JP2014067639A - Carbon material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery - Google Patents

Carbon material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery Download PDF

Info

Publication number
JP2014067639A
JP2014067639A JP2012213052A JP2012213052A JP2014067639A JP 2014067639 A JP2014067639 A JP 2014067639A JP 2012213052 A JP2012213052 A JP 2012213052A JP 2012213052 A JP2012213052 A JP 2012213052A JP 2014067639 A JP2014067639 A JP 2014067639A
Authority
JP
Japan
Prior art keywords
carbon material
less
secondary battery
graphite
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2012213052A
Other languages
Japanese (ja)
Inventor
Haruhiro Asami
晴洋 浅見
Takahide Kimura
貴英 木村
Kenichi Nakamura
健一 中村
Keiji Yamahara
圭二 山原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2012213052A priority Critical patent/JP2014067639A/en
Publication of JP2014067639A publication Critical patent/JP2014067639A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode material for a nonaqueous secondary battery, reduced in deterioration in cycles by being suppressed in a side reaction with an electrolyte, high in capacity, and excellent in cycle characteristics and rate characteristics.SOLUTION: A carbon material for a nonaqueous secondary battery, which includes metal fine particles (B) and a composite carbon material (A) including a carbon material (a) subjected to pressurization treatment and coated with a carbonaceous substance or a graphite substance, is manufactured.

Description

本発明は、非水系二次電池負極に用いる非水系二次電池用炭素材料と、その炭素材料を用いて形成された負極と、その負極を備える非水系二次電池に関するものである。   The present invention relates to a carbon material for a non-aqueous secondary battery used for a non-aqueous secondary battery negative electrode, a negative electrode formed using the carbon material, and a non-aqueous secondary battery including the negative electrode.

近年、電子機器の小型化に伴い、高容量の二次電池に対する需要が高まってきている。特に、ニッケル・カドミウム電池や、ニッケル・水素電池に比べ、よりエネルギー密度が高く、大電流充放電特性に優れたリチウムイオン二次電池が注目されてきている。
リチウムイオン二次電池の負極用炭素材料としては、コストと耐久性の面から、黒鉛材料や非晶質炭素が使用されることが多い。しかしながら、非晶質炭素材は、実用化可能な材料範囲での可逆容量の小ささ故、また黒鉛材料は、高容量化のために炭素材料を含む活物質層を高密度化すると、材料破壊により初期サイクル時の充放電不可逆容量が増え、結果として、高容量化に至らないといった問題点があった。
In recent years, demand for high-capacity secondary batteries has increased with the downsizing of electronic devices. In particular, lithium ion secondary batteries having higher energy density and excellent large current charge / discharge characteristics have attracted attention as compared to nickel / cadmium batteries and nickel / hydrogen batteries.
As a carbon material for a negative electrode of a lithium ion secondary battery, a graphite material or amorphous carbon is often used from the viewpoint of cost and durability. However, the amorphous carbon material has a small reversible capacity within the range of materials that can be put to practical use, and the graphite material breaks down when the active material layer containing the carbon material is densified to increase the capacity. As a result, the irreversible charge / discharge capacity at the initial cycle increases, and as a result, there is a problem that the capacity cannot be increased.

上記問題点を解決するため、例えば、特許文献1には、球形化黒鉛を等方的に加圧し、高密度化された等方性の高い黒鉛を含有するリチウムイオン二次電池用炭素材料の製造方法が開示されている。
また特許文献2においては、黒鉛と炭素前駆体を混合後、焼成複合化した非水電解質二次電池用負極活物質の製造方法が開示されている。
In order to solve the above-mentioned problem, for example, Patent Document 1 discloses a carbon material for a lithium ion secondary battery containing isotropic graphite that is isotropically pressurized and densified. A manufacturing method is disclosed.
Patent Document 2 discloses a method for producing a negative electrode active material for a non-aqueous electrolyte secondary battery obtained by mixing graphite and a carbon precursor and then firing and combining them.

更に特許文献3では、炭素粉末を等方的加圧処理したリチウム二次電池負極用炭素粉末の製造方法が開示されている。
また、特許文献4では、天然黒鉛球状化粒子および天然黒鉛塊状化粒子のうち少なくとも一方が加圧処理された加圧黒鉛粒子の表面に、炭化物からなる被覆層が形成されていることを特徴とするリチウムイオン二次電池用黒鉛材料が開示されている。
一方、特許文献5では、高容量化の改善を図るため、炭素材料とともに、珪素酸化物を負極材に用いることが提案されている。また、特許文献6では、高容量を維持するために、機械的表面融合処理をすることにより、平均粒径d50が0.2〜20μmのSiO粉末を核として、この核の表面を平均粒径d50が20nm〜13μmの人造黒鉛等の導電材物質で覆った導電性SiO粉末と、黒鉛とを含む負極材が提案されている。
Further, Patent Document 3 discloses a method for producing a carbon powder for a negative electrode of a lithium secondary battery in which carbon powder is isotropically pressurized.
Patent Document 4 is characterized in that a coating layer made of carbide is formed on the surface of pressurized graphite particles in which at least one of natural graphite spheroidized particles and natural graphite agglomerated particles is subjected to pressure treatment. A graphite material for a lithium ion secondary battery is disclosed.
On the other hand, Patent Document 5 proposes using silicon oxide as a negative electrode material together with a carbon material in order to improve the capacity. The average Patent Document 6, in order to maintain a high capacity, by a mechanical surface fusion treatment, the average particle diameter d 50 of the SiO x powder 0.2~20μm as nuclei, the surface of the core A negative electrode material has been proposed that includes conductive SiO x powder covered with a conductive material such as artificial graphite having a particle size d 50 of 20 nm to 13 μm, and graphite.

特開2005−50807号公報Japanese Patent Laying-Open No. 2005-50807 特開2010−165580号公報JP 2010-165580 A 特許第3528671号公報Japanese Patent No. 3528671 特開2011−060465号公報JP 2011-060465 A 特開平11−312518号公報JP 11-31518 A 特開2002−373653号公報JP 2002-373653 A

しかしながら本発明者らの検討によると、特許文献1には、球形化黒鉛を等方的に加圧することによって黒鉛を高密度化し、負荷特性、サイクル特性などに優れるリチウムイオン二次電池についての記載があるが、この方法では黒鉛の表面構造が破壊されることから、改善の余地があった。
特許文献2に記載の技術では、黒鉛と炭素前駆体を混合後、焼成複合化した負極活物質
を用い、サイクル特性に優れた高い出力特性を示す非水電解質二次電池についての記載があるものの、更なるサイクル特性の向上が必要であった。
However, according to the study by the present inventors, Patent Document 1 describes a lithium ion secondary battery that has high graphite density by isotropic pressurization of spheroidized graphite and is excellent in load characteristics, cycle characteristics, and the like. However, this method has room for improvement because the surface structure of graphite is destroyed.
In the technique described in Patent Document 2, there is a description of a non-aqueous electrolyte secondary battery that exhibits high output characteristics excellent in cycle characteristics using a negative electrode active material obtained by mixing graphite and a carbon precursor and then firing and combining them. Therefore, further improvement in cycle characteristics was necessary.

特許文献3には、炭素粉末に対して等方的加圧処理を施すことにより負極用炭素粉末の流動性が向上し、密度のバラツキが少なくなることから、集電体との密着性が向上する負極用炭素粉末が製造できる旨が開示されている。そして、この負極用炭素粉末を用いることでリチウム二次電池のサイクル特性が向上するという記載があるが、この方法では黒鉛の表面構造が破壊されることから、改善の余地があった。   In Patent Document 3, the fluidity of the carbon powder for the negative electrode is improved by subjecting the carbon powder to isotropic pressure treatment, and the density variation is reduced, so that the adhesion with the current collector is improved. It is disclosed that carbon powder for negative electrode can be manufactured. And although there exists description that the cycle characteristic of a lithium secondary battery improves by using this carbon powder for negative electrodes, since the surface structure of graphite was destroyed in this method, there was room for improvement.

また、特許文献4では、天然黒鉛球状化粒子および天然黒鉛塊状化粒子のうち少なくとも一方が加圧処理された加圧黒鉛粒子の表面に、炭化物からなる被覆層が形成されているリチウムイオン二次電池用黒鉛材料が開示されているが、このような炭素材料では、市場の要求性能を満足できるものではない。
特許文献5では、黒鉛として天然黒鉛を用いており、Si酸化物添加により高容量化になっているが、加圧することによって黒鉛を高密度化しておらず、かつ黒鉛表面に非晶質炭素層が施されていないため、高容量化、高レート特性を達成するに至っていない。
特許文献6では、導電性を施したSi酸化物により高容量化になっているが、用いている黒鉛として、入出力特性の低い人造黒鉛が例示されており、黒鉛表面に非晶質炭素層が施されていないため、高レート特性を達成することは困難である。
Further, in Patent Document 4, a lithium ion secondary in which a coating layer made of carbide is formed on the surface of pressurized graphite particles in which at least one of natural graphite spheroidized particles and natural graphite agglomerated particles is subjected to pressure treatment. Although a graphite material for a battery is disclosed, such a carbon material does not satisfy the required performance of the market.
In Patent Document 5, natural graphite is used as graphite, and the capacity is increased by addition of Si oxide, but the graphite is not densified by pressurization, and an amorphous carbon layer is formed on the graphite surface. Therefore, high capacity and high rate characteristics have not been achieved.
In Patent Document 6, although the capacity is increased by the Si oxide subjected to conductivity, artificial graphite having low input / output characteristics is exemplified as the graphite used, and an amorphous carbon layer is formed on the graphite surface. Therefore, it is difficult to achieve high rate characteristics.

本発明はかかる課題に鑑みてなされたものであり、炭素材を加圧処理した後に有機化合物と混合し、さらに焼成処理することにより、当該炭素材の表面構造を破壊することなく、高い密度を持った負極活物質を製造することができ、高容量を有するSiやSiOxなどのSi化合物に代表される金属微粒子を混合することで、高容量、高レート特性を達成することができる。本発明の目的は、この負極活物質と特定の炭素材料および金属微粒子を混合することで、より市場要求に適応した優れた出力特性、及びサイクル特性を有する非水系二次電池を提供することにある。   The present invention has been made in view of such a problem, and by mixing the carbon material with an organic compound after pressure treatment, and further firing the carbon material, the high density can be obtained without destroying the surface structure of the carbon material. A negative electrode active material can be manufactured, and high capacity and high rate characteristics can be achieved by mixing metal fine particles typified by Si compounds such as Si and SiOx having high capacity. An object of the present invention is to provide a non-aqueous secondary battery having excellent output characteristics and cycle characteristics more adapted to market requirements by mixing this negative electrode active material with specific carbon materials and metal fine particles. is there.

本発明者らは、前記課題を解決すべく鋭意検討を行った結果、メカニズムは詳細には分かっていないが、本発明者らの検討によると、加圧処理された炭素材(a)を炭素質物又は黒鉛質物で被覆した複合炭素材(A)と、金属微粒子(B)とを含む非水系二次電池用炭素材料を負極に適用することで、電解液との副反応が抑制されサイクル時の劣化が少なくなり、高容量でサイクル特性、レート特性に優れた非水系二次電池が得られることを見出し、本発明を完成するに至った。
すなわち、本発明の趣旨は、加圧処理された炭素材(a)を炭素質物又は黒鉛質物で被覆した複合炭素材(A)と、金属微粒子(B)とを含む非水系二次電池用炭素材料に存する。
As a result of intensive studies to solve the above-mentioned problems, the present inventors have not understood the mechanism in detail. However, according to the study by the present inventors, the pressure-treated carbon material (a) is treated with carbon. By applying a carbon material for a non-aqueous secondary battery containing a composite carbon material (A) coated with a carbonaceous material or a graphite material and a metal fine particle (B) to the negative electrode, side reactions with the electrolyte are suppressed, and during the cycle It has been found that a non-aqueous secondary battery having a high capacity and excellent cycle characteristics and rate characteristics can be obtained, and the present invention has been completed.
That is, the gist of the present invention is that carbon for a non-aqueous secondary battery including a composite carbon material (A) obtained by coating a pressurized carbon material (a) with a carbonaceous material or a graphite material, and metal fine particles (B). Lies in the material.

本発明の加圧処理された炭素材(a)を炭素質物又は黒鉛質物で被覆した複合炭素材(A)(本明細書では、単に複合炭素材(A)ともいう)と金属微粒子(B)とを含む非水系二次電池用炭素材料を非水系二次電池用負極材として用いることにより、高容量で、より電解液との反応が抑制され、サイクル時の劣化が少ない非水系二次電池を提供することができる。また、電極の膨張やガス発生が少なく、充放電レート特性に優れた高容量な非水系二次電池を得ることができる。   Composite carbon material (A) (herein simply referred to as composite carbon material (A)) and metal fine particles (B) obtained by coating the pressure-treated carbon material (a) of the present invention with a carbonaceous material or a graphite material. By using a carbon material for a non-aqueous secondary battery containing as a negative electrode material for a non-aqueous secondary battery, the non-aqueous secondary battery has a high capacity, a reaction with an electrolytic solution is further suppressed, and a deterioration during cycling is small. Can be provided. In addition, it is possible to obtain a high capacity non-aqueous secondary battery with less electrode expansion and gas generation and excellent charge / discharge rate characteristics.

ここで前記効果の詳細は不明であるが、発明者らの検討の結果、優れた電池特性は次の様な効果によると考えられる。すなわち、複合炭素材(A)を用いた場合は、負極を形成する工程の際に、特に電極密度を上げることは可能であるが、高密度化によりLiイオン
の拡散が妨げられ、優れたレート特性が得られ難い可能性がある。
これに対し、本発明に係る非水系二次電池用炭素材料は、複合炭素材(A)と金属微粒子(B)とを含むことにより、複合炭素材(A)が本来持つと考えられる電池特性(高密度化)を損ねることなく、かつ高容量を有する金属微粒子を加えることで高容量化が可能であり、かつ、複合炭素材(A)に金属微粒子(B)が加わることで、Liイオンの拡散経路が確保され、更に優れたレート特性を得る事ができると考えられる。
Although the details of the effect are not clear here, as a result of investigations by the inventors, it is considered that excellent battery characteristics are due to the following effects. That is, when the composite carbon material (A) is used, it is possible to increase the electrode density particularly in the step of forming the negative electrode, but the high density prevents the diffusion of Li ions, resulting in an excellent rate. It may be difficult to obtain characteristics.
On the other hand, the carbon material for non-aqueous secondary batteries according to the present invention includes the composite carbon material (A) and the metal fine particles (B), so that the composite carbon material (A) originally has battery characteristics. It is possible to increase the capacity by adding metal fine particles having a high capacity without impairing (densification), and by adding metal fine particles (B) to the composite carbon material (A), Li ions It is considered that the diffusion path is ensured and further excellent rate characteristics can be obtained.

以下、本発明の内容を詳細に述べる。なお、以下に記載する発明構成要件の説明は、本発明の実施態様の一例(代表例)であり、本発明はその要旨を超えない限り、これらの形態に特定されるものではない。また、“重量%”と“質量%”とは同義である。
<複合炭素材(A)の原料である原料炭素材>
本発明の複合炭素材(A)の原料である原料炭素材は、一例として下記に示すが、特に制限されない。
Hereinafter, the contents of the present invention will be described in detail. In addition, description of the invention structural requirements described below is an example (representative example) of the embodiment of the present invention, and the present invention is not limited to these forms unless it exceeds the gist. Further, “weight%” and “mass%” are synonymous.
<Raw material carbon material that is a raw material of the composite carbon material (A)>
Although the raw material carbon material which is a raw material of the composite carbon material (A) of this invention is shown below as an example, it is not restrict | limited in particular.

・原料炭素材の種類
原料炭素材の例としては、黒鉛から非晶質のものにいたるまで種々の黒鉛化度の原料炭素材が挙げられる。
また、商業的にも容易に入手可能であるという点で、黒鉛又は黒鉛化度の小さい原料炭素(非晶質炭素)材が特に好ましい。このような黒鉛又は黒鉛化度の小さい黒鉛(非晶質炭素)を原料炭素材として用いると、他の負極活物質を用いた場合よりも、高電流密度での充放電特性の改善効果が著しく大きいので好ましい。
-Types of raw material carbon material Examples of the raw material carbon material include raw material carbon materials having various degrees of graphitization ranging from graphite to amorphous materials.
In addition, graphite or a raw material carbon (amorphous carbon) material having a low degree of graphitization is particularly preferable in that it can be easily obtained commercially. When such graphite or graphite (amorphous carbon) having a low degree of graphitization is used as a raw material carbon material, the effect of improving the charge / discharge characteristics at a high current density is significantly higher than when other negative electrode active materials are used. It is preferable because it is large.

黒鉛は、天然黒鉛、人造黒鉛の何れを用いてもよい。黒鉛としては、不純物の少ないものが好ましく、必要に応じて種々の精製処理を施して用いる。
天然黒鉛の具体例としては、鱗状黒鉛、鱗片状黒鉛、土壌黒鉛等が挙げられる。人造黒鉛としては、ピッチ原料を高温熱処理して製造した、コークス、ニードルコークス、高密度炭素材料等の黒鉛質粒子が挙げられる。好ましくは、低コストと電極作製のし易さの点で、球形化した天然黒鉛である
As the graphite, either natural graphite or artificial graphite may be used. As graphite, those with few impurities are preferable, and they are used after being subjected to various purification treatments as necessary.
Specific examples of natural graphite include scaly graphite, scaly graphite, and soil graphite. Examples of artificial graphite include graphite particles such as coke, needle coke, and high-density carbon material produced by high-temperature heat treatment of pitch raw materials. Preferred is spherical natural graphite from the viewpoint of low cost and ease of electrode production.

人造黒鉛の具体例としては、コールタールピッチ、石炭系重質油、常圧残油、石油系重質油、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサイルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂などの有機物を、通常2500℃以上、3200℃以下の範囲の温度で焼成し、黒鉛化したものが挙げられる。   Specific examples of artificial graphite include coal tar pitch, coal heavy oil, atmospheric residue, petroleum heavy oil, aromatic hydrocarbon, nitrogen-containing cyclic compound, sulfur-containing cyclic compound, polyphenylene, polyvinyl chloride, Organic substances such as polyvinyl alcohol, polyacrylonitrile, polyvinyl butyral, natural polymer, polyphenylene sulfide, polyphenylene oxide, furfuryl alcohol resin, phenol-formaldehyde resin, imide resin are usually used at a temperature in the range of 2500 ° C. to 3200 ° C. Examples thereof include those fired and graphitized.

原料炭素材は、原料炭素材に金属粒子、及び金属酸化物粒子等の粒子を任意の組み合わせで適宜混合して用いても良い。また、個々の粒子中に複数の材料が混在するものであってもよい。例えば、黒鉛の表面を黒鉛化度の小さい炭素材で被覆した構造の炭素質粒子や、炭素材を適当な有機物で集合させ再黒鉛化した粒子でも良い。更に、前記複合粒子中にSn、Si、Al、Biなどの、Liと合金化が可能な金属を含んでいても良い。   The raw material carbon material may be used by appropriately mixing the raw material carbon material with particles such as metal particles and metal oxide particles in any combination. Further, a plurality of materials may be mixed in each particle. For example, carbonaceous particles having a structure in which the surface of graphite is coated with a carbon material having a low degree of graphitization, or particles obtained by re-graphitizing a carbon material with an appropriate organic substance may be used. Furthermore, the composite particles may contain a metal that can be alloyed with Li, such as Sn, Si, Al, Bi.

・原料炭素材の物性
本発明における原料炭素材は以下の物性を示すものである。なお、本発明における測定方法は特に制限はないが、特段の事情がない限り実施例に記載の測定方法に準じる。
(1)原料炭素材のX線パラメータ(d002値)
学振法によるX線回折で求めた格子面(002)のd値(層間距離)は、通常0.335nm以上、0.340nm未満である。ここで、d値は好ましくは0.339nm以下、更に好ましくは0.337nm以下である。d値が大きすぎると結晶性が低下し、初期
不可逆容量が増加する場合がある。一方、下限値である0.335nmは黒鉛の理論値である。
-Physical property of raw material carbon material The raw material carbon material in this invention shows the following physical properties. In addition, there is no restriction | limiting in particular in the measuring method in this invention, According to the measuring method as described in an Example, unless there is a special situation.
(1) X-ray parameters of raw carbon material (d 002 value)
The d value (interlayer distance) of the lattice plane (002) obtained by X-ray diffraction by the Gakushin method is usually 0.335 nm or more and less than 0.340 nm. Here, the d value is preferably 0.339 nm or less, more preferably 0.337 nm or less. If the d value is too large, the crystallinity may decrease and the initial irreversible capacity may increase. On the other hand, the lower limit of 0.335 nm is a theoretical value of graphite.

(2)原料炭素材の表面官能基量
本発明の複合炭素材(A)の原料である原料炭素材は、下記式(1)で表される表面官能基量O/C値が通常1%以上4%以下であり、2%以上3.6%以下が好ましく、2.6%以上3%以下であるとより好ましい。
この表面官能基量O/C値が小さすぎると、バインダとの親和性が低下し、負極表面と被覆材の相互作用が弱くなり、被覆材がはがれやすくなる傾向がある。一方表面官能基量O/C値が大きすぎると、O/C値の調整が困難となり、製造処理を長時間行う必要が生じたり、工程数を増加させる必要が生じたりする傾向があり、生産性の低下やコストの上昇を招く虞がある。
(2) Surface functional group amount of raw material carbon material The raw material carbon material which is the raw material of the composite carbon material (A) of the present invention has a surface functional group amount O / C value represented by the following formula (1) of usually 1%. It is 4% or less, preferably 2% or more and 3.6% or less, and more preferably 2.6% or more and 3% or less.
When the surface functional group amount O / C value is too small, the affinity with the binder is lowered, the interaction between the negative electrode surface and the coating material becomes weak, and the coating material tends to be peeled off. On the other hand, if the surface functional group amount O / C value is too large, it becomes difficult to adjust the O / C value, and there is a tendency that the manufacturing process needs to be performed for a long time or the number of steps needs to be increased. There is a risk of lowering the property and increasing the cost.

式(1)
O/C値(%)={X線光電子分光法(XPS)分析におけるO1sのスペクトルのピーク面積に基づいて求めたO原子濃度/XPS分析におけるC1sのスペクトルのピーク面積に基づいて求めたC原子濃度}×100
本発明における表面官能基量O/C値はX線光電子分光法(XPS)を用いて以下のように測定することができる。
Formula (1)
O / C value (%) = {O atom concentration obtained based on the peak area of the O1s spectrum in the X-ray photoelectron spectroscopy (XPS) analysis / C atom obtained based on the peak area of the C1s spectrum in the XPS analysis Density} × 100
The surface functional group amount O / C value in the present invention can be measured using X-ray photoelectron spectroscopy (XPS) as follows.

X線光電子分光法測定としてX線光電子分光器を用い、測定対象を表面が平坦になるように試料台に載せ、アルミニウムのKα線をX線源とし、マルチプレックス測定により、C1s(280〜300eV)とO1s(525〜545eV)のスペクトルを測定する。得られたC1sのピークトップを284.3eVとして帯電補正し、C1sとO1sのスペクトルのピーク面積を求め、更に装置感度係数を掛けて、CとOの表面原子濃度をそれぞれ算出する。得られたそのOとCの原子濃度比O/C(O原子濃度/C原子濃度)を原料炭素材の表面官能基量O/C値と定義する。   An X-ray photoelectron spectrometer is used as an X-ray photoelectron spectroscopy measurement, the measurement object is placed on a sample stage so that the surface is flat, an aluminum Kα ray is used as an X-ray source, and C1s (280 to 300 eV) is obtained by multiplex measurement. ) And O1s (525-545 eV). The obtained C1s peak top is corrected to be 284.3 eV, the peak areas of the C1s and O1s spectra are obtained, and the device sensitivity coefficient is multiplied to calculate the surface atomic concentrations of C and O, respectively. The obtained atomic concentration ratio O / C (O atomic concentration / C atomic concentration) of O and C is defined as the surface functional group amount O / C value of the raw material carbon material.

