JP2008305661A - Negative electrode material for lithium ion secondary battery, and its manufacturing method - Google Patents

Negative electrode material for lithium ion secondary battery, and its manufacturing method Download PDF

Info

Publication number
JP2008305661A
JP2008305661A JP2007151602A JP2007151602A JP2008305661A JP 2008305661 A JP2008305661 A JP 2008305661A JP 2007151602 A JP2007151602 A JP 2007151602A JP 2007151602 A JP2007151602 A JP 2007151602A JP 2008305661 A JP2008305661 A JP 2008305661A
Authority
JP
Japan
Prior art keywords
pitch
negative electrode
secondary battery
carbonaceous particles
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007151602A
Other languages
Japanese (ja)
Inventor
Kenta Ishii
健太 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2007151602A priority Critical patent/JP2008305661A/en
Publication of JP2008305661A publication Critical patent/JP2008305661A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a carbonaceous negative electrode material for a lithium ion secondary battery superior in high density filling, output characteristics, cycle characteristics, and charge and discharge efficiency, and its manufacturing method. <P>SOLUTION: The manufacturing method of the carbonaceous negative electrode material of the lithium ion secondary battery has a process of obtaining the carbonaceous particles covered by a pitch and a fusible organic material by heating and mixing the carbonaceous particles of a volume reference median diameter of 1 μm to 30 μm, pitch having softening point of 70°C to 250 °C, and the fusible organic material of which the volatile portion when heated to 400°C in the air is 50% or more, and of which the carbon residue when heated to 800°C in an inert atmosphere is 3% or less, and a process of obtaining spheroidized carbonaceous particles covered with the pitch and the fusible organic material of the particle diameter aspect ratio of 1.0 to 2.0 by compressing and making friction of the carbonaceous particles covered with the obtained pitch and the fusible organic material. The obtained spheroidized carbonaceous particles are subsequently calcined and carbonized, cracked, and classified at temperatures of 1,000 to 3,000°C in a non-oxidizing atmosphere. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、高密度充填、高容量、大電流放電が可能なリチウムイオン二次電池用負極材とその製造方法に関する。   The present invention relates to a negative electrode material for a lithium ion secondary battery capable of high density filling, high capacity, and large current discharge, and a method for producing the same.

非水電解質二次電池としてリチウム塩の有機電解液を用いたリチウム二次電池は軽量でエネルギー密度が高く、小型電子機器の電源あるいは電力貯蔵用の電池等として期待されており、リチウムイオン二次電池が主として使用されている携帯電話やノート型パソコンなどの性能向上に伴い急速充電に対する要求はより高度化し、ハイブリッドカーや電気自動車用のリチウムイオン二次電池では高容量化を図りつつも、サイクル特性、出力特性を向上させることが重要な課題となっている。   Lithium secondary batteries using organic electrolytes of lithium salts as non-aqueous electrolyte secondary batteries are lightweight and have high energy density, and are expected as power sources for small electronic devices or power storage batteries. The demand for rapid charging has become more advanced as the performance of mobile phones and laptop computers, where batteries are mainly used, has become more sophisticated, while lithium-ion secondary batteries for hybrid cars and electric vehicles have achieved higher capacities. Improvement of characteristics and output characteristics is an important issue.

当初、リチウム二次電池の負極材としては金属リチウムが用いられていたが、金属リチウムは放電時にリチウムイオンとして電解液中に溶出し、充電時にはリチウムイオンは金属リチウムとして負極表面に析出する際に、平滑で元の状態に析出させることが難しく、デンドライト状に析出し易い。このデンドライトは活性が極めて強いため電解液を分解するので電池性能が低下し、充放電のサイクル寿命が短くなる欠点がある。更に、デンドライトが成長して正極に達して、両極が短絡する危険もある。   Initially, metallic lithium was used as the negative electrode material for lithium secondary batteries, but metallic lithium eluted into the electrolyte as lithium ions during discharge, and when lithium ions were deposited on the negative electrode surface as metallic lithium during charging. It is difficult to deposit in a smooth and original state, and it tends to deposit in a dendritic form. Since this dendrite has extremely strong activity, the electrolyte solution is decomposed, so that the battery performance is lowered and the charge / discharge cycle life is shortened. Furthermore, there is a risk that dendrites grow and reach the positive electrode, causing both electrodes to short-circuit.

