JP5212682B2 - Method for producing negative electrode material for lithium ion secondary battery - Google Patents

Method for producing negative electrode material for lithium ion secondary battery Download PDF

Info

Publication number
JP5212682B2
JP5212682B2 JP2007038822A JP2007038822A JP5212682B2 JP 5212682 B2 JP5212682 B2 JP 5212682B2 JP 2007038822 A JP2007038822 A JP 2007038822A JP 2007038822 A JP2007038822 A JP 2007038822A JP 5212682 B2 JP5212682 B2 JP 5212682B2
Authority
JP
Japan
Prior art keywords
negative electrode
amorphous carbon
graphite
weight
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007038822A
Other languages
Japanese (ja)
Other versions
JP2008204758A (en
Inventor
明 近藤
健太郎 瀧澤
健太 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2007038822A priority Critical patent/JP5212682B2/en
Publication of JP2008204758A publication Critical patent/JP2008204758A/en
Application granted granted Critical
Publication of JP5212682B2 publication Critical patent/JP5212682B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、大電流での充放電が可能なリチウムイオン二次電池用負極材の製造方法に関する。 The present invention relates to a method for producing a negative electrode material for a lithium ion secondary battery that can be charged and discharged with a large current.

非水電解質二次電池としてリチウム塩の有機電解液を用いたリチウム二次電池は軽量でエネルギー密度が高く、小型電子機器の電源あるいは電力貯蔵用の電池等として期待されている。当初、リチウム二次電池の負極材としては金属リチウムが用いられていたが、金属リチウムは放電時にリチウムイオンとして電解液中に溶出し、充電時にはリチウムイオンは金属リチウムとして負極表面に析出する際に、平滑で元の状態に析出させることが難しく、デンドライト状に析出し易い。このデンドライトは活性が極めて強いため電解液を分解するので電池性能が低下し、充放電のサイクル寿命が短くなる欠点がある。更に、デンドライトが成長して正極に達して、両極が短絡する危険もある。   A lithium secondary battery using a lithium salt organic electrolyte as a non-aqueous electrolyte secondary battery is lightweight and has high energy density, and is expected as a power source for small electronic devices or a battery for storing power. Initially, metallic lithium was used as the negative electrode material for lithium secondary batteries, but metallic lithium eluted into the electrolyte as lithium ions during discharge, and when lithium ions were deposited on the negative electrode surface as metallic lithium during charging. It is difficult to deposit in a smooth and original state, and it tends to deposit in a dendritic form. Since this dendrite has extremely strong activity, the electrolyte solution is decomposed, so that the battery performance is lowered and the charge / discharge cycle life is shortened. Furthermore, there is a risk that dendrites grow and reach the positive electrode, causing both electrodes to short-circuit.

この欠点を改善するために、金属リチウムに代えて炭素材を用いることが提案されてきた。炭素材、特に黒鉛材はリチウムイオンの吸蔵、放出に際しデンドライト状に析出する問題がないため負極材として好適である。すなわち、黒鉛材はリチウムイオンの吸蔵・放出性が高く、速やかに吸蔵・放出反応が行われるために充放電の効率が高く、理論容量も372mAh/gと高く、更に、充放電時の電位も金属リチウムとほぼ等しく、高電圧の電池が得られる等の利点がある。   In order to remedy this drawback, it has been proposed to use a carbon material instead of metallic lithium. A carbon material, particularly a graphite material, is suitable as a negative electrode material because there is no problem of precipitation in the form of dendrites during insertion and extraction of lithium ions. In other words, the graphite material has high lithium ion occlusion / release properties, and since the occlusion / release reaction is performed quickly, the charge / discharge efficiency is high, the theoretical capacity is also high at 372 mAh / g, and the potential during charge / discharge is also high. There is an advantage that a high voltage battery is obtained which is almost equal to metallic lithium.

しかしながら、黒鉛化度が高く、六角網面構造が高度に発達した黒鉛材の場合には、可逆容量が大きく、初期効率が90%以上と高い特性が得られる反面、短時間で充放電できず、レート特性が悪いという難点がある。   However, in the case of a graphite material having a high degree of graphitization and a highly developed hexagonal network structure, the reversible capacity is large and high characteristics such as an initial efficiency of 90% or more can be obtained, but charging and discharging cannot be performed in a short time. The rate characteristic is bad.

一方、黒鉛化度が低く、結晶性の低いアモルファスカーボンは可逆容量は小さいもののレート特性に優れるという特徴がある。   On the other hand, amorphous carbon having a low degree of graphitization and low crystallinity is characterized by excellent rate characteristics although it has a small reversible capacity.

そこで、黒鉛材を中心とする炭素材の性状を改良して、例えば、黒鉛化度の高い黒鉛材の表面を黒鉛化度の低い炭素質物で被覆した複層構造の炭素材や黒鉛化度の高い黒鉛材と黒鉛化度の低い炭素質物を組み合わせることにより、これらの難点を解消する試みが盛んに行われており、多くの提案がなされている。   Therefore, by improving the properties of carbon materials centering on graphite materials, for example, a carbon material having a multi-layer structure in which the surface of a graphite material having a high graphitization degree is coated with a carbonaceous material having a low graphitization degree or a graphitization degree. Many attempts have been made to solve these problems by combining a high graphite material and a carbonaceous material having a low graphitization degree, and many proposals have been made.

例えば、特許文献1には活物質となる炭素の電解液と接する表面が非晶質炭素により覆われている二次電池用炭素負極、及び、非晶質炭素が乱層構造であり、C軸方向の平均面間隔が0.337〜0.360nm、アルゴンレーザーラマンスペクトルにおける1580cm−1に対する1360cm−1のピーク強度比が0.4〜1.0の二次電池用炭素負極が提案されている。 For example, Patent Document 1 discloses a carbon negative electrode for a secondary battery in which a surface in contact with an electrolytic solution of carbon serving as an active material is covered with amorphous carbon, and amorphous carbon has a turbulent structure, and a C axis mean spacing directions 0.337~0.360Nm, the peak intensity ratio of 1360 cm -1 relative to 1580 cm -1 in an argon laser Raman spectrum secondary battery carbon negative electrode of 0.4 to 1.0 has been proposed .