(3)原料炭素材の体積基準平均粒径(d50)
原料炭素材の粒径については特に制限が無いが、使用される範囲として、メジアン径d50が通常50μm以下、好ましくは30μm以下、更に好ましくは25μm以下である。また、通常1μm以上、好ましくは4μm以上、更に好ましくは10μm以上である。
この粒径が大きすぎると極板化した際に、筋引きなどの工程上の不都合が出る傾向があり、また、粒径が小さすぎると、表面積が大きくなりすぎて、電解液に対する活性を抑制することが難しくなる傾向がある。
(3) Volume-based average particle diameter of raw material carbon material (d50)
The particle diameter of the raw carbon material is not particularly limited, but as a range to be used, the median diameter d50 is usually 50 μm or less, preferably 30 μm or less, more preferably 25 μm or less. Moreover, it is 1 micrometer or more normally, Preferably it is 4 micrometers or more, More preferably, it is 10 micrometers or more.
If this particle size is too large, inconveniences such as striping tend to occur when it is made into a plate, and if the particle size is too small, the surface area becomes too large and the activity against the electrolyte is suppressed. Tend to be difficult to do.

なお粒径の測定方法は、界面活性剤であるポリオキシエチレンソルビタンモノラウレートの0.2質量%水溶液10mLに、炭素材0.01gを懸濁させ、市販のレーザー回折/散乱式粒度分布測定装置に導入し、28kHzの超音波を出力60Wで1分間照射した後、測定装置における体積基準のメジアン径として測定したものを、本発明における体積基準平均粒径d50と定義する。   The particle size is measured by suspending 0.01 g of a carbon material in 10 mL of a 0.2% by mass aqueous solution of polyoxyethylene sorbitan monolaurate, which is a surfactant, and measuring a commercially available laser diffraction / scattering particle size distribution. A volume-based average particle diameter d50 in the present invention is defined as a volume-based median diameter measured by a measuring apparatus after being introduced into the apparatus and irradiated with an ultrasonic wave of 28 kHz for 1 minute at an output of 60 W.

(4)原料炭素材のBET比表面積(SA)
本発明の原料炭素材のBET法で測定した比表面積については、通常4m/g以上、好ましくは5m/g以上である。また、通常11m/g以下、好ましくは9m/g以下、より好ましくは8m/g以下である。
比表面積が小さすぎると、Liが出入りする部位が少なく、高速充放電特性及び出力特性に劣り、一方、比表面積が大きすぎると、活物質の電解液に対する活性が過剰になり、初期不可逆容量が大きくなるため、高容量電池を製造できない傾向がある。
なおBET比表面積の測定方法は、比表面積測定装置を用いて、窒素ガス吸着流通法に
よりBET1点法にて測定する。
(4) BET specific surface area (SA) of raw carbon material
About the specific surface area measured by BET method of the raw material carbon material of this invention, it is 4 m < 2 > / g or more normally, Preferably it is 5 m < 2 > / g or more. Moreover, it is 11 m < 2 > / g or less normally, Preferably it is 9 m < 2 > / g or less, More preferably, it is 8 m < 2 > / g or less.
If the specific surface area is too small, there are few sites where Li enters and exits, and the high-speed charge / discharge characteristics and output characteristics are inferior. On the other hand, if the specific surface area is too large, the activity of the active material with respect to the electrolyte becomes excessive and the initial irreversible capacity is low. Since it becomes large, there exists a tendency which cannot manufacture a high capacity battery.
In addition, the measuring method of a BET specific surface area is measured by a BET 1 point method by a nitrogen gas adsorption circulation method using a specific surface area measuring device.

(5)原料炭素材のX線回折構造解析(XRD)
原料炭素材のX線回折構造解析(XRD)から得られる、Rhombohedral(菱面体晶)に対するHexagonal(六方晶)の結晶の存在比(3R/2H)は通常0.20以上、0.25以上が好ましく、0.30以上がより好ましい。3R/2Hが小さすぎると、高速充放電特性の低下を招く傾向がある。
なお、X線回折構造解析(XRD)の測定方法は、0.2mmの試料板に原料炭素材を配向しないように充填し、X線回折装置で、CuKα線にて出力30kV、200mAで測定する。得られた43.4°付近の3R(101)、及び44.5°付近の2H(101)の両ピークからバックグラウンドを差し引いた後、強度比3R(101)/2H(101)を算出できる。
(5) X-ray diffraction structure analysis of raw material carbon materials (XRD)
The abundance ratio (3R / 2H) of hexagonal crystals to rhombohedral (3R / 2H) obtained from X-ray diffraction structure analysis (XRD) of the raw carbon material is usually 0.20 or more and 0.25 or more. Preferably, 0.30 or more is more preferable. If 3R / 2H is too small, the high-speed charge / discharge characteristics tend to be reduced.
The X-ray diffraction structure analysis (XRD) is measured by filling a 0.2 mm sample plate so that the raw material carbon material is not oriented and measuring with an X-ray diffractometer at an output of 30 kV and 200 mA with CuKα rays. . After subtracting the background from the obtained 3R (101) near 43.4 ° and 2H (101) near 44.5 °, the intensity ratio 3R (101) / 2H (101) can be calculated. .

(6)原料炭素材のタップ密度
本発明の原料炭素材のタップ密度は、通常0.7g/cm以上、0.8g/cm以上が好ましく、1g/cm以上がより好ましい。また、通常1.3g/cm以下、1.2g/cm以下が好ましく、1.1g/cm以下がより好ましい。タップ密度が低すぎると、高速充放電特性に劣り、タップ密度が高すぎると、粒子内炭素密度が上昇し、圧延性に欠け、高密度の負極シートを形成することが難しくなる場合がある。
(6) Tap density of raw material carbon material The tap density of the raw material carbon material of the present invention is usually preferably 0.7 g / cm 3 or more, more preferably 0.8 g / cm 3 or more, and more preferably 1 g / cm 3 or more. Moreover, 1.3 g / cm 3 or less and 1.2 g / cm 3 or less are usually preferable, and 1.1 g / cm 3 or less is more preferable. If the tap density is too low, the high-speed charge / discharge characteristics are inferior. If the tap density is too high, the intra-particle carbon density increases, the rollability is insufficient, and it may be difficult to form a high-density negative electrode sheet.

本発明において、タップ密度は、粉体密度測定器を用い、直径1.6cm、体積容量20cmの円筒状タップセルに、目開き300μmの篩を通して、原料炭素材を落下させて、セルに満杯に充填した後、ストローク長10mmのタップを1000回行なって、その時の体積と試料の重量から求めた密度をタップ密度として定義する。 In the present invention, the tap density is measured by using a powder density meter to drop the raw carbon material through a sieve having a diameter of 1.6 cm and a volume capacity of 20 cm 3 through a sieve having a mesh opening of 300 μm to fill the cell. After filling, a tap having a stroke length of 10 mm is performed 1000 times, and the density obtained from the volume at that time and the weight of the sample is defined as the tap density.

(7)原料炭素材のラマンスペクトル(Raman)スペクトル
原料炭素材のラマンR値は、1580cm−1付近のピークPの強度Iと、1360cm−1付近のピークPの強度Iとを測定し、その強度比R(R=I/I)を算出して定義する。その値は通常0.15以上であり、0.4以下であることが好ましく、0.3以下がより好ましい。ラマンR値がこの範囲を下回ると、粒子表面の結晶性が高くなり過ぎて、高密度化した場合に電極板と平行方向に結晶が配向し易くなり、負荷特性の低下を招く傾向がある。一方、この範囲を上回ると、粒子表面の結晶性が乱れ、電解液との反応性が増し、充放電効率の低下やガス発生の増加を招く傾向がある。
(7) Raman R value of Raman spectrum (Raman) spectrum raw carbon material of the raw carbonaceous material, and the intensity I A of the peak P A in the vicinity of 1580 cm -1, and an intensity I B of a peak P B in the vicinity of 1360 cm -1 Measure and define the intensity ratio R (R = I B / I A ). The value is usually 0.15 or more, preferably 0.4 or less, and more preferably 0.3 or less. When the Raman R value is less than this range, the crystallinity of the particle surface becomes too high, and when the density is increased, the crystals tend to be oriented in the direction parallel to the electrode plate, and the load characteristics tend to be lowered. On the other hand, if it exceeds this range, the crystallinity of the particle surface will be disturbed, the reactivity with the electrolyte will increase, and the charge / discharge efficiency will tend to decrease and the gas generation will increase.

ラマンスペクトルはラマン分光器で測定できる。具体的には、測定対象粒子を測定セル内へ自然落下させることで試料充填し、測定セル内にレーザー光を照射しながら、測定セルをこのレーザー光と垂直な面内で回転させながら測定を行なう。励起用のレーザーは、例えばアルゴンイオンレーザー(514.5nm)、固体レーザー(532nm)等を用いることができる。以下は、測定条件の一例である。   The Raman spectrum can be measured with a Raman spectrometer. Specifically, the sample particles are naturally dropped into the measurement cell to fill the sample, and while irradiating the measurement cell with the laser beam, the measurement cell is rotated in a plane perpendicular to the laser beam, and the measurement is performed. Do. As the excitation laser, for example, an argon ion laser (514.5 nm), a solid laser (532 nm), or the like can be used. The following is an example of measurement conditions.

レーザー光の波長 :514.5nm、532nm
試料上のレーザーパワー :25mW
分解能 :4cm−1
測定範囲 :1100cm−1〜1730cm−1
ピーク強度測定、ピーク半値幅測定:バックグラウンド処理、スムージング処理(単純平均によるコンボリューション5ポイント)
Laser light wavelength: 514.5 nm, 532 nm
Laser power on sample: 25 mW
Resolution: 4cm -1
Measurement range: 1100 cm −1 to 1730 cm −1
Peak intensity measurement, peak half-width measurement: background processing, smoothing processing (convolution 5 points by simple averaging)

(8)原料炭素材の製造方法
本発明の原料炭素材は、その原料として、黒鉛化されている炭素粒子であれば特に限定はないが、上述したように天然黒鉛、人造黒鉛、並びにコークス粉、ニードルコークス粉
、及び樹脂等の黒鉛化物の粉体等を用いることができる。これらのうち、天然黒鉛が好ましく、中でも球形化処理を施した球形化天然黒鉛が加圧処理の効果が現れ易い点から特に好ましい。以下に、一例として球形化天然黒鉛の製造方法を記載する。
(8) Production method of raw material carbon material The raw material carbon material of the present invention is not particularly limited as long as it is graphitized carbon particles, but as described above, natural graphite, artificial graphite, and coke powder. Needle coke powder, and powders of graphitized materials such as resins can be used. Of these, natural graphite is preferable, and spheroidized natural graphite that has been subjected to spheroidizing treatment is particularly preferable because the effect of pressure treatment tends to appear. Below, the manufacturing method of spherical natural graphite is described as an example.

球形化処理には、例えば、衝撃力を主体として粒子の相互作用も含め圧縮、摩擦、せん断力等の機械的作用を繰り返し炭素粒子に与え、球形化を行う装置を用いることができる。具体的には、ケーシング内部に多数のブレードを設置したローターを有し、そのローターが高速回転することによって、内部に導入された原料炭素材に対して衝撃圧縮、摩擦、せん断力等の機械的作用を与え、表面処理を行なう装置が好ましい。   For the spheronization treatment, for example, an apparatus that spheroidizes by repeatedly applying mechanical actions such as compression, friction, shearing force, etc., including the interaction of particles mainly with impact force, to the carbon particles can be used. Specifically, it has a rotor with a large number of blades installed inside the casing, and the rotor rotates at high speed, so that the raw material carbon material introduced into the casing is mechanically compressed such as impact compression, friction, shear force, etc. An apparatus that provides an action and performs surface treatment is preferable.

また、原料炭素材を循環させることによって機械的作用を繰り返して与える機構を有するものであるのが好ましい。好ましい装置として、例えば、ハイブリダイゼーションシステム(奈良機械製作所社製)、クリプトロン(アーステクニカ社製)、CFミル(宇部興産社製)、メカノフュージョンシステム(ホソカワミクロン社製)、シータコンポーザ(徳寿工作所社製)等が挙げられる。これらの中で、奈良機械製作所社製のハイブリダイゼーションシステムが好ましい。   Moreover, it is preferable to have a mechanism that repeatedly gives mechanical action by circulating the raw carbon material. Preferred devices include, for example, a hybridization system (manufactured by Nara Machinery Co., Ltd.), a kryptron (manufactured by Earth Technica), a CF mill (manufactured by Ube Industries), a mechano-fusion system (manufactured by Hosokawa Micron), and a theta composer (Tokuju Kosakusho). Etc.). Among these, a hybridization system manufactured by Nara Machinery Co., Ltd. is preferable.

例えば本発明で用いる原料炭素材が鱗片状黒鉛である場合には、上記の表面処理による球形化工程を施すことにより、鱗片状の天然黒鉛が折りたたまれて球状になる。又は、原料炭素材の周囲エッジ部分が球形粉砕されて球状となり、その母体粒子に、さらに粉砕により生じた主に5μm以下の微粉が付着してなる。
表面処理後の原料炭素材の表面官能基量O/C値が通常1%以上4%以下となる条件で、球形化処理を行うことにより製造することが好ましい。この際には、機械処理のエネルギーにより黒鉛表面の酸化反応を進行させ、黒鉛表面に酸性官能基を導入することができるよう、活性雰囲気下で行うことが好ましい。
For example, when the raw material carbon material used in the present invention is scaly graphite, the scaly natural graphite is folded into a spherical shape by performing the spheronization step by the surface treatment. Alternatively, the peripheral edge portion of the raw carbon material is spherically pulverized into a spherical shape, and fine particles of 5 μm or less generated by the pulverization adhere to the base particles.
It is preferable to manufacture by performing the spheronization treatment under the condition that the surface functional group amount O / C value of the raw material carbon material after the surface treatment is usually 1% or more and 4% or less. In this case, it is preferable to carry out in an active atmosphere so that the oxidation reaction of the graphite surface can be advanced by the energy of mechanical treatment and acidic functional groups can be introduced into the graphite surface.

例えば前述の装置を用いて処理する場合は、回転するローターの周速度を30〜100m/秒にするのが好ましく、40〜100m/秒にするのがより好ましく、50〜100m/秒にするのが更に好ましい。また、球形化処理は単に炭素質物を通過させるだけでも可能であるが、30秒以上装置内を循環又は滞留させて処理するのが好ましく、1分以上装置内を循環又は滞留させて処理することがより好ましい。   For example, when processing using the above-mentioned apparatus, the peripheral speed of the rotating rotor is preferably 30 to 100 m / sec, more preferably 40 to 100 m / sec, and 50 to 100 m / sec. Is more preferable. The spheroidizing treatment can be performed by simply passing the carbonaceous material, but it is preferable to circulate or stay in the apparatus for 30 seconds or more, and to circulate or stay in the apparatus for 1 minute or more. Is more preferable.

<複合炭素材(A)の原料である有機化合物>
本発明の複合炭素材(A)のもう一方の原料である被覆用の炭素質物又は黒鉛質物の前駆体である有機化合物は、下記に示す物性を満たせば特に制限されない。
・有機化合物の種類
本発明における有機化合物とは、焼成を行うことによって炭素質物又は黒鉛質物となる原料である。ここで、炭素質物とはd値が0.340nm以上の炭素のことであり、炭素質物と非晶質炭素質物とは同義である。一方、黒鉛質物とはd値が0.340nm未満の黒鉛のことである。
<Organic compound as raw material for composite carbon material (A)>
The organic compound that is the precursor of the carbonaceous material for coating or the graphite material that is the other raw material of the composite carbon material (A) of the present invention is not particularly limited as long as the physical properties shown below are satisfied.
-Kind of organic compound The organic compound in this invention is a raw material used as a carbonaceous material or a graphite material by baking. Here, the carbonaceous material is carbon having a d value of 0.340 nm or more, and the carbonaceous material and the amorphous carbonaceous material are synonymous. On the other hand, the graphite material is graphite having a d value of less than 0.340 nm.

具体的には、含浸ピッチ、コールタールピッチ、石炭液化油等の石炭系重質油、アスファルテン等の直留系重質油、及びエチレンヘビーエンドタール等の分解系重質油等の石油系重質油等に例示される易黒鉛化性有機化合物、芳香族炭化水素、窒素含有環状化合物、硫黄含有環状化合物、ポリフェニレン、ポリ塩化ビニル、ポリビニルアルコール、ポリアクリロニトリル、ポリビニルブチラール、天然高分子、ポリフェニレンサイルファイド、ポリフェニレンオキシド、フルフリルアルコール樹脂、フェノール−ホルムアルデヒド樹脂、イミド樹脂などが挙げられ、この中でも焼成によって黒鉛化又は炭素化が可能な易黒鉛化性有機化合物が好ましい。   Specifically, petroleum heavy oil such as impregnated pitch, coal tar pitch, coal heavy oil such as coal liquefied oil, straight run heavy oil such as asphalten, and cracked heavy oil such as ethylene heavy end tar. Graphitizable organic compounds exemplified by quality oils, aromatic hydrocarbons, nitrogen-containing cyclic compounds, sulfur-containing cyclic compounds, polyphenylene, polyvinyl chloride, polyvinyl alcohol, polyacrylonitrile, polyvinyl butyral, natural polymers, polyphenylenesil Examples thereof include fido, polyphenylene oxide, furfuryl alcohol resin, phenol-formaldehyde resin, and imide resin. Among these, graphitizable organic compounds that can be graphitized or carbonized by firing are preferable.

・有機化合物の物性
(1)X線パラメータ(d002値)
<有機化合物を焼成した炭素質物の場合>
有機化合物のみを焼成処理して得られた炭素質物粉末のX線広角回折法による(002)面の面間隔(d002)が通常0.340nm以上、好ましくは0.342nm以上である。また、通常0.380nm未満、好ましくは0.370nm以下、より好ましくは0.360nm以下である。d002値が大きすぎるということは結晶性が低いことを示し、複合炭素材(A)が結晶性の低い粒子となって不可逆容量が増加する場合があり、d002値が小さすぎると炭素質物を複合化させた効果が得られ難い。
-Physical properties of organic compounds (1) X-ray parameters (d 002 values)
<In the case of a carbonaceous material obtained by firing an organic compound>
The interplanar spacing (d 002 ) of the (002) plane according to the X-ray wide angle diffraction method of the carbonaceous material powder obtained by baking only the organic compound is usually 0.340 nm or more, preferably 0.342 nm or more. Moreover, it is less than 0.380 nm normally, Preferably it is 0.370 nm or less, More preferably, it is 0.360 nm or less. If the d 002 value is too large, it indicates that the crystallinity is low, and the composite carbon material (A) may become particles with low crystallinity and increase the irreversible capacity. If the d 002 value is too small, the carbonaceous material It is difficult to obtain the effect of compounding.

<有機化合物を焼成した黒鉛質物の場合>
有機化合物のみを黒鉛化処理して得られた黒鉛質物粉末のX線広角回折法による(002)面の面間隔(d002)が通常0.3354nm以上、好ましくは0.3357nm以上、より好ましくは0.3359nm以上である。また、通常0.340nm未満、好ましくは0.338nm以下、より好ましくは0.337nm以下である。d002値が大きすぎるということは結晶性が低いことを示し、複合炭素材(A)が結晶性の低い粒子となって黒鉛質物を複合化させた効果が得られ難い場合があり、d002値が小さすぎると充放電反応性が低下して、高温保存時のガス発生増加や大電流充放電特性低下の虞がある。
<In the case of a graphite material obtained by firing an organic compound>
The (002) plane spacing (d 002 ) of the graphite powder obtained by graphitizing only the organic compound by X-ray wide angle diffraction method is usually 0.3354 nm or more, preferably 0.3357 nm or more, more preferably It is 0.3359 nm or more. Moreover, it is less than 0.340 nm normally, Preferably it is 0.338 nm or less, More preferably, it is 0.337 nm or less. that d 002 value is too large indicate low crystallinity, may composite carbon material (A) is hard to obtain the effect obtained by compounding graphite pledge becomes low crystallinity particles, d 002 If the value is too small, the charge / discharge reactivity decreases, and there is a risk of increased gas generation during high-temperature storage and reduced large current charge / discharge characteristics.

(2)結晶子サイズ(Lc(002))
<有機化合物を焼成した炭素質物の場合>
有機化合物を焼成処理して得られた炭素質物粉末の学振法によるX線回折法で求めた炭素材料の結晶子サイズ(Lc(002))は、通常5nm以上、好ましくは10nm以上、より好ましくは20nm以上である。また通常300nm以下、好ましくは200nm以下、より好ましくは100nm以下である。結晶子サイズが大きすぎると、複合炭素材(A)が結晶性の低い粒子となって不可逆容量が増加する傾向があり、結晶子サイズが小さすぎると、炭素質物を複合化させた効果が得られ難い。
(2) Crystallite size (Lc (002))
<In the case of a carbonaceous material obtained by firing an organic compound>
The crystallite size (Lc (002)) of the carbon material obtained by the X-ray diffraction method of the Gakushin method of the carbonaceous material powder obtained by baking the organic compound is usually 5 nm or more, preferably 10 nm or more, more preferably Is 20 nm or more. Moreover, it is 300 nm or less normally, Preferably it is 200 nm or less, More preferably, it is 100 nm or less. If the crystallite size is too large, the composite carbon material (A) tends to increase the irreversible capacity as particles having low crystallinity. If the crystallite size is too small, the effect of compounding the carbonaceous material is obtained. It is difficult

<有機化合物を焼成した黒鉛質物の場合>
有機化合物を黒鉛化処理して得られた黒鉛質物粉末の学振法によるX線回折法で求めた炭素材料の結晶子サイズ(Lc(002))は、通常300nm以上、好ましくは400nm以上、より好ましくは500nm以上である。また通常1000nm以下、好ましくは800nm以下、より好ましくは600nm以下である。結晶子サイズが大きすぎると、複合炭素材(A)が結晶性の低い粒子となって黒鉛質物を複合化させた効果が得られ難い場合があり、結晶子サイズが小さすぎると、充放電反応性が低下して、高温保存時のガス発生増加や大電流充放電特性低下の傾向がある。
<In the case of a graphite material obtained by firing an organic compound>
The crystallite size (Lc (002)) of the carbon material obtained by X-ray diffraction analysis based on the Gakushin method of graphitic powder obtained by graphitizing an organic compound is usually 300 nm or more, preferably 400 nm or more. Preferably it is 500 nm or more. Moreover, it is 1000 nm or less normally, Preferably it is 800 nm or less, More preferably, it is 600 nm or less. If the crystallite size is too large, the composite carbon material (A) may become particles with low crystallinity and it may be difficult to obtain the effect of combining the graphite material. If the crystallite size is too small, the charge / discharge reaction may occur. As a result, the gas generation tends to increase and the large current charge / discharge characteristics decrease during high temperature storage.

