の分解が生じにくい、非晶質炭素材料を黒鉛系材料に複合化することにより、負極材の放電容量の値を上昇させるという試みがなされており、これまでに幾つかの報告がなされている。
Lithium ion secondary batteries have high voltage, high energy density, and no memory effect, so they are used for applications such as backup power sources for portable devices and vehicle batteries.
A lithium ion secondary battery for portable equipment includes a lithium transition metal oxide and a carbon-based material as two electrodes, respectively. These two electrodes are separated by a separator and are configured to function as a positive electrode and a negative electrode, respectively. A graphite material having a high true density is used for the negative electrode material of such a lithium ion secondary battery.
However, although graphite-based materials have the advantage of achieving excellent initial charge / discharge efficiency, only one lithium ion can be inserted per 6 carbons at maximum, and the theoretical capacity is 372 mAh / g. Therefore, it is practically impossible to greatly increase the discharge capacity per unit weight. In addition, the graphite-based material has a problem that the electrolytic solution is easily decomposed. On the other hand, with regard to the current situation of consumer negative electrode materials, with the increase in functionality of portable devices, higher capacity has been taken up as an important required characteristic. However, because the theoretical capacity of graphite-based materials has an upper limit, it is possible to achieve a capacity exceeding that of graphite-based materials, and it is difficult for the electrolyte solution to decompose. Attempts have been made to increase the value of the discharge capacity, and several reports have been made so far.

特許文献1には、非晶質(アモルファス)コークスで被覆された黒鉛系材料を負極材に採用している。それにより充電時のガスの発生が無く、電池の膨れの問題がない高沸点の有機溶媒を用いたリチウムイオン2次電池を提供出来ることが示されているが、放電容量が低いのが問題点である。
特許文献2には、黒鉛系材料の表面を、炭素化可能な有機物で被覆、焼成し、粉砕して得られる非晶質炭素被覆黒鉛系材料を、酸性又はアルカリ性溶液で処理した炭素材料を負極としている。それにより高容量で、高い初回効率を示すとともに、高速充放電時においても、高い容量を保つことができるリチウムイオン2次電池を提供出来ることが示されているが、これらの酸性又はアルカリ性溶液を用いた場合、炭素源となる芳香族環を有しないため、残炭率が低下する可能性がある。
特許文献3には、黒鉛部分材料をピッチ、タール等の炭素化可能な有機化合物に10〜300℃で含浸し、有機化合物から分離した炭素材に有機溶媒を加えて10〜300℃で洗浄処理した後、炭化、解砕した低結晶性炭素被覆黒鉛系材料を負極としている。それによりリチウムイオン2次電池の負極材として使用した場合に、放電容量が理論容量に近い350〜370mAh/g程度に達し、しかも初期効率90%以上を維持する負極材を提供出来ることが示されている。しかし、リチウムイオンを吸蔵するサイトが少なく、370mAh/g以上の放電容量の向上が困難である。
従来のリチウムイオン2次電池負極材用黒鉛−非晶質複合炭素材料は、一般的には、例えば、次のような製造法によって製造されている。
(1)コールタールピッチ等の非晶質炭素前駆体を人造黒鉛粉末と混合し、クレオソート油を加えてニーダー中で加熱し混練する。
(2)前記したような材料を、完全に固化してニーダー中から取り出し、カッターミル内で粉砕し、粉砕後の試料を粒径75μm以下に篩い分けする。
(3)前記したような材料をアルミナボート又は坩堝中に入れ、焼成炉内で窒素雰囲気中、熱処理を行なう。
(4)前記したような材料にポリ弗化ビニリデン及びN-メチル-2-ピロリジノンを加え、よく混合した後に銅箔上に約300μmの厚さに塗布し、80℃で1時間乾燥させた後、圧力を加える。
このような従来の手法で黒鉛−非晶質炭素複合化を行なって得た典型的な負極用炭素材料は、黒鉛の結晶構造と、非晶質炭素の乱層構造が混じりあった組織となっている。良好な性能のリチウムイオン2次電池用負極材を製造するためには、大きな放電容量を示す非晶質炭素材料を、なるべく多量に用い、黒鉛系材料と複合化し、放電容量を増やす必要がある。従って、従来の負極用炭素材料においては、乱層構造を有する非晶質炭素をなるべく多量、また、黒鉛系材料をなるべく少量用いられるものが一般的であった。
しかしながら、このような負極用炭素材料は、非晶質炭素被覆量の増加と共に、初回充放電効率が低下するという問題があった。
In Patent Document 1, a graphite-based material coated with amorphous coke is used as a negative electrode material. As a result, it has been shown that it is possible to provide a lithium ion secondary battery using an organic solvent having a high boiling point that does not generate gas during charging and does not have a problem of battery swelling, but the problem is that the discharge capacity is low. It is.
Patent Document 2 discloses that a carbon material obtained by treating an amorphous carbon-coated graphite material obtained by coating, firing, and pulverizing the surface of a graphite material with an organic material that can be carbonized with an acidic or alkaline solution is used as a negative electrode. It is said. As a result, it has been shown that a lithium ion secondary battery can be provided that has high capacity, high initial efficiency, and can maintain high capacity even during high-speed charge / discharge. When used, since there is no aromatic ring as a carbon source, there is a possibility that the residual carbon ratio will decrease.
In Patent Document 3, a graphite partial material is impregnated with a carbonizable organic compound such as pitch and tar at 10 to 300 ° C., and an organic solvent is added to the carbon material separated from the organic compound and washed at 10 to 300 ° C. Then, the carbonized and crushed low crystalline carbon-coated graphite material is used as the negative electrode. As a result, it is shown that when used as a negative electrode material for a lithium ion secondary battery, a negative electrode material having a discharge capacity of about 350 to 370 mAh / g close to the theoretical capacity and maintaining an initial efficiency of 90% or more can be provided. ing. However, there are few sites that store lithium ions, and it is difficult to improve the discharge capacity of 370 mAh / g or more.
Conventional graphite-amorphous composite carbon materials for negative electrode materials of lithium ion secondary batteries are generally manufactured by, for example, the following manufacturing method.
(1) An amorphous carbon precursor such as coal tar pitch is mixed with artificial graphite powder, creosote oil is added, and the mixture is heated and kneaded in a kneader.
(2) The material as described above is completely solidified, taken out from the kneader, pulverized in a cutter mill, and the pulverized sample is sieved to a particle size of 75 μm or less.
(3) The material as described above is put in an alumina boat or a crucible, and heat treatment is performed in a nitrogen atmosphere in a firing furnace.
(4) Polyvinylidene fluoride and N-methyl-2-pyrrolidinone are added to the materials as described above, mixed well, coated on a copper foil to a thickness of about 300 μm, and dried at 80 ° C. for 1 hour. Apply pressure.
A typical negative electrode carbon material obtained by performing graphite-amorphous carbon composite by such a conventional method has a structure in which a graphite crystal structure and an amorphous carbon turbulent structure are mixed. ing. In order to manufacture a negative electrode material for a lithium ion secondary battery with good performance, it is necessary to use an amorphous carbon material exhibiting a large discharge capacity in a large amount as much as possible and to combine it with a graphite material to increase the discharge capacity. . Therefore, conventional negative electrode carbon materials generally use as much amorphous carbon having a disordered layer structure as possible, and as little graphite material as possible.
However, such a carbon material for a negative electrode has a problem in that the initial charge / discharge efficiency decreases as the amorphous carbon coating amount increases.