この欠点を改善するために、金属リチウムに代えて炭素材を用いることが提案されてきた。炭素材はリチウムイオンの吸蔵、放出に際しデンドライト状に析出する問題がないため負極材として好適である。すなわち、黒鉛材はリチウムイオンの吸蔵・放出性が高く、速やかに吸蔵・放出反応が行われるために充放電の効率が高く、理論容量も372mAh/gであり、更に、充放電時の電位も金属リチウムとほぼ等しく、高電圧の電池が得られる等の利点がある。   In order to remedy this drawback, it has been proposed to use a carbon material instead of metallic lithium. A carbon material is suitable as a negative electrode material because there is no problem of precipitation in the form of dendrites upon occlusion and release of lithium ions. That is, the graphite material has high lithium ion occlusion / release properties, and since the occlusion / release reaction is performed quickly, the charge / discharge efficiency is high, the theoretical capacity is 372 mAh / g, and the potential during charge / discharge is also high. There is an advantage that a high voltage battery is obtained which is almost equal to metallic lithium.

しかしながら、黒鉛化度が高く、六角網面構造が高度に発達している黒鉛材の場合、電解液との反応が起こり易く、電池性能が損なわれて、例えば充放電を繰り返すと電池容量が低下する等の難点があり、この問題を解決するために、黒鉛材を中心とする炭素材の性状を改良して、例えば、黒鉛化度の高い黒鉛材の表面を黒鉛化度の低い炭素質物で被覆した複層構造とするなど、数多くの提案がなされている。   However, in the case of a graphite material having a high degree of graphitization and a highly developed hexagonal network structure, the reaction with the electrolytic solution is likely to occur, and the battery performance is impaired. For example, the battery capacity decreases when charging and discharging are repeated. In order to solve this problem, the property of the carbon material centering on the graphite material is improved. For example, the surface of the graphite material having a high graphitization degree is made of a carbonaceous material having a low graphitization degree. Many proposals have been made, such as a multilayer structure with a coating.

また、黒鉛は鱗片状、鱗状、板状等の粒子形状であるため、例えば、電極板作製時に粒子の配列化が起こりリチウムイオンの移動が妨げられるので、特に電池の急速充放電性が低下し、また充放電容量も低く、改良の必要性が求められており、黒鉛材を球状化させることで電極板作製時に黒鉛層方向をランダム配向させ、リチウムイオンの移動を容易にする試みも行われている。   In addition, since graphite is in the form of particles such as scales, scales, plates, etc., for example, since the particles are arranged at the time of electrode plate production and the movement of lithium ions is hindered, the rapid charge / discharge characteristics of the battery in particular are reduced. In addition, the charge / discharge capacity is low, and there is a need for improvement. Attempts have been made to facilitate the movement of lithium ions by spheroidizing the graphite material to randomly orient the graphite layer during electrode plate production. ing.

上記の粒子形状に起因する問題を解決するために粉砕等の力学的エネルギー処理を行って、鱗片状や鱗状の黒鉛粒子の角を取りし、黒鉛化度の低い炭素質物で被覆した複層構造の炭素材とすることも提案されている。例えば、処理前後の見かけ密度比を1.1以上、処理前後のメジアン径比が1以下となるように力学的エネルギー処理を行った炭素質あるいは黒鉛質粒子を含むことを特徴とする非水系二次電池用電極、処理後の炭素質あるいは黒鉛質粒子を有機化合物と混合した後に、該有機化合物を炭素化した複層構造炭素材料を含む非水系二次電池用電極が提案されている(特許文献1参照)。   In order to solve the problems due to the above particle shape, mechanical energy treatment such as pulverization is performed, the corners of scaly and scaly graphite particles are taken, and a multilayer structure coated with a carbonaceous material having a low graphitization degree It has also been proposed to use carbon materials. For example, non-aqueous two-dimensional carbon material containing carbonaceous or graphite particles subjected to mechanical energy treatment so that the apparent density ratio before and after treatment is 1.1 or more and the median diameter ratio before and after treatment is 1 or less. An electrode for a secondary battery, a non-aqueous secondary battery electrode including a multilayered carbon material obtained by mixing the treated carbonaceous or graphite particles with an organic compound and then carbonizing the organic compound has been proposed (patent) Reference 1).