(3)軟化点
有機化合物の軟化点が通常400℃以下、好ましくは300℃以下、より好ましくは200℃以下、さらに好ましくは150℃以下である。軟化点が高すぎると、原料炭素材と混合又は捏合する際に、均一に混合又は捏合することが困難になり、且つ高温で取り扱う必要が生じるため生産性に欠ける場合がある。下限は特に制限されないが、通常40℃以上である。
(3) Softening point The softening point of the organic compound is usually 400 ° C or lower, preferably 300 ° C or lower, more preferably 200 ° C or lower, and further preferably 150 ° C or lower. If the softening point is too high, it becomes difficult to uniformly mix or combine with the raw carbon material, and it may be necessary to handle at a high temperature, resulting in poor productivity. Although a minimum in particular is not restrict | limited, Usually, it is 40 degreeC or more.

(4)有機化合物の表面官能基量(N/C、S/C、O/C)有機化合物の表面官能基量(N/C、S/C、O/C)は、該有機化合物を1000℃焼成炭化した後、CNT製高速振動型サンプルミル(TI−100型)にて、大気中にて30秒間粉砕処理して得られた炭素粉末を分析したとき、下記に示す条件を満たすことが好ましい。
(4−1)表面官能基量(N/C)
有機化合物の下記式2で表される表面官能基量(N/C)は、通常0.05%以上、好ましくは0.07%以上、より好ましくは0.1%以上、更に好ましくは0.43%以上であり、通常6%以下、好ましくは4%以下、より好ましくは3%以下、更に好ましくは1%以下である。N/Cが小さすぎると、負極活物質表面におけるLiイオンと電解液溶媒の脱溶媒和反応性が低下し、大電流充放電特性が低下する虞があり、大きすぎると、電解液との反応性が増し、充放電効率の低下を招く虞がある。
(4) Surface functional group amount of organic compound (N / C, S / C, O / C) The amount of surface functional group of organic compound (N / C, S / C, O / C) is 1000 for the organic compound. When carbon powder obtained by pulverizing for 30 seconds in the atmosphere using a CNT high-speed vibration sample mill (TI-100 type) after carbonization by firing at ℃, the following conditions must be satisfied: preferable.
(4-1) Surface functional group amount (N / C)
The surface functional group amount (N / C) represented by the following formula 2 of the organic compound is usually 0.05% or more, preferably 0.07% or more, more preferably 0.1% or more, and still more preferably 0.00. It is 43% or more, usually 6% or less, preferably 4% or less, more preferably 3% or less, and still more preferably 1% or less. If N / C is too small, the desolvation reactivity of Li ions and the electrolyte solvent on the negative electrode active material surface may be reduced, and the large current charge / discharge characteristics may be reduced. If it is too large, the reaction with the electrolyte will occur. There is a possibility that the chargeability increases due to the increase in the chargeability.

なお、N/Cは、下記式2にて定義する。
式2
N/C(%)=X線光電子分光法(XPS)分析におけるN1sのスペクトルのピーク面積に基づいて求めたN原子濃度/XPS分析におけるC1sのスペクトルのピーク面積に基づいて求めたC原子濃度 × 100
有機化合物の表面官能基量N/CはX線光電子分光法(XPS)を用いて測定することができる。
N / C is defined by the following formula 2.
Formula 2
N / C (%) = N atom concentration obtained based on the peak area of the N1s spectrum in X-ray photoelectron spectroscopy (XPS) analysis / C atom concentration obtained based on the peak area of the C1s spectrum in XPS analysis × 100
The surface functional group amount N / C of the organic compound can be measured using X-ray photoelectron spectroscopy (XPS).

X線光電子分光法測定としてX線光電子分光器を用い、測定対象を表面が平坦になるように試料台に載せ、アルミニウムのKα線をX線源とし、マルチプレックス測定により、C1s(280〜300eV)とN1s(390〜410eV)のスペクトルを測定する。得られたC1sのピークトップを284.3eVとして帯電補正し、C1sとN1sのスペクトルのピーク面積を求め、更に装置感度係数を掛けて、CとNの表面原子濃度をそれぞれ算出する。得られたそのNとCの表面原子濃度を用いて、式1にてN/C値を算出する。   An X-ray photoelectron spectrometer is used as an X-ray photoelectron spectroscopy measurement, the measurement object is placed on a sample stage so that the surface is flat, an aluminum Kα ray is used as an X-ray source, and C1s (280 to 300 eV) is obtained by multiplex measurement. ) And N1s (390 to 410 eV). The obtained C1s peak top is corrected to be 284.3 eV, the peak areas of the C1s and N1s spectra are obtained, and the device sensitivity coefficient is multiplied to calculate the surface atomic concentrations of C and N, respectively. Using the obtained N and C surface atom concentrations, the N / C value is calculated using Equation 1.

(4−2)表面官能基量(S/C)
有機化合物の下記式3で表される表面官能基量(S/C)は、通常0.01%以上、好ましくは0.05%以上、より好ましくは0.07%以上であり、通常6%以下、好ましくは4%以下、より好ましくは3%以下、更に好ましくは1%以下である。S/Cが小さすぎると負極活物質表面におけるLiイオンと電解液溶媒の脱溶媒和反応性が低下し、大電流充放電特性が低下する虞があり、大きすぎると、電解液との反応性が増し、充放電効率の低下を招く傾向がある。
(4-2) Surface functional group amount (S / C)
The surface functional group amount (S / C) represented by the following formula 3 of the organic compound is usually 0.01% or more, preferably 0.05% or more, more preferably 0.07% or more, and usually 6%. Hereinafter, it is preferably 4% or less, more preferably 3% or less, and still more preferably 1% or less. If S / C is too small, the desolvation reactivity of Li ions and electrolyte solvent on the surface of the negative electrode active material may be reduced, and the large-current charge / discharge characteristics may be reduced. Tends to increase, leading to a decrease in charge / discharge efficiency.

なお、S/Cは、下記式3にて定義する。
式3
S/C(%)=X線光電子分光法(XPS)分析におけるS2sのスペクトルのピーク面積に基づいて求めたS原子濃度/XPS分析におけるC1sのスペクトルのピーク面積に基づいて求めたC原子濃度 × 100
有機化合物の表面官能基量S/CはX線光電子分光法(XPS)を用いて測定することができる。
S / C is defined by the following formula 3.
Formula 3
S / C (%) = S atom concentration obtained based on the peak area of the S2s spectrum in X-ray photoelectron spectroscopy (XPS) analysis / C atom concentration obtained based on the peak area of the C1s spectrum in XPS analysis × 100
The surface functional group amount S / C of the organic compound can be measured using X-ray photoelectron spectroscopy (XPS).

X線光電子分光法測定としてX線光電子分光器を用い、測定対象を表面が平坦になるように試料台に載せ、アルミニウムのKα線をX線源とし、マルチプレックス測定により、C1s(280〜300eV)とS2p(160〜175eV)のスペクトルを測定する。得られたC1sのピークトップを284.3eVとして帯電補正し、C1sとS2pのスペクトルのピーク面積を求め、更に装置感度係数を掛けて、CとSの表面原子濃度をそれぞれ算出する。得られたそのSとCの表面原子濃度を用いて、式2にてS/Cを算出する。   An X-ray photoelectron spectrometer is used as an X-ray photoelectron spectroscopy measurement, the measurement object is placed on a sample stage so that the surface is flat, an aluminum Kα ray is used as an X-ray source, and C1s (280 to 300 eV) is obtained by multiplex measurement. ) And S2p (160 to 175 eV). The obtained C1s peak top is corrected to be 284.3 eV, the peak areas of the C1s and S2p spectra are obtained, and the device sensitivity coefficient is multiplied to calculate the surface atomic concentrations of C and S, respectively. Using the obtained S and C surface atom concentrations, S / C is calculated using Equation 2.

(4−3)表面官能基量(O/C)
有機化合物の表面官能基量(O/C)は、通常0.1%以上、好ましくは1%以上、より好ましくは4.1%以上である。また通常10%以下、好ましくは8%以下、より好ま
しく5%以下である。この表面官能基量O/Cが小さすぎると、負極活物質表面におけるLiイオンと電解液溶媒の脱溶媒和反応性が低下し、大電流充放電特性が低下する虞があり、大きすぎると、電解液との反応性が増し、充放電効率の低下を招く虞がある。
なお、O/Cは、下記式4にて定義する。
式4
O/C(%)=X線光電子分光法(XPS)分析におけるO1sのスペクトルのピーク面積に基づいて求めたO原子濃度/XPS分析におけるC1sのスペクトルのピーク面積に基づいて求めたC原子濃度×100
本発明における表面官能基量O/CはX線光電子分光法(XPS)を用いて測定することができる。
(4-3) Surface functional group amount (O / C)
The surface functional group amount (O / C) of the organic compound is usually 0.1% or more, preferably 1% or more, more preferably 4.1% or more. Moreover, it is 10% or less normally, Preferably it is 8% or less, More preferably, it is 5% or less. If this surface functional group amount O / C is too small, the desolvation reactivity of Li ions and the electrolyte solvent on the negative electrode active material surface may be reduced, and the large current charge / discharge characteristics may be reduced. There is a possibility that the reactivity with the electrolytic solution increases and the charge / discharge efficiency decreases.
O / C is defined by the following formula 4.
Formula 4
O / C (%) = O atom concentration determined based on the peak area of the O1s spectrum in the X-ray photoelectron spectroscopy (XPS) analysis / C atom concentration determined based on the peak area of the C1s spectrum in the XPS analysis × 100
The surface functional group amount O / C in the present invention can be measured using X-ray photoelectron spectroscopy (XPS).

X線光電子分光法測定としてX線光電子分光器を用い、測定対象を表面が平坦になるように試料台に載せ、アルミニウムのKα線をX線源とし、マルチプレックス測定により、C1s(280〜300eV)とO1s(525〜545eV)のスペクトルを測定する。得られたC1sのピークトップを284.3eVとして帯電補正し、C1sとO1sのスペクトルのピーク面積を求め、更に装置感度係数を掛けて、CとOの表面原子濃度をそれぞれ算出する。得られたそのOとCの表面原子濃度を用いて、式3にてO/Cを算出する。   An X-ray photoelectron spectrometer is used as an X-ray photoelectron spectroscopy measurement, the measurement object is placed on a sample stage so that the surface is flat, an aluminum Kα ray is used as an X-ray source, and C1s (280 to 300 eV) is obtained by multiplex measurement. ) And O1s (525-545 eV). The obtained C1s peak top is corrected to be 284.3 eV, the peak areas of the C1s and O1s spectra are obtained, and the device sensitivity coefficient is multiplied to calculate the surface atomic concentrations of C and O, respectively. Using the obtained surface atomic concentrations of O and C, O / C is calculated using Equation 3.

(4−4)S/CとN/Cの和
有機化合物中のS/CとN/Cの和は、通常0.3%以上、好ましくは0.4%以上、より好ましくは0.5%以上であり、通常10%以下、好ましくは8%以下、より好ましくは5%以下である。S/CとN/Cの和が小さすぎると負極活物質表面におけるLiイオンと電解液溶媒の脱溶媒和反応性が低下し、大電流充放電特性が低下する虞があり、大きすぎると、電解液との反応性が増し、充放電効率の低下を招く傾向がある。
(4-4) Sum of S / C and N / C The sum of S / C and N / C in the organic compound is usually 0.3% or more, preferably 0.4% or more, more preferably 0.5. % Or more, usually 10% or less, preferably 8% or less, more preferably 5% or less. If the sum of S / C and N / C is too small, the desolvation reactivity of Li ions and the electrolyte solvent on the negative electrode active material surface may be reduced, and the large current charge / discharge characteristics may be reduced. There is a tendency that the reactivity with the electrolytic solution increases and the charge / discharge efficiency decreases.

<複合炭素材(A)の製造方法>
複合炭素材(A)の製造方法は、上述した原料炭素材を加圧処理した後(以下、炭素材(a)ともよぶ)解砕し、(非晶質)炭素質物又は黒鉛質物被覆部分を得るための有機化合物と混合し、得られた混合物を焼成、粉砕処理を行うことで本発明に用いられる炭素材(a)を炭素質物又は黒鉛質物で被覆した複合炭素材(A)を製造することができる。
<Method for producing composite carbon material (A)>
The composite carbon material (A) is produced by subjecting the above-mentioned raw material carbon material to pressure treatment (hereinafter also referred to as carbon material (a)) and crushing to form an (amorphous) carbonaceous material or graphitic material coating portion. A composite carbon material (A) in which the carbon material (a) used in the present invention is coated with a carbonaceous material or a graphite material is produced by mixing with an organic compound to obtain, and firing and pulverizing the resulting mixture. be able to.

・原料炭素材を加圧処理する工程
本発明における複合炭素材(A)の製造方法においては、有機化合物と原料炭素材を混合する前に、原料炭素材に対して加圧処理を行うことを特徴とする。
原料炭素材を加圧することにより原料炭素材の内部空隙が圧縮される。その結果、加圧処理をした後に解砕した原料炭素材の密度が増加し、混合する有機化合物が原料炭素材の内部空隙に吸収されることなく、原料炭素材の表面を効率的に被覆する。加圧及び成型する方法は特に限定されず、ロールコンパクター、ロールプレス、プリケット機、冷間等方圧加圧装置(CIP)、一軸成形機及びタブレット機などを用いることができる。
-Process of pressurizing raw material carbon material In the manufacturing method of composite carbon material (A) in the present invention, before mixing the organic compound and the raw material carbon material, pressurizing the raw material carbon material is performed. Features.
By pressurizing the raw carbon material, the internal voids of the raw carbon material are compressed. As a result, the density of the raw carbon material crushed after the pressure treatment increases, and the organic compound to be mixed is efficiently absorbed on the surface of the raw carbon material without being absorbed by the internal voids of the raw carbon material. . The method of pressing and molding is not particularly limited, and a roll compactor, a roll press, a rivet machine, a cold isostatic pressing device (CIP), a uniaxial molding machine, a tablet machine, and the like can be used.

また、必要があればロールに彫り込まれたパターンどおりに原料炭素材を加圧と同時に成形することも可能である。また、原料炭素材粒子間に存在する空気を排気し、真空プレスする方法も適用できる。
なお、加圧処理は、一方向からの加圧による加圧処理でもよいし、等方的に加圧する処理でもよいが、粒子の扁平化が起こり難く、球形を保つことができ、塗料化した際の流動性の低下も防げる点で、等方的に加圧処理することが好ましい。
Further, if necessary, the raw carbon material can be molded simultaneously with the press according to the pattern carved in the roll. Moreover, the method of exhausting the air which exists between raw material carbon material particles, and vacuum-pressing can also be applied.
The pressure treatment may be a pressure treatment by pressing from one direction or an isotropic pressure treatment, but it is difficult to flatten the particles, can maintain a spherical shape, and is made into a paint. It is preferable to apply an isotropic pressure treatment in terms of preventing a decrease in fluidity.

原料炭素材を加圧する圧力は、特に限定されるものではないが、通常50kgf/cm以上、好ましくは100kgf/cm以上、より好ましくは300kgf/cm
上、最も好ましくは1000kgf/cm以上である。また、加圧処理の上限は特に限定されないが、通常2000kgf/cm以下、好ましくは1500kgf/cm以下である。圧力が低すぎると、強固な造粒が達成されず内部空隙が減少しない傾向があり、圧力が高すぎると工程上のコストの増加につながる傾向がある。
The pressure for pressurizing the raw material carbon material is not particularly limited, usually 50 kgf / cm 2 or higher, preferably 100 kgf / cm 2 or more, more preferably 300 kgf / cm 2 or more, most preferably 1000 kgf / cm 2 or more It is. The upper limit of the pressure treatment is not particularly limited, but is usually 2000 kgf / cm 2 or less, preferably 1500 kgf / cm 2 or less. When the pressure is too low, strong granulation is not achieved and the internal voids tend not to decrease, and when the pressure is too high, the cost of the process tends to increase.

加圧する時間は、通常0.1秒以上、好ましくは3秒以上、より好ましくは1分以上である。また、通常30分以下、好ましくは10分以下、より好ましくは3分以下である。時間が長すぎると、製造工程に悪影響を及ぼす。また、時間が短すぎると強固な造粒が達成されず内部空隙が減少しない傾向がある。
加圧処理することにより得られた原料炭素材(a)は、以下のような物性を示すことが好ましい。
The pressurizing time is usually 0.1 seconds or longer, preferably 3 seconds or longer, more preferably 1 minute or longer. Moreover, it is 30 minutes or less normally, Preferably it is 10 minutes or less, More preferably, it is 3 minutes or less. If the time is too long, it adversely affects the manufacturing process. On the other hand, if the time is too short, strong granulation is not achieved and the internal voids tend not to decrease.
The raw material carbon material (a) obtained by the pressure treatment preferably exhibits the following physical properties.

・粒子内空隙率
圧縮、解砕された原料炭素材(a)の粒子内空隙率は、通常30%以下、好ましくは25%以下、より好ましくは20%以下であり、通常5%以上、好ましくは7%以上、より好ましくは10%以上である。粒子内空隙率が高すぎると混合する有機化合物が原料炭素材(a)の内部空隙に余分に吸収されることになり、効率的に原料炭素材(a)を被覆することができない傾向がある。粒子内空隙率が低すぎると混合する有機化合物が過剰に存在することになり、原料炭素材(a)同士を凝集させてしまい効率的に原料炭素材(a)を被覆することができない傾向がある。なお、粒子内空隙率の測定方法は、実施例の測定方法に準じる。
-Intraparticle porosity The in-particle porosity of the compressed and crushed raw carbon material (a) is usually 30% or less, preferably 25% or less, more preferably 20% or less, and usually 5% or more, preferably Is 7% or more, more preferably 10% or more. If the intra-particle porosity is too high, the organic compound to be mixed is excessively absorbed in the internal voids of the raw carbon material (a), and there is a tendency that the raw carbon material (a) cannot be efficiently coated. . If the void ratio in the particles is too low, there will be an excess of organic compounds to be mixed, and the raw carbon materials (a) tend to be aggregated so that the raw carbon materials (a) cannot be efficiently coated. is there. In addition, the measuring method of the particle | grain porosity is according to the measuring method of an Example.

・密度
圧縮された原料炭素材(a)の密度は、通常1.2g/cm以上、好ましくは1.3g/cm以上である。また、上限に関しては特に制限はないが、通常1.8g/cm以下である。
-Density The density of the compressed raw material carbon material (a) is usually 1.2 g / cm 3 or more, preferably 1.3 g / cm 3 or more. Moreover, although there is no restriction | limiting in particular regarding an upper limit, Usually, it is 1.8 g / cm < 3 > or less.

・圧縮、解砕された原料炭素材(a)と有機化合物とを混合する工程
圧縮、解砕された原料炭素材(a)と有機化合物との混合は常法により行うことができる。混合温度は通常は常温〜150℃であり、50〜150℃がより好ましく、100〜130℃が原料炭素材と有機化合物が均一に混合し易い点から更に好ましい。
圧縮、解砕された原料炭素材(a)と混合する際に、有機化合物は有機溶媒によって希釈することが好ましい。希釈する理由としては、有機溶媒で希釈することで混合する有機化合物の粘度を下げ、より効率良く、均一に原料炭素材(a)を被覆できるからである。
-The process which mixes the raw material carbon material (a) compressed and pulverized, and an organic compound The mixing of the compressed carbon material (a) and an organic compound can be performed by a conventional method. The mixing temperature is usually from room temperature to 150 ° C., more preferably from 50 to 150 ° C., and more preferably from 100 to 130 ° C. from the viewpoint that the raw material carbon material and the organic compound are easily mixed uniformly.
When mixing with the compressed and crushed raw material carbon material (a), the organic compound is preferably diluted with an organic solvent. The reason for diluting is that by diluting with an organic solvent, the viscosity of the organic compound to be mixed is lowered, and the raw material carbon material (a) can be coated more efficiently and uniformly.

有機溶媒の種類としては、ペンタン、ヘキサン、イソヘキサン、ヘプタン、オクタン、イソオクタン、デカン、ジメチルブタン、シクロヘキサン、メチルシクロヘキサン等の炭化水素;エチルエーテル、イソプロピルエーテル、ジイソアミルエーテル、メチルフェニルエーテル、アミルフェニルエーテル、エチルベンジルエーテル等のエーテル;アセトン、メチルアセトン、メチルエチルケトン、メチルイソブチルケトン、ジエチルケトン等のケトン;ギ酸メチル、ギ酸エチル、ギ酸イソブチル、酢酸メチル、酢酸イソアミル、酢酸メトキシブチル、酢酸シクロヘキシル、酪酸メチル、酪酸エチル、安息香酸ブチル、安息香酸イソアミル等のエステル;ベンゼン、トルエン、キシレン、エチルベンゼン、ジエチルベンゼン、イソプロピルベンゼン、アミルベンゼン、ジアミルベンゼン、トリアミルベンゼン、テトラアミルベンゼン、ドデシルベンゼン、ジドデシルベンゼン、アミルトルエン、テトラリン、シクロヘキシルベンゼン等の芳香族炭化水素等があるが、これらに限定されるものではない。   Organic solvents include pentane, hexane, isohexane, heptane, octane, isooctane, decane, dimethylbutane, cyclohexane, methylcyclohexane and other hydrocarbons; ethyl ether, isopropyl ether, diisoamyl ether, methylphenyl ether, amylphenyl ether Ethers such as ethyl benzyl ether; ketones such as acetone, methyl acetone, methyl ethyl ketone, methyl isobutyl ketone, diethyl ketone; methyl formate, ethyl formate, isobutyl formate, methyl acetate, isoamyl acetate, methoxybutyl acetate, cyclohexyl acetate, methyl butyrate, Esters such as ethyl butyrate, butyl benzoate, isoamyl benzoate; benzene, toluene, xylene, ethylbenzene, diethylbenzene, isopropylben Aromatic hydrocarbons such as but not limited to benzene, amylbenzene, diamylbenzene, triamylbenzene, tetraamylbenzene, dodecylbenzene, didodecylbenzene, amyltoluene, tetralin, cyclohexylbenzene, etc. .

また、これらを2種以上混合したものでもよい。この中でも、ベンゼン、トルエン、キシレンが比較的沸点が高く粘度の低い有機溶媒であり、揮発による濃度変化等が起こり難
く、有機化合物の粘度を下げられる点で特に好ましい。
また、有機溶媒による希釈倍率は、有機溶媒の質量に対して、有機化合物が、通常5%以上、好ましくは25%以上、より好ましくは40%以上、更に好ましくは50%以上であり、通常90%以下、好ましくは80%以下、より好ましくは70%以下、更に好ましくは60%以下である。この希釈倍率が大きすぎると有機化合物の濃度が低下し、効率的に原料炭素材を被覆することができない傾向がある。希釈倍率が小さすぎると有機化合物濃度が充分に低下せず効率的に原料炭素材を被覆することができない傾向がある。
Moreover, what mixed these 2 or more types may be used. Among these, benzene, toluene, and xylene are organic solvents having a relatively high boiling point and a low viscosity, and are particularly preferable in that the concentration change due to volatilization hardly occurs and the viscosity of the organic compound can be lowered.
The dilution ratio with an organic solvent is usually 5% or more, preferably 25% or more, more preferably 40% or more, still more preferably 50% or more, and usually 90%, based on the mass of the organic solvent. % Or less, preferably 80% or less, more preferably 70% or less, and still more preferably 60% or less. If this dilution factor is too large, the concentration of the organic compound tends to decrease, and the raw carbon material tends not to be coated efficiently. If the dilution factor is too small, the concentration of the organic compound is not sufficiently lowered and the raw material carbon material tends not to be coated efficiently.