特開2001−229924号公報JP 2001-229924 A 特開平10−284080号公報JP-A-10-284080 特開2000−58052号公報JP 2000-58052 A

請求項1及び2記載の発明は、黒鉛−非晶質炭素複合材料において、放電容量が高い電池を製造可能な黒鉛−非晶質炭素複合材料の製造法を提供するものである。
請求項3及び4記載の発明は、請求項1及び2記載の発明の効果に加えて、急速充放電特性、サイクル特性及び電極密度特性が優れる電池を製造可能な黒鉛−非晶質炭素複合材料の製造法を提供するものである。
請求項5記載の発明は、放電容量が高い電池を製造可能な黒鉛−非晶質炭素複合材料、又は急速充放電特性、サイクル特性及び電極密度特性が優れる電池を製造可能な黒鉛−非晶質炭素複合材料を提供するものである。
請求項6記載の発明は、請求項5記載の発明の効果に加えて、電解液の分解が生じにくく安全性が優れる電池を製造可能な黒鉛−非晶質炭素複合材料を提供するものである。
請求項7記載の発明は、高容量及び高エネルギー密度を期待できる電池用負極を提供するものである。
請求項8記載の発明は、高容量及び高エネルギー密度を期待できる電池を提供するものである。
The inventions according to claims 1 and 2 provide a method for producing a graphite-amorphous carbon composite material capable of producing a battery having a high discharge capacity in the graphite-amorphous carbon composite material.
The invention described in claims 3 and 4 is a graphite-amorphous carbon composite material capable of producing a battery having excellent rapid charge / discharge characteristics, cycle characteristics and electrode density characteristics in addition to the effects of the inventions described in claims 1 and 2. The manufacturing method of this is provided.
The invention according to claim 5 is a graphite-amorphous carbon composite material capable of producing a battery having a high discharge capacity, or a graphite-amorphous material capable of producing a battery excellent in rapid charge / discharge characteristics, cycle characteristics and electrode density characteristics. A carbon composite material is provided.
The invention described in claim 6 provides a graphite-amorphous carbon composite material capable of producing a battery that is resistant to decomposition of the electrolyte and excellent in safety, in addition to the effect of the invention described in claim 5. .
The invention according to claim 7 provides a negative electrode for a battery that can be expected to have a high capacity and a high energy density.
The invention according to claim 8 provides a battery that can be expected to have a high capacity and a high energy density.

本発明は、黒鉛部分と非晶質炭素部分とを複合してなる黒鉛−非晶質炭素複合材料の製造法であり、前記非晶質炭素部分の前駆体の重合が脱水素酸触媒存在下で行われることを特徴とする黒鉛−非晶質炭素複合材料の製造法に関する。
また、本発明は、脱水素酸触媒が、含芳香族化合物スルホン酸を含有する前記黒鉛−非晶質炭素複合材料の製造法に関する。
また、本発明は、黒鉛部分の材料が、人造黒鉛を含有する前記黒鉛−非晶質炭素複合材料の製造法に関する。
また、本発明は、人造黒鉛が、扁平状粒子が複数互いに非平行に集合又は結合してなる黒鉛質粒子である前記黒鉛−非晶質炭素複合材料の製造法に関する。
また、本発明は、前記黒鉛−非晶質炭素複合材料の製造法により製造される黒鉛−非晶質炭素複合材料に関する。
また、本発明は、非晶質炭素部分の割合が、黒鉛−非晶質炭素複合材料の全重量に対して15〜50重量%である前記黒鉛−非晶質炭素複合材料に関する。
また、本発明は、前記黒鉛−非晶質炭素複合材料を用いた電池用負極に関する。
また、本発明は、前記電池用負極を用いた電池に関する。
The present invention is a method for producing a graphite-amorphous carbon composite material comprising a composite of a graphite part and an amorphous carbon part, wherein the polymerization of the precursor of the amorphous carbon part is carried out in the presence of a dehydrogenation acid catalyst. It is related with the manufacturing method of the graphite-amorphous carbon composite material characterized by performing by this.
The present invention also relates to a method for producing the graphite-amorphous carbon composite material in which the dehydrogenation acid catalyst contains an aromatic compound sulfonic acid.
The present invention also relates to a method for producing the graphite-amorphous carbon composite material in which the material of the graphite portion contains artificial graphite.
The present invention also relates to a method for producing the graphite-amorphous carbon composite material, wherein the artificial graphite is graphite particles in which a plurality of flat particles are assembled or bonded non-parallel to each other.
The present invention also relates to a graphite-amorphous carbon composite material produced by the method for producing the graphite-amorphous carbon composite material.
The present invention also relates to the graphite-amorphous carbon composite material, wherein the proportion of the amorphous carbon portion is 15 to 50% by weight based on the total weight of the graphite-amorphous carbon composite material.
The present invention also relates to a battery negative electrode using the graphite-amorphous carbon composite material.
The present invention also relates to a battery using the battery negative electrode.

請求項1及び2記載の黒鉛−非晶質炭素複合化炭素材料の製造法は、放電容量が高い電池を製造可能である。
請求項3及び4記載の黒鉛−非晶質炭素複合化炭素材料の製造法は、請求項1及び2記載の発明の効果に加えて、急速充放電特性、サイクル特性及び電極密度特性が優れる電池を製造可能である。
請求項5記載の黒鉛−非晶質炭素複合化炭素材料は、放電容量が高い電池を製造可能、又は急速充放電特性、サイクル特性及び電極密度特性が優れる電池を製造可能である。
請求項6記載の黒鉛−非晶質炭素複合化炭素材料は、請求項5記載の発明の効果に加えて、電解液の分解を生じにくく安全性が優れる電池を製造可能である。
請求項7記載の電池用負極は、高容量及び高エネルギー密度を期待できる。
請求項8記載の電池は、高容量及び高エネルギー密度を期待できる。
The method for producing a graphite-amorphous carbon composite carbon material according to claims 1 and 2 can produce a battery having a high discharge capacity.
The method for producing a graphite-amorphous carbon composite carbon material according to claims 3 and 4 is a battery having excellent rapid charge / discharge characteristics, cycle characteristics and electrode density characteristics in addition to the effects of the inventions according to claims 1 and 2. Can be manufactured.
The graphite-amorphous carbon composite carbon material according to claim 5 can produce a battery having a high discharge capacity, or can produce a battery having excellent rapid charge / discharge characteristics, cycle characteristics, and electrode density characteristics.
The graphite-amorphous carbon composite carbon material according to claim 6 can produce a battery having excellent safety in which the electrolytic solution is hardly decomposed in addition to the effect of the invention according to claim 5.
The battery negative electrode according to claim 7 can be expected to have a high capacity and a high energy density.
The battery according to claim 8 can be expected to have a high capacity and a high energy density.

本発明の黒鉛−非晶質炭素複合材料の製造法は、黒鉛部分と非晶質部分を複合してなる黒鉛−非晶質炭素複合材料の製造法であり、前記非晶質炭素部分の前駆体の重合が脱水素酸触媒存在下で行われることを特徴とする。   The method for producing a graphite-amorphous carbon composite material of the present invention is a method for producing a graphite-amorphous carbon composite material comprising a composite of a graphite part and an amorphous part, and the precursor of the amorphous carbon part. Polymerization of the body is performed in the presence of a dehydrogenation acid catalyst.