また、リチウムイオン二次電池などの非水電解質二次電池の負極材料として、(1)広角X線回折法による(002)面の面間隔(d002)が3.37オングストローム未満でかつC軸方向の結晶子の大きさ(Lc)が少なくとも1000オングストローム以上、(2)アルゴンイオンレーザーラマンスペクトルにおける1580cm−1のピーク強度に対する1360cm−1のピーク強度比であるR値が0.3以下で、かつ1580cm−1ピークの半値幅が24cm−1以下、(3)平均粒径が10〜30μmでかつ一番薄い部分の厚さの平均値が少なくとも3μm以上平均粒径以下、(4)BET法による比表面積が3.5m/g以上10.0m/g以下、(5)タッピング密度が0.5g/cc以上1.0g/cc以下、(6)広角X線回折法による(110)/(004)のX線回折ピーク強度比が0.015以上の特性を示す塊状の黒鉛粉末を核とし、その核の表面に炭素前駆体を被覆後、不活性ガス雰囲気下で700〜2800℃の温度範囲で焼成し、炭素質物の表層を形成させた複層構造の炭素質粉末を用いた非水電解質二次電池が開示されている(特許文献2参照)。しかしながら、これらのものにおいては、タッピング密度が低く電池容量を高くできないという問題がある。 In addition, as a negative electrode material for a non-aqueous electrolyte secondary battery such as a lithium ion secondary battery, (1) a (002) plane spacing (d002) by a wide angle X-ray diffraction method is less than 3.37 angstroms and a C-axis direction the size of the crystallite (Lc) of at least 1000 angstroms or more, (2) R value is the peak intensity ratio of 1360 cm -1 to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectrum is 0.3 or less, and The full width at half maximum of 1580 cm −1 peak is 24 cm −1 or less, (3) the average particle size is 10 to 30 μm, and the average thickness of the thinnest part is at least 3 μm or more and the average particle size or less, (4) by BET method a specific surface area of 3.5 m 2 / g or more 10.0 m 2 / g or less, (5) the tapping density is 0.5 g / cc or more 1.0 g / cc or less (6) A massive graphite powder exhibiting a characteristic of (110) / (004) X-ray diffraction peak intensity ratio of 0.015 or more by a wide angle X-ray diffraction method is used as a nucleus, and the surface of the nucleus is coated with a carbon precursor. Thereafter, a non-aqueous electrolyte secondary battery using a carbonaceous powder having a multilayer structure in which a surface layer of a carbonaceous material is formed by firing in a temperature range of 700 to 2800 ° C. in an inert gas atmosphere is disclosed (patent) Reference 2). However, these have the problem that the tapping density is low and the battery capacity cannot be increased.

本出願人は、このような問題点を解決するため、機械粉砕、分級して得られた(1)平均粒子径が10〜40μm、比表面積が10m/g以下、(2)X線回折法による黒鉛結晶子の(002)面の面間隔d002が0.337nm未満、C軸方向の結晶子の大きさLcが100nm以上、(3)真比重が2.18〜2.25、(4)タッピング比重が1.0〜1.3、(5)アルゴンイオンレーザーラマンスペクトルにおける1580cm−1のピーク強度に対する1360cm−1のピーク強度比Rの値が0.5超、かつ、1580cm−1ピークの半値幅が26cm−1超の特性を有する黒鉛粒子を核とし、核の表面に炭素前駆体を被着した後、不活性雰囲気下800〜2800℃の温度で熱処理して形成した炭素質物により被覆された2層構造の炭素材からなる非水電解質二次電池用負極材料を提案したが(特許文献3参照)、上記の手法では、予め黒鉛粒子を加圧力およびせん断力により機械粉砕して球形化した粒子を用いるため、原料となる黒鉛の形状が限られるという問題がある。 In order to solve such problems, the present applicant has obtained (1) an average particle diameter of 10 to 40 μm, a specific surface area of 10 m 2 / g or less, (2) X-ray diffraction obtained by mechanical pulverization and classification. The distance (002) between the (002) planes of the graphite crystallite by the method is less than 0.337 nm, the crystallite size Lc in the C-axis direction is 100 nm or more, (3) the true specific gravity is 2.18 to 2.25, (4 ) tapping specific gravity 1.0 to 1.3, (5) the value of peak intensity ratio R of 1360 cm -1 to the peak intensity of 1580 cm -1 in the argon ion laser Raman spectrum is greater than 0.5, and, 1580 cm -1 peak The carbonaceous material formed by heat treatment at a temperature of 800 to 2800 ° C. in an inert atmosphere after depositing a carbon precursor on the surface of a graphite particle having a half-width of more than 26 cm −1 as a nucleus Covered A negative electrode material for a non-aqueous electrolyte secondary battery made of a carbon material having a two-layer structure has been proposed (see Patent Document 3). In the above method, graphite particles are mechanically pulverized in advance by applying pressure and shearing force to form a spherical shape. There is a problem in that the shape of graphite as a raw material is limited because of the use of the particles.