混合は通常は常圧下で行うが、所望ならば、減圧下又は加圧下で行うこともできる。混合は回分方式及び連続方式のいずれで行うこともできる。いずれの場合でも、粗混合に適した装置及び精密混合に適した装置を組合せて用いることにより、混合効率を向上させることができる。
回分方式の混合装置としては、2本の枠型が自転しつつ公転する構造の混合機;高速高剪断ミキサーであるディゾルバーや高粘度用のバタフライミキサーの様な、一枚のブレートがタンク内で撹拌・分散を行う構造の装置;半円筒状混合槽の側面に沿ってシグマ型などの撹拌翼が回転する構造を有する、いわゆるニーダー形式の装置;撹拌翼を3軸にしたトリミックスタイプの装置;容器内に回転ディスクと分散媒体を有するいわゆるビーズミル型式の装置などが用いられる。
Mixing is usually carried out under normal pressure, but if desired, it can also be carried out under reduced pressure or under pressure. Mixing can be carried out either batchwise or continuously. In any case, mixing efficiency can be improved by using a combination of an apparatus suitable for rough mixing and an apparatus suitable for fine mixing.
As a batch type mixing device, a mixer with a structure in which two frame molds rotate and revolve; a single plate such as a dissolver that is a high-speed, high-shear mixer and a butterfly mixer for high viscosity is contained in the tank. A device having a structure for stirring and dispersing; a so-called kneader-type device having a structure in which a stirring blade such as a sigma type rotates along the side surface of a semi-cylindrical mixing tank; a trimix type device having three stirring blades A so-called bead mill type apparatus having a rotating disk and a dispersion medium in a container is used.

またシャフトによって回転されるパドルが内装された容器を有し、容器内壁面はパドルの回転の最外線に実質的に沿って、好ましくは長い双胴型に形成され、パドルは互いに対向する側面を摺動可能に咬合するようにシャフトの軸方向に多数対配列された構造の装置(例えば栗本鉄工所製のKRCリアクタ、SCプロセッサ、東芝機械セルマック社製のTEM、日本製鋼所製のTEX−Kなど);更には内部一本のシャフトと、シャフトに固定された複数のすき状又は鋸歯状のパドルが位相を変えて複数配置された容器を有し、その内壁面はパドルの回転の最外線に実質的に沿って、好ましくは円筒型に形成された構造の(外熱式)装置(例えばレーディゲ社製のレディゲミキサー、大平洋機工社製のフローシェアーミキサー、月島機械社製のDTドライヤーなど)を用いることもできる。連続方式で混合を行うには、パイプラインミキサーや連続式ビーズミルなどを用いればよい。   It also has a container with a paddle that is rotated by a shaft, and the inner wall surface of the container is formed substantially along the outermost line of rotation of the paddle, preferably in a long twin cylinder shape, and the paddle has side surfaces facing each other. A device having a structure in which many pairs are arranged in the axial direction of the shaft so as to be slidably engaged (for example, KRC reactor manufactured by Kurimoto Iron Works, SC processor, TEM manufactured by Toshiba Machine Celmac, TEX-K manufactured by Nippon Steel Works) Furthermore, it has a container in which a single inner shaft and a plurality of pavement or sawtooth paddles fixed to the shaft are arranged in different phases, and the inner wall surface is the outermost line of rotation of the paddle (External heat type) apparatus (for example, a Redige mixer manufactured by Redige Co., Ltd., a flow share mixer manufactured by Taiyo Koki Co., Ltd., and Tsukishima Kikai Co., Ltd.) DT dryers, etc.) can also be used. In order to perform mixing in a continuous manner, a pipeline mixer, a continuous bead mill, or the like may be used.

本工程で得られた混合物又は希釈混合物の粘度は、通常100cP以下、好ましくは70cP以下、より好ましくは50cP以下である。また1cP以上、好ましくは10cP以上である。粘度が高すぎると、サイクル時の劣化が起こり易く、サイクル特性が悪くなる傾向がある。   The viscosity of the mixture or diluted mixture obtained in this step is usually 100 cP or less, preferably 70 cP or less, more preferably 50 cP or less. Moreover, it is 1 cP or more, preferably 10 cP or more. If the viscosity is too high, deterioration during cycling tends to occur, and cycle characteristics tend to deteriorate.

・混合物を焼成する工程
得られた混合物を非酸化性雰囲気下、好ましくは窒素、アルゴン、二酸化炭素などの流通下で加熱することにより、加圧処理された炭素材(a)を被覆した有機化合物を炭化又は黒鉛化させ、複合炭素材(A)を製造する。
焼成温度は混合物の調製に用いた有機化合物により異なるが、(非晶質)炭素質物又は黒鉛質物が被覆された複合炭素材(A)を得る場合、通常は500℃以上、好ましくは800℃以上、より好ましくは900℃以上に加熱して有機化合物を十分に炭化させる。加熱温度の上限は有機化合物の炭化物が、混合物中の原料炭素材(a)の結晶構造と同等の結晶構造に達しない温度であり、通常は高くても3000℃以下、好ましくは2000℃以下、1500℃以下がより好ましい。
A step of firing the mixture An organic compound coated with the pressure-treated carbon material (a) by heating the obtained mixture in a non-oxidizing atmosphere, preferably under a flow of nitrogen, argon, carbon dioxide, etc. Is carbonized or graphitized to produce a composite carbon material (A).
The firing temperature varies depending on the organic compound used for the preparation of the mixture, but when obtaining a composite carbon material (A) coated with an (amorphous) carbonaceous material or graphite material, it is usually 500 ° C. or higher, preferably 800 ° C. or higher. More preferably, the organic compound is sufficiently carbonized by heating to 900 ° C. or higher. The upper limit of the heating temperature is a temperature at which the carbide of the organic compound does not reach a crystal structure equivalent to the crystal structure of the raw material carbon material (a) in the mixture, and is usually 3000 ° C. or lower, preferably 2000 ° C. or lower, 1500 degrees C or less is more preferable.

焼成処理条件において、熱履歴温度条件、昇温速度、冷却速度、熱処理時間等は、適宜設定する。また、比較的低温領域で熱処理した後、所定の温度に昇温することもできる。なお、本工程に用いる反応機は回分式でも連続式でも、また一基でも複数基でもよい。
焼成に使用する炉は上記要件を満たせば特に制約はないが、例えば、シャトル炉、トン
ネル炉、リードハンマー炉、ロータリーキルン、オートクレーブ等の反応槽、コーカー(コークス製造の熱処理槽)、タンマン炉、アチソン炉、高周波誘導加熱炉などを用いることができ、加熱方式も、直接式抵抗加熱、間接式抵抗加熱、直接燃焼加熱、輻射熱加熱等を用いることができる。熱処理時には、必要に応じて攪拌を行なってもよい。
In the firing treatment conditions, the heat history temperature condition, the temperature rise rate, the cooling rate, the heat treatment time, etc. are appropriately set. Further, after heat treatment in a relatively low temperature region, the temperature can be raised to a predetermined temperature. In addition, the reactor used for this process may be a batch type or a continuous type, and may be one or more.
The furnace used for firing is not particularly limited as long as the above requirements are satisfied. For example, a reactor such as a shuttle furnace, a tunnel furnace, a lead hammer furnace, a rotary kiln, an autoclave, a coker (heat treatment tank for coke production), a Tamman furnace, and Atchison A furnace, a high-frequency induction heating furnace, or the like can be used, and a direct resistance heating, an indirect resistance heating, a direct combustion heating, a radiant heat heating, or the like can also be used as a heating method. During the heat treatment, stirring may be performed as necessary.

上記工程を経た複合炭素材(A)は、必要に応じて、再度粉砕、解砕、分級処理等の粉体加工をしてもよい。
再度の粉砕や解砕に用いる装置に特に制限はないが、例えば、粗粉砕機としてはせん断式ミル、ジョークラッシャー、衝撃式クラッシャー、コーンクラッシャー等が挙げられる。中間粉砕機としてはロールクラッシャー、ハンマーミル等が挙げられ、さらに、微粉砕機としてはボールミル、振動ミル、ピンミル、攪拌ミル、ジェットミル等が挙げられる。
The composite carbon material (A) that has undergone the above-described steps may be subjected to powder processing such as pulverization, pulverization, and classification treatment again as necessary.
There are no particular restrictions on the apparatus used for re-pulverization or crushing, but examples of the coarse pulverizer include a shearing mill, a jaw crusher, an impact crusher, and a cone crusher. Examples of the intermediate pulverizer include a roll crusher and a hammer mill, and examples of the fine pulverizer include a ball mill, a vibration mill, a pin mill, a stirring mill, and a jet mill.

分級処理に用いる装置としては特に制限はないが、例えば、乾式篩い分けの場合は、回転式篩い、動揺式篩い、旋動式篩い、振動式篩い等を用いることができる。乾式気流式分級の場合は、重力式分級機、慣性力式分級機、遠心力式分級機(クラシファイア、サイクロン等)を用いることができる。また、湿式篩い分け、機械的湿式分級機、水力分級機、沈降分級機、遠心式湿式分級機等も用いることができる。   Although there is no restriction | limiting in particular as an apparatus used for a classification process, For example, in the case of dry-type sieving, a rotary sieving, a swaying sieving, a rotating sieving, a vibrating sieving, etc. can be used. In the case of dry airflow classification, a gravity classifier, an inertial force classifier, or a centrifugal force classifier (classifier, cyclone, etc.) can be used. Also, wet sieving, mechanical wet classifiers, hydraulic classifiers, sedimentation classifiers, centrifugal wet classifiers and the like can be used.

<複合炭素材(A)>
複合炭素材(A)は、加圧処理された炭素材(a)を炭素質物又は黒鉛質物で被覆したものであれば、特に制限はない。なお、なお本明細書でいう被覆とは、加圧処理された炭素材(a)の表面の少なくとも一部又は全面が炭素質物又は黒鉛質物で被覆、又は添着されている態様をいう。この態様は下記に示す物性やSEM写真等で確認することができる。
上記製造方法で得られた複合炭素材(A)は、以下のような特性ことが好ましい。
<Composite carbon material (A)>
The composite carbon material (A) is not particularly limited as long as the pressurized carbon material (a) is coated with a carbonaceous material or a graphite material. In addition, the coating as used in this specification means the aspect by which at least one part or the whole surface of the carbon material (a) by which pressure treatment was carried out is coat | covered or attached with the carbonaceous material or the graphite material. This aspect can be confirmed by the following physical properties and SEM photographs.
The composite carbon material (A) obtained by the above production method preferably has the following characteristics.

(1)(002)面の面間隔(d002
複合炭素材(A)のX線広角回折法による(002)面の面間隔(d002)は3.37Å以下、結晶子サイズLcが900Å以上である。X線広角回折法による(002)面の面間隔(d002)が3.37Å以下、Lcが900Å以上であることは、複合炭素材(A)の粒子の表面を除く大部分の結晶性が高いということであり、非水系二次電池の負極材に用いた場合に、非晶質炭素材に見られるような不可逆容量の大きさゆえの低容量化を生じない、高容量電極となる複合炭素材であることを示す。
(1) (002) plane spacing (d 002 )
The interplanar spacing (d 002 ) of the (002) plane according to the X-ray wide angle diffraction method of the composite carbon material (A) is 3.37 mm or less, and the crystallite size Lc is 900 mm or more. The interplanar spacing (d 002 ) of (002) plane by X-ray wide angle diffraction method is 3.37 mm or less and Lc is 900 mm or more. This means that most of the crystallinity excluding the surface of the composite carbon material (A) particles is. This is a high-capacity composite electrode that does not cause a reduction in capacity due to the irreversible capacity seen in amorphous carbon materials when used as a negative electrode material for non-aqueous secondary batteries. Indicates a carbon material.

(2)タップ密度
複合炭素材(A)のタップ密度は、通常0.8g/cm以上であり、0.85g/cm以上が好ましい。
複合炭素材(A)のタップ密度が0.8g/cm以上であるということは、複合炭素材(A)が球状を呈していることを示す指標の一つである。タップ密度が0.8g/cmより小さいというのは、複合炭素材(A)の原料である球形炭素材が充分な球形粒子となっていないことを示す指標の一つである。タップ密度が0.8g/cmより小さいと、電極内で充分な連続空隙が確保されず、空隙に保持された電解液内のLiイオンの移動性が落ちることで、急速充放電特性が低下する傾向がある。
(2) Tap density The tap density of the composite carbon material (A) is usually 0.8 g / cm 3 or more, preferably 0.85 g / cm 3 or more.
That the tap density of the composite carbon material (A) is 0.8 g / cm 3 or more is one of the indexes indicating that the composite carbon material (A) has a spherical shape. The fact that the tap density is smaller than 0.8 g / cm 3 is one of indices indicating that the spherical carbon material, which is the raw material of the composite carbon material (A), does not have sufficient spherical particles. If the tap density is less than 0.8 g / cm 3 , sufficient continuous voids are not secured in the electrode, and the mobility of Li ions in the electrolyte held in the voids is reduced, thereby reducing rapid charge / discharge characteristics. Tend to.

(3)ラマンR値
複合炭素材(A)のラマンスペクトルにおける1580cm−1付近のピーク強度に対する1360cm−1付近のピーク強度比であるラマンR値は通常0.45以下、好ましくは0.40以下、より好ましくは0.35以下であり、通常0.20以上、好ましくは0.23以上、より好ましくは0.25以上である。ラマン値がこの範囲であれば、負極活物質表面の結晶性が適度な範囲にあるため、高出力を得やすいことから好ましい。
(3) Raman R value is the peak intensity ratio in the vicinity of 1360 cm -1 to the peak intensity near 1580 cm -1 in the Raman spectrum of the Raman R value composite carbon material (A) it is usually 0.45 or less, preferably 0.40 or less More preferably, it is 0.35 or less, usually 0.20 or more, preferably 0.23 or more, more preferably 0.25 or more. If the Raman value is within this range, the crystallinity of the surface of the negative electrode active material is in an appropriate range, which is preferable because high output can be easily obtained.

(4)BET法による比表面積
複合炭素材(A)のBET法による比表面積は通常10m/g以下、好ましくは3m/g以下、より好ましくは1.5m/g以下であり、通常0.1m/g以上、好ましくは0.7m/g以上、より好ましくは1m/g以上である。比表面積が大きすぎると負極活物質として用いた時に電解液に露出した部分と電解液との反応性が増加し、ガス発生が多くなりやすく、好ましい電池が得られにくい傾向がある。比表面積が小さすぎると負極活物質として用いた場合の充電時にリチウムイオンの受け入れ性が悪くなる傾向がある。
(4) Specific surface area by BET method The specific surface area by the BET method of the composite carbon material (A) is usually 10 m 2 / g or less, preferably 3 m 2 / g or less, more preferably 1.5 m 2 / g or less. It is 0.1 m 2 / g or more, preferably 0.7 m 2 / g or more, more preferably 1 m 2 / g or more. When the specific surface area is too large, the reactivity between the portion exposed to the electrolytic solution when used as the negative electrode active material and the electrolytic solution increases, gas generation tends to increase, and a preferable battery tends to be difficult to obtain. If the specific surface area is too small, the lithium ion acceptability tends to deteriorate during charging when used as a negative electrode active material.

(5)細孔容量
複合炭素材(A)の水銀圧入法による10nm〜100000nmの範囲の細孔容量は、通常0.8mL/g以下、好ましくは、0.6mL/g以下、より好ましくは0.4mL/g以下であり、通常、0.01mL/g以上、好ましくは、0.05mL/g以上、より好ましくは0.1mL/g以上である。細孔容積が大きすぎると極板化時にバインダを多量に必要とする傾向があり、細孔容積が小さすぎると高電流密度充放電特性が低下し、かつ充放電時の電極の膨張収縮の緩和効果が得られなくなる傾向がある。
(5) Pore volume The pore volume of the composite carbon material (A) in the range of 10 nm to 100000 nm by mercury porosimetry is usually 0.8 mL / g or less, preferably 0.6 mL / g or less, more preferably 0. 4 mL / g or less, usually 0.01 mL / g or more, preferably 0.05 mL / g or more, more preferably 0.1 mL / g or more. If the pore volume is too large, there is a tendency to require a large amount of binder during electrode plate formation. If the pore volume is too small, the high current density charge / discharge characteristics deteriorate, and the expansion / contraction of the electrode during charge / discharge is alleviated. There is a tendency that the effect cannot be obtained.

(6)体積基準平均粒径(d50)
複合炭素材(A)の平均粒径(メジアン径)は通常60μm以下、好ましくは40μm以下、より好ましくは30μm以下であり、通常、1μm以上、好ましくは、4μm以上、より好ましくは10μm以上である。平均粒径が大きすぎると炭素1粒子あたりが必要とするバインダが多量となる傾向があり、平均粒径が小さすぎると高電流密度充放電特性が低下する傾向がある。
(6) Volume-based average particle diameter (d50)
The average particle diameter (median diameter) of the composite carbon material (A) is usually 60 μm or less, preferably 40 μm or less, more preferably 30 μm or less, and usually 1 μm or more, preferably 4 μm or more, more preferably 10 μm or more. . If the average particle size is too large, the amount of binder required per carbon particle tends to be large, and if the average particle size is too small, the high current density charge / discharge characteristics tend to decrease.

(7)被覆率
本発明の複合炭素材(A)は、炭素質物又は黒鉛質物で被覆されている。この中でも非晶質炭素質物で被覆されていることがリチウムイオンの受入性の点から好ましく、この被覆率は、通常0.5%以上10.0%以下、好ましくは1.0%以上9.0%以下、より好ましくは、2.0%以上8.0%以下である。この含有率が大きすぎると負極材の非晶質炭素部分が多くなり、電池を組んだ際の可逆容量が小さくなる傾向がある。含有率が小さすぎると、加圧処理された炭素材(a)に対して非晶質炭素部位が均一にコートされないとともに強固な造粒がなされず、焼成後に粉砕した際、粒径が小さくなりすぎる傾向がある。
(7) Coverage The composite carbon material (A) of the present invention is coated with a carbonaceous material or a graphite material. Among these, it is preferable that it is coated with an amorphous carbonaceous material from the viewpoint of lithium ion acceptability, and this coverage is usually 0.5% to 10.0%, preferably 1.0% to 9. It is 0% or less, more preferably 2.0% or more and 8.0% or less. If this content is too large, the amorphous carbon portion of the negative electrode material increases, and the reversible capacity when the battery is assembled tends to be small. If the content is too small, the amorphous carbon portion is not uniformly coated on the pressure-treated carbon material (a) and strong granulation is not performed, and the particle size becomes small when pulverized after firing. It tends to be too much.

なお、最終的に得られる電極用炭素材料の有機化合物由来の炭化物の含有率(被覆率)は、用いる原料炭素材の量と、有機化合物の量及びJIS K 2270に準拠したミクロ法により測定される残炭率により、下記式(5)で算出することができる。
式(5)
有機化合物由来の炭化物の被覆率(%)=(有機化合物の質量×残炭率×100)/{
原料炭素材の質量+(有機化合物の質量×残炭率)}
In addition, the content (coverage) of the carbide derived from the organic compound of the carbon material for the electrode finally obtained is measured by the amount of the raw material carbon material used, the amount of the organic compound, and a micro method based on JIS K 2270. It can be calculated by the following formula (5) based on the remaining charcoal rate.
Formula (5)
Covering rate of carbide derived from organic compound (%) = (mass of organic compound × residual carbon rate × 100) / {
Mass of raw carbon material + (mass of organic compound x residual carbon ratio)}

<複合炭素材(A)と金属微粒子(B)との混合>
本発明の非水系二次電池用炭素材料は、構成要素の一つである上述した複合炭素材(A)と、以下で規定される金属微粒子(B)とを含むことを特徴としている。複合炭素材(A)と組み合わせる金属微粒子(B)は、以下に示される金属化合物のうち一種、又は二種以上を任意の組成及び組み合わせ用いることにより、非水系二次電池の炭素材料として好適に使用することができる
複合炭素材(A)に、その他の炭素材(C)(後述)が含まれていても構わない。
<Mixing of composite carbon material (A) and metal fine particles (B)>
The carbon material for a non-aqueous secondary battery of the present invention is characterized by including the above-described composite carbon material (A) which is one of the constituent elements and metal fine particles (B) defined below. The metal fine particles (B) to be combined with the composite carbon material (A) are suitably used as a carbon material for a non-aqueous secondary battery by using one or two or more of the following metal compounds in any composition and combination. Other carbon materials (C) (described later) may be included in the composite carbon material (A) that can be used.

上述の複合炭素材(A)に金属微粒子(B)を混合する場合、複合炭素材(A)と金属微粒子(B)の総量に対する金属微粒子(B)の混合割合は、特に制限はないが、通常1質量%以上、好ましくは5質量%以上、また、通常30質量%以下、好ましくは20質量%以下の範囲である。金属微粒子(B)が前期範囲を下回ると、高容量化が達成できず、一方、前期範囲を上回ると、Siの体積膨張に伴う電極内のクラック等が発生し、導電パス切れによるサイクル劣化が顕著となる。   When the metal fine particles (B) are mixed with the composite carbon material (A) described above, the mixing ratio of the metal fine particles (B) to the total amount of the composite carbon material (A) and the metal fine particles (B) is not particularly limited. It is usually 1% by mass or more, preferably 5% by mass or more, and usually 30% by mass or less, preferably 20% by mass or less. If the metal fine particle (B) falls below the previous period range, the capacity cannot be increased. On the other hand, if the metal fine particle (B) exceeds the previous period range, cracks in the electrode accompanying the volume expansion of Si occur, resulting in cycle deterioration due to the disconnection of the conductive path. Become prominent.

<金属微粒子(B)>
本発明の非水系二次電池用炭素材料において、上述したように金属微粒子(B)は、少なくとも複合炭素材(A)と混合されていることが特徴である。金属微粒子(B)は、好ましくはLiと合金化可能な金属粒子であることが好ましいが、これを確認するための手法としては、X線回折による金属粒子相の同定、電子顕微鏡による粒子構造の観察および元素分析、蛍光X線による元素分析などが挙げられる。
<Metal fine particles (B)>
In the carbon material for a non-aqueous secondary battery of the present invention, as described above, the metal fine particles (B) are characterized by being mixed with at least the composite carbon material (A). The metal fine particles (B) are preferably metal particles that can be alloyed with Li, but as a method for confirming this, identification of the metal particle phase by X-ray diffraction, particle structure by an electron microscope, and the like. Observation and elemental analysis, elemental analysis by fluorescent X-rays, and the like can be mentioned.

金属微粒子(B)は、従来公知のいずれのものも使用可能であるが、容量とサイクル寿命の点から、金属粒子は、例えば、Fe、Co、Sb、Bi、Pb、Ni、Ag、Si、Sn、Al、Zr、Cr、P、S、V、Mn、Nb、Mo、Cu、Zn、Ge、In、Ti等からなる群から選ばれる金属又はその化合物が好ましい。また、2種以上の金属からなる合金を使用しても良く、金属粒子が、2種以上の金属元素により形成された合金粒子であってもよい。これらの中でも、Si、Sn、As、Sb、Al、Zn及びWからなる群から選ばれる金属又はその化合物が好ましい。   Any conventionally known metal fine particles (B) can be used. From the viewpoint of capacity and cycle life, the metal particles are, for example, Fe, Co, Sb, Bi, Pb, Ni, Ag, Si, A metal selected from the group consisting of Sn, Al, Zr, Cr, P, S, V, Mn, Nb, Mo, Cu, Zn, Ge, In, Ti and the like, or a compound thereof is preferable. Further, an alloy composed of two or more kinds of metals may be used, and the metal particles may be alloy particles formed of two or more kinds of metal elements. Among these, a metal selected from the group consisting of Si, Sn, As, Sb, Al, Zn, and W or a compound thereof is preferable.