また、特許文献2には、下記(1)の条件を満たす炭素質物(A)の粒子と、下記(2)の条件を満たす有機化合物(B)の粒子を混合した後、加熱して(B)を炭素化することにより、(A)の粒子を、下記(3)の条件を満たす炭素質物(C)で被覆した多層構造とした電極材料が提案されている。
(1)X線広角回折におけるd002 が3.37オングストローム以下、真密度が2.10g/cm以上、体積平均粒径が5μm以上であること。
(2)体積平均粒径が炭素質物(A)より小さいこと。
(3)X線広角回折におけるd002 が3.38オングストローム以上、アルゴンイオンレーザー光を用いたラマンスペクトル分析において、1580〜1620cm−1の範囲にピークPA 、1350〜1370cm−1の範囲にピークPB を有し、上記PA の強度IAに対するPB の強度IB の比R=IB /IA が0.2以上であること。
In Patent Document 2, carbonaceous material (A) particles satisfying the following condition (1) and organic compound (B) particles satisfying the following condition (2) are mixed and heated (B ) Is carbonized, and an electrode material having a multilayer structure in which the particles of (A) are coated with a carbonaceous material (C) that satisfies the following condition (3) has been proposed.
(1) The d002 in X-ray wide angle diffraction is 3.37 angstroms or less, the true density is 2.10 g / cm 3 or more, and the volume average particle diameter is 5 μm or more.
(2) The volume average particle size is smaller than the carbonaceous material (A).
(3) d002 in X-ray wide angle diffraction 3.38 angstroms, in the Raman spectrum analysis using an argon ion laser beam, a peak in the range of 1580~1620cm -1 PA, a peak PB in the range of 1350 -1 The ratio R = IB / IA of the intensity IB of PB to the intensity IA of the PA is 0.2 or more.

これらは、黒鉛粒子の表面にアモルファスカーボン層を形成させるものであるが、アモルファスカーボン層を厚く形成させることが難しいため、黒鉛化が進み易くレート特性を向上させるには十分ではない。   These form an amorphous carbon layer on the surface of the graphite particles, but it is difficult to form a thick amorphous carbon layer, so that graphitization proceeds easily and is not sufficient to improve the rate characteristics.

そこで、黒鉛粒子の表面にアモルファスカーボンの1つであるカーボンブラックを被覆するものも提案されており、特許文献3にはDBP吸収量100ml/100g以上、算術平均一次粒子径40nm以上の粒子特性を有するカーボンブラックに負極活物質となるリチウムを担持させて負極体とし、エチレンカーボネートもしくはこれを20容量%以上含有する有機溶媒を電解液とするリチウム二次電池が開示されている。   In view of this, it has also been proposed to coat the surface of graphite particles with carbon black, which is one of amorphous carbon, and Patent Document 3 discloses particle characteristics having an absorption average of 100 ml / 100 g or more and an arithmetic average primary particle diameter of 40 nm or more. There is disclosed a lithium secondary battery in which lithium as a negative electrode active material is supported on carbon black having a negative electrode body, and ethylene carbonate or an organic solvent containing 20% by volume or more thereof is used as an electrolyte.

また、特許文献4には負極活物質であるリチウムを吸蔵可能な炭素材料と結着剤とからなるリチウム二次電池の負極体において、前記炭素材料がDBP吸収量100ml/100g以上のカーボンブラックで結着剤がポリフッ化ビニリデンであることを特徴とするリチウム二次電池の負極体が開示されている。
特開平4−368778号公報 特開平6−267531号公報 特開平6−267533号公報 特開平7−153447号公報
Patent Document 4 discloses a negative electrode body of a lithium secondary battery comprising a carbon material capable of occluding lithium as a negative electrode active material and a binder, and the carbon material is carbon black having a DBP absorption of 100 ml / 100 g or more. A negative electrode body for a lithium secondary battery is disclosed, wherein the binder is polyvinylidene fluoride.
JP-A-4-368778 JP-A-6-267531 JP-A-6-267533 JP-A-7-153447

しかしながら、カーボンブラックは比表面積が大きく、またカーボンブラック粒子は凝集した凝集体(ストラクチャー)を形成しているので、ロス(充電容量−放電容量)が大きくなり、黒鉛材を被覆するカーボンブラック層の密度も低くなるという欠点がある。   However, since carbon black has a large specific surface area and carbon black particles form an aggregate (structure), loss (charge capacity-discharge capacity) increases, and the carbon black layer covering the graphite material increases. There is a disadvantage that the density is also lowered.

そこで、発明者らは黒鉛材の有する大きな可逆容量および高い初期効率などの特徴と、アモルファスカーボン材のもつ優れたレート特性を生かし、これらの特性を兼備した負極材の開発について鋭意研究を行った。そして、黒鉛結晶性状の発達した黒鉛粉末をコアにして、黒鉛粉末の表面をアモルファスカーボン粉末を含むアモルファスカーボン層で被覆した、コア・シェル構造の複合粒子とし、黒鉛粉末およびアモルファスカーボンの粒子径,複合粒子の粒子径などを特定することにより、高い可逆容量、初期効率、レート特性などの電池性能を付与し得ることを確認した。   Therefore, the inventors conducted extensive research on the development of a negative electrode material that combines these characteristics, taking advantage of the characteristics such as the large reversible capacity and high initial efficiency of the graphite material and the excellent rate characteristics of the amorphous carbon material. . Then, a core-shell structure composite particle in which graphite powder having developed graphite crystal properties is used as a core, and the surface of the graphite powder is coated with an amorphous carbon layer containing amorphous carbon powder. It was confirmed that battery performance such as high reversible capacity, initial efficiency, and rate characteristics can be imparted by specifying the particle size of the composite particles.

すなわち、本発明の目的は、優れた特性を有するリチウムイオン二次電池用負極材の製造方法を提供することにある。 That is, the objective of this invention is providing the manufacturing method of the negative electrode material for lithium ion secondary batteries which has the outstanding characteristic.

