JP5413645B2 - Method for producing negative electrode material for lithium secondary battery - Google Patents

Method for producing negative electrode material for lithium secondary battery Download PDF

Info

Publication number
JP5413645B2
JP5413645B2 JP2009061505A JP2009061505A JP5413645B2 JP 5413645 B2 JP5413645 B2 JP 5413645B2 JP 2009061505 A JP2009061505 A JP 2009061505A JP 2009061505 A JP2009061505 A JP 2009061505A JP 5413645 B2 JP5413645 B2 JP 5413645B2
Authority
JP
Japan
Prior art keywords
carbon
negative electrode
carbon precursor
lithium ion
ion secondary
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009061505A
Other languages
Japanese (ja)
Other versions
JP2010218758A (en
Inventor
健太 石井
健太郎 瀧澤
正勝 土屋
明 近藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2009061505A priority Critical patent/JP5413645B2/en
Publication of JP2010218758A publication Critical patent/JP2010218758A/en
Application granted granted Critical
Publication of JP5413645B2 publication Critical patent/JP5413645B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、ノート型パソコン等の高容量を必要とする部位に使用されるリチウムイオン二次電池の負極材として用いられるリチウムイオン二次電池用負極材及びその製造方法に関する。   The present invention relates to a negative electrode material for a lithium ion secondary battery that is used as a negative electrode material for a lithium ion secondary battery used in a site that requires a high capacity, such as a notebook computer, and a method for manufacturing the same.

非水電解質二次電池としてリチウム塩の有機電解液を用いたリチウム二次電池は、軽量でエネルギー密度が高く、小型電子機器の電源や小型移動型電源あるいは電力貯蔵用の電池等として期待されている。当初、リチウム二次電池の負極材としては、金属リチウムが用いられていた。金属リチウムは、放電時にリチウムイオンとして電解液中に溶出し、充電時にはリチウムイオンは金属リチウムとして負極表面に析出するが、その析出の際に、平滑な元の状態に析出させることが難しく、デンドライト状に析出し易い。このデンドライトは反応活性が極めて強いため電解液を分解してしまうので、充放電のサイクル寿命が短くなるという問題がある。更に、デンドライトが成長して正極に達して、両極が短絡することもある。   Lithium secondary batteries using organic electrolytes of lithium salts as non-aqueous electrolyte secondary batteries are lightweight and have high energy density, and are expected as power sources for small electronic devices, small mobile power sources, batteries for power storage, etc. Yes. Initially, metallic lithium was used as a negative electrode material for lithium secondary batteries. Metallic lithium elutes in the electrolyte as lithium ions during discharge, and lithium ions deposit on the negative electrode surface as metallic lithium during charging, but it is difficult to deposit it in a smooth original state during the deposition. It is easy to deposit in the shape. Since this dendrite has a very strong reaction activity and decomposes the electrolytic solution, there is a problem that the cycle life of charge / discharge is shortened. Furthermore, dendrites may grow and reach the positive electrode, causing both electrodes to short circuit.

この欠点を改善するために、金属リチウムに代えて炭素材を用いることが提案されてきた。炭素材はリチウムイオンの吸蔵、放出に際しデンドライト状に析出する問題がないため負極材として好適である。中でも、黒鉛材はリチウムイオンの吸蔵及び放出性が高く、速やかに吸蔵及び放出反応が行われるために充放電の効率が高く、理論容量も372mAh/gであり、更に、充放電時の電位も金属リチウムとほぼ等しく、高電圧の電池が得られる等の利点がある。   In order to remedy this drawback, it has been proposed to use a carbon material instead of metallic lithium. A carbon material is suitable as a negative electrode material because there is no problem of precipitation in the form of dendrites upon occlusion and release of lithium ions. Among them, the graphite material has high lithium ion occlusion and release properties, and since the occlusion and release reaction is performed quickly, the charge and discharge efficiency is high, the theoretical capacity is 372 mAh / g, and the potential during charge and discharge is also high. There is an advantage that a high voltage battery is obtained which is almost equal to metallic lithium.

しかしながら、黒鉛化度が高く、六角網面構造が高度に発達している黒鉛材の場合、容量が大きく、初期効率が90%以上と高い特性が得られる反面、放電時の電位曲線が平坦になり、放電終点が把握し難く、また、短時間で多くの電流を放電することができず、レート特性が悪化する等の難点がある。   However, in the case of a graphite material having a high degree of graphitization and a highly developed hexagonal network structure, the capacity is large and the initial efficiency is as high as 90% or more, but the potential curve during discharge is flat. Therefore, it is difficult to determine the end point of discharge, and a large amount of current cannot be discharged in a short time, resulting in a problem that the rate characteristic is deteriorated.

そこで、黒鉛材を中心とする炭素材の性状を改良して、例えば、黒鉛化度の高い黒鉛材の表面を黒鉛化度の低い炭素質物で被覆した複層構造の炭素材や、黒鉛化度の高い黒鉛材と黒鉛化度の低い炭素質物を組み合わせることにより、これらの難点を解消する試みが行われており、多くの提案がなされている。   Therefore, by improving the properties of the carbon material centering on the graphite material, for example, a carbon material having a multilayer structure in which the surface of the graphite material having a high degree of graphitization is coated with a carbonaceous material having a low degree of graphitization, or the degree of graphitization Attempts have been made to eliminate these difficulties by combining a high-graphite graphite material and a carbonaceous material having a low graphitization degree, and many proposals have been made.

例えば、特開平4−368778号公報(特許文献1)には、活物質となる炭素の電解液と接する表面が非晶質炭素により覆われていることを特徴とする二次電池用炭素負極が開示されている。   For example, Japanese Patent Application Laid-Open No. 4-368778 (Patent Document 1) discloses a carbon negative electrode for a secondary battery in which a surface in contact with an electrolytic solution of carbon serving as an active material is covered with amorphous carbon. It is disclosed.

また、特開平6−267531号公報(特許文献2)には、下記(1)の条件を満たす炭素質物(A)の粒子と、下記(2)の条件を満たす有機化合物(B)の粒子を混合した後、これを加熱して有機化合物(B)を炭素化することにより、炭素質物(A)の粒子を、下記(3)の条件を満たす炭素質物(C)で被覆した多相構造とした電極材料が開示されている。
(1) X線広角回折におけるd002が3.37オングストローム以下、真密度が2.10g/cm3以上であり、体積平均粒径が5μm以上であること;
(2) 体積平均粒径が炭素質物(A)より小さいこと;
(3) X線広角回折におけるd002 が3.38オングストローム以上、波長5145オングストロームのアルゴンイオンレーザー光を用いたラマンスペクトル分析において、1580〜1620cm-1の範囲にピークPA、1350〜1370cm-1の範囲にピークPBを有し、上記PAの強度IAに対するPBの強度IBの比R=IB/IAが0.2以上であること。
JP-A-6-267531 (Patent Document 2) includes carbonaceous material (A) particles that satisfy the following condition (1) and organic compound (B) particles that satisfy the following condition (2). After mixing, this is heated to carbonize the organic compound (B), so that the particles of the carbonaceous material (A) are coated with the carbonaceous material (C) that satisfies the following condition (3), An electrode material is disclosed.
(1) The d002 in X-ray wide angle diffraction is 3.37 angstroms or less, the true density is 2.10 g / cm 3 or more, and the volume average particle diameter is 5 μm or more;
(2) The volume average particle size is smaller than the carbonaceous material (A);
(3) In a Raman spectrum analysis using an argon ion laser beam having a d002 of 3.38 angstroms or more and a wavelength of 5145 angstroms in X-ray wide-angle diffraction, a peak P A in the range of 1580 to 1620 cm −1 and a peak of 1350 to 1370 cm −1 range has a peak P B, the ratio R = I B / I a of the intensity I B of P B with respect to the intensity I a of the P a is 0.2 or more.

また、特開2005−243447号公報(特許文献3)には、親水化された黒鉛質粒子に、平均粒子径が100nm超、1μm以下の炭素質および/または黒鉛質の粒子をメカノケミカル処理により付着させてなることを特徴とするリチウムイオン二次電池用負極材料が開示されている。   Japanese Patent Laid-Open No. 2005-243447 (Patent Document 3) discloses that carbonaceous and / or graphite particles having an average particle diameter of more than 100 nm and not more than 1 μm are mechanochemically treated to hydrophilic graphite particles. A negative electrode material for a lithium ion secondary battery characterized by being adhered is disclosed.

また、国際公開WO2007/086603号(特許文献4)には、平均粒径D50が3〜10μm、その標準偏差値が0.2μm以下の黒鉛粉末粒子とカーボンブラックを、1:1.5〜3.0の重量比に混合した混合粉末100重量部に対して、フリーカーボンを除去したピッチ又はキノリン不溶分が1%未満のピッチを30〜120重量部の割合で混合・混練した後、非酸化性雰囲気中1000℃以上の温度で焼成炭化、あるいは更に黒鉛化して得られるリチウムイオン二次電池用負極材が開示されている。   International Publication WO2007 / 086603 (Patent Document 4) describes graphite powder particles having an average particle diameter D50 of 3 to 10 μm and a standard deviation value of 0.2 μm or less and carbon black in a ratio of 1: 1.5 to 3 0.0 100 parts by weight of the mixed powder mixed at a weight ratio, and after mixing and kneading a pitch from which free carbon has been removed or a pitch having a quinoline insoluble content of less than 1% in a proportion of 30 to 120 parts by weight, non-oxidizing A negative electrode material for a lithium ion secondary battery obtained by firing carbonization at a temperature of 1000 ° C. or higher in a neutral atmosphere or further graphitizing is disclosed.

また、特開2002−255529号公報(特許文献5)には、X線広角回折による(002)面の面間隔d002が0.337nm未満である黒鉛粒子の周りに、珪素及び炭素を少なくとも含有するとともに前記黒鉛粒子より粒径が小さな複合粒子が分散して配置され、かつ前記黒鉛粒子及び前記複合粒子が0.37nm以上の面間隔d002を有する非晶質炭素膜によって被覆されてなり、前記複合粒子は、結晶質珪素からなるSi微粒子の周りに導電性炭素材が配置されるとともに、前記Si微粒子及び前記導電性炭素材が硬質炭素膜ないし導電性高分子膜により被覆されてなるものであることを特徴とする炭素質材料が開示されている。   Japanese Patent Laid-Open No. 2002-255529 (Patent Document 5) contains at least silicon and carbon around graphite particles having a (002) plane spacing d002 of less than 0.337 nm by X-ray wide angle diffraction. In addition, composite particles having a particle diameter smaller than that of the graphite particles are disposed in a dispersed manner, and the graphite particles and the composite particles are covered with an amorphous carbon film having an interplanar spacing d002 of 0.37 nm or more. The particles are formed by disposing a conductive carbon material around Si fine particles made of crystalline silicon, and covering the Si fine particles and the conductive carbon material with a hard carbon film or a conductive polymer film. A carbonaceous material characterized by this is disclosed.

特開平4−368778号公報(特許請求の範囲)JP-A-4-368778 (Claims) 特開平6−267531号公報(特許請求の範囲)JP-A-6-267531 (Claims) 特開2005−243447号公報(特許請求の範囲)JP 2005-243447 A (Claims) 国際公開WO2007/086603号(特許請求の範囲)International Publication No. WO2007 / 086603 (Claims) 特開2002−255529号公報(特許請求の範囲))JP 2002-255529 A (Claims))

近年、リチウムイオン二次電池が主として使用されている携帯電話やノート型パソコンなどの性能向上に伴い、レート特性に対する要求はより高度化し、また、ハイブリッドカーや電気自動車用のリチウムイオン二次電池では、高容量化を図りつつも、更なる出入力特性の改善が必須の課題となっている。   In recent years, with the improvement in performance of mobile phones, notebook computers, etc., where lithium ion secondary batteries are mainly used, the demand for rate characteristics has become more sophisticated, and in lithium ion secondary batteries for hybrid cars and electric vehicles, However, while improving the capacity, further improvement of the input / output characteristics is an essential issue.

ところが、上記特許文献1〜5では、近年の高度な要求、すなわち、更なるレート特性の向上及び高容量化の要求を満足することはできなかった。   However, in Patent Documents 1 to 5, it has not been possible to satisfy recent high demands, that is, further improvement of rate characteristics and high capacity.

従って、本発明の課題は、優れた出入力特性と高い可逆容量を備えたリチウムイオン二次電池用負極材を提供することにある。また、本発明の課題は、そのようなリチウムイオン二次電池用負極材を、工業的に製造することができる製造方法を提供することにある。   Accordingly, an object of the present invention is to provide a negative electrode material for a lithium ion secondary battery having excellent input / output characteristics and high reversible capacity. Moreover, the subject of this invention is providing the manufacturing method which can manufacture such a negative electrode material for lithium ion secondary batteries industrially.

本発明者らは、上記目的を達成するため鋭意研究を重ねた結果、(1)黒鉛核粒子を、炭化物を介して炭素微粒子で覆うことにより、炭素微粒子が、表面に露出した状態で、黒鉛核粒子に固定されるので、粒子の表面形状を操作することができること、(2)そのため、高密度極板でも電極内部から電解液バルク間のリチウムイオン拡散パスを良好にできるので、優れた出入力特性と高い可逆容量を備えたリチウムイオン二次電池用負極材が得られること等を見出し、本発明を完成させた。   As a result of intensive studies to achieve the above object, the present inventors have (1) covered graphite core particles with carbon fine particles through carbides, so that the carbon fine particles are exposed on the surface. Because it is fixed to the core particle, the surface shape of the particle can be manipulated. (2) Therefore, even with a high-density electrode plate, the lithium ion diffusion path between the electrolyte bulk from the inside of the electrode can be improved, so that excellent output can be achieved. The inventors have found that a negative electrode material for a lithium ion secondary battery having input characteristics and high reversible capacity can be obtained, and completed the present invention.

発明は、中心線平均粗さRaが10〜200nmであるリチウムイオン二次電池用負極材が得られるように、
体積基準メディアン径が5〜30μm且つ(002)面の面間隔d(002)が0.3360nm以下の黒鉛核粒子粉末と、軟化点が70〜250℃の炭素前駆体と、を加熱混練して、該黒鉛核粒子の表面に該炭素前駆体を被覆し、炭素前駆体で被覆された黒鉛核粒子粉末を得る第一工程と、
該炭素前駆体で被覆された黒鉛核粒子粉末と、体積基準メディアン径が0.05〜5μm且つ(002)面の面間隔d(002)が0.3400nm以上の炭素微粒子粉末と、を混合し、該混合粉末に機械的エネルギーを加えて、該炭素前駆体で被覆された黒鉛核粉末の該炭素前駆体に、該炭素微粒子を埋め込むことにより、該炭素微粒子で該炭素前駆体で被覆された黒鉛核粉末の表面を覆い、該炭素前駆体を介して該炭素微粒子で覆われている黒鉛核粒子粉末を得る第二工程と、
該炭素前駆体を介して該炭素微粒子で覆われている黒鉛核粒子粉末を、非酸化性雰囲気下、1000〜1600℃で焼成炭化して、リチウムイオン二次電池用負極材を得る第三工程と、
施すことを特徴とするリチウムイオン二次電池用負極材の製造方法を提供するものである。
In the present invention, a negative electrode material for a lithium ion secondary battery having a center line average roughness Ra of 10 to 200 nm is obtained.
A graphite core particle powder having a volume-based median diameter of 5 to 30 μm and a (002) plane spacing d (002) of 0.3360 nm or less and a carbon precursor having a softening point of 70 to 250 ° C. are heated and kneaded. A first step of coating the surface of the graphite core particles with the carbon precursor to obtain a graphite core particle powder coated with the carbon precursor;
A graphite core particle powder coated with the carbon precursor and a carbon fine particle powder having a volume-based median diameter of 0.05 to 5 μm and a (002) plane spacing d (002) of 0.3400 nm or more are mixed. The carbon powder was coated with the carbon precursor by applying mechanical energy to the mixed powder and embedding the carbon fine particles in the carbon precursor of the graphite core powder coated with the carbon precursor. A second step of covering the surface of the graphite core powder and obtaining a graphite core particle powder covered with the carbon fine particles via the carbon precursor;
Third step of obtaining a negative electrode material for a lithium ion secondary battery by firing and carbonizing graphite core particle powder covered with the carbon fine particles through the carbon precursor at 1000 to 1600 ° C. in a non-oxidizing atmosphere. When,
Method for producing a lithium ion secondary battery negative electrode material, characterized in that the applied and provides a.

本発明によれば、優れた出入力特性と高い可逆容量を備えたリチウムイオン二次電池用負極材を提供することができ、また、そのようなリチウムイオン二次電池用負極材を、工業的に製造することができる製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the negative electrode material for lithium ion secondary batteries provided with the outstanding input-output characteristic and high reversible capacity can be provided, and such a negative electrode material for lithium ion secondary batteries is industrially used. The manufacturing method which can be manufactured can be provided.