金属化合物として、金属酸化物、金属窒化物、金属炭化物等が挙げられる。また、2種以上の金属からなる合金を使用しても良い。
この中でも、Si又はSi化合物が高容量化の点で、好ましい。本明細書では、Si又はSi化合物を総称してSi化合物と呼ぶ。Si化合物としては、具体的には、SiOx,SiNx,SiCx、SiZxOy(Z=C、N)などが挙げられ、好ましくは、一般式で表すとSiOxである。この一般式SiOxは、二酸化Si(SiO)と金属Si(Si)とを原料として得られるが、そのxの値は通常0≦x<2である。SiOxは、黒鉛と比較して理論容量が大きく、更に非晶質SiあるいはナノサイズのSi結晶は、リチウムイオン等のアルカリイオンの出入りがしやすく、高容量を得ることが可能となる。
Examples of the metal compound include a metal oxide, a metal nitride, and a metal carbide. Moreover, you may use the alloy which consists of 2 or more types of metals.
Among these, Si or Si compound is preferable in terms of increasing capacity. In this specification, Si or Si compounds are collectively referred to as Si compounds. Specific examples of the Si compound include SiOx, SiNx, SiCx, SiZxOy (Z = C, N) and the like, and preferably SiOx when expressed by a general formula. The general formula SiOx is obtained using Si dioxide (SiO 2 ) and metal Si (Si) as raw materials, and the value of x is usually 0 ≦ x <2. SiOx has a larger theoretical capacity than graphite. Furthermore, amorphous Si or nano-sized Si crystals easily allow alkali ions such as lithium ions to enter and exit, so that a high capacity can be obtained.

具体的には、SiOxと表されるものであり、xは0≦x<2であり、より好ましくは、0.2以上、1.8以下、更に好ましくは、0.4以上、1.6以下、特に好ましくは、0.6以上、1,4以下である。この範囲であれば、高容量であると同時に、Liと酸素との結合による不可逆容量を低減させることが可能となる。   Specifically, it is expressed as SiOx, and x is 0 ≦ x <2, more preferably 0.2 or more and 1.8 or less, and further preferably 0.4 or more and 1.6 or less. Hereinafter, it is particularly preferably 0.6 or more and 1,4 or less. If it is this range, it becomes high capacity | capacitance and it becomes possible to reduce the irreversible capacity | capacitance by the coupling | bonding of Li and oxygen.

・金属微粒子(B)の平均粒子径(d50)
金属微粒子(B)の平均粒子径(d50)は、サイクル寿命の観点から、通常0.01μm以上、好ましくは0.05μm以上、より好ましくは0.1μm以上、更に好ましくは0.3μm以上であり、通常10μm以下、好ましくは9μm以下、より好ましくは8μm以下である。平均粒子径(d50)が前記範囲内であると、充放電に伴う体積膨張が低減され、充放電容量を維持しつつ、良好なサイクル特性の得ることができる。
平均粒子径(d50)は、レーザー回折・散乱式粒度分布測定方法等で求められる。
-Average particle diameter (d50) of metal fine particles (B)
The average particle diameter (d50) of the metal fine particles (B) is usually 0.01 μm or more, preferably 0.05 μm or more, more preferably 0.1 μm or more, and further preferably 0.3 μm or more from the viewpoint of cycle life. Usually, it is 10 μm or less, preferably 9 μm or less, more preferably 8 μm or less. When the average particle diameter (d50) is within the above range, volume expansion associated with charge / discharge is reduced, and good cycle characteristics can be obtained while maintaining charge / discharge capacity.
The average particle diameter (d50) is determined by a laser diffraction / scattering particle size distribution measuring method or the like.

・金属微粒子(B)のBET法比表面積
金属微粒子(B)のBET法により比表面積は通常0.5〜60m/g、1〜40m/gであることが好ましい。金属微粒子(B)のBET法による比表面積が前記範囲内であると、電池の充放電効率および放電容量が高く、高速充放電においてリチウムの出し入れが速く、レート特性に優れるので好ましい。
-BET specific surface area of metal fine particles (B) The specific surface area of the metal fine particles (B) by the BET method is usually preferably 0.5 to 60 m 2 / g, preferably 1 to 40 m 2 / g. It is preferable that the specific surface area of the metal fine particles (B) by the BET method be in the above range because the battery has high charge / discharge efficiency and high discharge capacity, and lithium can be taken in and out at high speed charge / discharge and excellent in rate characteristics.

・金属微粒子(B)の含有酸素量
金属微粒子(B)の含有酸素量は、特に制限はないが、通常0.01〜8質量%、0.05〜5質量%であることが好ましい。粒子内の酸素分布状態は、表面近傍に存在、粒子内部に存在、粒子内一様に存在していてもかまわないが、特に表面近傍に存在していることが好ましい。金属微粒子(B)の含有酸素量が前記範囲内であると、SiとOの強い結合により、充放電に伴う体積膨張が抑制され、サイクル特性に優れるので好ましい。
-Content of oxygen in metal fine particles (B) The content of oxygen in the metal fine particles (B) is not particularly limited, but is preferably 0.01 to 8% by mass and preferably 0.05 to 5% by mass. The oxygen distribution state in the particle may exist near the surface, may exist inside the particle, or may exist uniformly within the particle, but is preferably present near the surface. It is preferable that the amount of oxygen contained in the metal fine particles (B) is in the above-mentioned range because the volume expansion associated with charging / discharging is suppressed due to strong bonding between Si and O and the cycle characteristics are excellent.

・金属微粒子(B)の製造方法
金属微粒子(B)は、本発明の特性を満たすものであれば、市販されているLiと合金化可能な金属粒子を用いてもよい。また、Liと合金化可能な金属粒子と同じ組成の金属からなる金属粒子よりも大きい塊状物に、後述するボールミル等により力学的エネルギー処理を加えることにより、金属粒子を作製することもできる。
また、特に製法は問わないが、例えば特許第3952118号公報に記載されたような方法によって製造されたLiと合金化可能な金属粒子を使用することもできる。例えば、SiOxを製造する場合、二酸化Si粉末と、金属Si粉末を特定の割合で混合し、この混合物を反応器に充填した後、常圧あるいは特定の圧力に減圧し、1000℃以上に昇温し、保持してSiOxガスを発生させ、冷却析出させて、一般式SiOx粒子を得ることができる。析出物は、力学的エネルギー処理を与えることで粒子とし、これを用いることもできる。
-Manufacturing method of metal fine particles (B) As long as the metal fine particles (B) satisfy the characteristics of the present invention, commercially available metal particles that can be alloyed with Li may be used. In addition, metal particles can be produced by applying mechanical energy treatment to a lump larger than metal particles made of a metal having the same composition as the metal particles that can be alloyed with Li by a ball mill or the like described later.
The production method is not particularly limited, but metal particles that can be alloyed with Li produced by a method as described in, for example, Japanese Patent No. 3952118 can also be used. For example, when producing SiOx, Si dioxide powder and metal Si powder are mixed at a specific ratio, and after filling this mixture into the reactor, the pressure is reduced to normal pressure or a specific pressure, and the temperature is raised to 1000 ° C. or higher. Then, it is held to generate SiOx gas, which is then cooled and deposited to obtain the general formula SiOx particles. Precipitates can be used as particles by applying mechanical energy treatment.

力学的エネルギー処理は、例えば、ボールミル、振動ボールミル、遊星ボールミル、転動ボールミル等の装置を用いて、反応器に充填した原料と、この原料と反応しない運動体を入れて、これに振動、回転又はこれらが組み合わされた動きを与える方法によって、前記特性を満たすLiと合金化可能な金属粒子を形成することができる。   For mechanical energy treatment, for example, using a device such as a ball mill, a vibrating ball mill, a planetary ball mill, or a rolling ball mill, a raw material charged in the reactor and a moving body that does not react with the raw material are placed, and this is vibrated and rotated. Alternatively, metal particles that can be alloyed with Li satisfying the above-described characteristics can be formed by a method that gives a combined movement.

<炭素材(C)>
炭素材(C)としては、天然黒鉛(D)、人造黒鉛(E)、加圧処理されていない原料炭素材を炭素質物又は黒鉛質物で被覆した被覆黒鉛(F)、及び非晶質炭素(G)からなる群より選ばれる材料を用いる。これらの材料は、何れか一種を単独で用いても良く、二種以上を任意の組み合わせ及び組成で併用しても良い。この中でも炭素材(B)は炭素材(D)〜(G)のうち、(D)〜(G)からなる群より選ばれる1以上の材料が、複合炭素材(A)との組合せに於いて、複合炭素材(A)を含む効果を得易いので好ましい。
<Carbon material (C)>
Examples of the carbon material (C) include natural graphite (D), artificial graphite (E), coated graphite (F) obtained by coating a raw carbon material not subjected to pressure treatment with a carbonaceous material or a graphite material, and amorphous carbon ( A material selected from the group consisting of G) is used. Any one of these materials may be used alone, or two or more of these materials may be used in any combination and composition. Among these, the carbon material (B) is a combination of the carbon materials (D) to (G) and at least one material selected from the group consisting of (D) to (G) in combination with the composite carbon material (A). In addition, it is preferable because an effect including the composite carbon material (A) is easily obtained.

炭素材(C)の体積基準平均粒径d50は3μm以上60μm以下であることが複合炭素材(A)との組合せに於いて複合炭素材(A)を含む効果を得易い点から好ましい。また、比表面積は通常1m/g以上20m/g以下であることが好ましく、1m/g以上8m/g以下であることが炭素材料の不可逆容量が小さいのでより好ましい。炭素材(C)のタップ密度は0.6g/cm以上1.5g/cm以下であることが複合炭素材(A)との組合せに於いて複合炭素材(A)を含む効果を得易い点から好ましい。
また、炭素材(C)は高純度化した方が、不純物が少なく、電池の安全性の点から好ましい。さらに、炭素材(C)は球形化炭素材が加圧処理の効果が表れやすい点から、特に好ましい。
The volume-based average particle diameter d50 of the carbon material (C) is preferably 3 μm or more and 60 μm or less from the viewpoint of easily obtaining an effect including the composite carbon material (A) in combination with the composite carbon material (A). In addition, the specific surface area is usually preferably 1 m 2 / g or more and 20 m 2 / g or less, more preferably 1 m 2 / g or more and 8 m 2 / g or less because the irreversible capacity of the carbon material is small. The effect of including the composite carbon material (A) in combination with the composite carbon material (A) is that the tap density of the carbon material (C) is 0.6 g / cm 3 or more and 1.5 g / cm 3 or less. It is preferable because it is easy.
Further, it is preferable that the carbon material (C) is highly purified from the viewpoint of the safety of the battery because there are few impurities. Further, the carbon material (C) is particularly preferable from the viewpoint that the spheroidized carbon material easily exhibits the effect of the pressure treatment.

天然黒鉛(D)としては、例えば、高純度化した炭素材や球形化した天然黒鉛を用いることができる。本発明でいう高純度化とは、灰分や金属等を除去した状態を意味する。通常、塩酸、硫酸、硝酸、フッ酸などの酸中で処理すること、又はこれらの1以上の酸処理工程を組み合わせて行なうことにより、低純度天然黒鉛中に含まれる灰分や金属等を溶解除去できる(高純度化処理工程)。そして前記酸処理工程の後には通常、水洗処理等を行ない高純度化処理工程で用いた酸分を除去する。   As the natural graphite (D), for example, a highly purified carbon material or a spherical natural graphite can be used. High purification in the present invention means a state in which ash, metals, and the like are removed. Usually, ash and metals contained in low-purity natural graphite are dissolved and removed by treatment in acids such as hydrochloric acid, sulfuric acid, nitric acid and hydrofluoric acid, or by combining one or more of these acid treatment steps. Yes (high purity treatment process). And after the said acid treatment process, a water washing process etc. are normally performed and the acid content used at the high purification process is removed.

酸処理工程の代わりに2000℃以上の高温で処理することにより、灰分や金属等を蒸発、除去しても良い。また、高温熱処理時に塩素ガス等のハロゲンガス雰囲気で処理することにより灰分や金属等を除去しても良い。更に、これらの高純度化の手法を任意に組み合わせて用いても良い。
天然黒鉛(D)のうち、高純度化した天然黒鉛(D)を用いることが、不純物が少ないので、電池の安全性の点から好ましい。
By treating at a high temperature of 2000 ° C. or higher instead of the acid treatment step, ash, metal, etc. may be evaporated and removed. Further, ash and metals may be removed by treatment in a halogen gas atmosphere such as chlorine gas during high-temperature heat treatment. Furthermore, these high purification techniques may be used in any combination.
Among natural graphites (D), it is preferable to use highly purified natural graphite (D) from the viewpoint of battery safety because there are few impurities.

ここで、高純度化を行なった天然黒鉛の純度は、通常98.0質量%以上、好ましくは99.0質量%以上、より好ましくは99.6質量%以上である。純度がこの範囲であれば、炭素材料として用いた場合、電池容量が高くなるのでより好ましい。
天然黒鉛(D)の体積基準平均粒径d50は、通常3μm以上、好ましくは12μm以上、また、通常60μm以下、好ましくは40μm以下の範囲である。上記範囲内であれば複合炭素材(A)との組合せに於いて複合炭素材(A)を含む効果を得易い点から好ましい。
Here, the purity of the highly purified natural graphite is usually 98.0% by mass or more, preferably 99.0% by mass or more, more preferably 99.6% by mass or more. When the purity is within this range, it is more preferable when used as a carbon material because the battery capacity becomes high.
The volume-based average particle diameter d50 of natural graphite (D) is usually 3 μm or more, preferably 12 μm or more, and usually 60 μm or less, preferably 40 μm or less. If it is in the said range, it is preferable from the point which is easy to acquire the effect containing a composite carbon material (A) in a combination with a composite carbon material (A).

ここで、体積基準平均粒径とはd50を意味し、上述の原料炭素材の体積基準平均粒径と同様の方法によって測定することができる。
天然黒鉛(D)のBET比表面積は、通常3.5m/g以上、好ましくは、4.5m/g以上、また、通常20m/g以下、好ましくは15m/g以下、より好ましくは8m/g以下、更に好ましくは6m/g以下の範囲である。上記範囲内であれば、炭素材料とした場合の不可逆容量が小さい点から好ましい。
Here, the volume reference average particle diameter means d50, and can be measured by the same method as the volume reference average particle diameter of the raw material carbon material described above.
The BET specific surface area of natural graphite (D) is usually 3.5 m 2 / g or more, preferably 4.5 m 2 / g or more, and usually 20 m 2 / g or less, preferably 15 m 2 / g or less, more preferably. Is in the range of 8 m 2 / g or less, more preferably 6 m 2 / g or less. If it is in the said range, it is preferable from the point with a small irreversible capacity | capacitance at the time of setting it as a carbon material.

また、天然黒鉛(D)のタップ密度は、通常0.6g/cm以上、0.7g/cm以上が好ましく、0.8g/cm以上がより好ましく、0.85g/cm以上が更に好ましい。また、通常1.3g/cm以下、1.2g/cm以下が好ましく、1.1g/cm以下がより好ましい。タップ密度が低すぎると、高速充放電特性に劣り、タップ密度が高すぎると、粒子内炭素密度が上昇し、圧延性に欠け、高密度の負極シートを形成することが難しくなる場合がある。 The tap density of natural graphite (D) is usually preferably 0.6 g / cm 3 or more, preferably 0.7 g / cm 3 or more, more preferably 0.8 g / cm 3 or more, and 0.85 g / cm 3 or more. Further preferred. Moreover, 1.3 g / cm 3 or less and 1.2 g / cm 3 or less are usually preferable, and 1.1 g / cm 3 or less is more preferable. If the tap density is too low, the high-speed charge / discharge characteristics are inferior. If the tap density is too high, the intra-particle carbon density increases, the rollability is insufficient, and it may be difficult to form a high-density negative electrode sheet.

人造黒鉛(E)としては、原料炭素材を黒鉛化した粒子等が挙げられ、例えば、単一の黒鉛前駆体粒子を粉状のまま焼成して黒鉛化した粒子や、複数の黒鉛前駆体粒子を成形し焼成して黒鉛化し解砕した造粒粒子などを用いることができる。
人造黒鉛(E)の体積基準平均粒径d50は、通常3μm以上、好ましくは8μm以上、より好ましくは10μm以上、また、通常60μm以下、好ましくは40μm、更に好ましくは30μm以下の範囲である。上記範囲内であれば複合炭素材(A)との組み合わせに於いて、複合炭素材(A)を含む効果を得易い点から好ましい。
Examples of the artificial graphite (E) include particles obtained by graphitizing a raw material carbon material. For example, particles obtained by firing a single graphite precursor particle while it is powdered and graphitizing, or a plurality of graphite precursor particles It is possible to use granulated particles that are formed, calcined, graphitized and pulverized.
The volume-based average particle diameter d50 of the artificial graphite (E) is usually 3 μm or more, preferably 8 μm or more, more preferably 10 μm or more, and usually 60 μm or less, preferably 40 μm, more preferably 30 μm or less. If it is in the said range, it is preferable from the point which is easy to acquire the effect containing a composite carbon material (A) in a combination with a composite carbon material (A).

人造黒鉛(E)のBET比表面積は、通常0.5m/g以上、好ましくは、1.0m/g以上、また、通常8m/g以下、好ましくは6m/g以下、更に好ましくは4m/g以下の範囲である。上記範囲内であれば炭素材料とした場合の不可逆容量が小さい点から好ましい。
また、人造黒鉛(E)のタップ密度は、通常0.6g/cm以上、0.7g/cm以上が好ましく、0.8g/cm以上がより好ましく、0.85g/cm以上が更に好ましい。また、通常1.5g/cm以下、1.4g/cm以下が好ましく、1.3g/cm以下がより好ましい。上記範囲内であればタップ密度が高く粒子が充填し易く、圧延性に優れる点から好ましい。
The artificial graphite (E) has a BET specific surface area of usually 0.5 m 2 / g or more, preferably 1.0 m 2 / g or more, and usually 8 m 2 / g or less, preferably 6 m 2 / g or less, more preferably. Is in the range of 4 m 2 / g or less. If it is in the said range, it is preferable from the point with a small irreversible capacity | capacitance at the time of setting it as a carbon material.
In addition, the tap density of the artificial graphite (E) is usually preferably 0.6 g / cm 3 or more, preferably 0.7 g / cm 3 or more, more preferably 0.8 g / cm 3 or more, and 0.85 g / cm 3 or more. Further preferred. Moreover, normally 1.5 g / cm < 3 > or less and 1.4 g / cm < 3 > or less are preferable, and 1.3 g / cm < 3 > or less is more preferable. If it is in the said range, a tap density is high and it is preferable from the point which is easy to fill a particle | grain, and is excellent in rolling property.

加圧処理されていない原料炭素材を炭素質物又は黒鉛質物で被覆した被覆黒鉛(F)としては、例えば、加圧処理されていない天然黒鉛や人造黒鉛に非晶質前駆体を被覆、焼成
及び黒鉛化のうちいずれか1以上の処理をした粒子や、加圧処理されていない天然黒鉛や人造黒鉛に非晶質炭素をCVD法により被覆した粒子を用いることができる。
被覆黒鉛(F)の体積基準平均粒径d50は、通常5μm以上、好ましくは12μm以上、また、通常60μm以下、好ましくは40μm以下の範囲である。上記範囲内であれば複合炭素材(A)との組み合わせに於いて複合炭素材(A)を含む効果を得易い点から好ましい。
As the coated graphite (F) obtained by coating a raw carbon material not subjected to pressure treatment with a carbonaceous material or a graphite material, for example, natural graphite or artificial graphite not subjected to pressure treatment is coated with an amorphous precursor, calcined, and Particles that have been subjected to any one or more treatments of graphitization, or particles obtained by coating amorphous carbon with non-pressurized natural graphite or artificial graphite by a CVD method can be used.
The volume-based average particle diameter d50 of the coated graphite (F) is usually 5 μm or more, preferably 12 μm or more, and usually 60 μm or less, preferably 40 μm or less. If it is in the said range, it is preferable from the point which is easy to acquire the effect containing a composite carbon material (A) in a combination with a composite carbon material (A).

被覆黒鉛(F)のBET比表面積は、通常1.0m/g以上、好ましくは、2.0m/g以上、更に好ましくは2.5m/g以上、また、通常20m/g以下、好ましくは15m/g以下、より好ましくは8m/g以下、更に好ましくは6m/g以下、最も好ましくは4m/g以下の範囲である。上記範囲内であれば炭素材料とした場合の不可逆容量が小さい点から好ましい。 The BET specific surface area of the coated graphite (F) is usually 1.0 m 2 / g or more, preferably 2.0 m 2 / g or more, more preferably 2.5 m 2 / g or more, and usually 20 m 2 / g or less. , Preferably 15 m 2 / g or less, more preferably 8 m 2 / g or less, still more preferably 6 m 2 / g or less, and most preferably 4 m 2 / g or less. If it is in the said range, it is preferable from the point with a small irreversible capacity | capacitance at the time of setting it as a carbon material.

また、被覆黒鉛(F)のタップ密度は、通常0.6g/cm以上、0.7g/cm以上が好ましく、0.8g/cm以上がより好ましく、0.85g/cm以上が更に好ましい。また、通常1.3g/cm以下、1.2g/cm以下が好ましく、1.1g/cm以下がより好ましい。タップ密度が低すぎると、高速充放電特性に劣り、タップ密度が高すぎると、粒子内炭素密度が上昇し、圧延性に欠け、高密度の負極シートを形成することが難しくなる場合がある。 Further, the tap density of the coated graphite (F) is usually preferably 0.6 g / cm 3 or more, preferably 0.7 g / cm 3 or more, more preferably 0.8 g / cm 3 or more, and 0.85 g / cm 3 or more. Further preferred. Moreover, 1.3 g / cm 3 or less and 1.2 g / cm 3 or less are usually preferable, and 1.1 g / cm 3 or less is more preferable. If the tap density is too low, the high-speed charge / discharge characteristics are inferior. If the tap density is too high, the intra-particle carbon density increases, the rollability is insufficient, and it may be difficult to form a high-density negative electrode sheet.

非晶質炭素(G)としては、例えば、バルクメソフェーズを焼成した粒子や、易黒鉛化性有機化合物を不融化処理し、焼成した粒子を用いることができる。
非晶質炭素(G)の体積基準平均粒径d50は、通常5μm以上、好ましくは8μm以上、より好ましくは12μm以上、また、通常60μm以下、好ましくは40μm以下の範囲である。上記範囲内であれば複合炭素材(A)との組合せに於いて複合炭素材(A)を含む効果を得易い点から好ましい。
As amorphous carbon (G), the particle | grains which baked the bulk mesophase and the particle | grains which carried out the infusibilization process of the graphitizable organic compound and can be used can be used, for example.
The volume-based average particle diameter d50 of amorphous carbon (G) is usually in the range of 5 μm or more, preferably 8 μm or more, more preferably 12 μm or more, and usually 60 μm or less, preferably 40 μm or less. If it is in the said range, it is preferable from the point which is easy to acquire the effect containing a composite carbon material (A) in a combination with a composite carbon material (A).