上記の目的を達成するための本発明に係るリチウムイオン二次電池用負極材の製造方法は、平均粒子径D50が10〜30μm、平均格子面間隔d(002)が0.336nm以下の黒鉛粉末100重量部とキノリン不溶分の含有率が3重量%以上のバインダーピッチ10〜50重量部を混合して混練した後、平均粒子径D50が0.2〜5μm、平均格子面間隔d(002)が0.340nm以上のアモルファスカーボン粉末10〜50重量部を加えて更に混練し、次いで、非酸化性雰囲気中800〜2200℃の温度で熱処理することを特徴とする。 In order to achieve the above object, a method for producing a negative electrode material for a lithium ion secondary battery according to the present invention comprises a graphite powder having an average particle diameter D50 of 10 to 30 μm and an average lattice spacing d (002) of 0.336 nm or less. After mixing 100 parts by weight and 10 to 50 parts by weight of a binder pitch having a quinoline insoluble content of 3% by weight or more and kneading, the average particle diameter D50 is 0.2 to 5 μm and the average lattice spacing d (002). Is characterized by adding 10 to 50 parts by weight of amorphous carbon powder of 0.340 nm or more and further kneading, followed by heat treatment at a temperature of 800 to 2200 ° C. in a non-oxidizing atmosphere.

なお、アモルファスカーボン粉末としてはモザイク状コークス粉末が好適である。   As the amorphous carbon powder, mosaic coke powder is suitable.

本発明によれば、高い可逆容量、初期効率およびレート特性をバランスよく備えたリチウムイオン二次電池用負極材の製造方法が提供される。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the negative electrode material for lithium ion secondary batteries provided with the high reversible capacity | capacitance, initial stage efficiency, and a rate characteristic with sufficient balance is provided.

なお、可逆容量とは可逆的に充放電できる電気量である。初期効率とは定電流充放電において、初回に充電される容量に対する放電可能な容量であり、初期効率(%)=(初回の放電容量)/(初回の充電容量)×100で定義される値である。また、レート特性とは大電流での放電に耐えうるかを示す指標であり、大電流で放電した際の電気量を小電流で放電した際の電気量で除した値で示される。レート特性が低い場合は、大電流が要求される用途には使えなくなる。   The reversible capacity is the amount of electricity that can be reversibly charged and discharged. The initial efficiency is a dischargeable capacity with respect to the capacity charged for the first time in constant current charging / discharging, and is defined by the initial efficiency (%) = (initial discharge capacity) / (initial charge capacity) × 100. It is. The rate characteristic is an index indicating whether or not it can withstand a discharge with a large current, and is represented by a value obtained by dividing the amount of electricity when discharged with a large current by the amount of electricity when discharged with a small current. If the rate characteristic is low, it cannot be used for applications requiring a large current.

リチウムイオン二次電池では、充電時にはリチウムイオンが負極材の黒鉛層間に進入して層間化合物を生成し、放電時にはリチウムイオンが黒鉛層間から脱離して正極に戻るわけであるが、レート特性はこのリチウムイオンの進入−脱離の速さに依存する。そして、進入時の速さと脱離時の速さを比べると、脱離時の速さは進入時の速さに比べて十分に速い。一方、リチウムイオンが電解液界面から負極材に進入する速さと負極材内部を進入移動する速さを比べると、負極材内部を進入移動する速さの方が速い。   In lithium ion secondary batteries, lithium ions enter the graphite layer of the negative electrode material during charging to produce an intercalation compound, and during discharge, lithium ions are desorbed from the graphite layer and return to the positive electrode. Depends on the speed of entry and desorption of lithium ions. When the speed at the time of entry is compared with the speed at the time of desorption, the speed at the time of desorption is sufficiently faster than the speed at the time of entry. On the other hand, comparing the speed at which lithium ions enter the negative electrode material from the electrolyte interface and the speed at which the lithium ions enter and move inside the negative electrode material, the speed at which the lithium ions enter and move inside the negative electrode material is faster.

すなわち、レート特性を支配する最も律速段階はリチウムイオンが電解液界面から負極材内部へ侵入するときの速さである。この速さは負極材の黒鉛結晶化度に依存し、高度に黒鉛化した負極材では進入速度が遅く、結晶化度の低いアモルファスカーボンでは比較的に速い。一方、可逆容量は単純に負極材の黒鉛化度に比例する。   That is, the most rate-determining step governing the rate characteristics is the speed at which lithium ions enter the negative electrode material from the electrolyte solution interface. This speed depends on the degree of graphite crystallinity of the negative electrode material. The highly graphitized negative electrode material has a slow entry speed, and amorphous carbon having a low degree of crystallinity has a relatively high speed. On the other hand, the reversible capacity is simply proportional to the degree of graphitization of the negative electrode material.

本発明により製造されるリチウムイオン二次電池用負極材は、レート特性を支配するリチウムイオンが電解液との界面から負極材へ進入する部分をアモルファスカーボンとし、進入したリチウムイオンが内部へ拡散移動して層間化合物を生成する部分を可逆容量の大きい黒鉛材とするもので、黒鉛結晶性状の発達した黒鉛粉末をコアにして、黒鉛粉末の表面をアモルファスカーボン粉末を含むアモルファスカーボン層で被覆した、コア・シェル構造の複合粒子とするものである。 The negative electrode material for a lithium ion secondary battery manufactured according to the present invention has amorphous carbon where the lithium ions that govern rate characteristics enter the negative electrode material from the interface with the electrolyte, and the lithium ions that have entered diffused and moved into the interior. Then, the part that generates the intercalation compound is a graphite material with a large reversible capacity, and the graphite powder with developed graphite crystal properties is used as a core, and the surface of the graphite powder is coated with an amorphous carbon layer containing amorphous carbon powder. It is a composite particle having a core / shell structure.

この複合粒子において、黒鉛粉末の平均粒子径D50を10〜30μmとするのは、10μmより小さいと比表面積が大きくなるためにロスが増え、また30μmより大きくなるとリチウムイオンの黒鉛内部での拡散パスが長くなり、レート特性が低下するためである。   In this composite particle, the average particle diameter D50 of the graphite powder is 10-30 μm. If it is smaller than 10 μm, the loss increases due to the increase in the specific surface area, and if it exceeds 30 μm, the diffusion path of lithium ions inside the graphite. This is because the rate characteristic is lowered.