本発明における脱水素酸触媒は、非晶質炭素部分の前駆体の重合を触媒するために用いられ、特に多環芳香族化合物を重合するような場合に適している。この多環芳香族化合物の重合を行なうことにより、リチウムイオン等のイオンが吸蔵可能なサイトが多く作製され、リチウムイオン2次電池負極材の放電容量を増大させる効果があると考えられる。これら脱水素酸触媒としては、例えば、硫酸、塩酸、マレイン酸、フマル酸、無水フタル酸、硫黄、硝酸アンモニウム、スルホン酸、パラトルエンスルホン酸、フェノールスルホン酸、ナフタレンスルホン酸、o−スルホ安息香酸等が挙げられ、芳香族環を分子内に含有するスルホン酸であることがより好ましい。これらは、単独で又は2種類以上を組み合わせて使用される。
本発明において、脱水素酸触媒が分子内に芳香族環を含むことで、リチウムイオンが吸蔵しやすい炭素骨格の形成に有利に影響すると考えられる。さらに、スルホン酸のように強い酸を分子内に有する脱水素酸触媒は、後述するようなアルキル鎖を含有する縮合芳香族化合物のような非晶質炭素部分の前駆体の重合反応を促進させる傾向がある。このような脱水素酸触媒を、アルキル鎖を含有する縮合芳香族化合物のような非晶質炭素部分の前駆体に加えることにより、ラジカル反応、副次的に生ずるオレフィン類のDiels−Alder付加反応、ベンザインによる反応等を誘発し、効率よく高分子化すると考えられる。
The dehydrogenation acid catalyst in the present invention is used to catalyze the polymerization of a precursor of an amorphous carbon moiety, and is particularly suitable for the case of polymerizing a polycyclic aromatic compound. By polymerizing this polycyclic aromatic compound, it is considered that many sites capable of occluding ions such as lithium ions are produced, and the discharge capacity of the lithium ion secondary battery negative electrode material is increased. Examples of these dehydrogenation catalysts include sulfuric acid, hydrochloric acid, maleic acid, fumaric acid, phthalic anhydride, sulfur, ammonium nitrate, sulfonic acid, paratoluenesulfonic acid, phenolsulfonic acid, naphthalenesulfonic acid, o-sulfobenzoic acid and the like. And is more preferably a sulfonic acid containing an aromatic ring in the molecule. These are used alone or in combination of two or more.
In the present invention, it is considered that the dehydrogenation acid catalyst contains an aromatic ring in the molecule, which advantageously affects the formation of a carbon skeleton that is liable to occlude lithium ions. Furthermore, a dehydrogenation acid catalyst having a strong acid such as sulfonic acid in the molecule promotes the polymerization reaction of a precursor of an amorphous carbon moiety such as a condensed aromatic compound containing an alkyl chain as described later. Tend. By adding such a dehydrogenation acid catalyst to a precursor of an amorphous carbon moiety such as a condensed aromatic compound containing an alkyl chain, a radical reaction, a Diels-Alder addition reaction of olefins generated as a by-product It is considered that the reaction is induced by benzyne and the like, and the polymer is efficiently polymerized.

本発明における非晶質炭素部分の前駆体としては、例えば、易黒鉛化性有機物が好ましく、易黒鉛化性有機物で縮合芳香族環を多く含む多環芳香族化合物がより好ましく挙げられる。易黒鉛化性有機物で縮合芳香族環を多く含む多環芳香族化合物としては、例えば、コールタールピッチ、石油ピッチ、クウェート減圧残油、スチーム分解ピッチ、メソフェーズピッチ、アントラセン、アセナフチレン、ピレン、テトラベンゾフェナジン、コロオネン等が挙げられる。前述したアルキル鎖を含有する縮合芳香族化合物としては、コールタールピッチ、石油ピッチ、クウェート減圧油、メソフェーズピッチが挙げられる。さらに、上記コールタールピッチは比較的低分子量の多環芳香族化合物であり、脱水素酸触媒と組み合わせることで、重合度が高くなり、リチウムイオン等のイオンが吸蔵・放出するサイトを形成しやすいという点で好ましい。これらは、単独で又は2種類以上を組み合わせて使用される。   As a precursor of the amorphous carbon part in the present invention, for example, a graphitizable organic material is preferable, and a polycyclic aromatic compound containing a large number of condensed aromatic rings in the graphitizable organic material is more preferable. Examples of polycyclic aromatic compounds that are easily graphitizable organic substances and include many condensed aromatic rings include coal tar pitch, petroleum pitch, Kuwait vacuum residue, steam cracked pitch, mesophase pitch, anthracene, acenaphthylene, pyrene, tetrabenzo Examples include phenazine and coronone. Examples of the condensed aromatic compound containing an alkyl chain described above include coal tar pitch, petroleum pitch, Kuwait vacuum oil, and mesophase pitch. Furthermore, the coal tar pitch is a polycyclic aromatic compound having a relatively low molecular weight, and when combined with a dehydrogenation acid catalyst, the degree of polymerization is increased and it is easy to form a site where ions such as lithium ions are occluded / released. This is preferable. These are used alone or in combination of two or more.

本発明における黒鉛部分の材料としては、例えば人造黒鉛が好ましい。
上記人造黒鉛としては、例えば、コークス等の黒鉛化可能な骨材を焼成・黒鉛化し、粉砕したもの、また、天然黒鉛を粉砕やグラインディング処理等の機械的な手法により、電池負極にした際、集電体上で粒子が配向し難くなるように人工的な処理を施してあるもの等のことである。
また、上記人造黒鉛は、微細な扁平状粒子が複数互いに非平行に集合又は結合した構造を有する塊状人造黒鉛や内部に空隙を有し、アスペクト比が5以下である塊状人造黒鉛であることが好ましい。このような塊状人造黒鉛は、例えば、特許第3325021号明細書記載の方法等により作製することができる。ここで本発明におけるアスペクト比とは、粒子の長軸方向の長さAと短軸方向の長さBの比であり、A/Bで表される。このA及びBの値は、粒子の三次元的な特徴を考慮した上で選択され、例えば、薄く平たい鱗状のような粒子の場合、長軸は粒子径であり、短軸は粒子の厚みとなる。また、棒状、針状等のような粒子の場合、長軸は粒子長であり、短軸は棒状(又は針状等)粒子の太さとなる。これにより、アスペクト比が大きいものほど扁平状等の薄く平たい粒子(又は、棒状、針状等の粒子)になり、1に近いほど球状になる。黒鉛部分の材料に前記塊状人造黒鉛を用いると、得られる黒鉛−非晶質炭素複合炭素材料の、急速充放電特性、サイクル特性、電極密度特性等の負極材としての性能が向上する。
As a material for the graphite portion in the present invention, for example, artificial graphite is preferable.
Examples of the artificial graphite include those obtained by firing, graphitizing and pulverizing a graphitizable aggregate such as coke, or when natural graphite is made into a battery negative electrode by a mechanical method such as pulverization or grinding. Those that have been artificially treated to make it difficult for the particles to orient on the current collector.
In addition, the artificial graphite may be massive artificial graphite having a structure in which a plurality of fine flat particles are assembled or bonded non-parallel to each other, or massive artificial graphite having an internal space and an aspect ratio of 5 or less. preferable. Such massive artificial graphite can be produced by, for example, the method described in Japanese Patent No. 3325021. Here, the aspect ratio in the present invention is the ratio of the length A in the major axis direction of the particles to the length B in the minor axis direction, and is represented by A / B. The values of A and B are selected in consideration of the three-dimensional characteristics of the particles. For example, in the case of thin and flat particles, the major axis is the particle diameter, and the minor axis is the particle thickness. Become. In the case of particles such as rods and needles, the major axis is the particle length, and the minor axis is the thickness of the rod-like (or needle-like) particles. As a result, the larger the aspect ratio, the thinner and flat particles (or particles such as rods and needles) that are flat and the like, and the closer to 1, the more spherical. When the massive artificial graphite is used as the material of the graphite portion, the performance of the obtained graphite-amorphous carbon composite carbon material as a negative electrode material such as rapid charge / discharge characteristics, cycle characteristics, and electrode density characteristics is improved.