一方、天然黒鉛を用い、高容量であるとともに初期充放電時の容量ロスが小さく、しかも、高速充電性やサイクル特性にも優れた負極材を提供するために、また、高容量で、容量ロスが少なく、高密度充填性があり、さらに負荷特性(急速充放電特性)にも優れたリチウムイオン二次電池洋負極材を提供するために、何れも予めバインダーを用いて略球状に造粒成形し、バインダーピッチを含浸および被覆した後、焼成してなる負極材の製造方法が提案されている(特許文献4、5参照)が、これらの方法においては、略球状にするバインダーは、造粒成形体にピッチを被覆する際に溶融や溶解をしない材料を選択する必要があり、その後ピッチを含浸するという煩雑な工程が必要となる。また、ピッチ含浸するために略球状体のタップ密度を高くできない(max0.95程度)ため、調整が難しいという問題がある。   On the other hand, in order to provide a negative electrode material that uses natural graphite and has a high capacity, a small capacity loss during initial charge / discharge, and excellent high-speed chargeability and cycle characteristics, it is also high capacity and capacity loss. In order to provide a lithium-ion secondary battery Western negative electrode material that has low density, high-density filling properties, and excellent load characteristics (rapid charge / discharge characteristics), each is granulated and formed into a substantially spherical shape using a binder in advance. In addition, a method for producing a negative electrode material that is impregnated and coated with a binder pitch and then baked has been proposed (see Patent Documents 4 and 5). In these methods, a substantially spherical binder is granulated. It is necessary to select a material that does not melt or dissolve when the molded body is coated with pitch, and then a complicated process of impregnating the pitch is required. In addition, since the tap density of the substantially spherical body cannot be increased due to pitch impregnation (max 0.95), there is a problem that adjustment is difficult.

また、本出願人は、粉砕により発生する黒鉛の新たな活性面の露出を抑制し、不可逆容量が小さくて、可逆容量の大きいリチウムイオン二次電池用負極材の製造方法として、黒鉛粒子と、キノリン不溶分が0.3%以下、固定炭素分が50%以上のピッチ、空気中400℃に加熱した時の揮発分が50%以上、不活性雰囲気中800℃に加熱した時の残炭率が3%以下の溶融性有機物とを溶融混練し、混練物を焼成炭化および黒鉛化したのち粉砕することを特徴とするリチウムイオン二次電池用負極材の製造方法を提案したが(特許文献6)、この方法で高電気容量の負極材とするには、予め球状化した黒鉛粒子を用いる必要がある。   Further, the present applicant suppresses exposure of a new active surface of graphite generated by pulverization, has a small irreversible capacity, a method for producing a negative electrode material for a lithium ion secondary battery having a large reversible capacity, and graphite particles, Pitch with a quinoline insoluble content of 0.3% or less, fixed carbon content of 50% or more, volatile content of 50% or more when heated to 400 ° C in air, and residual carbon ratio when heated to 800 ° C in an inert atmosphere Has proposed a method for producing a negative electrode material for a lithium ion secondary battery, characterized by melting and kneading 3% or less of a fusible organic material, firing and carbonizing and kneading the kneaded material, and then pulverizing (Patent Document 6). In order to obtain a negative electrode material having a high electric capacity by this method, it is necessary to use graphite particles that have been spheroidized in advance.

黒鉛粒子の角取りと、黒鉛化度の低い炭素質物となるバインダーとの被覆を同時に行う方法として、高容量で、かつサイクル特性及び急速充放電特性に優れ、加えて放電時の電圧が連続的に変化し、放電末期での電圧の変化が緩やかになる高性能のリチウム二次電池を得るための複合炭素粒子の製造方法として、 黒鉛の表面にバインダーを融着させた後、非酸化雰囲気中で焼成してバインダーを炭素化することが提案されているが(特許文献7参照)、具体的手法としては、黒鉛の表面にバインダーがメカノフュージョン加熱機を使用して融着するので、メカノフュージョン加熱機の加圧力およびせん断力により球状化された平均粒径が20μmの複合炭素粒子が形成される一方で、バインダーに潤滑性がないためにメカノフュージョン加熱機の強力な攪拌力により黒鉛粒子が角取りされながら破砕された黒鉛微粒子が黒鉛粒子に接合することなく生成して、充分なサイクル特性を発揮することができないという難点がある。   As a method for simultaneously chamfering graphite particles and coating with a binder that becomes a carbonaceous material with low graphitization degree, it has high capacity, excellent cycle characteristics and rapid charge / discharge characteristics, and in addition, the voltage during discharge is continuous. As a method for producing composite carbon particles to obtain a high-performance lithium secondary battery in which the voltage change at the end of discharge becomes gradual, after fusing a binder to the surface of graphite, It is proposed that the binder be carbonized by firing (see Patent Document 7). However, as a specific method, the binder is fused to the surface of the graphite using a mechanofusion heater. While composite carbon particles with an average particle diameter of 20 μm formed by spheroidization by the applied pressure and shearing force of the heater are formed, mechanofusion heating is performed because the binder has no lubricity. Graphite particles graphite particles is crushed while being chamfered by strong agitation force is generated without bonding to the graphite particles, there is a drawback that it can not exhibit sufficient cycle characteristics.