この黒鉛粉末をコアとして、その表面を被覆してシェルを形成するアモルファスカーボン粉末の平均粒子径D50を0.2〜5μmとするのは、0.2μmより小さいと比表面積が大きくなるのでロスが増大し、一方5μmよりも大きくなるとシェルの形成が難しく均一に被覆できず、結果としてレート特性が低下する。   The average particle diameter D50 of the amorphous carbon powder that forms the shell by covering the surface with this graphite powder as the core is 0.2 to 5 μm. On the other hand, if it exceeds 5 μm, it is difficult to form a shell and it is impossible to coat uniformly, resulting in a deterioration in rate characteristics.

複合粒子は、この黒鉛粉末とアモルファスカーボン粉末とがバインダーピッチの炭化物により結着し、黒鉛粉末をコアとしてその周面をアモルファスカーボン粉末を含むアモルファスカーボン層で被覆したもので、上記平均粒子径を有する黒鉛粉末およびアモルファスカーボン粉末を用いた結果として、複合粒子の平均粒子径D50は11〜40μmとなる。   The composite particles are obtained by binding the graphite powder and the amorphous carbon powder with a carbide of binder pitch, and covering the peripheral surface with an amorphous carbon layer containing the amorphous carbon powder with the graphite powder as a core. As a result of using the graphite powder and the amorphous carbon powder, the average particle diameter D50 of the composite particles is 11 to 40 μm.

また、黒鉛粉末表面は、その60〜100%がアモルファスカーボン粉末を含むアモルファスカーボン層で被覆されていれば十分なレート特性が得られるが、被覆割合が60%未満であるとアモルファスカーボン層を介して進入するリチウムイオンの割合が減りレート特性の低下を招く。なお、被覆割合は走査型電子顕微鏡により観察した負極材の表面観察写真から100粒以上の粒子を選び、各粒の未被覆部面積を幾何学的に計測して、算出する。   In addition, if the surface of the graphite powder is coated with an amorphous carbon layer containing amorphous carbon powder, 60 to 100%, sufficient rate characteristics can be obtained, but if the coating ratio is less than 60%, the amorphous carbon layer is interposed. The rate of lithium ions that enter and the rate characteristics decrease. The covering ratio is calculated by selecting 100 or more particles from the surface observation photograph of the negative electrode material observed with a scanning electron microscope, and geometrically measuring the area of each uncoated portion.

アモルファスカーボン層の厚みを0.5〜5μmとするのは、0.5μm以下では十分なレート特性が得られず、5μm以上では可逆容量が小さいアモルファスカーボンの量が過剰であるために可逆容量が低下するためである。なお、アモルファスカーボン層の厚みはフォーカスドイオンビーム装置などの適宜な切断装置により複合粒子を切断し、切断面の走査型電子顕微鏡観察により計測され、100視野を計測して平均した値である。   The reason why the thickness of the amorphous carbon layer is 0.5 to 5 μm is that sufficient rate characteristics cannot be obtained when the thickness is 0.5 μm or less, and the amount of amorphous carbon having a small reversible capacity is excessive when the thickness is 5 μm or more. It is because it falls. The thickness of the amorphous carbon layer is a value obtained by cutting the composite particles with an appropriate cutting device such as a focused ion beam device, measuring the cut surface with a scanning electron microscope, and measuring 100 visual fields.

この複合粒子を用いてリチウムイオン二次電池の負極材を形成することにより、アモルファスカーボンの優れたレート特性と黒鉛のもつ高い可逆容量と初期効率をバランスよく併有するリチウムイオン二次電池を提供することができる。   By using this composite particle to form a negative electrode material for a lithium ion secondary battery, a lithium ion secondary battery having a good balance between the excellent rate characteristics of amorphous carbon, the high reversible capacity of graphite and the initial efficiency is provided. be able to.

この複合粒子からなるリチウムイオン二次電池用負極材は、平均粒子径D50が10〜30μm、平均格子面間隔d(002) が0.336nm以下の黒鉛粉末100重量部とバインダーピッチ10〜50重量部を混合して混練した後、平均粒子径D50が0.2〜5μm、平均格子面間隔d(002) が0.340nm以上のアモルファスカーボン粉末10〜50重量部を加えて更に混練し、次いで、非酸化性雰囲気中800〜2200℃の温度で熱処理することにより製造される。   The negative electrode material for a lithium ion secondary battery comprising the composite particles has an average particle diameter D50 of 10 to 30 μm and an average lattice spacing d (002) of 100 parts by weight of graphite powder of 0.336 nm or less and a binder pitch of 10 to 50 weights. After mixing and kneading the parts, 10 to 50 parts by weight of amorphous carbon powder having an average particle diameter D50 of 0.2 to 5 μm and an average lattice spacing d (002) of 0.340 nm or more is added and further kneaded, It is manufactured by heat treatment at a temperature of 800 to 2200 ° C. in a non-oxidizing atmosphere.

黒鉛には人造黒鉛または天然黒鉛が用いられ、平均粒子径D50が10〜30μm、平均格子面間隔d(002) が0.336nm以下の黒鉛粉末100重量部とバインダーピッチ10〜50重量部とを混合して混練する。黒鉛粉末は振動ボールミル、ジェット粉砕機、ローラーミル、衝突型粉砕機などの粉砕機で粉砕した後、分級して所定の粒子径に粒度調整する。   As graphite, artificial graphite or natural graphite is used, and 100 parts by weight of graphite powder having an average particle diameter D50 of 10 to 30 μm and an average lattice spacing d (002) of 0.336 nm or less and a binder pitch of 10 to 50 parts by weight are used. Mix and knead. The graphite powder is pulverized by a pulverizer such as a vibration ball mill, a jet pulverizer, a roller mill, or a collision pulverizer, and then classified to adjust the particle size to a predetermined particle size.