非晶質炭素(G)のBET比表面積は、通常1.0m/g以上、好ましくは、2.0m/g以上、更に好ましくは2.5m/g以上、また、通常8m/g以下、好ましくは6m/g以下、更に好ましくは4m/g以下の範囲である。上記範囲内であれば炭素材料とした場合の不可逆容量が小さい点から好ましい。
また、非晶質炭素(G)のタップ密度は、通常0.6g/cm以上、0.7g/cm以上が好ましく、0.8g/cm以上がより好ましく、0.85g/cm以上が更に好ましい。また、通常1.3g/cm以下、1.2g/cm以下が好ましく、1.1g/cm以下がより好ましい。タップ密度が低すぎると、高速充放電特性に劣り、タップ密度が高すぎると、粒子内炭素密度が上昇し、圧延性に欠け、高密度の負極シートを形成することが難しくなる場合がある。
Amorphous BET specific surface area of carbon (G) is usually 1.0 m 2 / g or more, preferably, 2.0 m 2 / g or more, more preferably 2.5 m 2 / g or more and usually 8m 2 / g or less, preferably 6 m 2 / g or less, more preferably 4 m 2 / g or less. If it is in the said range, it is preferable from the point with a small irreversible capacity | capacitance at the time of setting it as a carbon material.
The tap density of amorphous carbon (G) is usually preferably 0.6 g / cm 3 or more, preferably 0.7 g / cm 3 or more, more preferably 0.8 g / cm 3 or more, and 0.85 g / cm 3. The above is more preferable. Moreover, 1.3 g / cm 3 or less and 1.2 g / cm 3 or less are usually preferable, and 1.1 g / cm 3 or less is more preferable. If the tap density is too low, the high-speed charge / discharge characteristics are inferior. If the tap density is too high, the intra-particle carbon density increases, the rollability is insufficient, and it may be difficult to form a high-density negative electrode sheet.

<複合炭素材(A)および金属微粒子(B)の混合>
複合炭素材(A)と金属微粒子(B)との混合に用いる装置としては、特に制限はないが、例えば、回転型混合機の場合:円筒型混合機、双子円筒型混合機、二重円錐型混合機、正立方型混合機、鍬形混合機等を用いることができ、固定型混合機の場合:螺旋型混合機、リボン型混合機、Muller型混合機、Helical Flight型混合機、Pugmill型混合機、流動化型混合機等を用いることができる。また、機械的エネルギーによるメカノケミカル処理を用いて混合しても良い。具体的な方法として、原料粉体を運動する気体にのせて、粉体同士をぶつける、あるいは粉体を強固な壁にぶつける方法、例えばジェットミル、ハイブリダイゼーション等がある。また、狭い空間を大きな力で通す等の方法により、粉体にせん断力を与えて、その際のエネルギーを利用する方法を採ることができる。例えばホソカワミクロン(株)製メカノヒュージョン等が挙げられる。
せん断力を与える場合、与えるせん断速度は10sec-1以上、好ましくは100sec-1
上、更に好ましくは1,000sec-1以上がよい。上限は通常50,000sec-1以下である。
<Mixing of composite carbon material (A) and metal fine particles (B)>
An apparatus used for mixing the composite carbon material (A) and the metal fine particles (B) is not particularly limited. For example, in the case of a rotary mixer: a cylindrical mixer, a twin cylinder mixer, a double cone Type mixers, regular cubic mixers, vertical mixers, and the like can be used. In the case of fixed type mixers: spiral mixers, ribbon mixers, Muller type mixers, Helical Flight type mixers, Pugmill type A mixer, a fluidized mixer or the like can be used. Moreover, you may mix using the mechanochemical process by mechanical energy. As a specific method, there are a method in which the raw material powder is put on a moving gas and the powders are hit against each other, or the powder is hit against a strong wall, for example, a jet mill or hybridization. Further, a method of applying a shearing force to the powder by a method such as passing a narrow space with a large force and utilizing the energy at that time can be adopted. Examples include Mechano Fusion manufactured by Hosokawa Micron Corporation.
When giving a shearing force, the shear rate to provide the 10 sec -1 or more, preferably 100 sec -1 or more, and more preferably not less than 1,000 sec -1. The upper limit is usually 50,000 sec -1 or less.

また、ポット中に原料粉体と反応に関与しない運動体とを入れて、これに振動、回転、あるいはこれらが複数組合わされた動きを与える方法、例えばボールミル、振動ボールミル、遊星ボールミル、転動ボールミル等を用いることもできる。なお、これらの処理を用いる場合には、炭素粒子を過度に粉砕してしまわないように、原料粉体の投入の順序や混合方法に工夫が必要となる。例えば、まず金属粒子のみを大きな機械的エネルギーを与えて粉砕し、金属粒子の微細化を行った後、炭素粒子を加えて、より弱い機械的エネルギーで短時間に均一に混合を行うこと等が挙げられる。   Also, a method of putting raw material powder and a moving body not involved in the reaction in the pot and giving it vibration, rotation, or a combination of these, such as ball mill, vibration ball mill, planetary ball mill, rolling ball mill Etc. can also be used. In addition, when using these treatments, it is necessary to devise the order in which the raw material powders are charged and the mixing method so that the carbon particles are not excessively pulverized. For example, first, only metal particles are pulverized by applying large mechanical energy, and after the metal particles are refined, carbon particles are added and uniformly mixed in a short time with weak mechanical energy. Can be mentioned.

また、複合炭素材(A)に炭素材(C)を混合する場合、その混合手順は、特に限定されるものではないが、
(1)複合炭素材(A)、金属微粒子(B)および炭素材(C)を同時に混合
(2)複合炭素材(A)と金属微粒子(B)を混合後、炭素材(C)を混合
複合炭素材(A)と炭素材(C)を混合後、金属微粒子(B)を混合、等が挙げられる。
In addition, when the carbon material (C) is mixed with the composite carbon material (A), the mixing procedure is not particularly limited.
(1) Composite carbon material (A), metal fine particles (B) and carbon material (C) are mixed simultaneously (2) Composite carbon material (A) and metal fine particles (B) are mixed, and then carbon material (C) is mixed Examples thereof include mixing the composite carbon material (A) and the carbon material (C) and then mixing the metal fine particles (B).

<非水系二次電池用炭素材料>
複合炭素材(A)と金属微粒子(B)との混合物(非水系二次電池用負極材)の物性は以下のような物性であることが好ましい。
<複合炭素材(A)と金属微粒子(B)の存在形態>
本発明の非水系リチウムイオン二次電池用負極材料中では、各原料粒子に機械的エネルギーが加わり、各原料粒子が複合化して複合化金属粒子となっていてもよいし、各粒子ともに独立に存在していてもよい。非水系二次電池用炭素材料の形態としては、次に述べるように表面被覆型、金属表面包埋型、包埋型及び混合型が挙げられる。以下、それぞれの構造型について説明する。なお、本発明の非水系リチウムイオン二次電池用の負極材料は以下の構造型や製造方法に限定されるものではなく、また、各構造型や製造方法が組み合わされたものでも良い。
<Carbon material for non-aqueous secondary batteries>
The physical properties of the mixture of the composite carbon material (A) and the metal fine particles (B) (the negative electrode material for non-aqueous secondary batteries) are preferably as follows.
<Presence form of composite carbon material (A) and fine metal particles (B)>
In the negative electrode material for a non-aqueous lithium ion secondary battery of the present invention, mechanical energy is added to each raw material particle, each raw material particle may be composited into composite metal particles, or each particle may be independently May be present. As a form of the carbon material for non-aqueous secondary batteries, a surface coating type, a metal surface embedding type, an embedding type, and a mixed type are mentioned as described below. Hereinafter, each structural type will be described. The negative electrode material for a non-aqueous lithium ion secondary battery of the present invention is not limited to the following structural types and manufacturing methods, and may be a combination of the structural types and manufacturing methods.

・表面被覆型:
金属微粒子(B)が加圧処理された炭素材(a)に被覆されている炭素質物及び/または黒鉛質物の表面に結着した構造である。
・金属表面包埋型:
金属微粒子(B)の一部が加圧処理された炭素材(a)に包埋し、金属微粒子(B)及び加圧処理された炭素材(a)の全体又は一部を炭素質物又は黒鉛質物が覆っている構造である。
・包埋型:
金属微粒子(B)が加圧処理された炭素材(a)に被覆されている炭素質物及び黒鉛質物に包埋された構造である。
・混合型:
金属微粒子(B)と、加圧処理された炭素材(a)を炭素質物又は黒鉛質物で被覆した複合炭素材(A)とが独立に存在している。
・ Surface coating type:
This is a structure in which the metal fine particles (B) are bound to the surface of the carbonaceous material and / or the graphite material covered with the pressure-treated carbon material (a).
・ Metal surface embedding type:
A part of the metal fine particles (B) is embedded in the carbon material (a) subjected to the pressure treatment, and the whole or part of the metal fine particles (B) and the pressure-treated carbon material (a) are carbonaceous material or graphite. It is a structure covered with quality materials.
・ Embedded type:
This is a structure in which the metal fine particles (B) are embedded in a carbonaceous material and a graphite material covered with a carbon material (a) subjected to pressure treatment.
・ Mixed type:
The metal fine particles (B) and the composite carbon material (A) obtained by coating the pressure-treated carbon material (a) with a carbonaceous material or a graphite material exist independently.

これらの中でも、混合型が本発明の効果をより発揮できるため好ましい。
本発明の非水系二次電池用負極材の体積基準平均粒径d50は、通常5μm以上、好ましくは10μm以上、また、通常60μm以下、好ましくは40μm以下の範囲である。上記範囲内であれば複合炭素材(A)を含む効果を得易い点から好ましい。
本発明の非水系二次電池用負極材のBET比表面積は、通常1.5m/g以上、好ましくは、2.0m/g以上、また、通常10m/g以下、好ましくは8m/g以下の範囲である。上記範囲内であれば炭素材料とした場合の不可逆容量が小さい点から好ま
しい。
Among these, the mixed type is preferable because the effects of the present invention can be further exhibited.
The volume-based average particle diameter d50 of the negative electrode material for a non-aqueous secondary battery of the present invention is usually in the range of 5 μm or more, preferably 10 μm or more, and usually 60 μm or less, preferably 40 μm or less. If it is in the said range, it is preferable from the point which is easy to acquire the effect containing a composite carbon material (A).
The BET specific surface area of the negative electrode material for a non-aqueous secondary battery of the present invention is usually 1.5 m 2 / g or more, preferably 2.0 m 2 / g or more, and usually 10 m 2 / g or less, preferably 8 m 2. / G or less. If it is in the said range, it is preferable from the point with a small irreversible capacity | capacitance at the time of setting it as a carbon material.

また、本発明の非水系二次電池用炭素材料のタップ密度は、通常0.6g/cm以上、0.7g/cm以上が好ましく、0.8g/cm以上がより好ましく、0.85g/cm以上が更に好ましい。また、通常1.4g/cm以下、1.3g/cm以下が好ましく、1.2g/cm以下がより好ましい。タップ密度が低すぎると、高速充放電特性に劣り、タップ密度が高すぎると、粒子内炭素密度が上昇し、圧延性に欠け、高密度の負極シートを形成することが難しくなる場合がある。 Moreover, the tap density of the carbon material for a non-aqueous secondary battery of the present invention is usually preferably 0.6 g / cm 3 or more, preferably 0.7 g / cm 3 or more, more preferably 0.8 g / cm 3 or more, and 85 g / cm 3 or more is more preferable. And usually 1.4 g / cm 3 or less, preferably 1.3 g / cm 3 or less, 1.2 g / cm 3 or less is more preferable. If the tap density is too low, the high-speed charge / discharge characteristics are inferior. If the tap density is too high, the intra-particle carbon density increases, the rollability is insufficient, and it may be difficult to form a high-density negative electrode sheet.

<非水系二次電池用負極>
本発明の非水系二次電池用負極(以下適宜「電極シート」ともいう。)は、集電体と、集電体上に形成された活物質層とを備え、当該活物質層は少なくとも本発明にかかる非水系二次電池用炭素材料を含有することを特徴とする。更に好ましくは、当該活物質層にはバインダを含有する。
<Negative electrode for non-aqueous secondary battery>
The negative electrode for a non-aqueous secondary battery of the present invention (hereinafter also referred to as “electrode sheet” as appropriate) includes a current collector and an active material layer formed on the current collector, and the active material layer is at least the present material layer. The carbon material for non-aqueous secondary batteries according to the invention is contained. More preferably, the active material layer contains a binder.

バインダとしては、分子内にオレフィン性不飽和結合を有するものを用いる。その種類は特に制限されないが、具体例としては、スチレン−ブタジエンゴム、スチレン・イソプレン・スチレンゴム、アクリロニトリル−ブタジエンゴム、ブタジエンゴム、エチレン・プロピレン・ジエン共重合体などが挙げられる。このようなオレフィン性不飽和結合を有するバインダを用いることにより、活物質層の電解液に対する膨潤性を低減することができる。中でも入手の容易性から、スチレン−ブタジエンゴムが好ましい。   As the binder, one having an olefinically unsaturated bond in the molecule is used. The type is not particularly limited, and specific examples include styrene-butadiene rubber, styrene / isoprene / styrene rubber, acrylonitrile-butadiene rubber, butadiene rubber, and ethylene / propylene / diene copolymer. By using such a binder having an olefinically unsaturated bond, the swellability of the active material layer with respect to the electrolytic solution can be reduced. Of these, styrene-butadiene rubber is preferred because of its availability.

このようなオレフィン性不飽和結合を有するバインダと、前述の活物質とを組み合わせて用いることにより、負極板の強度を高くすることができる。負極板の強度が高いと、充放電による負極の劣化が抑制され、サイクル寿命を長くすることができる。また、本発明に係る負極では、活物質層と集電体との接着強度が高いので、活物質層中のバインダの含有量を低減させても、負極を捲回して電池を製造する際に、集電体から活物質層が剥離することもないと推察される。   By using a binder having such an olefinically unsaturated bond in combination with the above active material, the strength of the negative electrode plate can be increased. When the strength of the negative electrode plate is high, deterioration of the negative electrode due to charge / discharge is suppressed, and the cycle life can be extended. In addition, since the negative electrode according to the present invention has high adhesive strength between the active material layer and the current collector, even when the binder content in the active material layer is reduced, the negative electrode is wound to produce a battery. It is assumed that the active material layer does not peel from the current collector.

分子内にオレフィン性不飽和結合を有するバインダとしては、その分子量が大きいものか、或いは、不飽和結合の割合が高いものが望ましい。
具体的に、分子量が大きいバインダの場合には、その重量平均分子量が通常1万以上、好ましくは5万以上、また、通常100万以下、好ましくは30万以下の範囲にあるものが望ましい。また、不飽和結合の割合が高いバインダの場合には、全バインダの1g当たりのオレフィン性不飽和結合のモル数が、通常2.5×10−7以上、好ましくは8×10−7以上、また、通常5×10−6以下、好ましくは1×10−6以下の範囲にあるものが望ましい。
As the binder having an olefinically unsaturated bond in the molecule, a binder having a high molecular weight or a high proportion of unsaturated bonds is desirable.
Specifically, in the case of a binder having a large molecular weight, it is desirable that the weight average molecular weight is usually 10,000 or more, preferably 50,000 or more, and usually 1,000,000 or less, preferably 300,000 or less. In the case of a binder having a high ratio of unsaturated bonds, the number of moles of olefinically unsaturated bonds per gram of all binders is usually 2.5 × 10 −7 or more, preferably 8 × 10 −7 or more, Further, it is usually 5 × 10 −6 or less, preferably 1 × 10 −6 or less.

バインダとしては、これらの分子量に関する規定と不飽和結合の割合に関する規定のうち、少なくとも何れか一方を満たしていればよいが、両方の規定を同時に満たすものがより好ましい。オレフィン性不飽和結合を有するバインダの分子量が小さ過ぎると機械的強度に劣り、大き過ぎると可撓性に劣る。また、バインダ中のオレフィン性不飽和結合の割合が低過ぎると強度向上効果が薄れ、高過ぎると可撓性に劣る。   The binder only needs to satisfy at least one of these regulations regarding molecular weight and regulations regarding the proportion of unsaturated bonds, but it is more preferable to satisfy both regulations simultaneously. When the molecular weight of the binder having an olefinically unsaturated bond is too small, the mechanical strength is inferior, and when it is too large, the flexibility is inferior. Moreover, when the ratio of the olefinically unsaturated bond in the binder is too low, the effect of improving the strength is reduced, and when it is too high, the flexibility is inferior.

また、オレフィン性不飽和結合を有するバインダは、その不飽和度が、通常15%以上、好ましくは20%以上、より好ましくは40%以上、また、通常90%以下、好ましくは80%以下の範囲にあるものが望ましい。なお、不飽和度とは、ポリマーの繰り返し単位に対する二重結合の割合(%)を表す。
本発明においては、オレフィン性不飽和結合を有さないバインダも、本発明の効果が失われない範囲において、上述のオレフィン性不飽和結合を有するバインダと併用すること
ができる。オレフィン性不飽和結合を有するバインダ量に対する、オレフィン性不飽和結合を有さないバインダの混合比率は、通常150質量%以下、好ましくは120質量%以下の範囲である。
The binder having an olefinically unsaturated bond has a degree of unsaturation of usually 15% or more, preferably 20% or more, more preferably 40% or more, and usually 90% or less, preferably 80% or less. Is desirable. The degree of unsaturation represents the ratio (%) of the double bond to the repeating unit of the polymer.
In the present invention, a binder that does not have an olefinically unsaturated bond can also be used in combination with the above-described binder that has an olefinically unsaturated bond as long as the effects of the present invention are not lost. The mixing ratio of the binder not having an olefinically unsaturated bond to the amount of the binder having an olefinically unsaturated bond is usually 150% by mass or less, preferably 120% by mass or less.

オレフィン性不飽和結合を有さないバインダを併用することにより、塗布性を向上することができるが、併用量が多すぎると活物質層の強度が低下する。
オレフィン性不飽和結合を有さないバインダの例としては、メチルセルロース、カルボキシメチルセルロース、澱粉等の多糖類;カラギナン、プルラン、グアーガム、ザンサンガム(キサンタンガム)等の増粘多糖類;ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル類;ポリビニルアルコール、ポリビニルブチラール等のビニルアルコール類;ポリアクリル酸、ポリメタクリル酸等のポリ酸、或いはこれらポリマーの金属塩;ポリフッ化ビニリデン等の含フッ素ポリマー;ポリエチレン、ポリプロピレンなどのアルカン系ポリマー及びこれらの共重合体などが挙げられる。
By using a binder that does not have an olefinically unsaturated bond, the coatability can be improved. However, if the combined amount is too large, the strength of the active material layer is lowered.
Examples of binders having no olefinically unsaturated bond include polysaccharides such as methylcellulose, carboxymethylcellulose, and starch; thickening polysaccharides such as carrageenan, pullulan, guar gum, and xanthan gum; polyethylene oxide, polypropylene oxide, and the like. Polyethers; vinyl alcohols such as polyvinyl alcohol and polyvinyl butyral; polyacids such as polyacrylic acid and polymethacrylic acid; or metal salts of these polymers; fluorine-containing polymers such as polyvinylidene fluoride; alkanes such as polyethylene and polypropylene Examples thereof include polymers and copolymers thereof.

本発明の炭素材は、上述のオレフィン性不飽和結合を有するバインダと組み合わせて用いた場合、活物質層に用いるバインダの比率を従来に比べて低減することができる。具体的には、本発明の炭素材料と、バインダ(上述のように不飽和結合を有するバインダと、不飽和結合を有さないバインダとの混合物であってもよい。)との質量比率(炭素材料/バインダ)は、それぞれの乾燥質量比で、通常90/10以上、好ましくは95/5以上であり、通常99.9/0.1以下、好ましくは99.5/0.5以下の範囲である。   When the carbon material of the present invention is used in combination with the above-mentioned binder having an olefinically unsaturated bond, the ratio of the binder used in the active material layer can be reduced as compared with the conventional material. Specifically, the mass ratio (carbon) of the carbon material of the present invention and a binder (may be a mixture of a binder having an unsaturated bond and a binder having no unsaturated bond as described above). (Material / binder) is usually in the range of 90/10 or more, preferably 95/5 or more, and usually 99.9 / 0.1 or less, preferably 99.5 / 0.5 or less, in each dry mass ratio. It is.

バインダの割合が高過ぎると容量の減少や、抵抗増大を招きやすく、バインダの割合が少な過ぎると負極板強度が劣る。
本発明の負極は、上述の本発明の炭素材料とバインダとを分散媒に分散させてスラリーとし、これを集電体に塗布することにより形成される。分散媒としては、アルコールなどの有機溶媒や、水を用いることができる。このスラリーには更に、所望により導電剤を加えてもよい。導電剤としては、アセチレンブラック、ケッチェンブラック、ファーネスブラックなどのカーボンブラック、平均粒径1μm以下のCu、Ni又はこれらの合金からなる微粉末などが挙げられる。導電剤の添加量は、本発明の炭素材料に対して通常10質量%以下程度である。
If the binder ratio is too high, the capacity tends to decrease and the resistance tends to increase. If the binder ratio is too small, the strength of the negative electrode plate is inferior.
The negative electrode of the present invention is formed by dispersing the above-described carbon material of the present invention and a binder in a dispersion medium to form a slurry, which is applied to a current collector. As the dispersion medium, an organic solvent such as alcohol or water can be used. If necessary, a conductive agent may be added to the slurry. Examples of the conductive agent include carbon black such as acetylene black, ketjen black, and furnace black, and fine powder made of Cu, Ni having an average particle diameter of 1 μm or less, or an alloy thereof. The addition amount of the conductive agent is usually about 10% by mass or less with respect to the carbon material of the present invention.

スラリーを塗布する集電体には、従来公知のものを用いることができる。具体的には、圧延銅箔、電解銅箔、ステンレス箔等の金属薄膜が挙げられる。集電体の厚さは、通常4μm以上、好ましくは6μm以上であり、通常30μm以下、好ましくは20μm以下である。
このスラリーを、集電体である銅箔上に、炭素材料が5〜15mg/cm付着するように、ドクターブレードを用いて幅5cmに塗布し、室温で風乾を行う。更に110℃で30分乾燥後、ロールプレスで、活物質層の密度が1.7g/cmになるよう調整することにより、好ましい電極シートを得ることができる。
A conventionally well-known thing can be used for the electrical power collector which apply | coats a slurry. Specific examples include metal thin films such as rolled copper foil, electrolytic copper foil, and stainless steel foil. The thickness of the current collector is usually 4 μm or more, preferably 6 μm or more, and usually 30 μm or less, preferably 20 μm or less.
The slurry is applied to a width of 5 cm by using a doctor blade so that the carbon material adheres to 5 to 15 mg / cm 2 on a copper foil as a current collector, and air-dried at room temperature. Furthermore, after drying at 110 degreeC for 30 minutes, a preferable electrode sheet can be obtained by adjusting so that the density of an active material layer may be set to 1.7 g / cm < 3 > with a roll press.

スラリーを集電体上に塗布した後、通常60℃以上、好ましくは80℃以上、また、通常200℃以下、好ましくは195℃以下の温度で、乾燥空気又は不活性雰囲気下で乾燥し、活物性層を形成する。
スラリーを塗布、乾燥して得られる活物質層の厚さは、ロールプレスを行った後の状態において、通常5μm以上、好ましくは20μm以上、更に好ましくは30μm以上、また、通常200μm以下、好ましくは100μm以下、更に好ましくは75μm以下である。活物質層が薄すぎると、活物質の粒径との兼ね合いから負極としての実用性に欠け、厚すぎると、高密度の電流値に対する十分なLiイオンの吸蔵・放出の機能が得られにくい。
After applying the slurry on the current collector, the slurry is usually dried at a temperature of 60 ° C. or higher, preferably 80 ° C. or higher, and usually 200 ° C. or lower, preferably 195 ° C. or lower, in dry air or an inert atmosphere. A physical layer is formed.
The thickness of the active material layer obtained by applying and drying the slurry is usually 5 μm or more, preferably 20 μm or more, more preferably 30 μm or more, and usually 200 μm or less, preferably after roll pressing. It is 100 μm or less, more preferably 75 μm or less. If the active material layer is too thin, practicality as a negative electrode is lacking due to the balance with the particle size of the active material, and if it is too thick, it is difficult to obtain a sufficient Li ion occlusion / release function for a high-density current value.