該第一工程を行い得られる該炭素前駆体で被覆された黒鉛核粒子を示す模式的な断面図である。It is typical sectional drawing which shows the graphite nucleus particle | grains coat | covered with this carbon precursor obtained by performing this 1st process. 該第二工程を行い得られる該炭素前駆体を介して炭素微粒子で覆われている黒鉛核粒子の模式的な断面図である。It is typical sectional drawing of the graphite nucleus particle | grains covered with the carbon fine particle through this carbon precursor obtained by performing this 2nd process. 該第三工程を行い得られる該リチウムイオン二次電池用負極材の模式的な断面図である。It is typical sectional drawing of this negative electrode material for lithium ion secondary batteries obtained by performing this 3rd process. ヘンシェルミキサーの模式図である。It is a schematic diagram of a Henschel mixer. 評価用のボタン型電池を示す断面図である。It is sectional drawing which shows the button type battery for evaluation. リチウムイオン二次電池用負極材C1の表面のSEM写真である。It is a SEM photograph of the surface of negative electrode material C1 for lithium ion secondary batteries. 図6の拡大SEM写真である。It is an enlarged SEM photograph of FIG. リチウムイオン二次電池用負極材C1の断面のSEM写真である。It is a SEM photograph of the section of negative electrode material C1 for lithium ion secondary batteries. 図8の拡大SEM写真である。It is an enlarged SEM photograph of FIG. 炭素微粒子の全体が、炭素前駆体中に完全に埋め込まれた黒鉛核粒子を示す模式的な断面図である。FIG. 2 is a schematic cross-sectional view showing graphite core particles in which the entire carbon fine particles are completely embedded in a carbon precursor. リチウムイオン二次電池用負極材F9の表面のSEM写真である。It is a SEM photograph of the surface of negative electrode material F9 for lithium ion secondary batteries. 図11の拡大SEM写真である。It is an enlarged SEM photograph of FIG. リチウムイオン二次電池用負極材F9の断面のSEM写真である。It is a SEM photograph of the cross section of the negative electrode material F9 for lithium ion secondary batteries. ハイブリダイザーの模式図である。It is a schematic diagram of a hybridizer.

本発明のリチウムイオン二次電池用負極材の製造方法(以下、本発明の製造方法とも記載する。)は、体積基準メディアン径が5〜30μm且つ(002)面の面間隔d(002)が0.3360nm以下の黒鉛核粒子粉末と、軟化点が70〜250℃の炭素前駆体と、を加熱混練して、該黒鉛核粒子の表面に該炭素前駆体を被覆し、炭素前駆体で被覆された黒鉛核粒子粉末を得る第一工程と、
該炭素前駆体で被覆された黒鉛核粒子粉末と、体積基準メディアン径が0.05〜5μm且つ(002)面の面間隔d(002)が0.3400nm以上の炭素微粒子粉末と、を混合し、該混合粉末に機械的エネルギーを加えて、該炭素前駆体で被覆された黒鉛核粒子の該炭素前駆体に、該炭素微粒子を埋め込むことにより、該炭素前駆体で被覆された黒鉛核粉末の表面を該炭素微粒子で覆い、該炭素前駆体を介して該炭素微粒子で覆われている黒鉛核粒子粉末を得る第二工程と、
該炭素前駆体を介して該炭素微粒子で覆われている黒鉛核粒子粉末を、非酸化性雰囲気下、1000〜1600℃で焼成炭化して、リチウムイオン二次電池用負極材を得る第三工程と、
を有するリチウムイオン二次電池用負極材の製造方法である。
The method for producing a negative electrode material for a lithium ion secondary battery of the present invention (hereinafter also referred to as the production method of the present invention) has a volume-based median diameter of 5 to 30 μm and a surface spacing d (002) of the (002) plane. A graphite core particle powder of 0.3360 nm or less and a carbon precursor having a softening point of 70 to 250 ° C. are heated and kneaded so that the surface of the graphite core particle is coated with the carbon precursor and coated with the carbon precursor. A first step of obtaining a graphite core particle powder,
A graphite core particle powder coated with the carbon precursor and a carbon fine particle powder having a volume-based median diameter of 0.05 to 5 μm and a (002) plane spacing d (002) of 0.3400 nm or more are mixed. By applying mechanical energy to the mixed powder and embedding the carbon fine particles in the carbon precursor of the graphite core particles coated with the carbon precursor, the graphite core powder coated with the carbon precursor A second step of covering the surface with the carbon fine particles and obtaining a graphite core particle powder covered with the carbon fine particles via the carbon precursor;
Third step of obtaining a negative electrode material for a lithium ion secondary battery by firing and carbonizing graphite core particle powder covered with the carbon fine particles through the carbon precursor at 1000 to 1600 ° C. in a non-oxidizing atmosphere. When,
It is a manufacturing method of the negative electrode material for lithium ion secondary batteries which has this.

本発明の製造方法について、図1〜3を参照して説明する。図1は、該第一工程を行い得られる該炭素前駆体で被覆された黒鉛核粒子を示す模式的な断面図であり、図2は、該第二工程を行い得られる該炭素前駆体を介して炭素微粒子で覆われている黒鉛核粒子の模式的な断面図であり、図3は、該第三工程を行い得られる該リチウムイオン二次電池用負極材の模式的な断面図である。   The manufacturing method of the present invention will be described with reference to FIGS. FIG. 1 is a schematic cross-sectional view showing graphite core particles coated with the carbon precursor obtained by performing the first step, and FIG. 2 shows the carbon precursor obtained by performing the second step. FIG. 3 is a schematic cross-sectional view of graphite core particles covered with carbon fine particles, and FIG. 3 is a schematic cross-sectional view of the negative electrode material for a lithium ion secondary battery obtained by performing the third step. .

先ず、該第一工程では、該黒鉛核粒子粉末と該炭素前駆体とを加熱混練することにより、図1に示すように、黒鉛核粒子1の表面に炭素前駆体2を被覆し、炭素前駆体で被覆された黒鉛核粒子3を得る。   First, in the first step, the graphite core particle powder and the carbon precursor are heated and kneaded to coat the surface of the graphite core particle 1 with the carbon precursor 2 as shown in FIG. Graphite core particles 3 coated with the body are obtained.

次いで、該第二工程では、該炭素前駆体で被覆された黒鉛核粒子粉末と該炭素微粒子粉末とを混合し、せん断力及び衝突力等の機械的エネルギーを加えることにより、図2に示すように、該炭素前駆体で被覆された黒鉛核粒子3の該炭素前駆体2の表面に、炭素微粒子4を埋め込み、該炭素前駆体で被覆された黒鉛核粒子3の表面を該炭素微粒子4で覆い、炭素前駆体を介して炭素微粒子で覆われている黒鉛核粒子5を得る。該炭素前駆体を介して炭素微粒子で覆われている黒鉛核粒子5では、該黒鉛微粒子4の一部分が該炭素前駆体2にめり込んでおり、全体はめり込んでいないので、該炭素微粒子4は、該炭素前駆体を介して炭素微粒子で覆われている黒鉛核粒子5の表面に露出した状態で存在する。   Next, in the second step, the graphite core particle powder coated with the carbon precursor and the carbon fine particle powder are mixed, and mechanical energy such as shear force and collision force is applied, as shown in FIG. Further, carbon fine particles 4 are embedded in the surface of the carbon precursor 2 of the graphite core particle 3 coated with the carbon precursor, and the surface of the graphite core particle 3 coated with the carbon precursor is covered with the carbon fine particle 4. Covering and obtaining graphite core particles 5 covered with carbon fine particles through a carbon precursor. In the graphite core particles 5 covered with the carbon fine particles via the carbon precursor, a part of the graphite fine particles 4 is embedded in the carbon precursor 2, and the entire carbon particle 4 is not embedded. It exists in the state exposed to the surface of the graphite core particle 5 covered with the carbon fine particles through the carbon precursor.

次いで、第三工程では、該炭素前駆体を介して炭素微粒子で覆われている黒鉛核粒子粉末を、非酸化性雰囲気下で焼成炭化することにより、該炭素前駆体を介して炭素微粒子で覆われている黒鉛核粒子5の該炭素前駆体2を、炭化させて炭化物にすることによって、図3に示すように、リチウムイオン二次電池用負極材7を得る。該リチウムイオン二次電池用負極材7では、該炭素微粒子4が、炭化物6を介して、該黒鉛核粒子1に固定されている。そして、該リチウムイオン二次電池用負極材7は、該黒鉛核粒子1(コア)が、該炭素微粒子4(シェル)で覆われているコア−シェル構造を有する炭素質複合体である。なお、該炭素微粒子4は、該リチウムイオン二次電池用負極材7の表面に露出した状態で固定されている。   Next, in the third step, the graphite core particle powder covered with the carbon fine particles via the carbon precursor is calcined and carbonized in a non-oxidizing atmosphere, so that the carbon fine particles are covered with the carbon precursor. The carbon precursor 2 of the graphite core particles 5 is carbonized to form a carbide, thereby obtaining a negative electrode material 7 for a lithium ion secondary battery as shown in FIG. In the negative electrode material 7 for a lithium ion secondary battery, the carbon fine particles 4 are fixed to the graphite core particles 1 through carbides 6. The negative electrode material 7 for a lithium ion secondary battery is a carbonaceous composite having a core-shell structure in which the graphite core particles 1 (core) are covered with the carbon fine particles 4 (shell). The carbon fine particles 4 are fixed in a state of being exposed on the surface of the negative electrode material 7 for a lithium ion secondary battery.

本発明の製造方法に係る該第一工程は、該黒鉛核粒子粉末と、該炭素前駆体と、を加熱混練することにより、該黒鉛核粒子の表面に、該炭素前駆体を被覆し、該炭素前駆体層を形成させて、該炭素前駆体で被覆された黒鉛核粒子粉末を得る工程である。   In the first step according to the production method of the present invention, the graphite core particle powder and the carbon precursor are heated and kneaded to coat the surface of the graphite core particles with the carbon precursor, In this step, a carbon precursor layer is formed to obtain graphite core particle powder coated with the carbon precursor.

該第一工程に係る該黒鉛核粒子粉末としては、特に制限されないが、例えば、天然黒鉛又は人造黒鉛や、人造黒鉛電極の破砕品や、コークスや、これらの混合物が挙げられ、該黒鉛核粒子粉末の形状としては、球状又は鱗片状のものが挙げられ、予め粉砕処理したものや分級処理をしたもの、予め球状化処理したものであってもよい。該黒鉛核粒子粉末に係る該人造黒鉛としては、例えば、2500℃以上の熱履歴を持つ人造黒鉛が挙げられる。そして、該黒鉛核粒子粉末としては、充放電容量が高くなるという点で、球状又は鱗片状の天然黒鉛、あるいは、2500℃以上の熱履歴を持つ人造黒鉛が好ましい。   The graphite core particle powder according to the first step is not particularly limited, and examples thereof include natural graphite or artificial graphite, artificial graphite electrode crushed products, coke, and mixtures thereof. Examples of the shape of the powder include a spherical shape or a scale-like shape, and those that have been previously pulverized, classified, or previously spheroidized may be used. Examples of the artificial graphite related to the graphite core particle powder include artificial graphite having a thermal history of 2500 ° C. or higher. The graphite core particle powder is preferably spherical or scale-like natural graphite or artificial graphite having a thermal history of 2500 ° C. or higher in that the charge / discharge capacity is increased.

該黒鉛核粒子粉末は、例えば、天然黒鉛、人造黒鉛、人造黒鉛電極の破砕品、コークス等を、ローラーミルや衝撃粉砕機等の粉砕機を用いて粉砕し、分級して得られる。   The graphite core particle powder is obtained, for example, by pulverizing and classifying natural graphite, artificial graphite, a pulverized product of artificial graphite electrode, coke or the like using a pulverizer such as a roller mill or an impact pulverizer.

該黒鉛核粒子粉末の体積基準メディアン径は、5〜30μm、好ましくは5〜20μm、特に好ましくは10〜15μmである。該黒鉛核粒子粉末の体積基準メディアン径が、上記範囲より小さいと、スラリー調製時における分散性が低くなり、また、比表面積が大きくなり過ぎて、自己放電が大きくなる。また、該黒鉛核粒子粉末の体積基準メディアン径が、上記範囲より大きくなると、リチウムイオン二次電池として大電流放電する際の容量維持率が低くなる。なお、本発明において、該体積基準メディアン径は、レーザー回折式の粒度分布測定装置(島津製作所製SALD2000)により測定された値であり、体積を基準としたメディアン径である。   The volume-based median diameter of the graphite core particle powder is 5 to 30 μm, preferably 5 to 20 μm, and particularly preferably 10 to 15 μm. If the volume-based median diameter of the graphite core particle powder is smaller than the above range, the dispersibility at the time of slurry preparation becomes low, the specific surface area becomes too large, and the self-discharge becomes large. Further, when the volume-based median diameter of the graphite core particle powder is larger than the above range, the capacity retention rate when discharging a large current as a lithium ion secondary battery is lowered. In the present invention, the volume-based median diameter is a value measured by a laser diffraction type particle size distribution measuring apparatus (SALD 2000 manufactured by Shimadzu Corporation), and is a median diameter based on volume.

該黒鉛核粒子粉末のX線広角回折法により測定した(002)面の面間隔d(002)は、0.3360nm以下、好ましくは0.3358nm以下、特に好ましくは0.3356nm以下である。該黒鉛核粒子粉末の(002)面の面間隔d(002)が、上記範囲を超えると、放電可逆容量が小さくなり易く、エネルギー密度が低くなり易い。なお、本発明においては、グラファイトモノクロメーターで単色化したCuKα線を用い、反射式ディフラクトメーター法によって、広角X線回折曲線を測定し、学振法を用いて、面間隔d(002)を測定した。   The (002) plane spacing d (002) of the graphite core particle powder measured by the X-ray wide angle diffraction method is 0.3360 nm or less, preferably 0.3358 nm or less, particularly preferably 0.3356 nm or less. When the interplanar spacing d (002) of the (002) plane of the graphite core particle powder exceeds the above range, the discharge reversible capacity tends to be small and the energy density tends to be low. In the present invention, a wide angle X-ray diffraction curve is measured by a reflective diffractometer method using a CuKα ray monochromatized with a graphite monochromator, and the interplanar spacing d (002) is determined by using the Gakushin method. It was measured.

該第一工程に係る該炭素前駆体としては、該第三工程で焼成炭化することにより、炭化物に変換される物質であり、例えば、コールタール、ピッチコークス、フェノール系樹脂が挙げられる。これらのうち、負極材の純度が高くなる点で、フリーカーボンを除去したピッチ又はキノリン不溶分の含有量が1%未満のピッチが好ましい。   The carbon precursor according to the first step is a substance that is converted into a carbide by calcination and carbonization in the third step, and examples thereof include coal tar, pitch coke, and a phenolic resin. Among these, a pitch from which free carbon is removed or a pitch having a quinoline insoluble content of less than 1% is preferable in that the purity of the negative electrode material is increased.

該炭素前駆体の軟化点は、環球法で測定された軟化点が、70〜250℃、特に好ましくは70〜200℃、更に好ましくは70〜150℃である。該ピッチの軟化点が、上記範囲未満だと、該第二工程における粒子同士の摩擦熱により、該炭素前駆体が溶融してしまい、該黒鉛核粒子同士が、あるいは、該炭素微粒子同士が造粒してしまう。また、該ピッチの軟化点が、上記範囲を超えると、該炭素微粒子の埋め込みが浅くなり、接着強度が低くなる。また、軟化点の異なるピッチ同士を二種以上混合することや、タールを添加することにより、軟化点を上記範囲に調整したピッチを用いてもよい。   The softening point of the carbon precursor is 70 to 250 ° C, particularly preferably 70 to 200 ° C, and more preferably 70 to 150 ° C, as measured by the ring and ball method. When the pitch softening point is less than the above range, the carbon precursor melts due to frictional heat between the particles in the second step, and the graphite core particles or the carbon fine particles are produced. It will be grained. On the other hand, if the softening point of the pitch exceeds the above range, the embedding of the carbon fine particles becomes shallow and the adhesive strength is lowered. Moreover, you may use the pitch which adjusted the softening point to the said range by mixing 2 or more types of pitches from which a softening point differs, or adding tar.

該炭素前駆体は、非酸化性雰囲気下、1000℃にて焼成炭化後の重量減少率が45%以下のものが好ましく、特に好ましくは40%以下、更に好ましくは35%以下である。   The carbon precursor preferably has a weight reduction rate after baking carbonization at 1000 ° C. in a non-oxidizing atmosphere of 45% or less, particularly preferably 40% or less, and more preferably 35% or less.

該第一工程において加熱混練する際の該炭素前駆体の混合量は、該黒鉛核粒子粉末100重量部に対して5〜50重量部とするのが好ましく、5〜30重量部とするのが特に好ましく、5〜20重量部とするのが更に好ましい。該炭素前駆体の混合量が、上記範囲未満だと、該黒鉛核粒子の表面に該炭素前駆体を均一に被覆することが困難となり易い。また、該炭素前駆体の混合量が、上記範囲を超えると、粒子同士が強固に集結するため、個々の粒子に解砕することが困難となり易く、粒子径が大きくなり易く、また、解砕時に、被覆された炭素前駆体層がへき閉するため、該黒鉛核粒子表面の該炭素前駆体層の厚さが不均一となり易い。該黒鉛核粒子表面の該炭素前駆体層の厚さが不均一になると、該炭素微粒子の被覆が不均一になり、出入力特性が低くなり易くなる。   The mixing amount of the carbon precursor at the time of kneading in the first step is preferably 5 to 50 parts by weight, and preferably 5 to 30 parts by weight with respect to 100 parts by weight of the graphite core particle powder. Particularly preferred is 5 to 20 parts by weight. When the mixing amount of the carbon precursor is less than the above range, it is difficult to uniformly coat the surface of the graphite core particles with the carbon precursor. Further, if the mixing amount of the carbon precursor exceeds the above range, the particles are firmly gathered together, so that it is difficult to crush into individual particles, the particle diameter is likely to increase, and the crushing is performed. Occasionally, the coated carbon precursor layer is cleaved, so that the thickness of the carbon precursor layer on the surface of the graphite core particles tends to be uneven. If the thickness of the carbon precursor layer on the surface of the graphite core particles is non-uniform, the coating of the carbon fine particles becomes non-uniform and the input / output characteristics tend to be low.