平均粒子径D50が10〜30μmの黒鉛粉末を用いるのはD50が10μmより小さいと比表面積が大きくなるためにロスが増え、また30μmより大きくなるとリチウムイオンの黒鉛内部での拡散パスが長くなり、レート特性が低下するためであり、また、平均格子面間隔d(002) が0.336nm以下の黒鉛粉末を用いるのは0.336nmより大きい場合には黒鉛結晶化が低いため十分な可逆容量を有するリチウムイオン二次電池が得られないためである。   The graphite powder having an average particle diameter D50 of 10 to 30 μm is used when the D50 is smaller than 10 μm, because the specific surface area is increased and the loss increases. When the D50 is larger than 30 μm, the diffusion path of lithium ions inside the graphite becomes longer. This is because the rate characteristic is lowered, and the graphite powder having an average lattice spacing d (002) of 0.336 nm or less is used when the graphite powder is larger than 0.336 nm. This is because a lithium ion secondary battery having the same cannot be obtained.

バインダーピッチの混合割合が10重量部未満ではピッチ量が少なく、均一に黒鉛表面を濡らすことができない。一方、50重量部を越えるとピッチ量が過剰となり、後に加えるアモルファスカーボン粉末のみの混練造粒物が形成されることになる。   When the mixing ratio of the binder pitch is less than 10 parts by weight, the pitch amount is small and the graphite surface cannot be uniformly wetted. On the other hand, if it exceeds 50 parts by weight, the amount of pitch becomes excessive, and a kneaded granulated product of only amorphous carbon powder added later is formed.

用いるバインダーピッチとしては、コールタール、エチレンボトム油、原油などの高温熱分解で得られるタール類、またはアスファルトなどを蒸留、熱重縮合、抽出、化学重縮合などの操作で得られるものや木材乾留時に生成するピッチなどが例示され、混練時に液状であればよい。また、バインダーピッチのキノリン不溶分の含有率が3重量%以上のものを用いると黒鉛化が進行し難くなり、レート特性がよくなるのでより好適となる。   Binder pitch to be used includes those obtained by distillation, thermal polycondensation, extraction, chemical polycondensation of tars obtained by high-temperature pyrolysis such as coal tar, ethylene bottom oil, crude oil, etc., or wood dry distillation An example of the pitch that is sometimes generated is illustrated, and it may be liquid when kneaded. Moreover, when the content of the quinoline insoluble component in the binder pitch is 3% by weight or more, graphitization is difficult to proceed and the rate characteristics are improved, which is more preferable.

黒鉛粉末とバインダーピッチは所望する重量比で混合し、よく加熱混練する。なお、混練機は市販の適宜な混練機を用いることができる。   The graphite powder and the binder pitch are mixed at a desired weight ratio and well heated and kneaded. As the kneader, a commercially available appropriate kneader can be used.

次いで、混練物に平均粒子径D50が0.2〜5μm、平均格子面間隔d(002) が0.340nm以上のアモルファスカーボン粉末を10〜50重量部の範囲で添加して更に混練する。アモルファスカーボン粉末としてはカーボンブラックやコークスあるいは樹脂炭化物の粉砕品などが例示されるが、好ましくはモザイク状コークス粉砕品が用いられる。   Next, an amorphous carbon powder having an average particle diameter D50 of 0.2 to 5 [mu] m and an average lattice spacing d (002) of 0.340 nm or more is added to the kneaded material in a range of 10 to 50 parts by weight and further kneaded. Examples of the amorphous carbon powder include pulverized products of carbon black, coke, or resin carbide, but a mosaic-shaped coke pulverized product is preferably used.

用いるアモルファスカーボン粉末の平均粒子径D50を0.2〜5μmとするのはD50が0.2μmより小さいと比表面積が大きくなるのでロスが増大し、一方5μmよりも大きくなるとシェルの形成が難しく均一に被覆できず、結果としてレート特性が低下するからである。また、平均格子面間隔d(004) が0.340nm以上のものを使用するのは、平均格子面間隔d(004) が0.340nmより小さいと、黒鉛の結晶化度が高いためにレート特性が低下することになるためである。   The average particle diameter D50 of the amorphous carbon powder to be used is set to 0.2 to 5 [mu] m. If D50 is smaller than 0.2 [mu] m, the specific surface area increases and the loss increases. On the other hand, if it exceeds 5 [mu] m, the shell formation is difficult and uniform. This is because the rate characteristics are degraded as a result. The average lattice spacing d (004) of 0.340 nm or more is used because the crystallinity of graphite is high when the average lattice spacing d (004) is smaller than 0.340 nm. This is because of the decrease.

アモルファスカーボン粉末の添加量を黒鉛粉末100重量部に対して10〜50重量部とするのは、黒鉛粉末100重量部に対して10重量部未満では複合粒子のコア部を構成する黒鉛の表面を60%以上被覆することができず、アモルファスカーボン層の厚みが0.5μmを下回ることとなり、アモルファスカーボン層を介して進入するリチウムイオンの割合が減りレート特性の低下を招くためである。しかし、添加量が50重量部を超えると元来可逆容量が小さいアモルファスカーボンが過剰に存在することになり、アモルファスカーボン層の厚みも5μmを越えることとなり、可逆容量が著しく低下する。   The amount of the amorphous carbon powder added is 10 to 50 parts by weight with respect to 100 parts by weight of the graphite powder because the surface of the graphite constituting the core part of the composite particle is less than 10 parts by weight with respect to 100 parts by weight of the graphite powder. This is because 60% or more cannot be covered, and the thickness of the amorphous carbon layer is less than 0.5 μm, so that the rate of lithium ions entering through the amorphous carbon layer is reduced and the rate characteristics are lowered. However, if the addition amount exceeds 50 parts by weight, there will be excessive amorphous carbon with originally low reversible capacity, and the thickness of the amorphous carbon layer will also exceed 5 μm, and the reversible capacity will be significantly reduced.

混練物は、不活性ガスや窒素ガスなどの非酸化性雰囲気中で800〜2200℃の温度で熱処理してバインダーピッチを焼成炭化することにより、黒鉛の表面にアモルファスカーボンが被覆、結着した複合粒子からなる本発明のリチウムイオン二次電池用の負極材が製造される。   The kneaded product is a composite in which amorphous carbon is coated and bound on the surface of graphite by heat-treating the binder pitch by carbonization by heating at a temperature of 800 to 2200 ° C. in a non-oxidizing atmosphere such as inert gas or nitrogen gas. A negative electrode material for a lithium ion secondary battery of the present invention comprising particles is produced.