また、本発明における黒鉛−非晶質炭素複合材料は、例えば、黒鉛部分の材料、非晶質炭素部分の前駆体及び脱水素酸触媒を潤滑剤と共にニーダー内で室温又は加熱状態で撹拌し均一に混合する工程を含む、以下の(1)〜(4)のような手順によって製造できる。
(1)人造黒鉛等の黒鉛部分の材料と、コールタールピッチ、メソフェーズピッチ等の非晶質炭素部分の前駆体とを混合し、潤滑剤を加える。非晶質炭素部分の前駆体の配合量は、黒鉛部分の材料の重量を1とした重量比で0.1〜0.9の比率であることが好ましく、0.15〜0.75の比率であることがより好ましく、0.2〜0.8の比率であることが特に好ましい。この非晶質炭素部分の前駆体の比率が0.1未満では放電容量が小さくなる傾向があり、0.9を超えると初回充放電効率の低下を招く傾向がある。また、潤滑剤の配合量は黒鉛部分の材料の重量を1とした重量比で0.6〜1.5の比率で添加することが好ましく、0.7〜1.4の比率であることがより好ましく、0.8〜1.3の比率であることが特に好ましい。この潤滑剤の比率が0.6未満では、潤滑性が落ちる傾向があり、1.5を超えると原料のロスにつながる傾向がある。
本発明において、黒鉛部分の材料、非晶質炭素部分の前駆体及び脱水素酸触媒を混練する際、黒鉛部分の材料及び非晶質炭素部分の前駆体を混練する際などには、潤滑剤を用いると充分に混合が進むので好ましい。前記潤滑剤としては、例えば、クレオソート油等であることが好ましい。ここで、クレオソート油とは、コールタールの約230〜270℃の留分であり、主成分はナフタレン、クレゾール、高級フェノール類、ナフトール類等である。
Further, the graphite-amorphous carbon composite material in the present invention is, for example, uniformly stirred by stirring the material of the graphite part, the precursor of the amorphous carbon part and the dehydrogenation acid catalyst together with a lubricant at room temperature or in a heated state. It can manufacture by the procedure like the following (1)-(4) including the process mixed.
(1) A graphite part material such as artificial graphite and a precursor of an amorphous carbon part such as coal tar pitch and mesophase pitch are mixed, and a lubricant is added. The blending amount of the precursor of the amorphous carbon part is preferably a ratio of 0.1 to 0.9 in a weight ratio where the weight of the material of the graphite part is 1, and a ratio of 0.15 to 0.75 It is more preferable that the ratio is 0.2 to 0.8. When the ratio of the precursor of the amorphous carbon portion is less than 0.1, the discharge capacity tends to be small, and when it exceeds 0.9, the initial charge / discharge efficiency tends to be lowered. Further, the blending amount of the lubricant is preferably added at a ratio of 0.6 to 1.5 in a weight ratio where the weight of the material of the graphite portion is 1, and is a ratio of 0.7 to 1.4. More preferably, the ratio is particularly preferably 0.8 to 1.3. When the ratio of the lubricant is less than 0.6, the lubricity tends to be lowered, and when it exceeds 1.5, the raw material tends to be lost.
In the present invention, when kneading the graphite part material, the amorphous carbon part precursor and the dehydrogenation catalyst, when kneading the graphite part material and the amorphous carbon part precursor, the lubricant Is preferable because mixing proceeds sufficiently. The lubricant is preferably, for example, creosote oil. Here, creosote oil is a fraction of coal tar at about 230 to 270 ° C., and the main components are naphthalene, cresol, higher phenols, naphthols and the like.

(2)次に、上記(1)で混合された黒鉛部分の材料と非晶質炭素部分の前駆体に、脱水素酸触媒を加え、これを大気中、250℃まで温度上昇させながら、ニーダー中において混練する。脱水素酸触媒は黒鉛部分の材料の重量を1とした重量比で0.01〜0.5の比率で添加することが好ましく、0.03〜0.4の比率で添加することがより好ましく、0.05〜0.35の比率で添加することが特に好ましい。この脱水素酸触媒の比率が0.01未満では脱水素が不充分になる傾向があり、0.5を超えると脱水素酸触媒が混練時に充分に反応しない傾向がある。混練温度は、触媒が充分に機能し反応が進む点から25℃〜250℃であることが好ましい。この混練温度が25℃未満では重合反応が充分に進まない傾向があり、250℃を超えると脱水素酸触媒が揮発する傾向がある。混練時間はこれらが均一に混合し効率よく反応する点から、24時間以下であることが好ましく、1〜10時間であることがより好ましく、2〜8時間であることが特に好ましい。 (2) Next, a dehydrogenation acid catalyst is added to the graphite part material and the amorphous carbon part precursor mixed in the above (1), and the temperature of the catalyst is increased to 250 ° C. in the atmosphere. Knead inside. The dehydrogenation acid catalyst is preferably added at a ratio of 0.01 to 0.5, more preferably at a ratio of 0.03 to 0.4, based on the weight ratio of the graphite part material being 1. It is particularly preferable to add at a ratio of 0.05 to 0.35. If the ratio of the dehydrogenation catalyst is less than 0.01, dehydrogenation tends to be insufficient, and if it exceeds 0.5, the dehydrogenation catalyst tends not to react sufficiently during kneading. The kneading temperature is preferably 25 ° C. to 250 ° C. from the viewpoint that the catalyst functions sufficiently and the reaction proceeds. If the kneading temperature is less than 25 ° C, the polymerization reaction tends not to proceed sufficiently, and if it exceeds 250 ° C, the dehydrogenation acid catalyst tends to volatilize. The kneading time is preferably 24 hours or less, more preferably 1 to 10 hours, and particularly preferably 2 to 8 hours from the viewpoint that they are uniformly mixed and react efficiently.

(3)混練後、試料が固化したら、ニーダー中より試料を取り出し、固化した試料を室温で放置する。試料が完全に固化した後、粉砕器で粉砕、篩い分けし、粉末状試料を得る。室温での放置時間は100時間以内であることが好ましい。この放置時間が100時間を超えると、空気中を飛散している不純物が付着する可能性が高くなる傾向がある。また、粉砕した粉末状試料は、粒径が1000μm以下に篩い分けることが好ましく、500μm以下に篩い分けることがより好ましく、100μm以下に篩い分けることが特に好ましい。この粒径が1000μmを超えると、リチウム二次電池用負極材に用いた場合、その負極表面に凹凸ができやすくなり、充放電時の電流密度のばらつきが大きく、その結果充放電サイクル特性が低下する傾向がある。篩い分ける粒径の下限に特に制限はないが、篩い分けた後の粉末状試料の平均粒径(レーザー回折粒度分布による、50%Dでの粒径)が5μm未満になると、粒子の比表面積が大きくなり、充放電効率が低下する傾向がある。 (3) When the sample is solidified after kneading, the sample is taken out from the kneader and the solidified sample is left at room temperature. After the sample is completely solidified, it is pulverized and sieved with a pulverizer to obtain a powdery sample. The standing time at room temperature is preferably within 100 hours. When the standing time exceeds 100 hours, there is a tendency that impurities scattered in the air are likely to adhere. The pulverized powder sample is preferably sieved to a particle size of 1000 μm or less, more preferably 500 μm or less, and particularly preferably 100 μm or less. When this particle size exceeds 1000 μm, when used for a negative electrode material for a lithium secondary battery, irregularities are likely to be formed on the negative electrode surface, resulting in large variations in current density during charge / discharge, resulting in a decrease in charge / discharge cycle characteristics. Tend to. The lower limit of the particle size to be sieved is not particularly limited, but when the average particle size of the powdered sample after sieving (particle size at 50% D by laser diffraction particle size distribution) is less than 5 μm, the specific surface area of the particles Tends to increase and the charge / discharge efficiency tends to decrease.