該第一工程で加熱混練を行う際の加熱温度は、該炭素前駆体の軟化点を超える温度であり、好ましくは該炭素前駆体の軟化点より20℃以上高い温度である。   The heating temperature at the time of carrying out heat kneading in the first step is a temperature exceeding the softening point of the carbon precursor, and preferably 20 ° C. or more higher than the softening point of the carbon precursor.

該第一工程における加熱混練操作の形態例を示すと、該黒鉛核粒子粉末、該炭素前駆体を混練装置内に投入し、混練しながら装置容器内の温度を該炭素前駆体の軟化点を超える所定温度にまで昇温させ、加熱しながら十分に混練する。加熱混練する時間は、混練装置の容量、混練羽形状、該黒鉛核粒子及び該炭素前駆体の投入量などにより、適宜選択されるが、該炭素前駆体の融点を超える温度で通常5〜30分間である。そして、加熱混練することにより、該炭素前駆体で被覆された黒鉛核粒子粉末を得る。   An example of the heating and kneading operation in the first step is as follows. The graphite core particle powder and the carbon precursor are put into a kneading apparatus, and the temperature in the apparatus container is set to the softening point of the carbon precursor while kneading. The temperature is raised to a predetermined temperature exceeding and kneaded sufficiently while heating. The time for heating and kneading is appropriately selected depending on the capacity of the kneading apparatus, the shape of the kneading blade, the amount of the graphite core particles and the carbon precursor, etc., but usually 5-30 at a temperature exceeding the melting point of the carbon precursor. For minutes. And the graphite core particle powder coat | covered with this carbon precursor is obtained by heat-kneading.

該第一工程で、加熱混練を行うための混練装置としては、特に制限されず、通常、粉体を加熱しながら撹拌又は混練できるものであればよく、ニーダ、プラネタリーミキサー等の混練装置、ドラムミキサー等のドラム回転型ミキサー、ヘンシェルミキサー、ハイスピードミキサー等の高速撹拌混合機等が挙げられる。   In the first step, the kneading apparatus for performing the heat-kneading is not particularly limited, and any kneading apparatus such as a kneader or a planetary mixer can be used as long as it can be stirred or kneaded while heating the powder. Examples thereof include a drum rotating mixer such as a drum mixer, a high-speed stirring mixer such as a Henschel mixer, and a high-speed mixer.

このようにして、該第一工程で、該黒鉛核粒子粉末と、該炭素前駆体と、を加熱混練することにより、該黒鉛核粒子の粒子表面に、該炭素前駆体を被覆して、該炭素前駆体層を形成させ、該炭素前駆体で被覆された黒鉛核粒子粉末を得る。   In this way, in the first step, the graphite core particle powder and the carbon precursor are heated and kneaded to coat the surface of the graphite core particles with the carbon precursor, and A carbon precursor layer is formed to obtain graphite core particle powder coated with the carbon precursor.

該第一工程により得られる該炭素前駆体で被覆された黒鉛核粒子粉末の該炭素前駆体の被覆層の厚みは、好ましくは0.01〜0.50μm、特に好ましくは0.01〜0.20μmである。該炭素前駆体で被覆された黒鉛核粒子粉末の該被覆層の厚みが、上記範囲内にあることにより、黒鉛粒子と炭素微粒子の接着が強固となり、繰り返し充放電に伴う膨張収縮による黒鉛粒子表面からの脱落が起き難く、リチウムイオン二次電池の容量劣化が起こり難くなる。   The thickness of the carbon precursor coating layer of the graphite core particle powder coated with the carbon precursor obtained in the first step is preferably 0.01 to 0.50 μm, particularly preferably 0.01 to 0.00. 20 μm. When the thickness of the coating layer of the graphite core particle powder coated with the carbon precursor is within the above range, the adhesion between the graphite particles and the carbon fine particles becomes strong, and the graphite particle surface due to expansion / contraction due to repeated charge / discharge The lithium ion secondary battery is less likely to drop out of the battery.

該第一工程により得られる該炭素前駆体で被覆された黒鉛核粒子粉末のレーザー回折法により測定した体積基準メディアン径は、特に制限されないが、概ね5〜30μmである。   The volume-based median diameter measured by the laser diffraction method of the graphite core particle powder coated with the carbon precursor obtained in the first step is not particularly limited, but is generally 5 to 30 μm.

次いで、本発明の製造方法に係る該第二工程を行う。該第二工程は、該炭素前駆体で被覆された黒鉛核粒子粉末と、該炭素微粒子粉末と、を混合し、得られた混合粉末に、機械的エネルギーを加えて、該炭素前駆体で被覆された黒鉛核粒子の該炭素前駆体層に、該炭素微粒子の一部分を埋め込むことにより、該炭素前駆体で被覆された黒鉛核粒子を該炭素微粒子で覆い、該炭素前駆体を介して炭素微粒子で覆われている黒鉛核粒子を得る工程である。   Next, the second step according to the production method of the present invention is performed. In the second step, the graphite core particle powder coated with the carbon precursor and the carbon fine particle powder are mixed, and mechanical energy is applied to the obtained mixed powder to coat with the carbon precursor. By embedding a part of the carbon fine particles in the carbon precursor layer of the graphite core particles, the graphite core particles coated with the carbon precursor are covered with the carbon fine particles, and the carbon fine particles are interposed via the carbon precursor. This is a step of obtaining graphite core particles covered with.

図2に示すように、本発明に係る該炭素前駆体を介して炭素微粒子で覆われている黒鉛核粒子では、該炭素微粒子の各粒子は、その一部分は、該炭素前駆体層に埋め込まれているが、それ以外の部分は露出している。つまり、本発明に係る該炭素前駆体で被覆された黒鉛核粒子は、図10に示すように、炭素微粒子31の全体が、炭素前駆体層32中に完全に埋め込まれたものとは、構造が異なる。   As shown in FIG. 2, in the graphite core particles covered with the carbon fine particles via the carbon precursor according to the present invention, a part of each particle of the carbon fine particles is embedded in the carbon precursor layer. However, other parts are exposed. That is, the graphite core particles coated with the carbon precursor according to the present invention have a structure in which the entire carbon fine particles 31 are completely embedded in the carbon precursor layer 32 as shown in FIG. Is different.

該第二工程に係る該炭素微粒子としては、例えば、カーボンブラック、コークス、樹脂炭化物の粉砕粉等が挙げられる。該炭素微粒子としては、微細な凹凸を可能とするために、カーボンブラック、サーマルブラック等の炭素前駆体を熱分解して得られる炭素微粒子が好ましい。   Examples of the carbon fine particles according to the second step include carbon black, coke, and pulverized powder of resin carbide. The carbon fine particles are preferably carbon fine particles obtained by thermally decomposing a carbon precursor such as carbon black or thermal black in order to enable fine irregularities.

該炭素微粒子粉末の体積基準メディアン径は、0.05〜5μm、好ましくは0.05〜1.00μm、特に好ましくは0.05〜0.50μmである。該炭素微粒子粉末の体積基準メディアン径が、上記範囲より小さいと、リチウムイオン二次電池用負極材のBET比表面積が大きくなってしまい、初回充電ロス又は自己放電が大きくなる。また、該炭素微粒子粉末の体積基準メディアン径が、上記範囲より大きくなると、黒鉛核粒子表面との接着界面の面積が小さく十分な接着強度が得られないため、複合粒子状態を維持できない。   The volume-based median diameter of the carbon fine particle powder is 0.05 to 5 μm, preferably 0.05 to 1.00 μm, particularly preferably 0.05 to 0.50 μm. If the volume-based median diameter of the carbon fine particle powder is smaller than the above range, the BET specific surface area of the negative electrode material for a lithium ion secondary battery is increased, and the initial charge loss or self-discharge is increased. If the volume-based median diameter of the carbon fine particle powder is larger than the above range, the area of the adhesion interface with the graphite core particle surface is small and sufficient adhesive strength cannot be obtained, so that the composite particle state cannot be maintained.

該炭素微粒子粉末のX線広角回折法により測定した(002)面の面間隔d(002)は、0.3400nm以上、好ましくは0.3450nm以上、特に好ましくは0.3500nm以上である。該炭素微粒子粉末の(002)面の面間隔d(002)が、上記範囲未満だと、黒鉛核粒子単味の電池特性及び挙動が支配的となり、出入力特性を高くできない。   The surface spacing d (002) of the (002) plane measured by the X-ray wide angle diffraction method of the carbon fine particle powder is 0.3400 nm or more, preferably 0.3450 nm or more, particularly preferably 0.3500 nm or more. When the interplanar spacing d (002) of the (002) plane of the carbon fine particle powder is less than the above range, the battery characteristics and behavior of the graphite core particles are dominant, and the input / output characteristics cannot be improved.

該炭素微粒子粉末のラマンスペクトル強度比R(I1360/I1580)は、好ましくは0.40以上、特に好ましくは0.45〜0.75である。該炭素微粒子粉末のラマンスペクトル強度比R(I1360/I1580)が、上記範囲にあることにより、出入力特性を更に向上させることができる。本発明では、粒子表層の結晶構造の乱れ具合は、ラマンスペクトルで議論するのが妥当である。なお、本発明では、測定対象を、波長514.5nmのArレーザーを用いたラマン分光分析器(日本分光株式会社製、NR1100)で測定し、表層での結晶欠陥及び積層構造の不整合等による結晶構造の乱れに帰属する1360cm−1近傍のスペクトルI1360を、炭素六角網面内の格子震動に相当するE2g型振動に帰属する1580cm−1近傍のスペクトルI1580で除し、ラマンスペクトル強度比R=I1360/I1580を求めた。 The Raman spectrum intensity ratio R (I 1360 / I 1580 ) of the carbon fine particle powder is preferably 0.40 or more, particularly preferably 0.45 to 0.75. When the Raman spectrum intensity ratio R (I 1360 / I 1580 ) of the carbon fine particle powder is in the above range, the input / output characteristics can be further improved. In the present invention, it is appropriate to discuss the disorder of the crystal structure of the particle surface layer using a Raman spectrum. In the present invention, the measurement target is measured with a Raman spectroscopic analyzer (NR1100, manufactured by JASCO Corporation) using an Ar laser with a wavelength of 514.5 nm, and is based on crystal defects on the surface layer, mismatch of the laminated structure, and the like. The spectrum I 1360 in the vicinity of 1360 cm −1 belonging to the disorder of the crystal structure is divided by the spectrum I 1580 in the vicinity of 1580 cm −1 belonging to the E 2g type vibration corresponding to the lattice vibration in the carbon hexagonal mesh plane, and the Raman spectrum intensity The ratio R = I 1360 / I 1580 was determined.

該炭素微粒子のBET比表面積は、好ましくは30m/g以下、特に好ましくは7.0〜15.0m/gである。該炭素微粒子のBET比表面積が上記範囲にあることにより、初回充電時のロス又は自己放電が更に小さくなる。なお、本発明では、BET比表面積は、島津製作所社製GEMINI2375により、窒素を吸着ガスとしてBET法により測定される値である。 BET specific surface area of the carbon fine particles is preferably 30 m 2 / g or less, particularly preferably 7.0~15.0m 2 / g. When the BET specific surface area of the carbon fine particles is in the above range, the loss or self-discharge during the initial charge is further reduced. In the present invention, the BET specific surface area is a value measured by the BET method using nitrogen as an adsorbed gas by GEMINI 2375 manufactured by Shimadzu Corporation.

該第二工程において、該炭素微粒子粉末の混合量は、該炭素前駆体で被覆された黒鉛核粒子粉末100重量部に対して、好ましくは5〜20重量部、特に好ましくは5〜15重量部、更に好ましくは5〜10重量部である。該炭素微粒子の混合量が、上記範囲未満だと、該炭素前駆体で被覆された黒鉛核粒子の表面全体を被覆し難くなり、また、上記範囲を超えると、非黒鉛質炭素成分が多くなり過ぎて、可逆容量が低くなり易い。   In the second step, the mixing amount of the carbon fine particle powder is preferably 5 to 20 parts by weight, particularly preferably 5 to 15 parts by weight with respect to 100 parts by weight of the graphite core particle powder coated with the carbon precursor. More preferably, it is 5 to 10 parts by weight. If the mixing amount of the carbon fine particles is less than the above range, it becomes difficult to cover the entire surface of the graphite core particles coated with the carbon precursor, and if it exceeds the above range, the non-graphitic carbon component increases. Thus, the reversible capacity tends to be low.

また、本発明では、該第一工程で得られた該炭素前駆体で被覆された黒鉛核粒子粉末を、装置から取り出さずに、装置内に更に、該炭素微粒子粉末を投入して、該第二工程を行うこともできる。そのような場合、該第二工程において、該炭素微粒子粉末の混合量は、該第一工程で用いた該黒鉛核粒子粉末100重量部に対して、好ましくは5〜25重量部、特に好ましくは5〜20重量部、更に好ましくは5〜15重量部である。該炭素微粒子の混合量が、上記範囲未満だと、該炭素前駆体で被覆された黒鉛核粒子の表面全体を被覆し難くなり、また、上記範囲を超えると、非黒鉛質炭素成分が多くなり過ぎて、可逆容量が低くなり易い。   In the present invention, the carbon fine particle powder coated with the carbon precursor obtained in the first step is not taken out from the apparatus, and the carbon fine particle powder is further introduced into the apparatus, Two steps can also be performed. In such a case, in the second step, the mixing amount of the carbon fine particle powder is preferably 5 to 25 parts by weight, particularly preferably 100 parts by weight of the graphite core particle powder used in the first step. 5 to 20 parts by weight, more preferably 5 to 15 parts by weight. If the mixing amount of the carbon fine particles is less than the above range, it becomes difficult to cover the entire surface of the graphite core particles coated with the carbon precursor, and if it exceeds the above range, the non-graphitic carbon component increases. Thus, the reversible capacity tends to be low.

そして、該第二工程では、該炭素前駆体で被覆された黒鉛核粒子粉末と、該炭素微粒子粉末と、を混合し、得られる混合粉末に、機械的エネルギーを加える。   In the second step, the graphite core particle powder coated with the carbon precursor and the carbon fine particle powder are mixed, and mechanical energy is applied to the obtained mixed powder.

該第二工程では、ミックスマフラー(新東工業株式会社製)、ヘンシェルミキサー(三井鉱山株式会社製)、ハイスピードミキサー等を用いて、粒子同士の衝突、圧縮、摩擦、せん断を利用して、該混合粉末に、繰り返し外部から機械的エネルギーを加え続ける。このことにより、該炭素前駆体層を軟化させた状態で、該炭素微粒子の一部分を、該炭素前駆体層に埋め込み、該炭素前駆体で被覆された黒鉛核粒子の表面を該炭素微粒子で覆い、該炭素前駆体を介して該炭素微粒子で覆われている黒鉛核粒子粉末が得られる。なお、該第二工程では、該炭素微粒子の一部分が、該炭素前駆体層に埋め込まれて、該黒鉛核粒子の表面が該炭素微粒子で覆われるように、言い換えると、該炭素微粒子が表面に露出した状態で、該炭素前駆体層に埋め込まれるように、該混合粉末に、機械的エネルギーを加える必要がある。そして、ミックスマフラー、ヘンシェルミキサー、ハイスピードミキサー等の機械的エネルギーを加える装置の種類を選択することやその運転条件を選択することにより、該炭素微粒子の一部分が、該炭素前駆体層に埋め込まれて、該炭素前駆体を介して炭素微粒子で覆われている黒鉛核粒子が得られる。それに対して、該混合粉末に加える機械的エネルギーが強過ぎると、該炭素微粒子の全体が、該炭素前駆体層中に埋没してしまう。例えば、比較例9のように、非常に強い機械的エネルギーを加える装置であるハイブリダイザー(奈良機械株式会社製)を用いて、該混合粉末に機械的エネルギーを加えた場合は、該炭素微粒子は、該炭素前駆体層中に完全に埋没してしまう。そのため、図11に示すように、得られる粒子の表面には、該炭素微粒子は露出していない。   In the second step, using a mix muffler (manufactured by Shinto Kogyo Co., Ltd.), a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.), a high speed mixer, etc., using collisions between particles, compression, friction, shear, Mechanical energy is repeatedly applied to the mixed powder repeatedly from the outside. Thus, with the carbon precursor layer softened, a part of the carbon fine particles is embedded in the carbon precursor layer, and the surface of the graphite core particles covered with the carbon precursor is covered with the carbon fine particles. A graphite core particle powder covered with the carbon fine particles through the carbon precursor is obtained. In the second step, a part of the carbon fine particles are embedded in the carbon precursor layer so that the surface of the graphite core particles is covered with the carbon fine particles. It is necessary to apply mechanical energy to the mixed powder so as to be embedded in the carbon precursor layer in an exposed state. Then, a part of the carbon fine particles is embedded in the carbon precursor layer by selecting the type of apparatus that applies mechanical energy, such as a mix muffler, Henschel mixer, and high-speed mixer, and by selecting the operating conditions. Thus, graphite core particles covered with carbon fine particles are obtained through the carbon precursor. On the other hand, if the mechanical energy applied to the mixed powder is too strong, the entire carbon fine particles are buried in the carbon precursor layer. For example, when a mechanical energy is applied to the mixed powder using a hybridizer (manufactured by Nara Machinery Co., Ltd.) that is a device that applies very strong mechanical energy as in Comparative Example 9, the carbon fine particles are , And completely buried in the carbon precursor layer. Therefore, as shown in FIG. 11, the carbon fine particles are not exposed on the surface of the obtained particles.