なお、本発明における平均粒子径D50および平均格子面間隔d(002)は、下記の方法による測定値である。   The average particle diameter D50 and the average lattice spacing d (002) in the present invention are measured values by the following method.

平均粒子径D50 ;
レーザー回折式の粒度分布測定装置(島津製作所製SALD2000)により測定し、体積を基準としたメディアン径(μm)で示した。
Average particle size D50;
The particle size distribution was measured with a laser diffraction particle size distribution analyzer (SALD2000 manufactured by Shimadzu Corporation), and the median diameter (μm) based on volume was shown.

平均格子面間隔d(002) ;
グラファイトモノクロメーターで単色化したCuKα線をもちい、反射式ディフラクトメーター法によって、広角X線回折曲線を測定し、学振法を用いて測定。
Average lattice spacing d (002);
Using CuKα rays monochromatized with a graphite monochromator, a wide-angle X-ray diffraction curve is measured by the reflective diffractometer method, and measured using the Gakushin method.

以下、本発明の実施例を比較例と対比して具体的に説明する。しかし、本発明は,これらの実施例により制約されるものではない。   Examples of the present invention will be specifically described below in comparison with comparative examples. However, the present invention is not limited by these examples.

実施例1
平均粒子径D50が15μm、平均格子面間隔d(002)が0.3359nmの人造黒鉛粉末100重量部に、軟化温度90℃、キノリン不溶分(QI)5.6%のピッチを30重量部加えて混練した。その後、平均粒子径D50が0.5μm、平均格子面間隔d(002)が0.3492μmのモザイク状コークスA(新日鉄化学社製、LPC)50重量部を添加して更に混練した。
Example 1
To 100 parts by weight of artificial graphite powder having an average particle diameter D50 of 15 μm and an average lattice spacing d (002) of 0.3359 nm, 30 parts by weight of a softening temperature of 90 ° C. and a pitch of quinoline insoluble (QI) 5.6% are added. And kneaded. Thereafter, 50 parts by weight of mosaic coke A (manufactured by Nippon Steel Chemical Co., Ltd., LPC) having an average particle diameter D50 of 0.5 μm and an average lattice spacing d (002) of 0.3492 μm was added and further kneaded.

混練物は冷却後、加熱炉に入れて窒素ガス雰囲気中2000℃の温度で熱処理して、ピッチおよびコークスを炭化して複合粒子を製造した。複合粒子の平均粒子径D50は17μmであり、SEM観察の結果から人造黒鉛粉末表面の85%がアモルファスカーボン層で被覆されていた。   After cooling, the kneaded product was put in a heating furnace and heat-treated in a nitrogen gas atmosphere at a temperature of 2000 ° C. to carbonize pitch and coke to produce composite particles. The average particle diameter D50 of the composite particles was 17 μm, and from the result of SEM observation, 85% of the surface of the artificial graphite powder was covered with the amorphous carbon layer.

実施例2〜13、比較例1〜15
実施例1の製造条件を基準として、 平均粒子径D50、平均格子面間隔d(002)の異なる黒鉛粉末100重量部に、ピッチを異なる重量部で混合して混練した。次いで、平均粒子径D50および平均格子面間隔d(002)の異なるモザイク状コークス(コークスA)およびニードルコークス(コークスB)を異なる重量部で添加して、更に混練した後、混練物を異なる温度で熱処理して複合粒子を製造した。
Examples 2 to 13 and Comparative Examples 1 to 15
Based on the production conditions of Example 1, 100 parts by weight of graphite powder having different average particle diameter D50 and average lattice spacing d (002) were mixed and kneaded with different parts by pitch. Subsequently, mosaic coke (coke A) and needle coke (coke B) having different average particle diameter D50 and average lattice spacing d (002) are added in different parts by weight and further kneaded, and then the kneaded product is subjected to different temperatures. To produce composite particles.

なお、比較例14は実施例1の製造条件を基準に人造黒鉛粉末にピッチとコークスを同時に添加して混練した後、混練物を熱処理して製造したものであり、比較例15ではコークスにピッチを添加した後に人造黒鉛粉末を添加して混練した後、混練物を熱処理して製造したものである。   In Comparative Example 14, pitch and coke were simultaneously added to and kneaded with artificial graphite powder based on the production conditions of Example 1, and then the kneaded product was heat-treated. In Comparative Example 15, pitch was added to coke. After artificial graphite powder was added and kneaded, the kneaded product was heat-treated.

また、実施例13はアモルファスカーボン粉末としてコークスに変えて平均粒子径D50が0.2μm(比表面積8m2/g)および平均格子面間隔d(002)が0.3582nmの気相成長炭素球(東海カーボン社製、炭素微小球)を用い、また比較例13は平均粒子径D50が0.062μm、平均格子面間隔d(002)が0.3594nmのカーボンブラック(東海カーボン社製、シーストSVH)を使用した。なお、カーボンブラックの平均粒子径は、カーボンブラック粒子凝集体を構成する個々のカーボンブラック基本粒子径を電子顕微鏡観察により、その基本粒子直径を計測して算術平均した値を用いた。 In Example 13, vapor phase grown carbon spheres having an average particle diameter D50 of 0.2 μm (specific surface area 8 m 2 / g) and an average lattice spacing d (002) of 0.3582 nm were obtained by changing to coke as amorphous carbon powder. Comparative Example 13 is a carbon black having an average particle diameter D50 of 0.062 μm and an average lattice spacing d (002) of 0.3594 nm (Tokai Carbon Co., Seast SVH). It was used. In addition, the average particle diameter of carbon black used the value which measured the basic particle diameter of each carbon black basic particle diameter which comprises a carbon black particle aggregate by the electron microscope, and was arithmetically averaged.

これらの複合粒子を製造した原料系の特性、混合重量部、熱処理温度などを表1に示した。   Table 1 shows the characteristics of the raw material system for producing these composite particles, the mixing parts by weight, the heat treatment temperature, and the like.

Figure 0005212682
Figure 0005212682

次に、これらの複合粒子の平均粒子径D50を測定し、また、SEM観察して黒鉛粉末表面のアモルファスカーボンによる表面被覆率を測定して、表2に示した。   Next, the average particle diameter D50 of these composite particles was measured, and the surface coverage by amorphous carbon on the surface of the graphite powder was measured by SEM observation.