また、天然黒鉛とピッチを混練した後に、球状化する方法が提案されているが(特許文献8参照)、この場合にも、ピッチに潤滑性がないために、メカノケミカル処理装置の強力な攪拌力により黒鉛粒子が角取りされながら破砕された黒鉛微粒子が黒鉛粒子に接合することなく生成して、充分なサイクル特性を発揮することができないという難点がある。   In addition, a method of spheroidizing after kneading natural graphite and pitch has been proposed (see Patent Document 8), but in this case as well, since the pitch is not lubricous, powerful stirring of the mechanochemical treatment apparatus is performed. There is a drawback that graphite particles that are crushed while the graphite particles are chamfered by force are generated without being bonded to the graphite particles, and sufficient cycle characteristics cannot be exhibited.

更に、炭素物質を機械的力学的粉砕過程によって球形化又は類似球形化すると同時に1次的に安定な構造に組み立てる工程と、表面間の摩擦及びせん断力を付与する粉砕機を利用して、前記球形化又は類似球形化過程で精製された微細な炭素粉末粒子を単物質の表面で2次的に安定な構造に組み立てる工程と、前記組立体を熱処理する工程と、を供えることを特徴とするリチウム二次電池用負極活物質の製造法も提案されているが(特許文献9参照)、黒鉛と固形ピッチを混入し、ピッチが溶融しない温度域で攪拌混合したとしても、ピッチが黒鉛材内部の隅々にまで充填されにくいので、得られた複合粒子は球状であったとしても、内部に残存する空隙が多く、負極活物質として充填する際に極板密度の高密度化が難しいという問題がある。
特開平10−334915号公報 特開平11−054123号公報 特開2004−079344号公報 特開2004−031038号公報 特開2004−179075号公報 特願2005−377139号 特開平11−011919号公報 特開2003−173778号公報 特開2005―302725号公報
Further, the carbon material is spheroidized or similar spheroidized by a mechanical mechanical pulverization process and simultaneously assembled into a primary stable structure, and a pulverizer that imparts friction and shear forces between the surfaces is used. And a step of assembling fine carbon powder particles refined in a spheronization or similar spheronization process into a secondary stable structure on the surface of a single substance, and a step of heat-treating the assembly. Although a method for producing a negative electrode active material for a lithium secondary battery has also been proposed (see Patent Document 9), even if graphite and solid pitch are mixed and stirred and mixed in a temperature range in which the pitch does not melt, the pitch remains inside the graphite material. Even if the obtained composite particles are spherical, there are many voids remaining inside, and it is difficult to increase the density of the electrode plate when filling as a negative electrode active material. Is
Japanese Patent Laid-Open No. 10-334915 Japanese Patent Laid-Open No. 11-054123 Japanese Patent Laid-Open No. 2004-079344 JP 2004-031038 A JP 2004-179075 A Japanese Patent Application No. 2005-377139 JP 11-011919 A JP 2003-173778 A Japanese Patent Laid-Open No. 2005-302725

本発明は、リチウムイオン二次電池用負極材とその製造方法における上記従来の問題点を解消するためになされたものであり、その目的は、炭素質粒子の形状および表面結晶構造を制御して電極板作製時に黒鉛層方向をランダム配向することにより、高密度充填、かつ優れた出力特性、サイクル特性、充放電効率を備えたリチウムイオン二次電池用負極材とその製造方法を提供することにある。   The present invention has been made to solve the above-mentioned conventional problems in the negative electrode material for lithium ion secondary batteries and the manufacturing method thereof, and its purpose is to control the shape and surface crystal structure of the carbonaceous particles. To provide a negative electrode material for a lithium ion secondary battery having high density filling, excellent output characteristics, cycle characteristics, and charge / discharge efficiency by randomly orienting the graphite layer direction during electrode plate production, and a method for producing the same is there.