該第二工程で、該混合粉末に機械的エネルギーを加える際の機械的エネルギーの大きさは、例えば、装置及び撹拌羽の周速で規定でき、その場合、ミックスマフラー、ヘンシェルミキサー又はハイスピードミキサーを用い、該撹拌羽の周速を、5〜150m/s、好ましくは10〜100m/s、特に好ましくは20〜50m/sとする。例えば、ミックスマフラー、ヘンシェルミキサー又はハイスピードミキサーを用い、周速5〜150m/s、好ましくは10〜100m/s、特に好ましくは20〜50m/sの撹拌羽で、該混合粉末を流動させながら粒子粉末同士を衝突させ又は撹拌羽と粒子粉末とを衝突させることにより、該混合粉末に機械的エネルギーを加えて、該炭素前駆体で被覆された黒鉛核粒子の該炭素前駆体に、該炭素微粒子の一部分を埋め込むことができる。   In the second step, the magnitude of mechanical energy when mechanical energy is added to the mixed powder can be defined by, for example, the peripheral speed of the apparatus and the stirring blade. In that case, a mixed muffler, a Henschel mixer, or a high-speed mixer The peripheral speed of the stirring blade is 5 to 150 m / s, preferably 10 to 100 m / s, particularly preferably 20 to 50 m / s. For example, using a mixed muffler, a Henschel mixer or a high-speed mixer, the mixed powder is flowed with a stirring blade having a peripheral speed of 5 to 150 m / s, preferably 10 to 100 m / s, particularly preferably 20 to 50 m / s. By causing particle powders to collide with each other or stirring blades and particle powders, mechanical energy is applied to the mixed powder, and the carbon precursor of graphite core particles coated with the carbon precursor is subjected to the carbon precursor. Part of the microparticles can be embedded.

該第二工程において、該混合粉末に対して機械的エネルギーを付与する方法としては、例えば、図4に示すヘンシェルミキサー10(三井鉱山株式会社製)を用いる方法が挙げられる。図4に示すヘンシェルミキサー10内に、該炭素前駆体で被覆された黒鉛核粒子粉末と、該炭素微粒子粉末とを投入し、上羽根17及び下羽根18を、回転周速5〜150m/s、好ましくは10〜100m/s、特に好ましくは20〜50m/sで5〜30分回転させる。このとき、該ヘンシェルミキサー10内に投入した、該混合粉末に対し、形状の異なる該上羽根17及び該下羽根18の高速回転により生じるせん断力、摩擦力、圧縮力及び衝突力により機械的エネルギーが加えられる。なお、11は上蓋、12はフィルター、13は排出口、14は熱媒循環路、15は主軸、16はジャケットである。   In the second step, examples of a method for imparting mechanical energy to the mixed powder include a method using a Henschel mixer 10 (manufactured by Mitsui Mining Co., Ltd.) shown in FIG. The graphite core particle powder coated with the carbon precursor and the carbon fine particle powder are charged into the Henschel mixer 10 shown in FIG. 4, and the upper blade 17 and the lower blade 18 are rotated at a peripheral rotation speed of 5 to 150 m / s. , Preferably 10 to 100 m / s, particularly preferably 20 to 50 m / s, for 5 to 30 minutes. At this time, mechanical energy is applied to the mixed powder put into the Henschel mixer 10 by shearing force, frictional force, compressive force and collision force generated by high-speed rotation of the upper blade 17 and the lower blade 18 having different shapes. Is added. In addition, 11 is an upper cover, 12 is a filter, 13 is a discharge port, 14 is a heat medium circuit, 15 is a main shaft, and 16 is a jacket.

図4に示す該ヘンシェルミキサー10等のヘンシェルミキサーで該混合粉末に機械的エネルギーを加える際の該ヘンシェルミキサー内部の温度は、機械的エネルギーの付与により上昇するが、該炭素前駆体の軟化点+100℃の温度以下に調整することが好ましい。該ヘンシェルミキサー内の温度が、該炭素前駆体の軟化点+100℃を超えると、該炭素前駆体が造粒粒子の間隙より溶融して溶出し、溶出した該炭素前駆体が該ヘンシェルミキサー内部に付着し易くなるため、定常的な連続運転が困難となり易い。なお、該炭素前駆体の軟化点+100℃の温度以下に調整するとは、例えば、該炭素前駆体の軟化点が90℃の場合、該ヘンシェルミキサー内部の温度を、190℃以下にするということである。   The temperature inside the Henschel mixer when mechanical energy is added to the mixed powder by a Henschel mixer such as the Henschel mixer 10 shown in FIG. 4 increases due to the application of mechanical energy, but the softening point of the carbon precursor +100 It is preferable to adjust to a temperature of 0 ° C. or lower. When the temperature in the Henschel mixer exceeds the softening point of the carbon precursor + 100 ° C., the carbon precursor melts and elutes from the gaps of the granulated particles, and the eluted carbon precursor enters the Henschel mixer. Since it becomes easy to adhere, regular continuous operation tends to be difficult. In addition, adjusting to the temperature of the carbon precursor softening point + 100 ° C. or lower means, for example, that when the carbon precursor has a softening point of 90 ° C., the temperature inside the Henschel mixer is set to 190 ° C. or lower. is there.

図4に示す該ヘンシェルミキサー10等のヘンシェルミキサーで該混合粉末に機械的エネルギーを加える際の該上羽根17及び該下羽根18の回転周速は、該炭素微粒子の埋め込み深さにより、適宜調節でき、5〜150m/sが好ましい。該上羽根17及び該下羽根18の回転周速が、5m/s未満だと、該混合粉末が受ける機械的エネルギーが小さく、該炭素微粒子と該炭素前駆体との有効な接着強度が得られ難くなり易く、また、150m/sを超えても、150m/sの場合と、被覆効率が変化せず、装置のメンテナンスコスト、安全性等を考慮すると上限は150m/sとするのが好ましい。また、該ヘンシェルミキサーで該混合粉末に機械的エネルギーを加えている際の処理時間は、5〜30分間が好ましく、15〜25分間が特に好ましい。該処理時間が、5分間未満では炭素微粒子の被覆効率が低くなり易く、また、30分を超えても、被覆率がほとんど変化しないため、生産性を考慮すると、該処理時間は、25分以下が特に好ましい。また、せん断力、摩擦力、圧縮力及び衝突力が強すぎて、粒子破壊が生じてしまう場合には、粒子同士の摩擦を円滑にするために、潤滑油又はワックスを添加することができる。   The rotational peripheral speed of the upper blade 17 and the lower blade 18 when mechanical energy is applied to the mixed powder by a Henschel mixer such as the Henschel mixer 10 shown in FIG. 4 is appropriately adjusted according to the embedding depth of the carbon fine particles. 5 to 150 m / s is preferable. When the rotational peripheral speed of the upper blade 17 and the lower blade 18 is less than 5 m / s, the mechanical energy received by the mixed powder is small, and an effective adhesive strength between the carbon fine particles and the carbon precursor is obtained. Even if it exceeds 150 m / s, the coating efficiency does not change from the case of 150 m / s, and the upper limit is preferably set to 150 m / s in consideration of the maintenance cost, safety, etc. of the apparatus. Further, the treatment time when mechanical energy is added to the mixed powder with the Henschel mixer is preferably 5 to 30 minutes, and particularly preferably 15 to 25 minutes. If the treatment time is less than 5 minutes, the coating efficiency of the carbon fine particles tends to be low, and even if it exceeds 30 minutes, the coverage hardly changes. Therefore, in consideration of productivity, the treatment time is 25 minutes or less. Is particularly preferred. In addition, when the shearing force, frictional force, compressive force, and collision force are too strong and particle breakage occurs, lubricating oil or wax can be added to smooth the friction between the particles.

該第二工程では、該炭素前駆体の残炭率、該炭素前駆体層の厚み、機械的エネルギーの強さ、例えば、図4中の該ヘンシェルミキサー10の該上羽根17及び該下羽根18の回転周速を調節することにより、該炭素微粒子の埋め込み深さを制御することができる。なお、該炭素前駆体層の厚みであるが、該第一工程で混合する該炭素前駆体の混合量を調節することにより、該炭素前駆体層の厚みを調節することができる。そして、該第二工程では、該炭素微粒子の体積基準メディアン径を調節すること又は使用する装置やその運転条件を選択することで該炭素微粒子の埋め込み深さを調節することにより、該炭素微粒子が表面に露出した状態で、該炭素微粒子を、該炭素前駆体で被覆された黒鉛核粒子の該炭素前駆体に埋め込むことができる。   In the second step, the remaining carbon ratio of the carbon precursor, the thickness of the carbon precursor layer, the strength of mechanical energy, for example, the upper blade 17 and the lower blade 18 of the Henschel mixer 10 in FIG. The embedding depth of the carbon fine particles can be controlled by adjusting the rotational peripheral speed. In addition, although it is the thickness of this carbon precursor layer, the thickness of this carbon precursor layer can be adjusted by adjusting the mixing amount of this carbon precursor mixed by this 1st process. In the second step, the carbon fine particles are adjusted by adjusting the volume-based median diameter of the carbon fine particles or by adjusting the embedding depth of the carbon fine particles by selecting a device to be used and its operating conditions. The carbon fine particles can be embedded in the carbon precursor of graphite core particles coated with the carbon precursor while being exposed on the surface.

次いで、本発明の製造方法に係る該第三工程を行う。該第三工程は、該炭素前駆体を介して炭素微粒子で覆われている黒鉛核粒子粉末を、非酸化性雰囲気下、焼成炭化して、リチウムイオン二次電池用負極材を得る工程である。   Next, the third step according to the production method of the present invention is performed. The third step is a step of obtaining a negative electrode material for a lithium ion secondary battery by firing and carbonizing graphite core particle powder covered with carbon fine particles via the carbon precursor in a non-oxidizing atmosphere. .

該第三工程で、該炭素前駆体を介して炭素微粒子で覆われている黒鉛核粒子粉末を焼成炭化する際の焼成炭化温度は、1000〜1600℃、好ましくは1000〜1400℃、特に好ましくは1000〜1200℃である。該第三工程において、該焼成炭化温度が、上記範囲未満だと、該炭素前駆体中の低分子有機未燃分が残存し、リチウムイオン二次電池の充放電効率の低下やサイクル特性の劣化が起こる。また、該第三工程において、該焼成炭化温度が、上記範囲を超えると、炭素微粒子又は炭素前駆体の炭化物の結晶構造変化に伴い、出入力特性が低くなったり、放電可逆容量が低くなったりする。   In the third step, the calcining carbonization temperature when calcining and carbonizing the graphite core particle powder covered with the carbon fine particles via the carbon precursor is 1000 to 1600 ° C, preferably 1000 to 1400 ° C, particularly preferably. 1000 to 1200 ° C. In the third step, if the calcination carbonization temperature is less than the above range, the low molecular organic unburned content in the carbon precursor remains, and the charge / discharge efficiency of the lithium ion secondary battery is reduced and the cycle characteristics are deteriorated. Happens. Further, in the third step, when the calcining carbonization temperature exceeds the above range, the input / output characteristics are lowered or the discharge reversible capacity is lowered along with the crystal structure change of the carbon fine particles or the carbon precursor carbide. To do.

該第三工程では、非酸化性雰囲気下で焼成炭化を行うが、該非酸化性雰囲気下とは、窒素ガス、ヘリウムガス、アルゴンガス等の不活性ガス雰囲気下や、該炭素前駆体が酸化消耗することなく炭化する雰囲気である。   In the third step, calcination carbonization is performed in a non-oxidizing atmosphere. The non-oxidizing atmosphere is an inert gas atmosphere such as nitrogen gas, helium gas, argon gas, or the carbon precursor is oxidized and consumed. It is the atmosphere that carbonizes without doing.

このように、該第三工程で、該炭素前駆体を介して炭素微粒子で覆われている黒鉛核粒子粉末を焼成炭化することにより、該炭素前駆体が炭化して炭化物となり、そして、該炭素前駆体が炭化物となることにより、該炭素微粒子が強固に固定され、該リチウムイオン二次電池用負極材が得られる。   In this way, in the third step, by calcining the graphite core particle powder covered with the carbon fine particles via the carbon precursor, the carbon precursor is carbonized to become a carbide, and the carbon When the precursor becomes a carbide, the carbon fine particles are firmly fixed, and the negative electrode material for a lithium ion secondary battery is obtained.

該第三工程を行った後、該第三工程を行い得られた該リチウムイオン二次電池用負極材を、必要に応じて、解砕又は分級することができる。該解砕を行うための解砕装置としては、特に制限されず、ターボミル(株式会社マツボー製)、クイックミル(株式会社セイシン企業製)、スーパーローター(日清エンジニアリング株式会社製)等の装置が例示される。また、該分級では、必要に応じて、粒子特性を、体積メディアン径が10〜40μmとなるよう、回転数を調整する。   After performing the third step, the negative electrode material for a lithium ion secondary battery obtained by performing the third step can be crushed or classified as necessary. The crushing device for performing the crushing is not particularly limited, and devices such as a turbo mill (manufactured by Matsubo Co., Ltd.), a quick mill (manufactured by Seishin Enterprise Co., Ltd.), a super rotor (manufactured by Nissin Engineering Co., Ltd.), etc. Illustrated. In the classification, the number of revolutions is adjusted as necessary so that the volume median diameter becomes 10 to 40 μm.

そして、本発明の製造方法を行うことにより、本発明のリチウムイオン二次電池用負極材が得られる。   And the negative electrode material for lithium ion secondary batteries of this invention is obtained by performing the manufacturing method of this invention.

本発明のリチウムイオン二次電池用負極材は、体積基準メディアン径5〜30μmの黒鉛核粒子が、体積基準メディアン径0.05〜5μmの炭素微粒子で覆われているコア−シェル構造を有する炭素質複合粒子であり、
炭素前駆体を1000〜1600℃で焼成炭化して得られる炭化物を介して、該炭素微粒子が該黒鉛核粒子に固定されており、
中心線平均粗さRaが10〜200nmであり、BET比表面積が3.0〜7.0m/gであり、(002)面の面間隔d(002)が0.3360nm以下であり、体積メディアン径が10〜40μmであり、ラマンスペクトル強度比R(I1360/I1580)が0.40以上であるリチウムイオン二次電池用負極材である。
The negative electrode material for a lithium ion secondary battery of the present invention has a core-shell structure in which graphite core particles having a volume-based median diameter of 5 to 30 μm are covered with carbon fine particles having a volume-based median diameter of 0.05 to 5 μm. Composite particles,
The carbon fine particles are fixed to the graphite core particles through a carbide obtained by firing and carbonizing the carbon precursor at 1000 to 1600 ° C.,
The centerline average roughness Ra is 10 to 200 nm, the BET specific surface area is 3.0 to 7.0 m 2 / g, the (002) plane spacing d (002) is 0.3360 nm or less, and the volume It is a negative electrode material for a lithium ion secondary battery having a median diameter of 10 to 40 μm and a Raman spectral intensity ratio R (I 1360 / I 1580 ) of 0.40 or more.

該黒鉛核粒子の(002)面の面間隔d(002)は0.3360nm以下、好ましくは0.3358nm以下、特に好ましくは0.3356nm以下である。また、該炭素微粒子の(002)面の面間隔d(002)は0.3400nm以上、好ましくは0.3450nm以上、特に好ましくは0.3500nm以上である。   The interplanar spacing d (002) of the (002) plane of the graphite core particles is 0.3360 nm or less, preferably 0.3358 nm or less, particularly preferably 0.3356 nm or less. Further, the interplanar spacing d (002) of the (002) plane of the carbon fine particles is 0.3400 nm or more, preferably 0.3450 nm or more, particularly preferably 0.3500 nm or more.

本発明のリチウムイオン二次電池用負極材に係る黒鉛核粒子、炭素微粒子、炭素前駆体及び炭素前駆体を1000〜1600℃で焼成炭化して得られる炭化物は、本発明の製造方法に係る黒鉛核粒子、炭素微粒子、炭素前駆体及び炭素前駆体を1000〜1600℃で焼成炭化して得られる炭化物と同様である。   The carbide obtained by firing and carbonizing graphite core particles, carbon fine particles, a carbon precursor, and a carbon precursor according to the negative electrode material for a lithium ion secondary battery of the present invention at 1000 to 1600 ° C. is a graphite according to the production method of the present invention. This is the same as the carbide obtained by firing and carbonizing the core particles, carbon fine particles, carbon precursor, and carbon precursor at 1000 to 1600 ° C.

本発明のリチウムイオン二次電池用負極材では、該炭素微粒子が、表面に露出した状態で、該炭素前駆体の炭化物を介して該黒鉛核粒子を覆っているので、本発明のリチウムイオン二次電池用負極材は、該黒鉛核粒子(コア)が、該炭素微粒子(シェル)で覆われているコア−シェル構造を有する炭素複合粒子粉末である。   In the negative electrode material for a lithium ion secondary battery of the present invention, the carbon fine particles cover the graphite core particles with the carbon precursor carbide in a state of being exposed on the surface. The negative electrode material for a secondary battery is a carbon composite particle powder having a core-shell structure in which the graphite core particles (core) are covered with the carbon fine particles (shell).