活物質層における炭素材の密度は、用途により異なるが、容量を重視する用途では、好ましくは1.55g/cm以上、とりわけ1.6g/cm以上、更に1.65g/cm以上、特に1.7g/cm以上が好ましい。密度が低すぎると、単位体積あたりの電池の容量が必ずしも充分ではない。また、密度が高すぎるとレート特性が低下するので、1.9g/cm以下が好ましい。 The density of the carbon material in the active material layer varies depending on the application, the application that emphasizes capacity, preferably 1.55 g / cm 3 or more, especially 1.6 g / cm 3 or more, further 1.65 g / cm 3 or more, In particular, 1.7 g / cm 3 or more is preferable. If the density is too low, the capacity of the battery per unit volume is not always sufficient. Moreover, since a rate characteristic will fall when a density is too high, 1.9 g / cm < 3 > or less is preferable.

以上説明した本発明の非水系二次電池用複合炭素材を用いて非水系二次電池用負極を作製する場合、その手法や他の材料の選択については、特に制限されない。また、この負極を用いてリチウムイオン二次電池を作製する場合も、リチウムイオン二次電池を構成する正極、電解液等の電池構成上必要な部材の選択については特に制限されない。
以下、本発明の炭素材料を用いたリチウムイオン二次電池用負極及びリチウムイオン二次電池の詳細を例示するが、使用し得る材料や作製の方法等は以下の具体例に限定されるものではない。
When producing the negative electrode for non-aqueous secondary batteries using the composite carbon material for non-aqueous secondary batteries of the present invention described above, the method and selection of other materials are not particularly limited. Moreover, when producing a lithium ion secondary battery using this negative electrode, there is no particular limitation on the selection of members necessary for the battery configuration such as the positive electrode and the electrolytic solution constituting the lithium ion secondary battery.
Hereinafter, the details of a negative electrode for a lithium ion secondary battery and a lithium ion secondary battery using the carbon material of the present invention will be exemplified, but usable materials, production methods, and the like are not limited to the following specific examples. Absent.

<非水系二次電池>
本発明の非水系二次電池、特にリチウムイオン二次電池の基本的構成は、従来公知のリチウムイオン二次電池と同様であり、通常、リチウムイオンを吸蔵・放出可能な正極及び負極、並びに電解質を備える。負極としては、上述した本発明の負極を用いる。
正極は、正極活物質及びバインダを含有する正極活物質層を、集電体上に形成したものである。
<Non-aqueous secondary battery>
The basic configuration of the non-aqueous secondary battery of the present invention, particularly the lithium ion secondary battery, is the same as that of a conventionally known lithium ion secondary battery, and usually includes a positive electrode and a negative electrode capable of inserting and extracting lithium ions, and an electrolyte. Is provided. The negative electrode of the present invention described above is used as the negative electrode.
The positive electrode is obtained by forming a positive electrode active material layer containing a positive electrode active material and a binder on a current collector.

正極活物質としては、リチウムイオンなどのアルカリ金属カチオンを充放電時に吸蔵、放出できる金属カルコゲン化合物などが挙げられる。金属カルコゲン化合物としては、バナジウムの酸化物、モリブデンの酸化物、マンガンの酸化物、クロムの酸化物、チタンの酸化物、タングステンの酸化物などの遷移金属酸化物;バナジウムの硫化物、モリブデンの硫化物、チタンの硫化物、CuSなどの遷移金属硫化物;NiPS、FePS等の遷移金属のリン−硫黄化合物;VSe、NbSeなどの遷移金属のセレン化合物;Fe0.250.75、Na0.1CrSなどの遷移金属の複合酸化物;LiCoS、LiNiSなどの遷移金属の複合硫化物等が挙げられる。 Examples of the positive electrode active material include metal chalcogen compounds that can occlude and release alkali metal cations such as lithium ions during charge and discharge. Examples of metal chalcogen compounds include vanadium oxide, molybdenum oxide, manganese oxide, chromium oxide, titanium oxide, tungsten oxide, and other transition metal oxides; vanadium sulfide, molybdenum sulfide things, sulfides of titanium, transition metal sulfides such as CuS; NiPS 3, FePS 3 phosphate of a transition metal such as - sulfur compounds; VSe 2, selenium compounds of transition metals such as NbSe 3; Fe 0.25 V 0. Examples thereof include composite oxides of transition metals such as 75 S 2 and Na 0.1 CrS 2 ; composite sulfides of transition metals such as LiCoS 2 and LiNiS 2 .

これらの中でも、V、V13、VO、Cr、MnO、TiO、MoV、LiCoO、LiNiO、LiMn、TiS、V、Cr0.250.75、Cr0.50.5などが好ましく、特に好ましいのはLiCoO、LiNiO、LiMnや、これらの遷移金属の一部を他の金属で置換したリチウム遷移金属複合酸化物である。これらの正極活物質は、単独で用いても複数を混合して用いてもよい。 Among these, V 2 O 5, V 5 O 13, VO 2, Cr 2 O 5, MnO 2, TiO, MoV 2 O 8, LiCoO 2, LiNiO 2, LiMn 2 O 4, TiS 2, V 2 S 5 , Cr 0.25 V 0.75 S 2 , Cr 0.5 V 0.5 S 2 and the like are preferable, and LiCoO 2 , LiNiO 2 , LiMn 2 O 4 and some of these transition metals are particularly preferable. It is a lithium transition metal composite oxide substituted with another metal. These positive electrode active materials may be used alone or in combination.

正極活物質を結着するバインダとしては、公知のものを任意に選択して用いることができる。例としては、シリケート、水ガラス等の無機化合物や、テフロン(登録商標)、ポリフッ化ビニリデン等の不飽和結合を有さない樹脂などが挙げられる。これらの中でも好ましいのは、不飽和結合を有さない樹脂である。正極活物質を結着する樹脂として不飽和結合を有する樹脂を用いると酸化反応時(充電時)に分解するおそれがある。これらの樹脂の重量平均分子量は通常1万以上、好ましくは10万以上、また、通常300万以下、好ましくは100万以下の範囲である。   A known binder can be arbitrarily selected and used as the binder for binding the positive electrode active material. Examples include inorganic compounds such as silicate and water glass, and resins having no unsaturated bond such as Teflon (registered trademark) and polyvinylidene fluoride. Among these, a resin having no unsaturated bond is preferable. If a resin having an unsaturated bond is used as the resin for binding the positive electrode active material, there is a risk of decomposition during the oxidation reaction (during charging). The weight average molecular weight of these resins is usually 10,000 or more, preferably 100,000 or more, and usually 3 million or less, preferably 1 million or less.

正極活物質層中には、電極の導電性を向上させるために、導電材を含有させてもよい。導電剤としては、活物質に適量混合して導電性を付与できるものであれば特に制限はないが、通常、アセチレンブラック、カーボンブラック、黒鉛などの炭素粉末、各種の金属の繊維、粉末、箔などが挙げられる。
正極板は、前記したような負極の製造と同様の手法で、正極活物質やバインダを溶剤で
スラリー化し、集電体上に塗布、乾燥することにより形成する。正極の集電体としては、アルミニウム、ニッケル、ステンレススチール(SUS)などが用いられるが、何ら限定されない。
電解質としては、非水系溶媒にリチウム塩を溶解させた非水系電解液や、この非水系電解液を有機高分子化合物等によりゲル状、ゴム状、固体シート状にしたものなどが用いられる。
The positive electrode active material layer may contain a conductive material in order to improve the conductivity of the electrode. The conductive agent is not particularly limited as long as it can be mixed with an active material in an appropriate amount to impart conductivity, but is usually carbon powder such as acetylene black, carbon black, and graphite, various metal fibers, powder, and foil. Etc.
The positive electrode plate is formed by slurrying a positive electrode active material or a binder with a solvent in the same manner as in the production of the negative electrode as described above, and applying and drying on a current collector. As the positive electrode current collector, aluminum, nickel, stainless steel (SUS), or the like is used, but is not limited at all.
As the electrolyte, a non-aqueous electrolyte obtained by dissolving a lithium salt in a non-aqueous solvent, or a gel, rubber, or solid sheet obtained by using an organic polymer compound or the like from the non-aqueous electrolyte is used.

非水系電解液に使用される非水系溶媒は特に制限されず、従来から非水系電解液の溶媒として提案されている公知の非水系溶媒の中から、適宜選択して用いることができる。例えば、ジエチルカーボネート、ジメチルカーボネート、エチルメチルカーボネート等の鎖状カーボネート類;エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート等の環状カーボネート類;1,2−ジメトキシエタン等の鎖状エーテル類;テトラヒドロフラン、2−メチルテトラヒドロフラン、スルホラン、1,3−ジオキソラン等の環状エーテル類;ギ酸メチル、酢酸メチル、プロピオン酸メチル等の鎖状エステル類;γ−ブチロラクトン、γ−バレロラクトン等の環状エステル類などが挙げられる。   The non-aqueous solvent used in the non-aqueous electrolyte is not particularly limited, and can be appropriately selected from known non-aqueous solvents that have been conventionally proposed as solvents for non-aqueous electrolytes. For example, chain carbonates such as diethyl carbonate, dimethyl carbonate and ethyl methyl carbonate; cyclic carbonates such as ethylene carbonate, propylene carbonate and butylene carbonate; chain ethers such as 1,2-dimethoxyethane; tetrahydrofuran, 2-methyl Examples include cyclic ethers such as tetrahydrofuran, sulfolane, and 1,3-dioxolane; chain esters such as methyl formate, methyl acetate, and methyl propionate; and cyclic esters such as γ-butyrolactone and γ-valerolactone.

これらの非水系溶媒は、何れか一種を単独で用いても良く、二種以上を混合して用いても良い。混合溶媒の場合は、環状カーボネートと鎖状カーボネートを含む混合溶媒の組合せが好ましく、環状カーボネートが、エチレンカーボネートとプロピレンカーボネートの混合溶媒であることが、低温でも高いイオン電導度を発現でき、低温充電負荷特性が向上するという点で特に好ましい。   Any one of these non-aqueous solvents may be used alone, or two or more thereof may be mixed and used. In the case of a mixed solvent, a combination of a mixed solvent containing a cyclic carbonate and a chain carbonate is preferable, and the cyclic carbonate is a mixed solvent of ethylene carbonate and propylene carbonate. This is particularly preferable in that load characteristics are improved.

中でもプロピレンカーボネートが非水系溶媒全体に対し、2重量%以上80重量%以下の範囲が好ましく、5重量%以上70重量%以下の範囲がより好ましく、10重量%以上60重量%以下の範囲がさらに好ましい。プロピレンカーボネートの割合が上記より低いと低温でのイオン電導度が低下し、プロピレンカーボネートの割合が上記より高いと、負極に黒鉛系電極を用いた場合に、Liイオンに溶媒和したプロピレンカーボネートが黒鉛相間へ共挿入することにより黒鉛系負極活物質の層間剥離劣化が起こり、十分な容量が得られなくなる問題がある。   Among them, propylene carbonate is preferably in the range of 2% by weight to 80% by weight, more preferably in the range of 5% by weight to 70% by weight, and more preferably in the range of 10% by weight to 60% by weight with respect to the whole non-aqueous solvent. preferable. When the proportion of propylene carbonate is lower than the above, the ionic conductivity at low temperature decreases, and when the proportion of propylene carbonate is higher than the above, when a graphite-based electrode is used for the negative electrode, propylene carbonate solvated with Li ions is graphite. By co-inserting between the phases, delamination degradation of the graphite-based negative electrode active material occurs, and there is a problem that sufficient capacity cannot be obtained.

非水系電解液に使用されるリチウム塩も特に制限されず、この用途に用い得ることが知られている公知のリチウム塩の中から、適宜選択して用いることができる。例えば、LiCl、LiBrなどのハロゲン化物;LiClO、LiBrO、LiClOなどの過ハロゲン酸塩;LiPF、LiBF、LiAsFなどの無機フッ化物塩などの無機リチウム塩;LiCFSO、LiCSOなどのパーフルオロアルカンスルホン酸塩;Liトリフルオロスルフォンイミド((CFSONLi)などのパーフルオロアルカンスルホン酸イミド塩などの含フッ素有機リチウム塩などが挙げられ、この中でもLiClO、LiPF、LiBF、が好ましい。
リチウム塩は、単独で用いても、2種以上を混合して用いてもよい。非水系電解液中におけるリチウム塩の濃度は、通常0.5mol/L以上、2.0mol/L以下の範囲である。
The lithium salt used in the non-aqueous electrolytic solution is not particularly limited, and can be appropriately selected from known lithium salts that can be used for this purpose. For example, halides such as LiCl and LiBr; perhalogenates such as LiClO 4 , LiBrO 4 and LiClO 4 ; inorganic lithium salts such as inorganic fluoride salts such as LiPF 6 , LiBF 4 and LiAsF 6 ; LiCF 3 SO 3 , Examples include perfluoroalkane sulfonates such as LiC 4 F 9 SO 3 ; fluorine-containing organic lithium salts such as perfluoroalkane sulfonic acid imide salts such as Li trifluorosulfonimide ((CF 3 SO 2 ) 2 NLi), and the like. Of these, LiClO 4 , LiPF 6 , and LiBF 4 are preferable.
Lithium salts may be used alone or in combination of two or more. The concentration of the lithium salt in the nonaqueous electrolytic solution is usually in the range of 0.5 mol / L or more and 2.0 mol / L or less.

また、上述の非水系電解液に有機高分子化合物を含ませ、ゲル状、ゴム状、或いは固体シート状にして電解質を使用する場合、有機高分子化合物の具体例としては、ポリエチレンオキシド、ポリプロピレンオキシド等のポリエーテル系高分子化合物;ポリエーテル系高分子化合物の架橋体高分子;ポリビニルアルコール、ポリビニルブチラールなどのビニルアルコール系高分子化合物;ビニルアルコール系高分子化合物の不溶化物;ポリエピクロルヒドリン;ポリフォスファゼン;ポリシロキサン;ポリビニルピロリドン、ポリビニリデンカーボネート、ポリアクリロニトリルなどのビニル系高分子化合物;ポリ(ω−メトキシオリゴオキシエチレンメタクリレート)、ポリ(ω−メトキシオリゴオキシエチレ
ンメタクリレート−co−メチルメタクリレート)、ポリ(ヘキサフルオロプロピレン−フッ化ビニリデン)等のポリマー共重合体などが挙げられる。
In addition, when an organic polymer compound is included in the above non-aqueous electrolyte and the electrolyte is used in the form of a gel, rubber, or solid sheet, specific examples of the organic polymer compound include polyethylene oxide, polypropylene oxide. Polyether polymer compounds such as: cross-linked polymers of polyether polymer compounds; vinyl alcohol polymer compounds such as polyvinyl alcohol and polyvinyl butyral; insolubilized vinyl alcohol polymer compounds; polyepichlorohydrin; polyphosphazene Polysiloxane; polyvinyl polymer compounds such as polyvinylpyrrolidone, polyvinylidene carbonate and polyacrylonitrile; poly (ω-methoxyoligooxyethylene methacrylate), poly (ω-methoxyoligooxyethylene methacrylate-co-methyl); Methacrylate) and polymer copolymers such as poly (hexafluoropropylene-vinylidene fluoride).

上述の非水系電解液は、更に被膜形成剤を含んでいても良い。被膜形成剤の具体例としては、ビニレンカーボネート、ビニルエチルカーボネート、メチルフェニルカーボネートなどのカーボネート化合物;エチレンサルファイド、プロピレンサルファイドなどのアルケンサルファイド;1,3−プロパンスルトン、1,4−ブタンスルトンなどのスルトン化合物;マレイン酸無水物、コハク酸無水物などの酸無水物などが挙げられる。   The non-aqueous electrolyte solution described above may further contain a film forming agent. Specific examples of the film forming agent include carbonate compounds such as vinylene carbonate, vinylethyl carbonate, and methylphenyl carbonate; alkene sulfides such as ethylene sulfide and propylene sulfide; sultone compounds such as 1,3-propane sultone and 1,4-butane sultone And acid anhydrides such as maleic acid anhydride and succinic acid anhydride.

更に、ジフェニルエーテル、シクロヘキシルベンゼン等の過充電防止剤が添加されていても良い。上記添加剤を用いる場合、その含有量は通常10質量%以下、中でも8質量%以下、更には5質量%以下、特に2質量%以下の範囲が好ましい。上記添加剤の含有量が多過ぎると、初期不可逆容量の増加や低温特性、レート特性の低下等、他の電池特性に悪影響を及ぼすおそれがある。   Furthermore, an overcharge inhibitor such as diphenyl ether or cyclohexylbenzene may be added. When the above additives are used, the content is usually 10% by mass or less, preferably 8% by mass or less, more preferably 5% by mass or less, and particularly preferably 2% by mass or less. If the content of the additive is too large, other battery characteristics such as an increase in initial irreversible capacity, low temperature characteristics, and deterioration in rate characteristics may be adversely affected.

また、電解質として、リチウムイオン等のアルカリ金属カチオンの導電体である高分子固体電解質を用いることもできる。高分子固体電解質としては、前述のポリエーテル系高分子化合物にLiの塩を溶解させたものや、ポリエーテルの末端水酸基がアルコキシドに置換されているポリマーなどが挙げられる。
正極と負極との間には通常、電極間の短絡を防止するために、多孔膜や不織布などの多孔性のセパレータを介在させる。この場合、非水系電解液は、多孔性のセパレータに含浸させて用いる。セパレータの材料としては、ポリエチレン、ポリプロピレンなどのポリオレフィン、ポリエーテルスルホンなどが用いられ、好ましくはポリオレフィンである。
Further, as the electrolyte, a polymer solid electrolyte which is a conductor of an alkali metal cation such as lithium ion can be used. Examples of the polymer solid electrolyte include a polymer in which a salt of Li is dissolved in the aforementioned polyether polymer compound, and a polymer in which the terminal hydroxyl group of the polyether is substituted with an alkoxide.
In order to prevent a short circuit between the electrodes, a porous separator such as a porous film or a nonwoven fabric is usually interposed between the positive electrode and the negative electrode. In this case, the nonaqueous electrolytic solution is used by impregnating a porous separator. As a material for the separator, polyolefin such as polyethylene and polypropylene, polyethersulfone, and the like are used, and polyolefin is preferable.

本発明のリチウムイオン二次電池の形態は特に制限されない。例としては、シート電極及びセパレータをスパイラル状にしたシリンダータイプ、ペレット電極及びセパレータを組み合わせたインサイドアウト構造のシリンダータイプ、ペレット電極及びセパレータを積層したコインタイプ等が挙げられる。また、これらの形態の電池を任意の外装ケースに収めることにより、コイン型、円筒型、角型等の任意の形状にして用いることができる。   The form of the lithium ion secondary battery of the present invention is not particularly limited. Examples include a cylinder type in which a sheet electrode and a separator are spiral, a cylinder type having an inside-out structure in which a pellet electrode and a separator are combined, a coin type in which a pellet electrode and a separator are stacked, and the like. In addition, by storing batteries of these forms in an optional outer case, the battery can be used in an arbitrary shape such as a coin shape, a cylindrical shape, or a square shape.

本発明のリチウムイオン二次電池を組み立てる手順も特に制限されず、電池の構造に応じて適切な手順で組み立てればよいが、例を挙げると、外装ケース上に負極を乗せ、その上に電解液とセパレータを設け、更に負極と対向するように正極を乗せて、ガスケット、封口板と共にかしめて電池にすることができる。
次に実施例により本発明の具体的態様を更に詳細に説明するが、本発明はこれらの例によって限定されるものではない。
The procedure for assembling the lithium ion secondary battery of the present invention is not particularly limited, and may be assembled by an appropriate procedure according to the structure of the battery. For example, the negative electrode is placed on the outer case, and the electrolytic solution is placed thereon. A separator is provided, and a positive electrode is placed so as to face the negative electrode, and it is caulked together with a gasket and a sealing plate to form a battery.
EXAMPLES Next, specific embodiments of the present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples.

なお、本明細書における炭素質粒子の炭素層の被覆率、平均粒子径、タップ密度、BET法比表面積、ラマン値等の測定は次記により行った。
炭素質粒子の炭素層の被覆率;次式により求めた。
被覆率(質量%)=100−(K×D)/((K+T)×N)×100
この式において、Kはタールピッチとの混合に供した黒鉛粒子の質量(Kg)、Tは黒鉛粒子との混合に供した被覆原料であるタールピッチの質量(kg)、DはKとTの混合物のうち実際に焼成に供した混合物量、Nは焼成後の炭素層を黒鉛粒子の表面の少なくとも一部に備えた炭素質粒子の質量を示す。
In the present specification, the measurement of the carbon layer coverage, average particle diameter, tap density, BET specific surface area, Raman value, etc. of the carbonaceous particles was performed as follows.
The carbon layer coverage of the carbonaceous particles;
Coverage (mass%) = 100− (K × D) / ((K + T) × N) × 100
In this equation, K is the mass (Kg) of the graphite particles subjected to mixing with the tar pitch, T is the mass (kg) of the tar pitch that is the coating raw material used for mixing with the graphite particles, and D is the amount of K and T Of the mixture, the amount of the mixture actually subjected to firing, N, indicates the mass of the carbonaceous particles provided with a carbon layer after firing on at least a part of the surface of the graphite particles.

体積基準平均粒径(d50);ポリオキシエチレン(20)ソルビタンモノラウレートの2(容量)%水溶液約1mlに、炭素粉末約20mgを加え、これをイオン交換水約200mlに分散させたものを、レーザー回折式粒度分布計(堀場製作所製 LA−920)を用いて体積基準粒度分布を測定し、体積基準平均粒径(d50)を求めた。
タップ密度;たとえば粉体密度測定器タップデンサーKYT−3000((株)セイシン企業社製)を用いて測定する。10ccのタップセルに炭素質粒子を落下させ、セルに満杯に充填したのち、ストローク長10mmのタップを500回行って、そのときの密度をタップ密度とした。
Volume-based average particle diameter (d50): About 1 ml of a 2 (volume)% aqueous solution of polyoxyethylene (20) sorbitan monolaurate, about 20 mg of carbon powder is added and dispersed in about 200 ml of ion-exchanged water. The volume-based particle size distribution was measured using a laser diffraction particle size distribution meter (LA-920, manufactured by Horiba, Ltd.), and the volume-based average particle size (d50) was determined.
Tap density; For example, it is measured using a powder density measuring device Tap Denser KYT-3000 (manufactured by Seishin Enterprise Co., Ltd.). After dropping the carbonaceous particles into a 10 cc tap cell and filling the cell to the full, tap with a stroke length of 10 mm was performed 500 times, and the density at that time was defined as the tap density.

BET法比表面積;大倉理研社製 AMS−8000を用いて測定した。250℃で予備乾燥し、更に30分間窒素ガスを流したのち、窒素ガス吸着によるBET1点法により測定した。
細孔容量(10nm〜100000nmの範囲の細孔容量);水銀ポロシメーター(機種名:マイクロメリティックス社製・オートポア9520)を用い水銀圧入法により実施した。プレス後、あるいは未プレスの電極シート約2000mmを、正確に切り出し秤量して、真空下(50μm/Hg)室温(24℃)にて10分間の前処理(脱気)を行った後、水銀圧力を4.0psiaから40,000psiaに上昇させ、次いで15psiaまで降下させた(全測定点数120ポイント)。測定した120ポイントでは、30psia迄は5秒間、それ以降は各圧力10秒間の平衡時間の後、水銀の圧入量を測定した。
BET specific surface area; measured using AMS-8000 manufactured by Okura Riken Co., Ltd. After pre-drying at 250 ° C. and flowing nitrogen gas for 30 minutes, the BET one-point method by nitrogen gas adsorption was used for measurement.
Pore volume (pore volume in the range of 10 nm to 100000 nm): The mercury porosimeter (model name: manufactured by Micromeritics, Autopore 9520) was used to carry out the mercury intrusion method. After pressing or approximately 2000 mm 2 of an unpressed electrode sheet is accurately cut out and weighed and pretreated (degassed) for 10 minutes at room temperature (24 ° C.) under vacuum (50 μm / Hg), then mercury. The pressure was increased from 4.0 psia to 40,000 psia and then decreased to 15 psia (total measurement points of 120 points). At the measured 120 points, the intrusion amount of mercury was measured after an equilibration time of 5 seconds until 30 psia, and thereafter 10 seconds for each pressure.