上記の目的を達成するための、請求項1によるリチウムイオン二次電池用負極材は、ピッチおよび溶融性有機物で被覆された炭素質粒子を焼成炭化して得られるリチウム二次電池用炭素質負極材であって、体積基準メディアン径が5〜30μm、粒子径アスペクト比が1.0〜2.0、BET比表面積が1.5〜5.0m/g、X線広角回折法により測定した(002)面の面間隔d(002)が0.3500nm未満、ラマンスペクトル強度比R=I1360/I1560が0.60以下の特性をそなえることを特徴とする。タッピング比重は1.0〜1.3が望ましい。 In order to achieve the above object, a negative electrode material for a lithium ion secondary battery according to claim 1 is a carbonaceous negative electrode for a lithium secondary battery obtained by firing and carbonizing carbonaceous particles coated with pitch and a meltable organic substance. A material having a volume-based median diameter of 5 to 30 μm, a particle diameter aspect ratio of 1.0 to 2.0, a BET specific surface area of 1.5 to 5.0 m 2 / g, and measured by an X-ray wide angle diffraction method. The (002) plane spacing d (002) is less than 0.3500 nm, and the Raman spectrum intensity ratio R = I 1360 / I 1560 has characteristics of 0.60 or less. The tapping specific gravity is desirably 1.0 to 1.3.

請求項2によるリチウムイオン二次電池用負極材の製造方法は、体積基準メディアン径が1μm〜30μmの炭素質粒子と、軟化点70℃〜250℃のピッチと、空気中で400℃に加熱した時の揮発分が50%以上、不活性雰囲気中で800℃に加熱した時の残炭率が3%以下の溶融性有機物とを加熱混合することにより、ピッチおよび溶融性有機物で被覆された炭素質粒子を得る工程、得られたピッチおよび溶融性有機物で被覆された炭素質粒子を圧縮、摩擦させることにより粒子径アスペクト比が1.0〜2.0のピッチおよび溶融性有機物で被覆された球状化炭素質粒子を得る工程、得られた球状化炭素質粒子を引き続き非酸化性雰囲気中で1,000〜3,000℃の温度で焼成炭化し、解砕・分級することを特徴とする。   The method for producing a negative electrode material for a lithium ion secondary battery according to claim 2 is heated to 400 ° C. in air, carbonaceous particles having a volume-based median diameter of 1 μm to 30 μm, a pitch having a softening point of 70 ° C. to 250 ° C. Carbon coated with pitch and meltable organic matter by heating and mixing with meltable organic matter having a volatile content of 50% or more and a residual carbon ratio of 3% or less when heated to 800 ° C. in an inert atmosphere The carbonaceous particles coated with the obtained pitch and meltable organic matter were compressed and rubbed to coat the pitch and meltable organic matter having a particle diameter aspect ratio of 1.0 to 2.0. A step of obtaining spheroidized carbonaceous particles, characterized in that the obtained spheroidized carbonaceous particles are subsequently calcined and carbonized at a temperature of 1,000 to 3,000 ° C. in a non-oxidizing atmosphere, and crushed and classified. .

請求項3によるリチウムイオン二次電池用負極材の製造方法は、請求項2において、前記炭素質粒子のX線広角回折法により測定した(002)面の面間隔d(002)が0.3500nm未満以下であることを特徴とする。   According to a third aspect of the present invention, there is provided a method for producing a negative electrode material for a lithium ion secondary battery according to the second aspect, wherein the (002) plane spacing d (002) of the carbonaceous particles measured by X-ray wide angle diffraction is 0.3500 nm. It is less than or less.

請求項4によるリチウムイオン二次電池用負極材の製造方法は、請求項2または3において、加熱混合により得られたピッチおよび溶融性有機物で被覆された炭素質粒子は、レーザー回折法により測定した体積基準メディアン径が10〜40μmであることを特徴とする。   The method for producing a negative electrode material for a lithium ion secondary battery according to claim 4 is the method according to claim 2 or 3, wherein the carbonaceous particles coated with the pitch and the meltable organic substance obtained by heating and mixing were measured by a laser diffraction method. The volume-based median diameter is 10 to 40 μm.

本発明においては、ピッチを黒鉛材内部の隅々にまで充填した状態で、かつピッチが軟化する温度域にて黒鉛材を球状化することにより、黒鉛材内部の空隙にピッチが溶融状態で浸透し、ピッチの軟化点温度域にて球状化したのち、ピッチ成分を焼成炭素化することで上記従来の問題を解決することができる。   In the present invention, the pitch is filled in every corner of the graphite material, and the graphite material is spheroidized in a temperature range where the pitch is softened, so that the pitch penetrates into the voids inside the graphite material in a molten state. Then, after spheronizing in the softening point temperature range of the pitch, the above-mentioned conventional problem can be solved by calcination of the pitch component.

また、篩い分けや分級処理による収率が高く、粒度が球状であり、また、その粒度分布がシャープな黒鉛結晶のエッジ面が炭素で被覆された複合炭素粒子により、充電容量、サイクル特性に優れたリチウムイオン二次電池用負極材が提供されることができる。   In addition, the composite carbon particles with high yield by sieving and classification, spherical particle size, and sharp-grained particle size distribution coated with carbon on the edge surface of carbon are excellent in charge capacity and cycle characteristics. In addition, a negative electrode material for a lithium ion secondary battery can be provided.