本発明のリチウムイオン二次電池用負極材の中心線平均粗さRaは、10〜200nm、好ましくは50〜200nm、特に好ましくは100〜200nmである。中心線平均粗さRaが上記範囲にあることにより、十分な電気的な粒子間接触面積を確保しつつも、高密度極板でも、電極内部から電解液バルク間のリチウムイオン拡散パスを良好にできるので、出入力特性を高くし且つ放電可逆容量を高くすることができる。一方、該中心線平均粗さRaが、上記範囲未満だと、炭素微粒子の組織構造を反映した表面構造とはならず、また、高密度極板において、電極内部から電解液バルク間へのリチウムイオン拡散パスを確保できず、出入力特性が低くなる。また、該中心線平均粗さRaが、上記範囲を超えると、極板の高密度化が困難となり、電池容量が小さくなり、また、電気的な粒子間接触面積が小さくなるので、導電性が低くなり、出入力特性が低くなる。該中心線平均粗さRaの調節は、例えば、該炭素微粒子粉末の体積基準メディアン径や、該第一工程で、該黒鉛核粒子に該炭素前駆体を被覆する際の該炭素前駆体層の厚みを調節することや、該第二工程で、ヘンシェルミキサーの羽根の回転周速を調節すること等により、該混合粉体に加える機械的エネルギーの強さを調節することにより、可能となる。なお、本発明において、該中心線平均粗さRaは、面粗度測定により算出した値であり、例えば、観察視野4μmで原子間力顕微鏡にて、測定対象の高さプロファイルを測定し、断面曲線の中心線からの凹凸面積を、中心線長さで除した値として求められる。 The center line average roughness Ra of the negative electrode material for a lithium ion secondary battery of the present invention is 10 to 200 nm, preferably 50 to 200 nm, and particularly preferably 100 to 200 nm. The centerline average roughness Ra is in the above range, so that a sufficient electrical interparticle contact area is ensured, and even in a high-density electrode plate, the lithium ion diffusion path between the electrolyte bulk from the inside of the electrode is improved. Therefore, the input / output characteristics can be improved and the discharge reversible capacity can be increased. On the other hand, if the center line average roughness Ra is less than the above range, the surface structure does not reflect the structure of the carbon fine particles, and in the high-density electrode plate, the lithium from the inside of the electrode to between the electrolyte bulks An ion diffusion path cannot be secured, resulting in low input / output characteristics. When the center line average roughness Ra exceeds the above range, it is difficult to increase the density of the electrode plate, the battery capacity is reduced, and the electrical interparticle contact area is reduced. The output / input characteristics become lower. The adjustment of the center line average roughness Ra is, for example, the volume-based median diameter of the carbon fine particle powder or the carbon precursor layer when the graphite core particles are coated with the carbon precursor in the first step. This can be achieved by adjusting the strength of mechanical energy applied to the mixed powder by adjusting the thickness or by adjusting the rotational peripheral speed of the Henschel mixer blades in the second step. In the present invention, the center line average roughness Ra is a value calculated by measuring the surface roughness. For example, the height profile of the measurement object is measured with an atomic force microscope with an observation field of view of 4 μm 2 . It is obtained as a value obtained by dividing the uneven area from the center line of the cross section curve by the center line length.

本発明のリチウムイオン二次電池用負極材のBET比表面積は、3.0〜7.0m/g、好ましくは3.0〜6.0m/g、特に好ましくは3.0〜5.0m/gである。該BET比表面積が、上記範囲未満だと、リチウムイオンの脱挿入に要する反応面積が小さいために、出入力特性が低くなり、また、上記範囲を超えると、自己放電及び初回充電時のロスが大きくなる。該BET比表面積の調節は、例えば、該黒鉛核粒子の体積基準メディアン径や、該第一工程で、該黒鉛核粒子に該炭素前駆体を被覆する際の該炭素前駆体層の厚みを調節することや、粉砕機の回転数等の粉砕条件、分級条件を調節すること等により、可能となる。 The BET specific surface area of the negative electrode material for a lithium ion secondary battery of the present invention is 3.0 to 7.0 m 2 / g, preferably 3.0 to 6.0 m 2 / g, particularly preferably 3.0 to 5. 0 m 2 / g. If the BET specific surface area is less than the above range, the reaction area required for lithium ion desorption / insertion is small, resulting in low input / output characteristics. If the BET specific surface area exceeds the above range, loss during self-discharge and initial charge occurs. growing. The BET specific surface area can be adjusted, for example, by adjusting the volume-based median diameter of the graphite core particles or the thickness of the carbon precursor layer when the carbon precursor is coated on the graphite core particles in the first step. This can be achieved by adjusting the pulverizing conditions such as the rotational speed of the pulverizer and the classification conditions.

本発明のリチウムイオン二次電池用負極材のX線広角回折法により測定した(002)面の面間隔d(002)は、好ましくは0.3360nm以下、特に好ましくは0.3358nm以下、更に好ましくは0.3356nm以下である。該(002)面の面間隔d(002)が、上記範囲を超えると、放電可逆容量が小さくなる。   The interplanar spacing d (002) of the (002) plane measured by the X-ray wide angle diffraction method of the negative electrode material for a lithium ion secondary battery of the present invention is preferably 0.3360 nm or less, particularly preferably 0.3358 nm or less, more preferably Is 0.3356 nm or less. When the surface interval d (002) of the (002) plane exceeds the above range, the discharge reversible capacity becomes small.

本発明のリチウムイオン二次電池用負極材のラマンスペクトル強度比R(I1360/I1580)は、好ましくは0.40以上、特に好ましくは0.45〜0.75である。該ラマンスペクトル強度比R(I1360/I1580)が、上記範囲にあることにより、出入力特性が高くなる。該ラマンスペクトル強度比R(I1360/I1580)の調節は、例えば、該第二工程で、ヘンシェルミキサーの羽根の回転周速を調節すること等により、該混合粉体に加える機械的エネルギーの強さを調節することや、該炭素微粒子を選択することや、粉砕機の回転数等の粉砕条件を調節すること等により、可能となる。 The Raman spectrum intensity ratio R (I 1360 / I 1580 ) of the negative electrode material for a lithium ion secondary battery of the present invention is preferably 0.40 or more, particularly preferably 0.45 to 0.75. When the Raman spectrum intensity ratio R (I 1360 / I 1580 ) is in the above range, the input / output characteristics are improved. The Raman spectral intensity ratio R (I 1360 / I 1580 ) can be adjusted, for example, by adjusting the rotational peripheral speed of the Henschel mixer blades in the second step, etc. This can be achieved by adjusting the strength, selecting the carbon fine particles, or adjusting the pulverizing conditions such as the number of revolutions of the pulverizer.

本発明のリチウムイオン二次電池用負極材の体積メディアン径は、10〜40μm、好ましくは10〜30μm、特に好ましくは10〜20μmである。該体積メディアン径が、上記範囲未満だと、スラリー調製時における液中への分散性が悪く、また、上記範囲を超えると、出入力特性が低くなる。該体積メディアン径の調節は、例えば、該黒鉛核粒子の体積基準メディアン径や、粉砕機の回転数等の粉砕条件や分級条件を調節すること等により、可能となる。   The volume median diameter of the negative electrode material for a lithium ion secondary battery of the present invention is 10 to 40 μm, preferably 10 to 30 μm, particularly preferably 10 to 20 μm. When the volume median diameter is less than the above range, the dispersibility in the liquid during slurry preparation is poor, and when it exceeds the above range, the input / output characteristics are lowered. The volume median diameter can be adjusted, for example, by adjusting the volume-based median diameter of the graphite core particles, pulverization conditions such as the number of revolutions of the pulverizer, and classification conditions.

本発明のリチウムイオン二次電池用負極材及び本発明の製造方法により得られるリチウムイオン二次電池用負極材では、該炭素微粒子が表面に露出した状態で固定されているため、粒子の表面形状、すなわち、該中心線平均粗さRaを、上述の範囲にすることができる。また、表面に固定されているのが、粒径が小さい該炭素微粒子なので、非晶質の炭素粒子が薄く均一に被覆されている。そのため、比表面積を抑えつつも、黒鉛核粒子表面の結晶性を低下されることができ、且つ、粒子の表面形状を制御できる。このことにより、本発明のリチウムイオン二次電池用負極材及び本発明の製造方法により得られるリチウムイオン二次電池用負極材は、出入力特性が高く且つ放電可逆容量が高いリチウムイオン二次電池用負極材となる。   In the negative electrode material for a lithium ion secondary battery of the present invention and the negative electrode material for a lithium ion secondary battery obtained by the production method of the present invention, since the carbon fine particles are fixed in a state exposed on the surface, the surface shape of the particles That is, the center line average roughness Ra can be in the above range. Further, since the carbon fine particles having a small particle size are fixed on the surface, the amorphous carbon particles are thinly and uniformly coated. Therefore, while suppressing the specific surface area, the crystallinity of the surface of the graphite core particles can be reduced, and the surface shape of the particles can be controlled. As a result, the negative electrode material for lithium ion secondary batteries of the present invention and the negative electrode material for lithium ion secondary batteries obtained by the production method of the present invention have high input / output characteristics and high discharge reversible capacity. A negative electrode material.

以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。なお、これらの実施例は本発明の一実施態様を示すものであり、本発明はこれらに限定されない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.

(実施例1)
<リチウムイオン二次電池用負極材の製造>
(第一工程)
球状化天然黒鉛(日本黒鉛工業株式会社製、CGC−15、体積基準メディアン径が17.0μm、d(002)=0.3355nm)100重量部に対し、コールタールピッチ(JFEケミカル株式会社、PKQL、軟化点70℃)20重量部を、ヘンシェルミキサー(三井鉱山株式会社製)にて、装置内の温度を150〜160℃に保ちながら10分間加熱混練し、粉体A1を得た。
Example 1
<Manufacture of negative electrode material for lithium ion secondary battery>
(First step)
Coal tar pitch (JFE Chemical Corporation, PKQL) with respect to 100 parts by weight of spheroidized natural graphite (manufactured by Nippon Graphite Industries Co., Ltd., CGC-15, volume-based median diameter is 17.0 μm, d (002) = 0.3355 nm) , A softening point of 70 ° C.) was heated and kneaded with a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.) for 10 minutes while maintaining the temperature in the apparatus at 150 to 160 ° C. to obtain powder A1.

(第二工程)
更に引き続き、ヘンシェルミキサーに、第一工程で用いた球状化天然黒鉛100重量部に対し、ファーネスブラック(東海カーボン社製、S−TA、体積基準メディアン径0.7μm、d(002)=0.3620nm)20重量部を投入して、装置内の温度を150〜160℃に保ちながら、回転数100m/sで10分間処理し、粉体B1を得た。なお、第二工程後の粉体B1を走査型電子顕微鏡で観察したところ、表面がファーネスブラックで覆われていることが確認された。
(Second step)
Subsequently, furnace black (manufactured by Tokai Carbon Co., Ltd., S-TA, volume-based median diameter 0.7 μm, d (002) = 0.0) was added to a Henschel mixer with respect to 100 parts by weight of spheroidized natural graphite used in the first step. 3620 nm), 20 parts by weight were charged, and while maintaining the temperature in the apparatus at 150 to 160 ° C., treatment was performed at a rotational speed of 100 m / s for 10 minutes to obtain powder B1. When the powder B1 after the second step was observed with a scanning electron microscope, it was confirmed that the surface was covered with furnace black.

(第三工程)
得られた粉体B1を、黒鉛坩堝に投入し、窒素ガス雰囲気下、1000℃で焼成炭化した。次いで、解砕装置(日清エンジニアリング株式会社製、スーパーローター)で解砕し、分級装置(日清エンジニアリング株式会社製、ターボクラシファイア)で分級して、リチウムイオン二次電池用負極材C1を得た。その物性を表3に示す。また、リチウムイオン二次電池用負極材C1の表面及び断面のSEM写真を図6〜図9に示すが、リチウムイオン二次電池用負極材C1の表面がファーネスブラックで覆われていることが確認された。
(Third process)
The obtained powder B1 was put into a graphite crucible and calcined at 1000 ° C. in a nitrogen gas atmosphere. Subsequently, it is crushed by a crushing device (Nisshin Engineering Co., Ltd., Super Rotor) and classified by a classification device (Nisshin Engineering Co., Ltd., turbo classifier) to obtain a negative electrode material C1 for a lithium ion secondary battery. It was. The physical properties are shown in Table 3. Moreover, although the SEM photograph of the surface and cross section of the negative electrode material C1 for lithium ion secondary batteries is shown in FIGS. 6-9, it is confirmed that the surface of the negative electrode material C1 for lithium ion secondary batteries is covered with furnace black It was done.

<各特性の測定方法>
(1)体積基準メディアン径
レーザー回折式の粒度分布測定装置(島津製作所製、SALD2000)により測定した体積基準メディアン径である。
(2)X線回折法よるd(002)(nm)
X線回折法による測定は、ターゲットをCu(Kα線)グラファイトモノクロメーター、スリットを発散スリット=1度、受光スリット=0.1mm、散乱スリット=1度の条件とし、学振法により結晶子格子面間隔d(002)を求める。
(3)比表面積(m2/g)
表面積計(島津製全自動表面積測定装置)を用い、測定対象に対して窒素流通下350℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET10点法によって測定した値である。
(4)ラマンスペクトル強度比R=I1360/I1580
波長514.5nmのArレーザーを用いたラマン分光分析器(日本分光株式会社製、NR1100)で測定し、表層での結晶欠陥及び積層構造の不整合等による結晶構造の乱れに帰属する1360cm−1近傍のスペクトルI1360を、炭素六角網面内の格子震動に相当するE2g型振動に帰属する1580cm−1近傍のスペクトルI1580で除し、ラマンスペクトル強度比R=I1360/I1580を求めた。
(5)中心線平均粗さ
中心線平均粗さは、原子間力顕微鏡を用い、面粗度測定により算出した値である。観察視野4μmにて、測定対象(単一粒子)の高さプロファイルを測定し、断面曲線の中心からの凹凸面積を中心線長さで除した値とし、中心線平均粗さRaを求めた。
<Measurement method for each characteristic>
(1) Volume-based median diameter This is a volume-based median diameter measured by a laser diffraction particle size distribution measuring apparatus (manufactured by Shimadzu Corporation, SALD2000).
(2) d (002) (nm) by X-ray diffraction method
The measurement by the X-ray diffraction method is performed using a Cu (Kα ray) graphite monochromator as a target, a slit as a diverging slit = 1 degree, a light receiving slit = 0.1 mm, and a scattering slit = 1 degree. A surface interval d (002) is obtained.
(3) Specific surface area (m 2 / g)
Using a surface area meter (Shimadzu fully automatic surface area measuring device), after performing preliminary drying at 350 ° C. for 30 minutes under nitrogen flow, the relative pressure value of nitrogen relative to atmospheric pressure becomes 0.3. It is a value measured by a nitrogen adsorption BET 10-point method by a gas flow method using a nitrogen-helium mixed gas adjusted accurately as described above.
(4) Raman spectrum intensity ratio R = I 1360 / I 1580
Raman spectroscopy using an Ar laser having a wavelength of 514.5 nm (manufactured by JASCO Corporation, NR1100) measured by, attributable to disturbance of the crystal structure due to mismatching of crystal defects and stacking structure of the surface layer 1360 cm -1 The spectrum I 1360 in the vicinity is divided by the spectrum I 1580 in the vicinity of 1580 cm −1 belonging to the E 2g type vibration corresponding to the lattice vibration in the carbon hexagonal mesh plane, and the Raman spectrum intensity ratio R = I 1360 / I 1580 is obtained. It was.
(5) Centerline average roughness The centerline average roughness is a value calculated by surface roughness measurement using an atomic force microscope. The height profile of the object to be measured (single particle) was measured at an observation field of view 4 μm 2 , and the center line average roughness Ra was obtained by dividing the uneven area from the center of the cross-sectional curve by the center line length. .

<リチウムイオン二次電池の作成>
(スラリーの調製)
上記のようにして得られた該リチウムイオン二次電池用負極材C1 100重量部に対し、増粘剤として1wt%のカルボキシメチルセルロース(CMC)水溶液を適量投入して30分間撹拌混合した後、結合剤として40wt%のスチレン−ブタジエンゴム(SBR)水溶液を適量投入して5分間撹拌混合し、負極合材ペーストを調製した。
<Creation of lithium ion secondary battery>
(Preparation of slurry)
An appropriate amount of 1 wt% carboxymethylcellulose (CMC) aqueous solution as a thickener was added to 100 parts by weight of the negative electrode material C1 for lithium ion secondary battery obtained as described above, and the mixture was stirred and mixed for 30 minutes. An appropriate amount of 40 wt% styrene-butadiene rubber (SBR) aqueous solution was added as an agent, and the mixture was stirred and mixed for 5 minutes to prepare a negative electrode mixture paste.

(作用極の作製)
得られた負極合材ペーストを厚さ18μmの銅箔(集電体)上に塗布し、真空中で130℃に加熱して溶媒を完全に揮発させた。得られたシートを極板密度が1.5g/ccになるようローラープレスで圧延し、ポンチで打ち抜いて作用極を得た。
(Production of working electrode)
The obtained negative electrode mixture paste was applied onto a copper foil (current collector) having a thickness of 18 μm and heated to 130 ° C. in a vacuum to completely evaporate the solvent. The obtained sheet was rolled with a roller press so that the electrode plate density was 1.5 g / cc, and punched with a punch to obtain a working electrode.