このようにして製造した複合粒子を負極材としてリチウム電池を組み立て、下記の方法で電池特性を評価して、それらの結果を表2に併記した。   A lithium battery was assembled using the composite particles produced in this manner as a negative electrode material, battery characteristics were evaluated by the following method, and the results are also shown in Table 2.

可逆容量および初期効率;
金属リチウムを負極、参照極とし、各黒鉛粉を正極とする三極式のテストセルを作製し、リチウム参照極に対して0.002Vまで一定電流で充電(黒鉛へリチウムイオンを挿入)した後、1.2Vまで一定電流で放電(黒鉛からリチウムイオンが脱離)させ、初回の充電電気量に対する放電電気量の比率を初期効率とした。さらに同条件で充放電を繰り返し、5サイクル目に放電(黒鉛からリチウムイオンが脱離)できた電気量から、黒鉛1g当たりの可逆容量を算出した。
Reversible capacity and initial efficiency;
After preparing a tripolar test cell with metallic lithium as the negative electrode and reference electrode and each graphite powder as the positive electrode, charging the lithium reference electrode with a constant current up to 0.002 V (inserting lithium ions into the graphite) The battery was discharged at a constant current up to 1.2 V (lithium ions were desorbed from the graphite), and the ratio of the amount of discharged electricity to the initial amount of charged electricity was defined as the initial efficiency. Furthermore, charge / discharge was repeated under the same conditions, and the reversible capacity per gram of graphite was calculated from the amount of electricity that was discharged (lithium ions were desorbed from the graphite) in the fifth cycle.

レート特性(急速放電効率);
コイン型電池を作製し、満充電状態から定電流にて5時間(0.2Cの放電電流値)で完全放電させたときの放電容量を100%とし、30分間(2.0Cの放電電流値)で完全放電させたときの放電容量をその割合として算出した。なお、放電電流値が大きくなるほど、完全放電状態に到達する時間が短いほど、放電容量は小さくなる。
Rate characteristics (rapid discharge efficiency);
A coin-type battery was manufactured and discharged at a constant current from a fully charged state for 5 hours (0.2 C discharge current value), assuming a discharge capacity of 100% and 30 minutes (2.0 C discharge current value). ) And the discharge capacity when completely discharged was calculated as the ratio. Note that the discharge capacity decreases as the discharge current value increases and as the time for reaching the complete discharge state decreases.

Figure 0005212682
Figure 0005212682

アモルファスカーボン粉末の配合割合が過少であると複合粒子の被覆率が小さくレート特性が低下し、過多であると被覆厚みが厚すぎるため可逆容量が低下してしまう(実施例1〜3、比較例1〜2)。また、アモルファスカーボンの粒径や黒鉛粉末の粒径が請求範囲を外れると初期効率またはレート特性が悪化する(実施例4〜7、比較例3〜6)。バインダーピッチ量が請求範囲から外れると被覆率が小さくレートが低下してしまう(実施例8〜9、比較例7〜8)。熱処理温度が低いとピッチやコークスなどのアモルファスカーボンの炭化が不十分であるため可逆容量が著しく低下し、高過ぎるとピッチ炭化物やアモルファスカーボンの黒鉛化が進むためレートが低下する(実施例10〜11、比較例9〜10)。   When the blending ratio of the amorphous carbon powder is too small, the coverage of the composite particles is small and the rate characteristics are lowered, and when it is excessive, the reversible capacity is lowered because the coating thickness is too thick (Examples 1 to 3, Comparative Example). 1-2). In addition, when the particle size of the amorphous carbon or the particle size of the graphite powder is out of the claimed range, the initial efficiency or rate characteristics deteriorate (Examples 4 to 7, Comparative Examples 3 to 6). When the binder pitch amount is out of the claims, the coverage is small and the rate is lowered (Examples 8 to 9, Comparative Examples 7 to 8). If the heat treatment temperature is low, the carbonization of amorphous carbon such as pitch and coke is insufficient, so that the reversible capacity is remarkably reduced. If it is too high, the graphitization of pitch carbide and amorphous carbon proceeds and the rate decreases (Examples 10-10). 11, Comparative Examples 9 to 10).

平均格子面間隔d(002)が0.336nm以上の黒鉛粉末や平均格子面間隔d(002)が0.340nm以下のアモルファスカーボン粉末は請求項1に記載した黒鉛粉末、アモルファスカーボン粉末と見なせず、可逆容量またはレート特性が劣る(実施例12、比較例11〜12)。粒径の小さい気相成長炭素(カーボンブラック)は初期効率が著しく低い(実施例13、比較例13)。請求項2で規定した製法手順に従わないと請求項1の複合粒子は得られず十分なレート特性が得られない(比較例14、15)。   The graphite powder having an average lattice spacing d (002) of 0.336 nm or more and the amorphous carbon powder having an average lattice spacing d (002) of 0.340 nm or less can be regarded as the graphite powder and the amorphous carbon powder described in claim 1. Therefore, the reversible capacity or rate characteristics are inferior (Example 12, Comparative Examples 11 to 12). Vapor growth carbon (carbon black) having a small particle size has a remarkably low initial efficiency (Example 13, Comparative Example 13). If the manufacturing procedure defined in claim 2 is not followed, the composite particles of claim 1 cannot be obtained and sufficient rate characteristics cannot be obtained (Comparative Examples 14 and 15).