本発明によれば、炭素質粒子の形状および表面結晶構造を制御して電極板作製時に黒鉛層方向をランダム配向することにより、高密度充填、かつ優れた出力特性、サイクル特性、充放電効率を備えたリチウムイオン二次電池用負極材とその製造方法が提供される。   According to the present invention, by controlling the shape and surface crystal structure of the carbonaceous particles and randomly orienting the graphite layer direction during electrode plate production, high density packing and excellent output characteristics, cycle characteristics, and charge / discharge efficiency are achieved. Provided are a negative electrode material for a lithium ion secondary battery and a method for producing the same.

本発明においては、炭素質粒子表面に炭化物を薄く均一に被覆すること、および比表面積を抑えつつ、炭素質粒子表面の結晶性を低下させ、表面平滑性、円形度の高い球状化炭素質粒子の製造が可能となる。すなわち、充放電効率が大きく、高密度充填、高容量でありながらも出力特性に優れるの製造が可能となる。   In the present invention, the surface of carbonaceous particles is thinly and uniformly coated, and the surface area of carbonaceous particles is reduced while reducing the crystallinity of the carbonaceous particles, and the surface smoothness and sphericity of the carbonaceous particles are high. Can be manufactured. In other words, it is possible to manufacture with high charge / discharge efficiency, high density filling, and high capacity but excellent output characteristics.

本発明によるリチウムイオン二次電池負極材の製造方法は、炭素質粒子の球状化、およびリチウムイオン二次電池における充放電効率、充填密度、大電流放電時における出力特性の改善を目的と、以下のイ〜ハの特徴により、高密度充填、高容量、出力特性に優れたリチウムイオン二次電池負極材を得ることが可能となる。
イ.炭素質粒子の表面にピッチを均一に被覆すること、
ロ.炭素質粒子の表面を表面間の摩擦及びせん断力を付与する粉砕機を利用して機械的に破壊して球状化することすること、
ハ.炭素質粒子の表面に非晶質表面を形成すること
The method for producing a negative electrode material for a lithium ion secondary battery according to the present invention aims to improve the output characteristics at the time of spheroidization of carbonaceous particles and charge / discharge efficiency, packing density, and large current discharge in a lithium ion secondary battery Thus, it becomes possible to obtain a negative electrode material for a lithium ion secondary battery excellent in high density filling, high capacity, and output characteristics.
I. Coating pitch uniformly on the surface of carbonaceous particles;
B. Spheroidizing the surface of the carbonaceous particles mechanically using a pulverizer that imparts friction and shear force between the surfaces;
C. Forming an amorphous surface on the surface of carbonaceous particles

以下、製造工程について説明する。
《原料》
a.炭素質粒子
以下の特性を満たす炭素質粒子が好適であり、具体的には鱗片状天然黒鉛粒子や人造黒鉛粒子、人造黒鉛電極の粉砕粉、コークス粉、その他の炭素前駆体の焼成炭化物、それらの混合物が適用できる。これらの原料となる炭素質粒子は、以下の特性を満足することにより、最終粉体はリチウムイオン二次電池負極材として好適になる。
(1)アスペクト比は限定しない。本発明であればアスペクト比が3.0以上のものでも炭素化した後に球形化することなく、アスペクト比が1.0〜2.0となる。
(2)レーザー回折法により測定した体積基準メディアン径が1μm〜30μm
レーザー回折式の粒度分布測定装置((株)島津製作所製SALD2000)により測定した値で、体積を基準としたメディアン径(μm)で示した。
Hereinafter, the manufacturing process will be described.
"material"
a. Carbonaceous particles Carbonaceous particles satisfying the following characteristics are suitable, specifically, flaky natural graphite particles and artificial graphite particles, pulverized powder of artificial graphite electrodes, coke powder, and other carbon precursor calcined carbides, etc. A mixture of can be applied. Since the carbonaceous particles used as these raw materials satisfy the following characteristics, the final powder is suitable as a negative electrode material for a lithium ion secondary battery.
(1) The aspect ratio is not limited. In the present invention, even if the aspect ratio is 3.0 or more, the aspect ratio becomes 1.0 to 2.0 without spheroidizing after carbonization.
(2) Volume-based median diameter measured by laser diffraction method is 1 μm to 30 μm
It is a value measured by a laser diffraction particle size distribution analyzer (SALD2000 manufactured by Shimadzu Corporation), and is represented by a median diameter (μm) based on volume.