(対極の作製)
不活性雰囲気下、リチウム金属箔をポンチで打ち抜いたニッケルメッシュ(集電体)にめり込ませ、対極を得た。
(Preparation of counter electrode)
Under an inert atmosphere, a lithium metal foil was punched into a nickel mesh (current collector) punched out with a punch to obtain a counter electrode.

(可逆放電容量評価用ボタン型電池の作製)
前記の作用極、対極を使用し、評価用電池として図5に示すボタン型電池を不活性雰囲気下で組み立てた。電解液は1mol/dmのリチウム塩LiPFを溶解したエチレンカーボネート(EC)、ジエチルカーボネート(DEC) 1:1混合溶液を使用した。充電は電流密度0.2mA/cm、終止電圧5mVで定電流充電を終えた後、下限電流0.02mA/cmとなるまで定電位保持する。放電は電流密度0.2mA/cmにて終止電圧1.5Vまで定電流放電を行い、5サイクル終了後の放電容量を可逆放電容量とした。また、満充電状態から10mA/cmで放電した際の容量維持率で、負極材の出力特性を調べた。その結果を、表4に示す。
なお、図5において、27は負極側ステンレスキャップ、20は負極、21は銅箔、22は絶縁ガスケット、23は電解液含浸セパレータ、24はニッケルメッシュ、25は正極側ステンレスキャップ、26は正極である。
(Preparation of reversible discharge capacity button type battery)
Using the above working electrode and counter electrode, a button type battery shown in FIG. 5 was assembled under an inert atmosphere as an evaluation battery. As the electrolytic solution, a 1: 1 mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in which 1 mol / dm 3 of the lithium salt LiPF 6 was dissolved was used. Charging current density 0.2 mA / cm 2, after finishing the constant current charging at a final voltage 5 mV, holding a constant potential to the lower limit current 0.02 mA / cm 2. The discharge was a constant current discharge to a final voltage of 1.5 V at a current density of 0.2 mA / cm 2 , and the discharge capacity after the end of 5 cycles was defined as a reversible discharge capacity. Further, the output characteristics of the negative electrode material were examined based on the capacity retention rate when discharged at 10 mA / cm 2 from the fully charged state. The results are shown in Table 4.
In FIG. 5, 27 is a negative electrode side stainless cap, 20 is a negative electrode, 21 is a copper foil, 22 is an insulating gasket, 23 is an electrolyte impregnated separator, 24 is a nickel mesh, 25 is a positive electrode side stainless steel cap, and 26 is a positive electrode. is there.

<初回ロス、初期効率及び放電負荷>
(1)初回ロス
初回ロスは、初回充放電時の充電容量から放電容量を差し引いた値である。この値は小さい方が望ましい
(2)初期効率
初期効率は、初回放電容量を初回充電容量で除した値(%)である。この値は大きい方が好ましい。
(3)放電負荷
放電負荷は、満充電状態から10mA/cmで終止電圧1.5Vまで定電流放電を行った際の放電容量である。この値が大きいものほど大電流を放電可能な負極材と言える。
(4)容量維持率
容量維持率は、放電負荷を可逆放電容量で除した値(%)である。
<First loss, initial efficiency and discharge load>
(1) Initial loss The initial loss is a value obtained by subtracting the discharge capacity from the charge capacity at the time of initial charge / discharge. (2) Initial efficiency The initial efficiency is a value (%) obtained by dividing the initial discharge capacity by the initial charge capacity. A larger value is preferable.
(3) Discharge load A discharge load is a discharge capacity at the time of performing a constant current discharge from a fully charged state to 10 V / cm 2 at a final voltage of 1.5V. It can be said that the larger this value is, the negative electrode material capable of discharging a large current.
(4) Capacity maintenance ratio The capacity maintenance ratio is a value (%) obtained by dividing the discharge load by the reversible discharge capacity.

(実施例2)
<リチウムイオン二次電池用負極材の製造>
(第一工程)
球状化天然黒鉛(日本黒鉛工業株式会社製、CGC−15、体積基準メディアン径が17.0μm、d(002)=0.3355nm)100重量部に対し、コールタールピッチ(JFEケミカル株式会社、PKE、軟化点89℃)50重量部を、ヘンシェルミキサー(三井鉱山株式会社製)にて、装置内の温度を140〜150℃に保ちながら10分間加熱混練し、粉体A2を得た。
(Example 2)
<Manufacture of negative electrode material for lithium ion secondary battery>
(First step)
Coal tar pitch (JFE Chemical Corporation, PKE) with respect to 100 parts by weight of spheroidized natural graphite (manufactured by Nippon Graphite Industries Co., Ltd., CGC-15, volume-based median diameter is 17.0 μm, d (002) = 0.3355 nm) , A softening point of 89 ° C.) was heated and kneaded with a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.) for 10 minutes while maintaining the temperature in the apparatus at 140 to 150 ° C. to obtain powder A2.

(第二工程)
更に引き続き、ヘンシェルミキサーに、第一工程で用いた球状化天然黒鉛100重量部に対し、ランプブラック(福泉化成社製、カルボフィンGK、体積基準メディアン径0.9μm、d(002)=0.3740nm)20重量部を投入して、装置内の温度を140〜150℃に保ちながら、回転数50m/sで10分間処理し、粉体B2を得た。なお、第二工程後の粉体B2を走査型電子顕微鏡で観察したところ、表面がランプブラックで覆われていることが確認された。
(Second step)
Furthermore, with respect to 100 parts by weight of spheroidized natural graphite used in the first step, lamp black (manufactured by Fukuzumi Kasei Co., Ltd., Carbofin GK, volume-based median diameter 0.9 μm, d (002) = 0.3740 nm) ) 20 parts by weight was charged, and the temperature in the apparatus was kept at 140 to 150 ° C., followed by treatment at a rotational speed of 50 m / s for 10 minutes to obtain powder B2. When the powder B2 after the second step was observed with a scanning electron microscope, it was confirmed that the surface was covered with lamp black.

(第三工程)
得られた粉体B2を、黒鉛坩堝に投入し、窒素ガス雰囲気下、1600℃で焼成炭化した。次いで、解砕装置(日清エンジニアリング株式会社製、スーパーローター)で解砕し、分級装置(日清エンジニアリング株式会社製、ターボクラシファイア)で分級して、リチウムイオン二次電池用負極材C2を得た。その物性を表3に示す。
(Third process)
The obtained powder B2 was put into a graphite crucible and calcined at 1600 ° C. in a nitrogen gas atmosphere. Next, it is crushed with a crushing device (Nisshin Engineering Co., Ltd., Super Rotor) and classified with a classification device (Nisshin Engineering Co., Ltd., turbo classifier) to obtain a negative electrode material C2 for a lithium ion secondary battery. It was. The physical properties are shown in Table 3.

<リチウムイオン二次電池の作成>
リチウムイオン二次電池用負極材C2を用いること以外は、実施例1と同様の方法で行った。その結果を表4に示す。
<Creation of lithium ion secondary battery>
It carried out by the method similar to Example 1 except using the negative electrode material C2 for lithium ion secondary batteries. The results are shown in Table 4.

(実施例3)
<リチウムイオン二次電池用負極材の製造>
(第一工程)
球状化天然黒鉛(日本黒鉛工業株式会社製、CGC−30、体積基準メディアン径が30.0μm、d(002)=0.3355nm)100重量部に対し、メソフェーズピッチ(JFEケミカル株式会社、MCP−150D、軟化点150℃)50重量部を、ヘンシェルミキサー(三井鉱山株式会社製)にて、装置内の温度を190〜200℃に保ちながら10分間加熱混練し、粉体A3を得た。
(Example 3)
<Manufacture of negative electrode material for lithium ion secondary battery>
(First step)
Mesophase pitch (JFE Chemical Co., Ltd., MCP-) with respect to 100 parts by weight of spheroidized natural graphite (manufactured by Nippon Graphite Industries Co., Ltd., CGC-30, volume-based median diameter is 30.0 μm, d (002) = 0.3355 nm) 50 parts by weight of 150D, softening point 150 ° C. were kneaded with a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.) for 10 minutes while maintaining the temperature in the apparatus at 190 to 200 ° C. to obtain powder A3.

(第二工程)
更に引き続き、ヘンシェルミキサーに、第一工程で用いた球状化天然黒鉛100重量部に対し、難黒鉛化コークス(新日鉄化学社製、商品名LPC−S55、体積基準メディアン径1.8μm、d(002)=0.3422nm)5重量部を投入して、装置内の温度を190〜200℃に保ちながら、回転数50m/sで10分間処理し、粉体B3を得た。なお、第二工程後の粉体B3を走査型電子顕微鏡で観察したところ、表面が難黒鉛化コークスで覆われていることが確認された。
(Second step)
Furthermore, the non-graphitized coke (trade name LPC-S55, manufactured by Nippon Steel Chemical Co., Ltd., volume-based median diameter 1.8 μm, d (002) is used for Henschel mixer with respect to 100 parts by weight of spheroidized natural graphite used in the first step. ) = 0.422 nm) 5 parts by weight were charged, and while maintaining the temperature in the apparatus at 190 to 200 ° C., the mixture was treated at a rotational speed of 50 m / s for 10 minutes to obtain powder B3. In addition, when the powder B3 after the second step was observed with a scanning electron microscope, it was confirmed that the surface was covered with non-graphitized coke.

(第三工程)
得られた粉体B3を、黒鉛坩堝に投入し、窒素ガス雰囲気下、1000℃で焼成炭化した。次いで、解砕装置(日清エンジニアリング株式会社製、スーパーローター)で解砕し、分級装置(日清エンジニアリング株式会社製、ターボクラシファイア)で分級して、リチウムイオン二次電池用負極材C3を得た。その物性を表3に示す。
(Third process)
The obtained powder B3 was put into a graphite crucible and calcined at 1000 ° C. in a nitrogen gas atmosphere. Next, it is crushed with a crushing device (Nisshin Engineering Co., Ltd., Super Rotor) and classified with a classification device (Nisshin Engineering Co., Ltd., turbo classifier) to obtain a negative electrode material C3 for a lithium ion secondary battery. It was. The physical properties are shown in Table 3.

<リチウムイオン二次電池の作成>
リチウムイオン二次電池用負極材C3を用いること以外は、実施例1と同様の方法で行った。その結果を表4に示す。
<Creation of lithium ion secondary battery>
The same process as in Example 1 was performed except that the negative electrode material C3 for lithium ion secondary batteries was used. The results are shown in Table 4.

(実施例4)
<リチウムイオン二次電池用負極材の製造>
(第一工程)
球状化天然黒鉛(日本黒鉛工業株式会社製、CGC−15、体積基準メディアン径が17.0μm、d(002)=0.3355nm)100重量部に対し、メソフェーズピッチ(JFEケミカル株式会社、MCP−250D、軟化点250℃)10重量部を、ヘンシェルミキサー(三井鉱山株式会社製)にて、装置内の温度を270〜280℃に保ちながら10分間加熱混練し、粉体A4を得た。
Example 4
<Manufacture of negative electrode material for lithium ion secondary battery>
(First step)
Mesophase pitch (JFE Chemical Corporation, MCP-) with respect to 100 parts by weight of spheroidized natural graphite (manufactured by Nippon Graphite Industries Co., Ltd., CGC-15, volume-based median diameter is 17.0 μm, d (002) = 0.3355 nm) 250D, softening point 250 ° C.) 10 parts by weight was heated and kneaded with a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.) for 10 minutes while maintaining the temperature in the apparatus at 270 to 280 ° C. to obtain powder A4.

(第二工程)
更に引き続き、ヘンシェルミキサーに、第一工程で用いた球状化天然黒鉛100重量部に対し、炭素微小球(東海カーボン社製、商品名CNS、体積基準メディアン径0.4μm、d(002)=0.3640nm)10重量部を投入して、装置内の温度を270〜280℃に保ちながら、回転数100m/sで10分間処理し、粉体B4を得た。なお、第二工程後の粉体B4を走査型電子顕微鏡で観察したところ、表面が炭素微小球で覆われていることが確認された。
(Second step)
Subsequently, carbon microspheres (trade name CNS, manufactured by Tokai Carbon Co., Ltd., volume-based median diameter of 0.4 μm, d (002) = 0) with respect to 100 parts by weight of spheroidized natural graphite used in the first step. .3640 nm) was charged at 10 parts by weight, and the temperature in the apparatus was maintained at 270 to 280 ° C., and the mixture was treated at a rotational speed of 100 m / s for 10 minutes to obtain powder B4. When the powder B4 after the second step was observed with a scanning electron microscope, it was confirmed that the surface was covered with carbon microspheres.

(第三工程)
得られた粉体B4を、黒鉛坩堝に投入し、窒素ガス雰囲気下、1400℃で焼成炭化した。次いで、解砕装置(日清エンジニアリング株式会社製、スーパーローター)で解砕し、分級装置(日清エンジニアリング株式会社製、ターボクラシファイア)で分級して、リチウムイオン二次電池用負極材C4を得た。その物性を表3に示す。
(Third process)
The obtained powder B4 was put into a graphite crucible and calcined at 1400 ° C. in a nitrogen gas atmosphere. Next, it is crushed with a crushing device (Nisshin Engineering Co., Ltd., Super Rotor) and classified with a classification device (Nisshin Engineering Co., Ltd., turbo classifier) to obtain a negative electrode material C4 for a lithium ion secondary battery. It was. The physical properties are shown in Table 3.

<リチウムイオン二次電池の作成>
リチウムイオン二次電池用負極材C4を用いること以外は、実施例1と同様の方法で行った。その結果を表4に示す。
<Creation of lithium ion secondary battery>
It carried out by the same method as Example 1 except using negative electrode material C4 for lithium ion secondary batteries. The results are shown in Table 4.

(実施例5)
<リチウムイオン二次電池用負極材の製造>
(第一工程)
球状化天然黒鉛(日本黒鉛工業株式会社製、CGC−15、体積基準メディアン径が17.0μm、d(002)=0.3355nm)100重量部に対し、コールタールピッチ(JFEケミカル株式会社、PKQL、軟化点70℃)5重量部を、ヘンシェルミキサー(三井鉱山株式会社製)にて、装置内の温度を150〜160℃に保ちながら10分間加熱混練し、粉体A5を得た。
(Example 5)
<Manufacture of negative electrode material for lithium ion secondary battery>
(First step)
Coal tar pitch (JFE Chemical Corporation, PKQL) with respect to 100 parts by weight of spheroidized natural graphite (manufactured by Nippon Graphite Industries Co., Ltd., CGC-15, volume-based median diameter is 17.0 μm, d (002) = 0.3355 nm) , 5 parts by weight with a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.) was heated and kneaded for 10 minutes while maintaining the temperature in the apparatus at 150 to 160 ° C. to obtain powder A5.

(第二工程)
更に引き続き、ヘンシェルミキサーに、第一工程で用いた球状化天然黒鉛100重量部に対し、旭サーマル(旭カーボン社製、商品名アサヒサーマル)の分級品(体積基準メディアン径0.05μm、d(002)=0.3630nm)10重量部を投入して、装置内の温度を150〜160℃に保ちながら、回転数100m/sで10分間処理し、粉体B5を得た。なお、第二工程後の粉体B5を走査型電子顕微鏡で観察したところ、表面が旭サーマルで覆われていることが確認された。
(Second step)
Subsequently, the Henschel mixer was classified into 100 parts by weight of the spheroidized natural graphite used in the first step with Asahi Thermal (trade name Asahi Thermal, manufactured by Asahi Carbon Co., Ltd.) (volume-based median diameter 0.05 μm, d ( 002) = 0.3630 nm) 10 parts by weight were charged, and the temperature in the apparatus was kept at 150 to 160 ° C., and the mixture was treated at a rotational speed of 100 m / s for 10 minutes to obtain a powder B5. In addition, when the powder B5 after the second step was observed with a scanning electron microscope, it was confirmed that the surface was covered with Asahi Thermal.

(第三工程)
得られた粉体B5を、黒鉛坩堝に投入し、窒素ガス雰囲気下、1000℃で焼成炭化した。次いで、解砕装置(日清エンジニアリング株式会社製、スーパーローター)で解砕、分級装置(日清エンジニアリング株式会社製、ターボクラシファイア)で分級して、リチウムイオン二次電池用負極材C5を得た。その物性を表3に示す。
(Third process)
The obtained powder B5 was put into a graphite crucible and calcined at 1000 ° C. in a nitrogen gas atmosphere. Subsequently, it was crushed by a crushing device (Nisshin Engineering Co., Ltd., Super Rotor) and classified by a classification device (Nisshin Engineering Co., Ltd., turbo classifier) to obtain a negative electrode material C5 for a lithium ion secondary battery. . The physical properties are shown in Table 3.

<リチウムイオン二次電池の作成>
リチウムイオン二次電池用負極材C5を用いること以外は、実施例1と同様の方法で行った。その結果を表4に示す。
<Creation of lithium ion secondary battery>
The same procedure as in Example 1 was performed except that the negative electrode material C5 for lithium ion secondary batteries was used. The results are shown in Table 4.