(4)篩い分けした粉末状試料をアルミナボート又は坩堝に入れ、管状炉中で窒素気流下、1〜500℃/hの昇温速度で焼成、炭素化を行う。昇温速度は、炉の制御の点から5〜300℃/hで昇温することが好ましく、10〜100℃/hで昇温することがより好ましい。また、焼成温度は200〜2500℃が好ましく、500〜2000℃がより好ましく、700〜1500℃が特に好ましい。この焼成温度が200℃未満では炭素化が効率よく進まない傾向があり、2500℃を超えると黒鉛化が進行してしまう傾向がある。焼成時間は0.1〜100時間が好ましく、0.3〜70時間がより好ましく、0.5〜10時間が特に好ましい。ここで、本発明における炭素化とは、熱処理温度の上昇に伴い、有機物が構造変化を生じ、有機物の分子内における炭素の含有率が相対的に上昇することを意味する。前記の好ましい焼成温度の範囲内では効率的に非晶質炭素が得られ、高い放電容量の黒鉛−非晶質炭素複合材料が得られやすい。ここで、非晶質炭素部分の形成は、例えば、X線回折パターンにおいて、2θが25°付近にブロードなピークを持つこと等により確認することができる。 (4) The sieved powder sample is put into an alumina boat or a crucible, and calcinated and carbonized in a tubular furnace at a heating rate of 1 to 500 ° C./h in a nitrogen stream. The temperature increase rate is preferably 5 to 300 ° C./h, more preferably 10 to 100 ° C./h, from the viewpoint of controlling the furnace. Moreover, 200-2500 degreeC is preferable, as for baking temperature, 500-2000 degreeC is more preferable, and 700-1500 degreeC is especially preferable. If the firing temperature is less than 200 ° C, carbonization tends not to proceed efficiently, and if it exceeds 2500 ° C, graphitization tends to proceed. The firing time is preferably 0.1 to 100 hours, more preferably 0.3 to 70 hours, and particularly preferably 0.5 to 10 hours. Here, the carbonization in the present invention means that as the heat treatment temperature is increased, the organic substance undergoes a structural change, and the carbon content in the organic substance molecule is relatively increased. Within the preferable firing temperature range, amorphous carbon can be efficiently obtained, and a graphite-amorphous carbon composite material having a high discharge capacity can be easily obtained. Here, the formation of the amorphous carbon portion can be confirmed by, for example, the fact that 2θ has a broad peak around 25 ° in the X-ray diffraction pattern.

以上のようにして、本発明の黒鉛−非晶質炭素複合材料を得ることができる。また、得られた黒鉛−非晶質炭素複合材料を用いて、特開2002−373659号公報に記載されるような通常の方法によりリチウムイオン2次電池負極を作製することができる。得られた黒鉛−非晶質炭素複合材料は、積層構造(黒鉛部分)と乱層構造(非晶質炭素部分)とが複合化しており、積層構造及び乱層構造へのリチウムイオンの吸蔵により、作製するリチウムイオン2次電池負極材の容量が発現すると考えられる。
本発明の黒鉛−非晶質炭素複合材料は、高い放電容量を得る点で、非晶質炭素部分の割合が、複合材料の重量に対して15〜50重量%であることが好ましく、20〜45重量%であることがより好ましく、25〜40重量%であることが特に好ましい。この非晶質炭素部分の割合が15重量%未満では非晶質炭素部分が少ないことから放電容量が低下する傾向があり、また、黒鉛部分を非晶質炭素部分で充分に覆うことができない傾向があり、電解液が分解する傾向がある。一方、非晶質炭素部分の割合が50重量%を超えると非晶質炭素部分の増加により充放電効率が低下する傾向がある。この割合は、黒鉛と非晶質炭素部分の前駆体の混合物を加熱し、非晶質炭素部分の前駆体を炭素化したときの重量減少量により、次式を用いて求めることができる。
As described above, the graphite-amorphous carbon composite material of the present invention can be obtained. Further, using the obtained graphite-amorphous carbon composite material, a lithium ion secondary battery negative electrode can be produced by a usual method as described in JP-A-2002-373659. In the obtained graphite-amorphous carbon composite material, the laminated structure (graphite part) and the turbulent layer structure (amorphous carbon part) are complexed, and the lithium ions are occluded into the laminated structure and the turbulent layer structure. It is considered that the capacity of the lithium ion secondary battery negative electrode material to be produced is developed.
In the graphite-amorphous carbon composite material of the present invention, the ratio of the amorphous carbon portion is preferably 15 to 50% by weight with respect to the weight of the composite material in that a high discharge capacity is obtained. More preferably, it is 45 weight%, and it is especially preferable that it is 25-40 weight%. If the ratio of the amorphous carbon part is less than 15% by weight, the amorphous carbon part tends to be low, so that the discharge capacity tends to decrease, and the graphite part cannot be sufficiently covered with the amorphous carbon part. There is a tendency for the electrolytic solution to decompose. On the other hand, when the proportion of the amorphous carbon portion exceeds 50% by weight, the charge / discharge efficiency tends to decrease due to the increase of the amorphous carbon portion. This ratio can be obtained by the following formula based on the weight loss when a mixture of graphite and the precursor of the amorphous carbon portion is heated to carbonize the precursor of the amorphous carbon portion.

Figure 2005200276
W:黒鉛と非晶質炭素部分の前駆体との混合物の重量(g)
a:黒鉛と非晶質炭素部分の前駆体との混合物中の非晶質炭素部分前駆体の比率(重量%)
Δw:炭素化後の重量減少量(g)
また、非晶質炭素部分の割合を15〜50%とすることは、黒鉛、非晶質炭素部分の前駆体、脱水素酸触媒等の原料の種類と使用割合や炭素化時の条件を適宜調整することにより行うことができる。
また、本発明の黒鉛−非晶質炭素複合材料の製造法で得られる黒鉛−非晶質炭素複合材料は、小型化及び軽量化が求められている携帯電話を始めとする、民生用リチウムイオン2次電池、コイン型リチウムイオン2次電池負極材等として好適であるが、これらリチウムイオン二次電池負極材用に限定されるものではなく、イオンを放出あるいは吸蔵する反応を繰り返し充放電する二次電池負極材用として使用が可能であり、また、ハイブリット電気自動車用二次電池負極材、電気二重層キャパシタ電極材等としても使用が可能である。
Figure 2005200276
W: Weight of the mixture of graphite and precursor of amorphous carbon part (g)
a: Ratio of amorphous carbon partial precursor in a mixture of graphite and amorphous carbon partial precursor (% by weight)
Δw: Weight loss after carbonization (g)
In addition, setting the proportion of the amorphous carbon portion to 15 to 50% means that the type and use proportion of raw materials such as graphite, the precursor of the amorphous carbon portion, the dehydrogenation catalyst, and the conditions for carbonization are appropriately determined. This can be done by adjusting.
In addition, the graphite-amorphous carbon composite material obtained by the method for producing a graphite-amorphous carbon composite material of the present invention is a lithium ion for consumer use, including mobile phones that are required to be reduced in size and weight. Although suitable as a secondary battery, a coin-type lithium ion secondary battery negative electrode material, etc., it is not limited to these lithium ion secondary battery negative electrode materials, it is charged and discharged repeatedly by a reaction of releasing or occluding ions. It can be used as a secondary battery negative electrode material, and can also be used as a secondary battery negative electrode material for hybrid electric vehicles, an electric double layer capacitor electrode material, and the like.