こうして得られた水銀圧入曲線から、Washburnの方程式(D=−(1/P)4γcosψ)を用いて細孔分布を算出した。尚、Dは細孔直径、Pはかかる圧力、γは水銀の表面張力((485dynes/cmを使用)、ψは接触角(140゜を使用))を示す。   From the mercury intrusion curve thus obtained, the pore distribution was calculated using the Washburn equation (D = − (1 / P) 4γcos ψ). D represents the pore diameter, P represents the pressure, γ represents the surface tension of mercury (using 485 dynes / cm), and ψ represents the contact angle (using 140 °).

ラマンR値;ラマン分光測定装置(Thermo Fisher Scientific製Nicolet Almega XR)
を用いて、試料容器に負極材粉末を入れ、任意の10箇所についてレーザー光を照射し測定した。ラマンR値は、ラマンスペクトルで観測される1350cm−1付近のピーク(P)と1580cm-1付近のピーク(P)の強度比I/Iの平均値をR値とした。それぞれのピーク強度は、測定範囲(830cm-1〜1940cm-1)全体をベースラインとし、10回測定した強度比の算術平均を平均値とした。
レーザー光の波長 :532nm
励起出力 :10%
照射径 :10μmΦ(10倍対物レンズ使用)
測定範囲 :830cm−1〜1940cm−1
ピーク強度測定、ピーク半値幅測定:バックグラウンド処理、スムージング処理(単純平均によるコンボリューション10ポイント)
Raman R value; Raman spectrometer (Nicolet Almega XR manufactured by Thermo Fisher Scientific)
Was used, and the negative electrode material powder was put into a sample container, and laser light was irradiated and measured at any 10 locations. The Raman R value, the average value of the intensity ratio I D / I G peak around 1580 cm -1 1350 cm -1 vicinity of the peak and (P D) which is observed in the Raman spectrum (P G) to be R value. Each peak intensity was based on the entire measurement range (830 cm −1 to 1940 cm −1 ) as a baseline, and an arithmetic average of intensity ratios measured 10 times was used as an average value.
Laser light wavelength: 532 nm
Excitation output: 10%
Irradiation diameter: 10μmΦ (uses 10x objective lens)
Measurement range: 830 cm −1 to 1940 cm −1
Peak intensity measurement, peak half-width measurement: background processing, smoothing processing (convolution by simple averaging 10 points)

[実施例1]
(複合炭素材(A)の作製)
原料炭素材として球形化天然黒鉛を用い、CIP成型機を用いて1000kgf/cmで2分間、等方的加圧処理を行った後解砕し、ナフサ熱分解時に得られる石油系重質油(易黒鉛化性有機化合物)とを2軸混練機にて混合した。次に得られた混合物を不活性ガス中で700℃、2時間、更に1300℃で1時間の熱処理し、球形化天然炭素材表面に異なる結晶性を有する炭素質物が被着した複層炭素構造物である複合炭素材(A)を得た。ここで、複合炭素材(A)の体積基準平均粒径(d50)は23.0μm、BET比表面積(SA)が1.9m/g、タップ密度(tap)が1.17g/cm、ラマンR値が0.33であった。
[Example 1]
(Production of composite carbon material (A))
Petroleum heavy oil obtained by spheroidizing natural graphite as a raw material carbon material, isotropically pressed at 1000 kgf / cm 2 for 2 minutes using a CIP molding machine, and then crushed and obtained during naphtha pyrolysis (Easily graphitizable organic compound) was mixed with a biaxial kneader. Next, the obtained mixture was heat-treated in an inert gas at 700 ° C. for 2 hours, and further at 1300 ° C. for 1 hour, and a multi-layer carbon structure in which carbonaceous materials having different crystallinity were deposited on the surface of the spherical natural carbon material A composite carbon material (A) was obtained. Here, the volume-based average particle diameter (d50) of the composite carbon material (A) is 23.0 μm, the BET specific surface area (SA) is 1.9 m 2 / g, the tap density (tap) is 1.17 g / cm 3 , The Raman R value was 0.33.

なお、等方的加圧処理を行った後の粒子内空隙率は18%であり、得られた炭素材粉末は、焼成残炭率から算出される被覆率は、黒鉛92.5%に対して7.5%の非晶質炭素質物で被覆されていることが確認された。
(金属微粒子(B))
金属微粒子(B)として、市販のSiO粒子(SiOのX=1)粒子(大阪チタニウムテクノロジーズ)を用いた。SiO粒子は、体積基準平均粒径(d50)が6μmであり、BET法比表面積が6m/gであった。
The intra-particle porosity after the isotropic pressure treatment is 18%, and the obtained carbon material powder has a coverage calculated from the calcined residual carbon ratio of 92.5% of graphite. It was confirmed that it was coated with 7.5% amorphous carbonaceous material.
(Metal fine particles (B))
As the metal fine particles (B), commercially available SiO particles (SiO x X = 1) particles (Osaka Titanium Technologies) were used. The SiO particles had a volume-based average particle diameter (d50) of 6 μm and a BET specific surface area of 6 m 2 / g.

(複合炭素材(A)と酸化珪素粒子(B)の混合物である非水系二次電池用負極材)
前記炭素質粒子(A)を100質量部に対して、酸化珪素粒子(B)を12質量部を乾式混合し、混合物とした。複合炭素材(A)の体積基準平均粒径(d50)が23μmであり、酸化珪素(SiO)粒子の体積基準平均粒径(d50)が6μmであった。また、前記混合物のタップ密度は、1.4g/cmであった。
(Non-aqueous secondary battery negative electrode material which is a mixture of composite carbon material (A) and silicon oxide particles (B))
100 parts by mass of the carbonaceous particles (A) and 12 parts by mass of silicon oxide particles (B) were dry-mixed to obtain a mixture. The volume reference average particle diameter (d50) of the composite carbon material (A) was 23 μm, and the volume reference average particle diameter (d50) of the silicon oxide (SiO x ) particles was 6 μm. Moreover, the tap density of the mixture was 1.4 g / cm 3 .

(性能評価用電池の作製)
炭素質粒子(A)と酸化珪素粒子(B)の前記混合物100質量部と、バインダーとしてカルボキシメチルセルロース(CMC)1質量%水溶液300質量部及びスチレンブタジエンゴム(SBR)48質量%水性ディスパージョン6.25質量部とを、ハイブリダイズミキサーにて、混練し、スラリーとした。このスラリーを厚さ18μmの圧延銅箔上にブレード法で、目付け7〜8mg/cmとなるように塗布し、乾燥させた。その後、負極活物質層の密度1.4〜1.5g/cmとなるようにロードセル付きの250mφロールプレスにてロールプレスし、直径12.5mmの円形状に打ち抜き、110℃で2時間、真空乾燥し、評価用の負極とした。未プレスの状態で、水銀ポロシメーターにより、電極の細孔容積を測定した結果、0.25ml/gであった。
(Production of battery for performance evaluation)
5. 100 parts by weight of the mixture of carbonaceous particles (A) and silicon oxide particles (B), 300 parts by weight of a 1% by weight aqueous solution of carboxymethylcellulose (CMC) as a binder and 48% by weight of aqueous dispersion of styrene butadiene rubber (SBR) 25 parts by mass was kneaded with a hybridizing mixer to form a slurry. This slurry was applied onto a rolled copper foil having a thickness of 18 μm by a blade method so as to have a basis weight of 7 to 8 mg / cm 2 and dried. Then, it roll-presses with a 250 mφ roll press with a load cell so that the density of the negative electrode active material layer is 1.4 to 1.5 g / cm 3 , punched into a circular shape with a diameter of 12.5 mm, and 110 ° C. for 2 hours. It vacuum-dried and set it as the negative electrode for evaluation. As a result of measuring the pore volume of the electrode with a mercury porosimeter in an unpressed state, it was 0.25 ml / g.

前記負極と、対極としてLi箔とを電解液を含浸させたセパレーターを介して重ねて、充放電試験用の電池を作製した。電解液としてはエチレンカーボネート:ジメチルカーボネート:エチルメチルカーボネート=3:3:4(重量比)混合液に、LiPFを1モル/リットルとなるように溶解させたものを用いた。 The negative electrode and a Li foil as a counter electrode were stacked through a separator impregnated with an electrolytic solution to produce a battery for a charge / discharge test. As the electrolytic solution, a solution obtained by dissolving LiPF 6 in a mixed solution of ethylene carbonate: dimethyl carbonate: ethyl methyl carbonate = 3: 3: 4 (weight ratio) to 1 mol / liter was used.

(充電容量、放電容量評価)
0.12mA/cmの電流密度で前記正極及び負極に対して5mVまで充電し、更に5mVの一定電圧で電流値が0.012mAになるまで充電し、負極中にリチウムをドープした。この際に測定される充電容量を、負極重量から負極と同面積に打ち抜いた銅箔の重量を差し引くことで負極活物質重量を求め、この負極活物質重量で前記充電容量を除して、重量当りの充電容量を求めた。一方、放電容量については、前期充電後、0.12mA/cmの電流密度で前記正極及び負極に対して1.5Vまで放電を行い、このときの放電容量を測定し、前期同様に負極活物質重量で、放電容量を除して、重量当りの放電容量を求めた。
(Evaluation of charge capacity and discharge capacity)
The positive electrode and the negative electrode were charged to 5 mV at a current density of 0.12 mA / cm 2 , further charged to a current value of 0.012 mA at a constant voltage of 5 mV, and lithium was doped into the negative electrode. The charge capacity measured at this time is obtained by subtracting the weight of the copper foil punched out in the same area as the negative electrode from the negative electrode weight to obtain the negative electrode active material weight, and the charge capacity is divided by the negative electrode active material weight to obtain the weight. The charge capacity per unit was obtained. On the other hand, with respect to the discharge capacity, after the previous charge, the positive electrode and the negative electrode were discharged to 1.5 V at a current density of 0.12 mA / cm 2 , and the discharge capacity at this time was measured. The discharge capacity per unit weight was determined by dividing the discharge capacity by the weight of the substance.

(レート特性評価)
レート特性は、前記放電容量評価によって求めた2サイクル目の放電容量と3サイクル目の放電容量から、下記式(1)に従って求めた。3サイクル目は、0.49mA/cmの電流密度で正極及び負極に対して5mVまで充電し、更に、5mVの一定電圧で電流値が0.049mAになるまで充電し、負極中にリチウムをドープした後、0.49mA/cmの電流密度で正極及び負極に対して1.5Vまで放電を行った。放電容量は、負極重量から負極と同面積に打ち抜いた銅箔の重量を差し引くことで負極活物質重量を求め、この負極活物質重量で前記放電容量を除して、重量当りの放電容量を求めた。
レート特性(%)={3サイクル目の放電容量(mAh/g)/2サイクル目の放電容量(mAh/g)}×100 (1)
(Rate characteristics evaluation)
The rate characteristics were determined according to the following formula (1) from the discharge capacity at the second cycle and the discharge capacity at the third cycle determined by the discharge capacity evaluation. In the third cycle, the positive electrode and the negative electrode are charged to 5 mV at a current density of 0.49 mA / cm 2 , and further charged to a current value of 0.049 mA at a constant voltage of 5 mV. After doping, the positive electrode and the negative electrode were discharged to 1.5 V at a current density of 0.49 mA / cm 2 . The discharge capacity is obtained by subtracting the weight of the copper foil punched out in the same area as the negative electrode from the negative electrode weight to obtain the negative electrode active material weight, and dividing the discharge capacity by the negative electrode active material weight to obtain the discharge capacity per weight. It was.
Rate characteristic (%) = {discharge capacity at the third cycle (mAh / g) / 2 discharge capacity at the second cycle (mAh / g)} × 100 (1)

[比較例1]
非晶質炭素からなる炭素層を備える前の黒鉛粒子を用いたこと以外は、実施例1と同様にして、性能評価用電池を作製した。未プレスの状態で、水銀ポロシメーターにより、電
極の細孔容積を測定した結果、0.13ml/gであった。
以下の表1に、実施例1及び比較例1の充電容量、放電容量、レート特性を記載する。
[Comparative Example 1]
A battery for performance evaluation was produced in the same manner as in Example 1 except that the graphite particles before having a carbon layer made of amorphous carbon were used. As a result of measuring the pore volume of the electrode with a mercury porosimeter in an unpressed state, it was 0.13 ml / g.
Table 1 below shows the charge capacity, discharge capacity, and rate characteristics of Example 1 and Comparative Example 1.

Figure 2014067639
Figure 2014067639

表1に示すように、加圧処理された、高密度で低い比表面積を有する複合炭素材(A)と金属微粒子(B)である酸化珪素粒子とを含む実施例1の負極材を用いた電池は、加圧処理されていない黒鉛粒子と金属微粒子(B)とを含む比較例1の負極材を用いた電池と比較して、充電容量、放電容量がともに高く、高容量化を実現していることが確認でき、レート特性の低下を抑制して、高レート特性を維持していることが確認できた。   As shown in Table 1, the negative electrode material of Example 1 containing a composite carbon material (A) having a high density and a low specific surface area and silicon oxide particles that are metal fine particles (B) that were subjected to pressure treatment was used. Compared to the battery using the negative electrode material of Comparative Example 1 containing graphite particles and metal fine particles (B) that are not subjected to pressure treatment, the battery has both a high charge capacity and a high discharge capacity, thereby realizing a high capacity. It was confirmed that the high rate characteristics were maintained while suppressing the deterioration of the rate characteristics.

本発明の負極材を用いる電極を備える非水系二次電池は、高容量、かつ、レート特性の改善を図る特性をも併せもつものであるため、近年の電動工具や、電気自動車の用途に求められる特性をも満たすことができ、産業上有用である。   A non-aqueous secondary battery including an electrode using the negative electrode material of the present invention has a high capacity and has a characteristic of improving rate characteristics, and therefore is required for use in recent power tools and electric vehicles. It is also useful in the industry.

Claims (10)

加圧処理された炭素材(a)を炭素質物又は黒鉛質物で被覆した複合炭素材(A)と、金属微粒子(B)とを含む非水系二次電池用炭素材料。   A carbon material for a non-aqueous secondary battery, comprising: a composite carbon material (A) obtained by coating a pressurized carbon material (a) with a carbonaceous material or a graphite material; and metal fine particles (B). 前記複合炭素材(A)と前記金属微粒子(B)の総量に対する前記金属微粒子(B)の混合割合が1質量%以上、30質量%以下である請求項1に記載の非水系二次電池用炭素材料。   2. The non-aqueous secondary battery according to claim 1, wherein a mixing ratio of the metal fine particles (B) to the total amount of the composite carbon material (A) and the metal fine particles (B) is 1% by mass or more and 30% by mass or less. Carbon material. 前記金属微粒子(B)の平均粒子径(d50)が0.01μm以上、10μm以下である請求項1又は2に記載の非水系二次電池用炭素材料。   The carbon material for a non-aqueous secondary battery according to claim 1 or 2, wherein the metal fine particles (B) have an average particle diameter (d50) of 0.01 µm or more and 10 µm or less. 前記金属微粒子(B)が、Siおよび/またはSiOx(0≦x<2)である請求項1〜3のいずれか1項に記載の非水系二次電池用炭素材料。   The carbon material for a non-aqueous secondary battery according to any one of claims 1 to 3, wherein the metal fine particles (B) are Si and / or SiOx (0≤x <2). 請求項1〜4のいずれか1項に記載の非水系二次電池用炭素材料に、以下から選択される1種以上の炭素材(C)とを更に含むことを特徴とする非水系二次電池用炭素材料。
炭素材(C):天然黒鉛(D、人造黒鉛(E)、加圧処理されていない原料炭素材を炭素質物又は黒鉛質物で被覆した被覆黒鉛(F)、及び非晶質炭素(G)。
The non-aqueous secondary battery further comprising at least one carbon material (C) selected from the following in the non-aqueous secondary battery carbon material according to claim 1. Carbon material for batteries.
Carbon material (C): natural graphite (D, artificial graphite (E), coated graphite (F) obtained by coating a raw carbon material not subjected to pressure treatment with a carbonaceous material or a graphite material, and amorphous carbon (G).
前記炭素材(A)の平均粒子径(d50)が1μm以上60μm以下である請求項1〜5のいずれか1項に記載の非水系二次電池用炭素材料。   The carbon material for a nonaqueous secondary battery according to any one of claims 1 to 5, wherein the carbon material (A) has an average particle diameter (d50) of 1 µm or more and 60 µm or less. 前記加圧処理された炭素材(a)が等方的加圧処理された球形化天然黒鉛である請求項1〜6のいずれか1項に記載の非水系二次電池用炭素材料。   The carbon material for a non-aqueous secondary battery according to any one of claims 1 to 6, wherein the pressure-treated carbon material (a) is isotropic pressure-treated spheroidized natural graphite. 前記加圧処理された炭素材(a)の粒子内空隙率が5%以上、30%以下である請求項1〜7のいずれか1項に記載の非水系二次電池用炭素材料。   The carbon material for non-aqueous secondary batteries according to any one of claims 1 to 7, wherein the carbon material (a) subjected to the pressure treatment has an intra-particle porosity of 5% or more and 30% or less. 集電体と、前記集電体上に形成された活物質層とを備える非水系二次電池用負極であって、前記活物質層が、請求項1〜8のいずれか1項に記載の非水系二次電池用炭素材料を含有する、非水系二次電池用負極。   It is a negative electrode for non-aqueous secondary batteries provided with an electrical power collector and the active material layer formed on the said electrical power collector, Comprising: The said active material layer is any one of Claims 1-8. A negative electrode for a non-aqueous secondary battery, comprising a carbon material for a non-aqueous secondary battery. 正極及び負極、並びに、電解質を備える非水系二次電池であって、前記負極が請求項9に記載の非水系二次電池用負極である、非水系二次電池。   A nonaqueous secondary battery comprising a positive electrode, a negative electrode, and an electrolyte, wherein the negative electrode is the negative electrode for a nonaqueous secondary battery according to claim 9.
JP2012213052A 2012-09-26 2012-09-26 Carbon material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery Pending JP2014067639A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012213052A JP2014067639A (en) 2012-09-26 2012-09-26 Carbon material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012213052A JP2014067639A (en) 2012-09-26 2012-09-26 Carbon material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Publications (1)

Publication Number Publication Date
JP2014067639A true JP2014067639A (en) 2014-04-17

Family

ID=50743826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012213052A Pending JP2014067639A (en) 2012-09-26 2012-09-26 Carbon material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery

Country Status (1)

Country Link
JP (1) JP2014067639A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN105047930A (en) * 2015-06-08 2015-11-11 东莞市翔丰华电池材料有限公司 Isotropic graphite anode material and preparation method thereof
WO2015181940A1 (en) * 2014-05-30 2015-12-03 株式会社日立製作所 Negative electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2016152716A1 (en) * 2015-03-24 2016-09-29 日本電気株式会社 Negative electrode for lithium ion secondary battery and secondary battery
JP2018088403A (en) * 2016-11-22 2018-06-07 三菱ケミカル株式会社 Anode material for nonaqueous secondary battery, anode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2018088406A (en) * 2016-11-22 2018-06-07 三菱ケミカル株式会社 Anode material for nonaqueous secondary battery, anode for nonaqueous secondary battery, and nonaqueous secondary battery
US10608244B2 (en) 2015-03-24 2020-03-31 Nec Corporation Lithium ion secondary battery
US10777817B2 (en) 2015-03-24 2020-09-15 Nec Corporation Lithium ion secondary battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2015181940A1 (en) * 2014-05-30 2015-12-03 株式会社日立製作所 Negative electrode active material for lithium ion secondary batteries, and lithium ion secondary battery
WO2016152716A1 (en) * 2015-03-24 2016-09-29 日本電気株式会社 Negative electrode for lithium ion secondary battery and secondary battery
US10608244B2 (en) 2015-03-24 2020-03-31 Nec Corporation Lithium ion secondary battery
US10777817B2 (en) 2015-03-24 2020-09-15 Nec Corporation Lithium ion secondary battery
CN105047930A (en) * 2015-06-08 2015-11-11 东莞市翔丰华电池材料有限公司 Isotropic graphite anode material and preparation method thereof
JP2018088403A (en) * 2016-11-22 2018-06-07 三菱ケミカル株式会社 Anode material for nonaqueous secondary battery, anode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2018088406A (en) * 2016-11-22 2018-06-07 三菱ケミカル株式会社 Anode material for nonaqueous secondary battery, anode for nonaqueous secondary battery, and nonaqueous secondary battery
JP7127275B2 (en) 2016-11-22 2022-08-30 三菱ケミカル株式会社 Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery

Similar Documents

Publication Publication Date Title
JP6102074B2 (en) Non-aqueous secondary battery negative electrode carbon material, negative electrode, and non-aqueous secondary battery
JP6528826B2 (en) Carbon material for non-aqueous secondary battery and negative electrode and lithium ion secondary battery using the same
JP6432519B2 (en) Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery
JP2014067638A (en) Carbon material for nonaqueous secondary battery, negative electrode, and nonaqueous secondary battery
JP6127426B2 (en) Non-aqueous secondary battery carbon material, negative electrode, and non-aqueous secondary battery
WO2012133788A1 (en) Graphite particles for nonaqueous secondary battery and method for producing same, negative electrode and nonaqueous secondary battery
JP6120626B2 (en) Method for producing composite carbon material for non-aqueous secondary battery
JP6864250B2 (en) Carbon material and non-aqueous secondary battery
JP6476814B2 (en) Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery using the same
JP5994319B2 (en) Method for producing composite graphite particles for non-aqueous secondary battery, composite graphite particles obtained by the production method, negative electrode, and non-aqueous secondary battery
JP6318758B2 (en) Non-aqueous secondary battery carbon material and non-aqueous secondary battery
JP2014067639A (en) Carbon material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2014067680A (en) Graphite particle for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery using the same, and nonaqueous secondary battery
JP2016186912A (en) Composite carbon material for nonaqueous secondary battery, and nonaqueous secondary battery
JP6098275B2 (en) Non-aqueous secondary battery negative electrode carbon material, non-aqueous secondary battery negative electrode and non-aqueous secondary battery
JP6127427B2 (en) Non-aqueous secondary battery carbon material, negative electrode, and non-aqueous secondary battery
JP6379565B2 (en) Non-aqueous secondary battery negative electrode carbon material and non-aqueous secondary battery
JP2014067636A (en) Composite carbon material for nonaqueous secondary battery negative electrode, negative electrode, and nonaqueous secondary battery
JP2014067644A (en) Carbon material for nonaqueous secondary battery, negative electrode, and nonaqueous secondary battery
JP6070016B2 (en) Non-aqueous secondary battery composite carbon material and method for producing the same, negative electrode, and non-aqueous secondary battery
JP6492407B2 (en) Carbon material for non-aqueous secondary battery negative electrode, and non-aqueous secondary battery
JP6609961B2 (en) Carbon material and non-aqueous secondary battery