(比較例1)
<リチウムイオン二次電池用負極材の製造>
(第一工程)
球状化天然黒鉛(日本黒鉛工業株式会社製、CGC−15、体積基準メディアン径が17.0μm、d(002)=0.3355nm)100重量部に対し、コールタールピッチ(JFEケミカル株式会社、PKQL、軟化点70℃)20重量部を、ヘンシェルミキサー(三井鉱山株式会社製)にて、装置内の温度を150〜160℃に保ちながら10分間加熱混練し、粉体D1を得た。
(Comparative Example 1)
<Manufacture of negative electrode material for lithium ion secondary battery>
(First step)
Coal tar pitch (JFE Chemical Corporation, PKQL) with respect to 100 parts by weight of spheroidized natural graphite (manufactured by Nippon Graphite Industries Co., Ltd., CGC-15, volume-based median diameter is 17.0 μm, d (002) = 0.3355 nm) 20 parts by weight of a softening point of 70 ° C. was kneaded with a Henschel mixer (manufactured by Mitsui Mining Co., Ltd.) for 10 minutes while maintaining the temperature in the apparatus at 150 to 160 ° C. to obtain powder D1.

(第二工程)
更に引き続き、ヘンシェルミキサーに、第一工程で用いた球状化天然黒鉛100重量部に対し、ファーネスブラック(東海カーボン社製、S−TA、体積基準メディアン径0.7μm、d(002)=0.3620nm)20重量部を投入して、加熱せずに室温で、人手で撹拌混合し、混合粉体E1を得た。
(Second step)
Subsequently, furnace black (manufactured by Tokai Carbon Co., Ltd., S-TA, volume-based median diameter 0.7 μm, d (002) = 0.0) was added to a Henschel mixer with respect to 100 parts by weight of spheroidized natural graphite used in the first step. 3620 nm) 20 parts by weight were charged, and the mixture was stirred and mixed manually at room temperature without heating to obtain a mixed powder E1.

(第三工程)
得られた混合粉体E1を、黒鉛坩堝に投入し、窒素ガス雰囲気下、1000℃で焼成炭化した。次いで、解砕装置(日清エンジニアリング株式会社製、スーパーローター)で解砕し、分級装置(日清エンジニアリング株式会社製、ターボクラシファイア)で分級して、リチウムイオン二次電池用負極材F1を得た。その物性を表3に示す。
(Third process)
The obtained mixed powder E1 was put into a graphite crucible and calcined at 1000 ° C. in a nitrogen gas atmosphere. Subsequently, it is crushed by a crushing device (Nisshin Engineering Co., Ltd., Super Rotor) and classified by a classification device (Nisshin Engineering Co., Ltd., turbo classifier) to obtain a negative electrode material F1 for a lithium ion secondary battery. It was. The physical properties are shown in Table 3.

<リチウムイオン二次電池の作成>
リチウムイオン二次電池用負極材F1を用いること以外は、実施例1と同様の方法で行った。その結果を表4に示す。
<Creation of lithium ion secondary battery>
The same procedure as in Example 1 was performed except that the negative electrode material F1 for lithium ion secondary batteries was used. The results are shown in Table 4.

(比較例2)
<リチウムイオン二次電池用負極材の製造>
コールタールピッチ(JFEケミカル株式会社、PKQL、軟化点70℃)20重量部に代えて、メソフェーズピッチ(JFEケミカル株式会社、MCP−250D)の低分子成分を飛ばした改質品(軟化点300℃)とする以外は、実施例1と同様の方法で行い、リチウムイオン二次電池用負極材F2を得た。その物性を表3に示す。
(Comparative Example 2)
<Manufacture of negative electrode material for lithium ion secondary battery>
Instead of 20 parts by weight of coal tar pitch (JFE Chemical Co., Ltd., PKQL, softening point 70 ° C.), a modified product (softening point 300 ° C.) of which mesophase pitch (JFE Chemical Co., Ltd., MCP-250D) is skipped. The negative electrode material F2 for a lithium ion secondary battery was obtained in the same manner as in Example 1 except that. The physical properties are shown in Table 3.

<リチウムイオン二次電池の作成>
リチウムイオン二次電池用負極材F2を用いること以外は、実施例1と同様の方法で行った。その結果を表4に示す。
<Creation of lithium ion secondary battery>
The same process as in Example 1 was performed except that the negative electrode material F2 for lithium ion secondary batteries was used. The results are shown in Table 4.

(比較例3)
<リチウムイオン二次電池用負極材の製造>
コールタールピッチ(JFEケミカル株式会社、PKQL、軟化点70℃)20重量部に代えて、コールタールピッチ(JFEケミカル株式会社、PKQL)にコールタールを添加し、軟化点を低下させたピッチ(軟化点50℃)20重量部とする以外は、実施例1と同様の方法で行い、リチウムイオン二次電池用負極材F3を得た。その物性を表3に示す。
(Comparative Example 3)
<Manufacture of negative electrode material for lithium ion secondary battery>
Coal tar pitch (JFE Chemical Co., Ltd., PKQL, softening point 70 ° C.) Instead of 20 parts by weight, coal tar is added to coal tar pitch (JFE Chemical Co., Ltd., PKQL) to reduce the softening point (softening) Except for the point being 20 parts by weight), a negative electrode material F3 for a lithium ion secondary battery was obtained in the same manner as in Example 1. The physical properties are shown in Table 3.

<リチウムイオン二次電池の作成>
リチウムイオン二次電池用負極材F3を用いること以外は、実施例1と同様の方法で行った。その結果を表4に示す。
<Creation of lithium ion secondary battery>
The same process as in Example 1 was performed except that the negative electrode material F3 for lithium ion secondary batteries was used. The results are shown in Table 4.

(比較例4)
<リチウムイオン二次電池用負極材の製造>
球状化天然黒鉛(日本黒鉛工業株式会社製、CGC−15、体積基準メディアン径が17.0μm、d(002)=0.3355nm)100重量部に代えて、球状化天然黒鉛(日本黒鉛工業株式会社製、CGC−35、体積基準メディアン径が35.0μm、d(002)=0.3355nm)100重量部とする以外は、実施例1と同様の方法で行い、リチウムイオン二次電池用負極材F4を得た。その物性を表3に示す。
(Comparative Example 4)
<Manufacture of negative electrode material for lithium ion secondary battery>
Instead of 100 parts by weight of spheroidized natural graphite (manufactured by Nippon Graphite Industries Co., Ltd., CGC-15, volume-based median diameter is 17.0 μm, d (002) = 0.3355 nm), spheroidized natural graphite (Nippon Graphite Industrial Co., Ltd.) A negative electrode for a lithium ion secondary battery, manufactured in the same manner as in Example 1 except that the product is CGC-35, volume-based median diameter is 35.0 μm, and d (002) = 0.3355 nm) is 100 parts by weight. Material F4 was obtained. The physical properties are shown in Table 3.

<リチウムイオン二次電池の作成>
リチウムイオン二次電池用負極材F4を用いること以外は、実施例1と同様の方法で行った。その結果を表4に示す。
<Creation of lithium ion secondary battery>
The same process as in Example 1 was performed except that the negative electrode material F4 for lithium ion secondary batteries was used. The results are shown in Table 4.

(比較例5)
<リチウムイオン二次電池用負極材の製造>
ファーネスブラック(東海カーボン社製、S−TA、体積基準メディアン径0.7μm、d(002)=0.3620nm)20重量部に代えて、GC質炭素小球体(東海カーボン社製、商品名GC微小球、体積基準メディアン径6.0μm、d(002)=0.3790nm)20重量部とする以外は、実施例1と同様の方法で行い、リチウムイオン二次電池用負極材E5を得た。その物性を表3に示す。
(Comparative Example 5)
<Manufacture of negative electrode material for lithium ion secondary battery>
In place of 20 parts by weight of furnace black (Tokai Carbon Co., Ltd., S-TA, volume-based median diameter 0.7 μm, d (002) = 0.620 nm), a carbonaceous carbon microsphere (manufactured by Tokai Carbon Co., Ltd., trade name GC) A negative electrode material E5 for a lithium ion secondary battery was obtained in the same manner as in Example 1 except that microspheres, volume-based median diameter 6.0 μm, d (002) = 0.3790 nm) were 20 parts by weight. . The physical properties are shown in Table 3.

<リチウムイオン二次電池の作成>
リチウムイオン二次電池用負極材F5を用いること以外は、実施例1と同様の方法で行った。その結果を表4に示す。
<Creation of lithium ion secondary battery>
The same process as in Example 1 was performed except that the negative electrode material F5 for lithium ion secondary batteries was used. The results are shown in Table 4.

(比較例6)
<リチウムイオン二次電池用負極材の製造>
ファーネスブラック(東海カーボン社製、S−TA、体積基準メディアン径0.7μm、d(002)=0.3620nm)20重量部に代えて、ファーネスブラック(東海カーボン社製、S−TA、体積基準メディアン径0.7μm、d(002)=0.3620nm)の黒鉛化品(体積基準メディアン径0.7μm、d(002)=0.3360nm)20重量部とする以外は、実施例1と同様の方法で行い、リチウムイオン二次電池用負極材F6を得た。その物性を表3に示す。
(Comparative Example 6)
<Manufacture of negative electrode material for lithium ion secondary battery>
Furnace Black (manufactured by Tokai Carbon Co., Ltd., S-TA, volume-based median diameter 0.7 μm, d (002) = 0.620 nm) instead of 20 parts by weight Furnace Black (manufactured by Tokai Carbon Co., Ltd., S-TA, volume-based) Example 1 except that 20 parts by weight of graphitized product (volume-based median diameter 0.7 μm, d (002) = 0.3360 nm) having a median diameter of 0.7 μm and d (002) = 0.3620 nm) Thus, a negative electrode material F6 for lithium ion secondary batteries was obtained. The physical properties are shown in Table 3.

<リチウムイオン二次電池の作成>
リチウムイオン二次電池用負極材F6を用いること以外は、実施例1と同様の方法で行った。その結果を表4に示す。
<Creation of lithium ion secondary battery>
The same process as in Example 1 was performed except that the negative electrode material F6 for lithium ion secondary batteries was used. The results are shown in Table 4.

(比較例7)
<リチウムイオン二次電池用負極材の製造>
第三工程で、窒素ガス雰囲気下、1000℃で焼成炭化することに代えて、窒素ガス雰囲気下、2800℃で焼成炭化すること以外は、実施例1と同様の方法で行い、リチウムイオン二次電池用負極材F7を得た。その物性を表3に示す。
(Comparative Example 7)
<Manufacture of negative electrode material for lithium ion secondary battery>
In the third step, instead of calcining at 1000 ° C. in a nitrogen gas atmosphere, except for calcining at 2800 ° C. in a nitrogen gas atmosphere, the lithium ion secondary A negative electrode material F7 for batteries was obtained. The physical properties are shown in Table 3.

<リチウムイオン二次電池の作成>
リチウムイオン二次電池用負極材F7を用いること以外は、実施例1と同様の方法で行った。その結果を表4に示す。
<Creation of lithium ion secondary battery>
The same process as in Example 1 was performed except that the negative electrode material F7 for lithium ion secondary batteries was used. The results are shown in Table 4.

(比較例8)
<リチウムイオン二次電池用負極材の製造>
コールタールピッチ(JFEケミカル株式会社、PKQL、軟化点70℃)20重量部に代えて、コールタールピッチ(JFEケミカル株式会社、PKQL、軟化点70℃)1重量部とすること、及び第三工程で、窒素ガス雰囲気下、1000℃で焼成炭化することに代えて、窒素ガス雰囲気下、2800℃で焼成炭化すること以外は、実施例1と同様の方法で行い、リチウムイオン二次電池用負極材F8を得た。その物性を表3に示す。
(Comparative Example 8)
<Manufacture of negative electrode material for lithium ion secondary battery>
Instead of 20 parts by weight of coal tar pitch (JFE Chemical Co., PKQL, softening point 70 ° C.), 1 part by weight of coal tar pitch (JFE Chemical Co., PKQL, softening point 70 ° C.) and the third step Thus, in place of calcination and carbonization at 1000 ° C. in a nitrogen gas atmosphere, the same procedure as in Example 1 was performed except that calcination and carbonization at 2800 ° C. in a nitrogen gas atmosphere. Material F8 was obtained. The physical properties are shown in Table 3.

<リチウムイオン二次電池の作成>
リチウムイオン二次電池用負極材F8を用いること以外は、実施例1と同様の方法で行った。その結果を表4に示す。
<Creation of lithium ion secondary battery>
The same process as in Example 1 was performed except that the negative electrode material F8 for lithium ion secondary batteries was used. The results are shown in Table 4.

(比較例9)
<リチウムイオン二次電池用負極材の製造>
第二工程で、ヘンシェルミキサーにて、装置内の温度を150〜160℃に保ちながら、回転数100m/sで10分間処理することに代えて、図14に示すハイブリダイザー(奈良機械株式会社製)にて、装置内の温度を150〜160℃に保ちながら、回転数100m/sで5分間処理すること、及び第三工程で、窒素ガス雰囲気下、1000℃で焼成炭化することに代えて、窒素ガス雰囲気下、700℃で焼成炭化すること以外は、実施例1と同様の方法で行い、リチウムイオン二次電池用負極材F9を得た。その物性を表3に示す。なお、第二工程後の粉体B1を目視にて観察したところ、表面にはファーネスブラックは確認できず、コールタールピッチで覆われていることを確認した。
なお、図14に示すハイブリダイザーは、粉末を投入して回転部48を回転させることにより、原料循環路42を通してドラム46と該回転部48の隙間に投入された粉末に対し、該ドラム46と該回転部48との回転速度の差異により生じる摩擦力、圧縮力及び衝突力により、該粉末に機械的エネルギーを加える装置である。図14中、43はステーター、44はジャケット、45は原料排出部、47はブレードである。
(Comparative Example 9)
<Manufacture of negative electrode material for lithium ion secondary battery>
In the second step, a hybridizer (manufactured by Nara Machinery Co., Ltd.) shown in FIG. 14 is used instead of treating for 10 minutes at a rotational speed of 100 m / s while maintaining the temperature in the apparatus at 150 to 160 ° C. with a Henschel mixer. ), While maintaining the temperature in the apparatus at 150 to 160 ° C. for 5 minutes at a rotational speed of 100 m / s, and in the third step, calcination and carbonization at 1000 ° C. in a nitrogen gas atmosphere. A negative electrode material F9 for a lithium ion secondary battery was obtained in the same manner as in Example 1 except that it was calcined at 700 ° C. in a nitrogen gas atmosphere. The physical properties are shown in Table 3. In addition, when the powder B1 after the second step was visually observed, it was confirmed that the surface was not covered with furnace black and was covered with coal tar pitch.
Note that the hybridizer shown in FIG. 14 throws powder into the gap between the drum 46 and the rotating part 48 through the raw material circulation path 42 by rotating the rotating part 48 by adding powder. It is a device that applies mechanical energy to the powder by frictional force, compression force and collision force generated by the difference in rotational speed with the rotating part 48. In FIG. 14, 43 is a stator, 44 is a jacket, 45 is a raw material discharge part, and 47 is a blade.

<リチウムイオン二次電池の作成>
リチウムイオン二次電池用負極材F9を用いること以外は、実施例1と同様の方法で行った。その結果を表4に示す。また、リチウムイオン二次電池用負極材F9の表面及び断面のSEM写真を図11〜13に示すが、リチウムイオン二次電池用負極材F9の表面には、ファーネスブラックは存在しないことが確認された。
<Creation of lithium ion secondary battery>
The same process as in Example 1 was performed except that the negative electrode material F9 for lithium ion secondary batteries was used. The results are shown in Table 4. Moreover, although the SEM photograph of the surface and cross section of the negative electrode material F9 for lithium ion secondary batteries is shown in FIGS. 11-13, it was confirmed that furnace black does not exist in the surface of the negative electrode material F9 for lithium ion secondary batteries. It was.

(比較例10)
<リチウムイオン二次電池用負極材の製造>
球状化天然黒鉛(日本黒鉛工業株式会社製、CGC−15、体積基準メディアン径が17.0μm、d(002)=0.3355nm)100重量部に代えて、難黒鉛化コークス(新日鐵化学社製、商品名LPC−S55、体積基準メディアン径13.0μm、d(002)=3364nm)の2800℃焼成炭化処理品(体積基準メディアン径13.0μm、d(002)=0.3364nm)とすること、及び第三工程で、窒素ガス雰囲気下、1000℃で焼成炭化することに代えて、窒素ガス雰囲気下、800℃で焼成炭化すること以外は、実施例1と同様の方法で行い、リチウムイオン二次電池用負極材F10を得た。その物性を表3に示す。
(Comparative Example 10)
<Manufacture of negative electrode material for lithium ion secondary battery>
Instead of 100 parts by weight of spheroidized natural graphite (manufactured by Nippon Graphite Industries Co., Ltd., CGC-15, volume-based median diameter 17.0 μm, d (002) = 0.3355 nm), non-graphitized coke (Nippon Steel Chemical Co., Ltd.) Product name LPC-S55, volume-based median diameter 13.0 μm, d (002) = 3364 nm) calcined carbonized product (volume-based median diameter 13.0 μm, d (002) = 0.3364 nm) And in the third step, instead of firing and carbonizing at 1000 ° C. in a nitrogen gas atmosphere, except performing firing and carbonizing at 800 ° C. in a nitrogen gas atmosphere, the same method as in Example 1, The negative electrode material F10 for lithium ion secondary batteries was obtained. The physical properties are shown in Table 3.

<リチウムイオン二次電池の作成>
リチウムイオン二次電池用負極材F10を用いること以外は、実施例1と同様の方法で行った。その結果を表4に示す。
<Creation of lithium ion secondary battery>
The same process as in Example 1 was performed except that the negative electrode material F10 for lithium ion secondary batteries was used. The results are shown in Table 4.