以下、本発明の実施例を説明する。
(実施例1)
コールタールピッチにパラトルエンスルホン酸、クレオソート油、塊状人造黒鉛(微細な扁平状粒子が多数集合若しくは結合した構造を有し、内部に空隙を有し、アスペクト比が5以下であるもの)を加えた。重量比は、塊状人造黒鉛を1として、コールタールピッチを0.3250、パラトルエンスルホン酸を0.09050、クレオソート油を0.9000とした。この混合物をニーダー内に入れ、大気中、34.2rpmの回転速度で、室温から250℃まで順次、温度を上昇させた。まず室温で1時間混練した後、150℃で30分間、200℃で30分間、250℃で試料が固化するまで行った。その後、試料を取り出し、室温で試料が充分に冷却、固化するまで4時間程度放置した後、粉砕、篩い分けを行い、75μm以下の粉末状試料を得た。得られた粉末状試料を1リットル/minの窒素流量中、室温より100℃まで、60℃/hの昇温速度で温度上昇させた後、100℃で1時間温度保持し、その後、1200℃まで60℃/hの昇温速度で再び温度上昇させた。1200℃で1時間温度保持した後、炉を冷却し、試料を取り出した。このようにして黒鉛−非晶質炭素材料の粉末を得た。
Examples of the present invention will be described below.
(Example 1)
Coal tar pitch with para-toluenesulfonic acid, creosote oil, massive artificial graphite (having a structure in which a large number of fine flat particles are assembled or bonded, have voids inside, and have an aspect ratio of 5 or less) added. The weight ratio was 1 for bulk artificial graphite, 0.3250 for coal tar pitch, 0.09050 for paratoluenesulfonic acid, and 0.9000 for creosote oil. This mixture was placed in a kneader, and the temperature was increased from room temperature to 250 ° C. sequentially in the air at a rotation speed of 34.2 rpm. First, the mixture was kneaded at room temperature for 1 hour, then, 150 ° C. for 30 minutes, 200 ° C. for 30 minutes, and 250 ° C. until the sample was solidified. Thereafter, the sample was taken out and allowed to stand for about 4 hours at room temperature until the sample was sufficiently cooled and solidified, and then pulverized and sieved to obtain a powdery sample of 75 μm or less. The obtained powdery sample was heated from room temperature to 100 ° C. at a rate of temperature increase of 60 ° C./h in a nitrogen flow rate of 1 liter / min, held at 100 ° C. for 1 hour, and then 1200 ° C. The temperature was raised again at a temperature rising rate of 60 ° C./h. After maintaining the temperature at 1200 ° C. for 1 hour, the furnace was cooled and the sample was taken out. Thus, a graphite-amorphous carbon material powder was obtained.

この黒鉛−非晶質炭素材料の粉末2gにこの炭素粉末に対して重量割合でポリフッ化ビニリデンを0.16g及びN−メチル−2−ピロリジノンを1.5g加え、乳鉢中でよく撹拌した後、銅箔上に約300μmの厚さに塗布し、φ15mmに切断して円盤状の炭素極を成形した。その後、58.84MPaの圧力で炭素極をプレスした後、金属リチウム極と前述の炭素極をそれぞれ電極とし、電解液及びセパレータとともにセルを作製した。電解液は1MLiPF(エチレンカーボネート:ジメチルカーボネート:ジエチルカーボネート=1:1:1、体積比)を使用した。セパレータはポリエチレン微孔膜を使用した。得られたセルを用いて0.5mAの電流で充放電を繰り返し、放電容量及び初回充放電効率を求めた。
図1は実施例1の放電容量の測定結果である。
After adding 0.16 g of polyvinylidene fluoride and 1.5 g of N-methyl-2-pyrrolidinone to 2 g of this graphite-amorphous carbon material powder in a weight ratio with respect to this carbon powder and stirring well in a mortar, It was applied on a copper foil to a thickness of about 300 μm and cut to φ15 mm to form a disk-shaped carbon electrode. Thereafter, the carbon electrode was pressed at a pressure of 58.84 MPa, and then a cell was fabricated together with the electrolytic solution and the separator using the metal lithium electrode and the above-described carbon electrode as electrodes. As the electrolytic solution, 1M LiPF 6 (ethylene carbonate: dimethyl carbonate: diethyl carbonate = 1: 1: 1, volume ratio) was used. The separator used was a polyethylene microporous membrane. Using the obtained cell, charging / discharging was repeated at a current of 0.5 mA to determine the discharge capacity and the initial charge / discharge efficiency.
FIG. 1 shows the measurement results of the discharge capacity of Example 1.

(実施例2)
コールタールピッチの重量比を0.1625、パラトルエンスルホン酸の重量比を0.1200、クレオソート油の重量比を1.0625とした以外は実施例1と同様の方法で黒鉛−非晶質炭素複合材料を作製し、同様の方法で放電容量及び初回充放電効率を測定した。
(Example 2)
Graphite-amorphous in the same manner as in Example 1 except that the weight ratio of coal tar pitch was 0.1625, the weight ratio of paratoluenesulfonic acid was 0.1200, and the weight ratio of creosote oil was 1.0625. A carbon composite material was produced, and the discharge capacity and the initial charge / discharge efficiency were measured by the same method.

(実施例3)
脱水素酸触媒として、パラトルエンスルホン酸に代えて硝酸アンモニウムNHNOを重量比で0.0815加えた以外は、実施例1と同様の方法で黒鉛−非晶質炭素複合材料を作製し、同様の方法で放電容量及び初回充放電効率を測定した。
(Example 3)
A graphite-amorphous carbon composite material was prepared in the same manner as in Example 1, except that 0.0815 by weight of ammonium nitrate NH 4 NO 3 was added instead of p-toluenesulfonic acid as the dehydrogenation acid catalyst. The discharge capacity and initial charge / discharge efficiency were measured by the same method.

(実施例4)
脱水素酸触媒としてパラトルエンスルホン酸に代えて、硝酸アンモニウムNHNOを重量比で0.1200加え、コールタールピッチを重量比で0.1625、クレオソート油を重量比で1.0625とした以外は、実施例1と同様の方法で黒鉛−非晶質炭素複合材料を作製し、同様の方法で放電容量及び初回充放電効率を測定した。
Example 4
Instead of p-toluenesulfonic acid as a dehydrogenation catalyst, ammonium nitrate NH 4 NO 3 was added in a weight ratio of 0.1200, coal tar pitch was adjusted to 0.1625 in weight ratio, and creosote oil was adjusted to 1.0625 in weight ratio. Except for the above, a graphite-amorphous carbon composite material was produced in the same manner as in Example 1, and the discharge capacity and the initial charge / discharge efficiency were measured in the same manner.

(比較例1)
コールタールピッチの重量比を0.2000とし、脱水素酸触媒及びクレオソート油を加えず、電解液に1MLiPF(エチレンカーボネート:プロピレンカーボネート:ジエチルカーボネート=1:1:1、体積比)を用いた以外は実施例1と同様の方法で炭素材料を作製し、同様の方法で放電容量及び初回充放電効率を測定した。
(Comparative Example 1)
The weight ratio of coal tar pitch is 0.2000, no dehydrogenation acid catalyst and creosote oil are added, and 1M LiPF 6 (ethylene carbonate: propylene carbonate: diethyl carbonate = 1: 1: 1, volume ratio) is used as the electrolyte. A carbon material was produced by the same method as in Example 1 except that the discharge capacity and the initial charge / discharge efficiency were measured by the same method.

(比較例2)
コールタールピッチの重量比を0.1500とし、脱水素酸触媒及びクレオソート油を加えず、電解液に1MLiPF(エチレンカーボネート:プロピレンカーボネート:ジエチルカーボネート=1:1:1、体積比)を用いた以外は実施例1と同様の方法で炭素材料を作製し、同様の方法で放電容量及び初回充放電効率を測定した。
(Comparative Example 2)
The weight ratio of coal tar pitch is 0.1500, no dehydrogenation catalyst and creosote oil are added, and 1M LiPF 6 (ethylene carbonate: propylene carbonate: diethyl carbonate = 1: 1: 1, volume ratio) is used as the electrolyte. A carbon material was produced by the same method as in Example 1 except that the discharge capacity and the initial charge / discharge efficiency were measured by the same method.