Claims (1)

平均粒子径D50が10〜30μm、平均格子面間隔d(002)が0.336nm以下の黒鉛粉末100重量部とキノリン不溶分の含有率が3重量%以上のバインダーピッチ10〜50重量部を混合して混練した後、平均粒子径D50が0.2〜5μm、平均格子面間隔d(002)が0.340nm以上のアモルファスカーボン粉末10〜50重量部を加えて更に混練し、次いで、非酸化性雰囲気中800〜2200℃の温度で熱処理することを特徴とするリチウムイオン二次電池用負極材の製造方法。 100 parts by weight of graphite powder having an average particle diameter D50 of 10 to 30 μm and an average lattice spacing d (002) of 0.336 nm or less and 10 to 50 parts by weight of binder pitch having a quinoline insoluble content of 3% by weight or more are mixed. And kneading, adding 10 to 50 parts by weight of amorphous carbon powder having an average particle diameter D50 of 0.2 to 5 μm and an average lattice spacing d (002) of 0.340 nm or more, and then non-oxidizing A method for producing a negative electrode material for a lithium ion secondary battery, wherein the heat treatment is performed at a temperature of 800 to 2200 ° C in a neutral atmosphere.
JP2007038822A 2007-02-20 2007-02-20 Method for producing negative electrode material for lithium ion secondary battery Active JP5212682B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007038822A JP5212682B2 (en) 2007-02-20 2007-02-20 Method for producing negative electrode material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007038822A JP5212682B2 (en) 2007-02-20 2007-02-20 Method for producing negative electrode material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2008204758A JP2008204758A (en) 2008-09-04
JP5212682B2 true JP5212682B2 (en) 2013-06-19

Family

ID=39782041

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007038822A Active JP5212682B2 (en) 2007-02-20 2007-02-20 Method for producing negative electrode material for lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5212682B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN102332604A (en) * 2011-03-09 2012-01-25 东莞新能源科技有限公司 High-power lithium ion battery
JP6362006B2 (en) * 2014-02-26 2018-07-25 東海カーボン株式会社 Porous silicon oxycarbide ceramics, method for producing the same, porous silicon oxycarbide composite material, and nonaqueous electrolyte secondary battery
JP6466161B2 (en) * 2014-12-18 2019-02-06 オートモーティブエナジーサプライ株式会社 Anode material for lithium ion batteries
JP6808948B2 (en) * 2016-02-26 2021-01-06 株式会社豊田中央研究所 Negative electrode for non-aqueous lithium-ion secondary battery, its manufacturing method and non-aqueous lithium-ion secondary battery
CN108155351B (en) * 2016-12-06 2021-06-22 宁德时代新能源科技股份有限公司 Lithium ion battery and negative electrode material thereof
CN110998926A (en) * 2017-07-21 2020-04-10 英默里斯石墨及活性炭瑞士有限公司 Carbon-coated silicon oxide/graphite composite particles, and preparation method and application thereof
CN114142029A (en) * 2020-09-04 2022-03-04 恒大新能源技术(深圳)有限公司 Negative electrode material and preparation method and application thereof

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3164458B2 (en) * 1993-03-09 2001-05-08 三菱化学株式会社 Manufacturing method of electrode material
JP3054379B2 (en) * 1997-04-18 2000-06-19 日本カーボン株式会社 Graphite powder coated with graphite for negative electrode material of lithium secondary battery and its manufacturing method
JP4040381B2 (en) * 2002-07-30 2008-01-30 Jfeケミカル株式会社 Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4729716B2 (en) * 2003-02-20 2011-07-20 三菱化学株式会社 Lithium secondary battery negative electrode and lithium secondary battery
JP4748949B2 (en) * 2004-03-31 2011-08-17 三洋電機株式会社 Nonaqueous electrolyte secondary battery
JP4974597B2 (en) * 2006-07-19 2012-07-11 日本カーボン株式会社 Negative electrode and negative electrode active material for lithium ion secondary battery
JP2008091249A (en) * 2006-10-03 2008-04-17 Sanyo Electric Co Ltd Nonaqueous electrolytic secondary battery

Also Published As

Publication number Publication date
JP2008204758A (en) 2008-09-04

Similar Documents

Publication Publication Date Title
JP4844943B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP6775577B2 (en) Negative electrode material for non-aqueous electrolyte secondary battery, its manufacturing method, and non-aqueous electrolyte secondary battery including this
KR100981909B1 (en) Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
JP5413645B2 (en) Method for producing negative electrode material for lithium secondary battery
TWI504562B (en) Carbonaceous material for negative electrode of non-aqueous electrolyte secondary batteries and manufacturing method thereof
JP2019114559A (en) Negative electrode material for nonaqueous electrolyte secondary batteries and secondary battery
JP6256346B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6511726B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6906891B2 (en) Carbon material for non-aqueous secondary batteries and lithium ion secondary batteries
JP5212682B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP2009212074A (en) Negative electrode material for nonaqueous electrolyte secondary battery, manufacturing method therefor, lithium ion secondary battery, and electrochemical capacitor
JP2009301935A (en) Negative electrode material for nonaqueous electrolyte secondary battery, method for manufacturing the same, lithium ion secondary battery and electrochemical capacitor
JP6864250B2 (en) Carbon material and non-aqueous secondary battery
KR20130094853A (en) Anode material for lithium ion rechargeable battery, anode for lithium ion rechargeable battery, and lithium ion rechargeable battery
TW201336783A (en) Method for producing electrode material for lithium ion batteries
JP2008282547A (en) Anode material for lithium ion secondary battery and its manufacturing method
US11942628B2 (en) Negative active material for lithium secondary battery, preparing method for the same and lithium secondary battery including the same
US11967704B2 (en) Negative active material for lithium secondary battery, preparing method for the same and lithium secondary battery including the same
KR20150138265A (en) Amorphous carbon material and graphite carbon material for negative electrodes of lithium ion secondary batteries, lithium ion secondary battery using same, and method for producing carbon material for negative electrodes of lithium ion secondary batteries
JP2011060467A (en) Negative electrode material for lithium ion secondary battery and method for manufacturing the same
JP5182498B2 (en) Anode material for non-aqueous electrolyte secondary battery, method for producing the same, lithium ion secondary battery, and electrochemical capacitor
JP4021652B2 (en) Positive electrode plate for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode plate
JP2009158105A (en) Method of manufacturing composite carbon material for negative electrode material of lithium ion secondary battery
WO2021166359A1 (en) Negative electrode carbon material for lithium ion secondary battery, production method therefor, and negative electrode and lithium ion secondary battery using same
JPWO2017010476A1 (en) Method for producing graphite-containing carbon powder for secondary battery and carbon material for battery electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100201

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120620

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120710

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120903

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121024

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121203

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130130

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130213

R150 Certificate of patent or registration of utility model

Ref document number: 5212682

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160308

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250