Figure 0005413645
1)炭素前駆体の混合量は、黒鉛核粒子粉末100重量部に対する重量部である。
Figure 0005413645
1) The mixing amount of the carbon precursor is parts by weight with respect to 100 parts by weight of the graphite core particle powder.

Figure 0005413645
1)炭素微粒子粉末の混合量は、第一工程で用いた黒鉛各粒子粉末100重量部に対する重量部である。
Figure 0005413645
1) The mixing amount of the carbon fine particle powder is part by weight with respect to 100 parts by weight of each graphite particle powder used in the first step.

Figure 0005413645
Figure 0005413645

Figure 0005413645
Figure 0005413645

実施例1〜5は、可逆容量及び放電負荷、容量維持率が高いので、電池容量は大きく、出入力特性に優れるリチウムイオン二次電池が作成可能な負極材と言える。   Since Examples 1-5 have a high reversible capacity, discharge load, and capacity retention rate, it can be said that the battery capacity is large and negative electrode materials capable of producing lithium ion secondary batteries having excellent input / output characteristics.

一方、比較例1は、炭素微粒子が固定されていないため、単純混合物としての特性しか得られず、初回ロスが大きく、放電負荷、容量維持率が小さかった。
比較例2は、炭素前駆体の軟化点が高過ぎて、炭素微粒子が均一に固定されていないため、該黒鉛粒子の表面改質効果が得られず、放電負荷、容量維持率が小さかった。
比較例3は、炭素前駆体の軟化点が低過ぎるため、R値が小さく、炭素微粒子同士が単独で造粒してしまい、裸の該黒鉛粒子の表面が露出しているので、放電負荷、容量維持率が小さかった。
比較例4は、黒鉛核粒子の粒子径が大き過ぎるため、粒子内をリチウムイオンが移動する距離は長くなるため、放電負荷、容量維持率が極端に小さかった。
比較例5は、炭素微粒子の粒子径が大き過ぎるため、極板にした際の複合粒子同士の十分な電気接触が得られず、放電負荷、容量維持率が小さかった。
比較例6は、炭素微粒子の結晶化度が高過ぎるため、R値が低くなり過ぎており、表面改質効果が得られず、放電負荷、容量維持率が小さかった。
比較例7は、焼成炭化温度が高過ぎるため、黒鉛結晶子が発達し、結果として、黒鉛粒子と同様な特性しか得られなかった。
比較例8は、炭素前駆体の混合量が少な過ぎするため、炭素微粒子と該黒鉛粒子の接着強度が不十分となり、複合粒子状態の構造が得られず、黒鉛粒子単体と同等の特性しか得られず、放電負荷、容量維持率が小さかった。
比較例9は、Raが小さ過ぎるので、放電負荷特性が低かった。また、焼成炭化温度が低過ぎたため、初回ロスが大きかった。
比較例10は、黒鉛核粒子の黒鉛化度が低過ぎるため、可逆容量が小さかった。また、焼成炭化温度が低過ぎたため、初回ロスが大きかった。
On the other hand, in Comparative Example 1, since the carbon fine particles were not fixed, only the characteristics as a simple mixture were obtained, the initial loss was large, the discharge load, and the capacity retention rate were small.
In Comparative Example 2, since the softening point of the carbon precursor was too high and the carbon fine particles were not fixed uniformly, the surface modification effect of the graphite particles could not be obtained, and the discharge load and capacity retention rate were small.
In Comparative Example 3, since the softening point of the carbon precursor is too low, the R value is small, the carbon fine particles are granulated independently, and the surface of the bare graphite particles is exposed. The capacity maintenance rate was small.
In Comparative Example 4, since the particle diameter of the graphite core particles is too large, the distance that lithium ions move in the particles becomes long, so that the discharge load and the capacity retention rate are extremely small.
In Comparative Example 5, since the particle size of the carbon fine particles was too large, sufficient electrical contact between the composite particles when the electrode plate was made could not be obtained, and the discharge load and capacity retention rate were small.
In Comparative Example 6, since the crystallization degree of the carbon fine particles was too high, the R value was too low, the surface modification effect was not obtained, and the discharge load and the capacity retention rate were small.
In Comparative Example 7, since the firing carbonization temperature was too high, graphite crystallites developed, and as a result, only the same characteristics as graphite particles were obtained.
In Comparative Example 8, since the mixing amount of the carbon precursor is too small, the adhesion strength between the carbon fine particles and the graphite particles becomes insufficient, a structure in a composite particle state cannot be obtained, and only characteristics equivalent to those of the graphite particles alone are obtained. The discharge load and capacity maintenance rate were small.
In Comparative Example 9, since Ra was too small, the discharge load characteristics were low. Moreover, since the calcination carbonization temperature was too low, the initial loss was large.
In Comparative Example 10, since the graphitization degree of the graphite core particles was too low, the reversible capacity was small. Moreover, since the calcination carbonization temperature was too low, the initial loss was large.

1 黒鉛核粒子
2、32 炭素前駆体
3 炭素前駆体で被覆された黒鉛核粒子
4、31 炭素微粒子
5 炭素前駆体を介して炭素微粒子で覆われている黒鉛核粒子
6 炭化物
7 炭化物を介して炭素微粒子で覆われている黒鉛核粒子
27 負極側ステンレスキャップ
20 負極
21 銅箔
22 絶縁ガスケット
23 電解液含浸セパレータ
24 ニッケルメッシュ
25 正極側ステンレスキャップ
26 正極
41 原料投入口
42 原料循環路
43 ステーター
44 ジャケット
45 原料排出口
46 ドラム
47 ブレード
48 回転部
DESCRIPTION OF SYMBOLS 1 Graphite core particle 2, 32 Carbon precursor 3 Graphite core particle 4, 31 coated with carbon precursor Carbon fine particle 5 Graphite core particle 6 covered with carbon fine particle through carbon precursor 6 Carbide 7 Through carbide Graphite core particles 27 covered with carbon fine particles Negative electrode side stainless cap 20 Negative electrode 21 Copper foil 22 Insulating gasket 23 Electrolyte impregnated separator 24 Nickel mesh 25 Positive electrode side stainless cap 26 Positive electrode 41 Raw material inlet 42 Raw material circulation path 43 Stator 44 Jacket 45 Material outlet 46 Drum 47 Blade 48 Rotating part

Claims (2)

中心線平均粗さRaが10〜200nmであるリチウムイオン二次電池用負極材が得られるように、
体積基準メディアン径が5〜30μm且つ(002)面の面間隔d(002)が0.3360nm以下の黒鉛核粒子粉末と、軟化点が70〜250℃の炭素前駆体と、を加熱混練して、該黒鉛核粒子の表面に該炭素前駆体を被覆し、炭素前駆体で被覆された黒鉛核粒子粉末を得る第一工程と、
該炭素前駆体で被覆された黒鉛核粒子粉末と、体積基準メディアン径が0.05〜5μm且つ(002)面の面間隔d(002)が0.3400nm以上の炭素微粒子粉末と、を混合し、該混合粉末に機械的エネルギーを加えて、該炭素前駆体で被覆された黒鉛核粒子の該炭素前駆体に、該炭素微粒子を埋め込むことにより、該炭素前駆体で被覆された黒鉛核粉末の表面を該炭素微粒子で覆い、該炭素前駆体を介して該炭素微粒子で覆われている黒鉛核粒子粉末を得る第二工程と、
該炭素前駆体を介して該炭素微粒子で覆われている黒鉛核粒子粉末を、非酸化性雰囲気下、1000〜1600℃で焼成炭化して、リチウムイオン二次電池用負極材を得る第三工程と、
施すことを特徴とするリチウムイオン二次電池用負極材の製造方法。
In order to obtain a negative electrode material for a lithium ion secondary battery having a center line average roughness Ra of 10 to 200 nm,
A graphite core particle powder having a volume-based median diameter of 5 to 30 μm and a (002) plane spacing d (002) of 0.3360 nm or less and a carbon precursor having a softening point of 70 to 250 ° C. are heated and kneaded. A first step of coating the surface of the graphite core particles with the carbon precursor to obtain a graphite core particle powder coated with the carbon precursor;
A graphite core particle powder coated with the carbon precursor and a carbon fine particle powder having a volume-based median diameter of 0.05 to 5 μm and a (002) plane spacing d (002) of 0.3400 nm or more are mixed. By applying mechanical energy to the mixed powder and embedding the carbon fine particles in the carbon precursor of the graphite core particles coated with the carbon precursor, the graphite core powder coated with the carbon precursor A second step of covering the surface with the carbon fine particles and obtaining a graphite core particle powder covered with the carbon fine particles via the carbon precursor;
Third step of obtaining a negative electrode material for a lithium ion secondary battery by firing and carbonizing graphite core particle powder covered with the carbon fine particles through the carbon precursor at 1000 to 1600 ° C. in a non-oxidizing atmosphere. When,
Method for producing a lithium ion secondary battery negative electrode material, characterized in applying.
前記炭素微粒子のBET比表面積が30m/g以下、ラマンスペクトル強度比R(I1360/I1580)が0.40以上であることを特徴とする請求項記載のリチウムイオン二次電池用負極材の製造方法。 The BET specific surface area of the carbon particles 30 m 2 / g or less, the Raman spectrum intensity ratio R (I 1360 / I 1580) is a negative electrode for a lithium ion secondary battery according to claim 1, wherein a is 0.40 or more A method of manufacturing the material.
JP2009061505A 2009-03-13 2009-03-13 Method for producing negative electrode material for lithium secondary battery Active JP5413645B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009061505A JP5413645B2 (en) 2009-03-13 2009-03-13 Method for producing negative electrode material for lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009061505A JP5413645B2 (en) 2009-03-13 2009-03-13 Method for producing negative electrode material for lithium secondary battery

Publications (2)

Publication Number Publication Date
JP2010218758A JP2010218758A (en) 2010-09-30
JP5413645B2 true JP5413645B2 (en) 2014-02-12

Family

ID=42977377

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009061505A Active JP5413645B2 (en) 2009-03-13 2009-03-13 Method for producing negative electrode material for lithium secondary battery

Country Status (1)

Country Link
JP (1) JP5413645B2 (en)

Families Citing this family (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012000201A1 (en) * 2010-07-02 2012-01-05 深圳市贝特瑞新能源材料股份有限公司 Lithium ion battery negative electrode material and preparing method therefor
CN102479949B (en) * 2010-11-30 2015-05-27 比亚迪股份有限公司 Anode active material of lithium ion battery, preparation method thereof and lithium ion battery
US9577245B2 (en) 2011-06-30 2017-02-21 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary cell containing negative active material including scaly graphite particles and graphite particles coated with amorphous carbon particles and amorphous carbon layer and method of manufacturing the same
JP5929187B2 (en) * 2011-12-28 2016-06-01 三菱化学株式会社 Method for producing negative electrode material for non-aqueous electrolyte secondary battery, and negative electrode material for non-aqueous electrolyte secondary battery produced by the production method
JP6252034B2 (en) 2012-08-23 2017-12-27 三菱ケミカル株式会社 Carbon material for non-aqueous electrolyte secondary battery, negative electrode for non-aqueous electrolyte secondary battery, non-aqueous electrolyte secondary battery, and method for producing carbon material for non-aqueous electrolyte secondary battery
CN103560247B (en) * 2013-11-08 2017-02-01 深圳市贝特瑞新能源材料股份有限公司 Vehicle-mounted and energy-storage lithium ion battery cathode material and preparation method thereof
KR101833615B1 (en) * 2015-04-29 2018-02-28 주식회사 엘지화학 Negative electrode active material and negative electrode comprising the same
WO2017213083A1 (en) * 2016-06-08 2017-12-14 昭和電工株式会社 Negative electrode for lithium ion secondary cell, and lithium ion secondary cell
CN106099079A (en) * 2016-08-26 2016-11-09 宁德时代新能源科技股份有限公司 Secondary battery negative electrode material, preparation method thereof and battery containing negative electrode material
JPWO2018110263A1 (en) * 2016-12-12 2019-10-24 昭和電工株式会社 Composite graphite particles, production method thereof and use thereof
JP7099005B2 (en) * 2018-03-29 2022-07-12 三菱ケミカル株式会社 Negative electrode material for non-aqueous secondary batteries and its manufacturing method, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
JP7400532B2 (en) 2020-02-26 2023-12-19 株式会社村田製作所 Composite carbon material and its manufacturing method, negative electrode active material for lithium ion secondary batteries, and lithium ion secondary batteries
JP7400533B2 (en) 2020-02-26 2023-12-19 株式会社村田製作所 Composite carbon material and its manufacturing method, slurry for electrode production, electrode coating film, and lithium ion secondary battery
JP7201634B2 (en) * 2020-03-24 2023-01-10 東海カーボン株式会社 Method for producing negative electrode material for lithium ion secondary battery and production material for negative electrode material for lithium ion secondary battery
JP7201635B2 (en) * 2020-03-24 2023-01-10 東海カーボン株式会社 Negative electrode material for lithium ion secondary battery and method for producing negative electrode material for lithium ion secondary battery
JP7263284B2 (en) * 2020-03-24 2023-04-24 東海カーボン株式会社 Manufacturing method of negative electrode material for lithium ion secondary battery
JP2021152996A (en) * 2020-03-24 2021-09-30 東海カーボン株式会社 Negative electrode material for lithium ion secondary battery and production method thereof
JP2022163466A (en) * 2021-04-14 2022-10-26 東海カーボン株式会社 Negative electrode material for lithium ion secondary battery and method for manufacturing negative electrode material for lithium ion secondary battery
CN115663181A (en) * 2021-06-21 2023-01-31 宁德新能源科技有限公司 Negative electrode active material, electrochemical device, and electronic device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3409956B2 (en) * 1995-12-21 2003-05-26 日本電池株式会社 Method for producing electrode for lithium ion battery and lithium ion battery using the electrode
JPH1060169A (en) * 1996-08-20 1998-03-03 Mikuni Shikiso Kk Carbon-black-containing composition
JPH10278178A (en) * 1997-04-09 1998-10-20 Sumitomo Rubber Ind Ltd Base-isolation pivotally supporting structure
JP2001011341A (en) * 1999-07-02 2001-01-16 Kansai Research Institute Pigment for aqueous dispersion and aqueous pigment dispersion
JP5180523B2 (en) * 2007-06-25 2013-04-10 日本カーボン株式会社 Negative electrode active material for lithium secondary battery and negative electrode using the same
EP2081243B1 (en) * 2006-11-10 2012-08-08 Tokai Carbon Co., Ltd. Negative electrode material for lithium ion secondary battery and method for producing the same
JP2008282547A (en) * 2007-05-08 2008-11-20 Tokai Carbon Co Ltd Anode material for lithium ion secondary battery and its manufacturing method
JP2008305722A (en) * 2007-06-08 2008-12-18 Tokai Carbon Co Ltd Negative electrode for lithium ion secondary battery material and its manufacturing method

Also Published As

Publication number Publication date
JP2010218758A (en) 2010-09-30

Similar Documents

Publication Publication Date Title
JP5413645B2 (en) Method for producing negative electrode material for lithium secondary battery
JP5062596B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
KR102324577B1 (en) Negative electrode active material for lithium ion secondary battery, and method for producing same
JP4840449B2 (en) Carbon material and manufacturing method thereof
JP4844943B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
US8974968B2 (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
KR102412700B1 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery and non-aqueous secondary battery
WO2015080203A1 (en) Carbon material for negative electrode of nonaqueous rechargeable battery, negative electrode for nonaqueous rechargeable battery, and nonaqueous rechargeable battery
JP2008305722A (en) Negative electrode for lithium ion secondary battery material and its manufacturing method
WO2018179813A1 (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2008305661A (en) Negative electrode material for lithium ion secondary battery, and its manufacturing method
JP2008282547A (en) Anode material for lithium ion secondary battery and its manufacturing method
JP5798678B2 (en) Silicon graphite composite particles, method for producing the same, electrode, and nonaqueous electrolyte secondary battery including the electrode
JP2015164127A (en) Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery and nonaqueous secondary battery
JP2018088403A (en) Anode material for nonaqueous secondary battery, anode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2015038862A (en) Carbon material for nonaqueous secondary battery negative electrode, negative electrode for nonaqueous secondary battery using the same, and nonaqueous secondary battery
JP2004196609A (en) Production method for composite graphite particle, composite graphite particle, cathode material for lithium ion secondary battery, and lithium ion secondary battery
JP2014067639A (en) Carbon material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP5212682B2 (en) Method for producing negative electrode material for lithium ion secondary battery
JP2009158105A (en) Method of manufacturing composite carbon material for negative electrode material of lithium ion secondary battery
KR20150138265A (en) Amorphous carbon material and graphite carbon material for negative electrodes of lithium ion secondary batteries, lithium ion secondary battery using same, and method for producing carbon material for negative electrodes of lithium ion secondary batteries
JP6379565B2 (en) Non-aqueous secondary battery negative electrode carbon material and non-aqueous secondary battery
JP5196365B2 (en) Carbon particle powder for negative electrode material of lithium ion secondary battery, method for producing the same, and negative electrode material of lithium ion secondary battery
JP5229664B2 (en) Composite carbon material for negative electrode material of lithium secondary battery and method for producing the same
JP2019133919A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130711

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130920

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20131022

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20131030

R150 Certificate of patent or registration of utility model

Ref document number: 5413645

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250