表1に実施例及び比較例で得られた電極の性能の試験結果を示す。なお、ここで示される放電容量は1〜9サイクル目の平均値である。   Table 1 shows the test results of the performance of the electrodes obtained in the examples and comparative examples. In addition, the discharge capacity shown here is an average value in the first to ninth cycles.

Figure 2005200276
PTS:パラトルエンスルホン酸
Figure 2005200276
PTS: p-toluenesulfonic acid

(比較例3)
脱水素酸触媒を用いないこと以外は実施例1と同様の方法で黒鉛−非晶質炭素複合材料を作製し、同様の方法で放電容量を測定したところ、実施例1より低い放電容量であった。
(Comparative Example 3)
A graphite-amorphous carbon composite material was produced in the same manner as in Example 1 except that no dehydrogenation catalyst was used, and the discharge capacity was measured in the same manner. The discharge capacity was lower than that in Example 1. It was.

本発明の黒鉛−非晶質炭素複合材料の製造法で得られる黒鉛−非晶質炭素複合材料は、例えば、民生用リチウムイオン2次電池負極用炭素材料、コイン型リチウムイオン2次電池負極用炭素材料、ハイブリッド電気自動車用リチウムイオン2次電池等負極用炭素材料等のイオンを放出あるいは吸蔵する反応を繰り返し充放電する二次電池負極材、電気二重層キャパシタ電極材用炭素材料等として使用することができる。
本発明の電池用負極及び電池は、小型化及び軽量化が求められている携帯電話を始めとする、民生用リチウムイオン2次電池として好適であり、例えばカットオフ電圧以上での使用を行うことができる。
The graphite-amorphous carbon composite material obtained by the method for producing a graphite-amorphous carbon composite material of the present invention is, for example, a carbon material for a consumer lithium ion secondary battery negative electrode or a coin-type lithium ion secondary battery negative electrode. Used as a secondary battery negative electrode material for repeatedly charging and discharging a carbon material, a carbon material for a negative electrode such as a lithium ion secondary battery for a hybrid electric vehicle, and a carbon material for an electric double layer capacitor electrode material. be able to.
The negative electrode for a battery and the battery of the present invention are suitable as a lithium-ion secondary battery for consumer use, such as a mobile phone that is required to be reduced in size and weight. For example, the battery negative electrode and the battery should be used at a cutoff voltage or higher. Can do.

実施例1で得られた黒鉛−非晶質複合炭素材料を用いたリチウムイオン二次電池の放電容量とサイクル数との関係を表すグラフである。4 is a graph showing the relationship between the discharge capacity and the number of cycles of a lithium ion secondary battery using the graphite-amorphous composite carbon material obtained in Example 1. FIG.

Claims (8)

黒鉛部分と非晶質炭素部分とを複合してなる黒鉛−非晶質炭素複合材料の製造法であり、前記非晶質炭素部分の前駆体の重合が脱水素酸触媒存在下で行われることを特徴とする黒鉛−非晶質炭素複合材料の製造法。 A method for producing a graphite-amorphous carbon composite material comprising a composite of a graphite part and an amorphous carbon part, wherein the polymerization of the precursor of the amorphous carbon part is performed in the presence of a dehydrogenation acid catalyst. A process for producing a graphite-amorphous carbon composite material characterized by 脱水素酸触媒が、含芳香族化合物スルホン酸を含有する請求項1記載の黒鉛−非晶質炭素複合材料の製造法。 The method for producing a graphite-amorphous carbon composite material according to claim 1, wherein the dehydrogenation catalyst contains an aromatic compound sulfonic acid. 黒鉛部分の材料が、人造黒鉛を含有する請求項1又は2記載の黒鉛−非晶質炭素複合材料の製造法。 The method for producing a graphite-amorphous carbon composite material according to claim 1 or 2, wherein the material of the graphite portion contains artificial graphite. 人造黒鉛が、扁平状粒子が複数互いに非平行に集合又は結合してなる黒鉛質粒子である請求項3記載の黒鉛−非晶質炭素複合材料の製造法。 4. The method for producing a graphite-amorphous carbon composite material according to claim 3, wherein the artificial graphite is a graphite particle in which a plurality of flat particles are assembled or bonded non-parallel to each other. 請求項1〜4いずれか一つに記載の黒鉛−非晶質炭素複合材料の製造法により製造される黒鉛−非晶質炭素複合材料。 The graphite-amorphous carbon composite material manufactured by the manufacturing method of the graphite-amorphous carbon composite material as described in any one of Claims 1-4. 非晶質炭素部分の割合が、黒鉛−非晶質炭素複合材料の全重量に対して15〜50重量%である請求項5記載の黒鉛−非晶質炭素複合材料。 The graphite-amorphous carbon composite material according to claim 5, wherein the proportion of the amorphous carbon portion is 15 to 50% by weight based on the total weight of the graphite-amorphous carbon composite material. 請求項5又は6記載の黒鉛−非晶質炭素複合材料を用いた電池用負極。 A battery negative electrode using the graphite-amorphous carbon composite material according to claim 5. 請求項7記載の電池用負極を用いた電池。
A battery using the negative electrode for a battery according to claim 7.
JP2004009130A 2004-01-16 2004-01-16 Method for producing graphite-amorphous carbon composite material, graphite-amorphous carbon composite material, negative electrode for battery, and battery Pending JP2005200276A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004009130A JP2005200276A (en) 2004-01-16 2004-01-16 Method for producing graphite-amorphous carbon composite material, graphite-amorphous carbon composite material, negative electrode for battery, and battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004009130A JP2005200276A (en) 2004-01-16 2004-01-16 Method for producing graphite-amorphous carbon composite material, graphite-amorphous carbon composite material, negative electrode for battery, and battery

Publications (1)

Publication Number Publication Date
JP2005200276A true JP2005200276A (en) 2005-07-28

Family

ID=34822259

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004009130A Pending JP2005200276A (en) 2004-01-16 2004-01-16 Method for producing graphite-amorphous carbon composite material, graphite-amorphous carbon composite material, negative electrode for battery, and battery

Country Status (1)

Country Link
JP (1) JP2005200276A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007040007A1 (en) * 2005-09-09 2007-04-12 Kureha Corporation Negative electrode material for nonaqueous electrolyte secondary battery, process for producing the same, negative electrode and nonaqueous electrolyte secondary battery
JP2007173222A (en) * 2005-11-25 2007-07-05 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007294374A (en) * 2006-03-31 2007-11-08 Hitachi Chem Co Ltd Negative electrode material for nonaqueous electrolytic liquid secondary battery, negative electrode for nonaqueous electrolytic liquid secondary battery using negative electrode material, and nonaqueous electrolytic liquid secondary battery
JP2008159277A (en) * 2006-12-20 2008-07-10 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, and lithium-ion secondary battery
WO2008149539A1 (en) * 2007-06-01 2008-12-11 Panasonic Corporation Composite negative electrode active material and rechargeable battery with nonaqueous electrolyte
WO2010074247A1 (en) * 2008-12-26 2010-07-01 新日本石油株式会社 Raw oil composition for negative electrode material for lithium ion secondary battery
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
CN114447305A (en) * 2022-01-29 2022-05-06 辽宁中宏能源新材料股份有限公司 Multi-element carbon-based rapid-charging negative electrode composite material and preparation method thereof

Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191469A (en) * 1986-02-19 1987-08-21 大谷 杉郎 Carbon, graphite material using thermosetable resin and manufacture
JPH08298114A (en) * 1995-04-27 1996-11-12 Sony Corp Carbon material for negative electrode and nonaqueous electrolyte secondary battery
JPH11219704A (en) * 1998-01-30 1999-08-10 Hitachi Chem Co Ltd Lithium secondary battery, its negative electrode and its manufacture
JP2000203817A (en) * 1999-01-12 2000-07-25 Hitachi Chem Co Ltd Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2000272911A (en) * 1999-03-24 2000-10-03 Hitachi Chem Co Ltd Metal-carbon composite particle, its production, cathode material, cathode for lithium secondary battery and lithium secondary battery
JP2001332263A (en) * 2000-03-16 2001-11-30 Sony Corp Secondary battery and manufacturing method for negative electrode material of carbon
JP2002075359A (en) * 2000-08-25 2002-03-15 Mitsubishi Gas Chem Co Inc Carbon material for nonaqueous solvent secondary battery, manufacturing method for the material, and secondary battery using the carbon material

Patent Citations (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS62191469A (en) * 1986-02-19 1987-08-21 大谷 杉郎 Carbon, graphite material using thermosetable resin and manufacture
JPH08298114A (en) * 1995-04-27 1996-11-12 Sony Corp Carbon material for negative electrode and nonaqueous electrolyte secondary battery
JPH11219704A (en) * 1998-01-30 1999-08-10 Hitachi Chem Co Ltd Lithium secondary battery, its negative electrode and its manufacture
JP2000203817A (en) * 1999-01-12 2000-07-25 Hitachi Chem Co Ltd Composite carbon particle, its production, negative pole material, negative pole for lithium secondary battery or cell and lithium secondary battery or cell
JP2000272911A (en) * 1999-03-24 2000-10-03 Hitachi Chem Co Ltd Metal-carbon composite particle, its production, cathode material, cathode for lithium secondary battery and lithium secondary battery
JP2001332263A (en) * 2000-03-16 2001-11-30 Sony Corp Secondary battery and manufacturing method for negative electrode material of carbon
JP2002075359A (en) * 2000-08-25 2002-03-15 Mitsubishi Gas Chem Co Inc Carbon material for nonaqueous solvent secondary battery, manufacturing method for the material, and secondary battery using the carbon material

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5065901B2 (en) * 2005-09-09 2012-11-07 株式会社クレハ Negative electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and negative electrode and non-aqueous electrolyte secondary battery
JPWO2007040007A1 (en) * 2005-09-09 2009-04-16 株式会社クレハ Negative electrode material for non-aqueous electrolyte secondary battery, method for producing the same, and negative electrode and non-aqueous electrolyte secondary battery
US7858239B2 (en) 2005-09-09 2010-12-28 Kureha Corporation Negative electrode material for non-aqueous electrolyte secondary battery, process for producing the same, negative electrode, and non-aqueous electrolyte secondary battery
WO2007040007A1 (en) * 2005-09-09 2007-04-12 Kureha Corporation Negative electrode material for nonaqueous electrolyte secondary battery, process for producing the same, negative electrode and nonaqueous electrolyte secondary battery
US11769871B2 (en) 2005-10-20 2023-09-26 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
US9029022B2 (en) 2005-10-20 2015-05-12 Mitsubishi Chemical Corporation Lithium secondary batteries and nonaqueous electrolyte for use in the same
JP2007173222A (en) * 2005-11-25 2007-07-05 Mitsubishi Chemicals Corp Lithium ion secondary battery
JP2007294374A (en) * 2006-03-31 2007-11-08 Hitachi Chem Co Ltd Negative electrode material for nonaqueous electrolytic liquid secondary battery, negative electrode for nonaqueous electrolytic liquid secondary battery using negative electrode material, and nonaqueous electrolytic liquid secondary battery
JP2008159277A (en) * 2006-12-20 2008-07-10 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, and lithium-ion secondary battery
KR101190368B1 (en) 2007-06-01 2012-10-11 오사까 가스 가부시키가이샤 Composite negative electrode active material and rechargeable battery with non-aqueous electrolyte
US8399131B2 (en) 2007-06-01 2013-03-19 Panasonic Corporation Composite negative electrode active material and non-aqueous electrolyte secondary battery
WO2008149539A1 (en) * 2007-06-01 2008-12-11 Panasonic Corporation Composite negative electrode active material and rechargeable battery with nonaqueous electrolyte
JP5400064B2 (en) * 2008-12-26 2014-01-29 Jx日鉱日石エネルギー株式会社 Raw material oil composition for negative electrode material of lithium ion secondary battery
US8741125B2 (en) 2008-12-26 2014-06-03 Jx Nippon Oil & Energy Corporation Raw oil composition for negative electrode material for lithium ion secondary battery
WO2010074247A1 (en) * 2008-12-26 2010-07-01 新日本石油株式会社 Raw oil composition for negative electrode material for lithium ion secondary battery
CN114447305A (en) * 2022-01-29 2022-05-06 辽宁中宏能源新材料股份有限公司 Multi-element carbon-based rapid-charging negative electrode composite material and preparation method thereof
CN114447305B (en) * 2022-01-29 2023-08-08 辽宁中宏能源新材料股份有限公司 Multi-carbon-based quick-charge anode composite material and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5348878B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4844943B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP5898628B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
US8974968B2 (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
US8597835B2 (en) Positive-electrode material for a lithium ion secondary battery and manufacturing method of the same
JP5898572B2 (en) Method for producing negative electrode material for non-aqueous electrolyte secondary battery and method for producing non-aqueous electrolyte secondary battery
JP2014232728A (en) Negative electrode active material for lithium secondary battery, process of manufacturing the same, and lithium secondary battery containing the same
KR20130094853A (en) Anode material for lithium ion rechargeable battery, anode for lithium ion rechargeable battery, and lithium ion rechargeable battery
JP2002216751A (en) Composite material for lithium secondary battery negative electrode and lithium secondary battery
KR20180094747A (en) Negative active material for lithium secondary battery, method for preparing the same and lithium secondary battery comprising thereof
WO1998005083A1 (en) Nonaqueous electrolyte secondary cell
JP2004210634A (en) COMPOSITE GRAPHITE PARTICLE, ITS PRODUCTION METHOD, Li ION SECONDARY BATTERY CATHODE MATERIAL, Li ION SECONDARY BATTERY CATHODE AND Li ION SECONDARY BATTERY
JP2004259475A (en) Lithium secondary battery negative electrode material and its manufacturing method as well as lithium secondary battery using the same
JP2005019399A (en) Negative pole material for lithium ion secondary battery and its producing method, negative pole for lithium ion secondary battery and lithium ion secondary battery
JP6456474B2 (en) Method for producing mixed negative electrode material for nonaqueous electrolyte secondary battery and mixed negative electrode material for nonaqueous electrolyte secondary battery obtained by the production method
JP2004196609A (en) Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP5212682B2 (en) Method for producing negative electrode material for lithium ion secondary battery
KR101140866B1 (en) Anode active material for lithium secondary battery And Lithium secondary battery comprising the same
JP2005200276A (en) Method for producing graphite-amorphous carbon composite material, graphite-amorphous carbon composite material, negative electrode for battery, and battery
JP2009231113A (en) Active material for negative electrode of nonaqueous electrolyte secondary battery, and method of manufacturing nonaqueous electrolyte secondary battery
JP2009280486A (en) Method for production of mesophase spherule, method for production of carbon material, and lithium ion secondary battery
JP2006269110A (en) Metal-graphite composite particle, cathode material for lithium ion secondary battery, cathode, and the lithium ion secondary battery
JP2016027557A (en) Method for manufacturing negative electrode material for lithium ion secondary battery
JP2004059386A (en) Production method for carbon-coated graphite particle, carbon-coated graphite particle, cathode for lithium-ion secondary battery, and lithium-ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20061226

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100217

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100311

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20100722