原料となるこの炭素質粒子は、鱗片状天然黒鉛、人造黒鉛、人造黒鉛電極の破砕品、コークスなどをローラーミルや衝撃粉砕機などの粉砕装置を用いて粉砕・分級して得られる。体積基準メディアン径が30μmを上回る場合には、リチウムイオン二次電池とし大電流放電する際、リチウムイオンの粒内拡散距離が長くなり、出力特性の低下を招くため好ましくない。また、リチウムイオン二次電池の負極を作成する際、活物質層塗工時における膜厚を薄く均一な層にすることが困難となるために、より体積当たりの出力特性が低下する。より好ましい体積基準メディアン径は25μm以下、さらに好ましくは20μm以下である。体積基準メディアン径が1μmを下回る場合には比表面積が大きくなる。   The carbonaceous particles used as a raw material are obtained by pulverizing and classifying scaly natural graphite, artificial graphite, a pulverized product of artificial graphite electrode, coke and the like using a pulverizer such as a roller mill or an impact pulverizer. When the volume-based median diameter exceeds 30 μm, when a large current is discharged as a lithium ion secondary battery, the intragranular diffusion distance of lithium ions becomes long and the output characteristics are deteriorated. In addition, when producing a negative electrode for a lithium ion secondary battery, it is difficult to make the film thickness thin and uniform during the application of the active material layer, so that the output characteristics per volume are further reduced. A more preferable volume-based median diameter is 25 μm or less, and further preferably 20 μm or less. When the volume-based median diameter is less than 1 μm, the specific surface area increases.

(3)X線広角回折法により測定した(002)面の面間隔d(002)が0.3500m未満
グラファイトモノクロメーターで単色化したCuKα線をもちい、反射式ディフラクトメーター法によって、広角X線回折曲線を測定し、学振法を用いて測定する。0.3500nmを上回る場合には、最終粉体の放電可逆容量が330mAh/g以下となるため不都合である。通常は、0.3500nm以下、より好ましくは0.3400nm以下、さらに好ましくは0.3358nm以下である。
(3) The distance (d) of the (002) plane measured by X-ray wide angle diffraction method is less than 0.3500 m. Using CuKα ray monochromatized with a graphite monochromator, wide angle X ray is obtained by a reflective diffractometer method. A diffraction curve is measured and measured using the Gakushin method. When exceeding 0.3500 nm, the discharge reversible capacity of the final powder becomes 330 mAh / g or less, which is inconvenient. Usually, it is 0.3500 nm or less, More preferably, it is 0.3400 nm or less, More preferably, it is 0.3358 nm or less.

b.ピッチ
環球法で測定された軟化点が70〜250℃のものが好適である。環球法で測定された軟化点が70℃を下回る場合には炭素前駆体が溶融しやすく、下記の第二工程において、ピッチ溶出分が装置内壁に付着してしまい、定常連続運転ができなくなるという不具合が生じる。また、250℃を上回る場合には炭素前駆体の軟化状態が良くなく、下記の第二工程において球状化が旨く進行しないため好ましくない。通常は70〜250℃、より好ましくは70〜150℃、さらに好ましくは70〜90℃である。また、軟化点の異なるピッチ同士を二種以上混合する方法やタール添加する方法により、軟化点70〜250℃に調整したピッチを用いてもよい。負極材としての初回充放電ロスを低下するためには濾過などの方法によりフリーカーボンを除去したピッチまたはキノリン不溶分の含有率が1%未満であるピッチを用いることがより好ましい対応となる。
b. A pitch having a softening point of 70 to 250 ° C. measured by the ring and ball method is preferable. When the softening point measured by the ring and ball method is lower than 70 ° C., the carbon precursor is easily melted, and in the second step described below, the pitch elution is attached to the inner wall of the apparatus, and the continuous continuous operation cannot be performed. A malfunction occurs. Moreover, when it exceeds 250 degreeC, since the softened state of a carbon precursor is not good and spheroidization does not advance well in the following 2nd process, it is unpreferable. Usually, it is 70-250 degreeC, More preferably, it is 70-150 degreeC, More preferably, it is 70-90 degreeC. Moreover, you may use the pitch adjusted to 70-250 degreeC by the method of mixing 2 or more types of pitches from which a softening point differs, or the method of adding tar. In order to reduce the initial charge / discharge loss as the negative electrode material, it is more preferable to use a pitch obtained by removing free carbon by a method such as filtration or a pitch having a quinoline insoluble content of less than 1%.

c.溶融性の有機物
空気中400℃に加熱した時の揮発分が50%以上、不活性雰囲気中800℃に加熱した時の残炭率が3%以下の溶融性有機物が好適に使用できる。炭素質粒子とピッチを溶融混練する際に、有機物は低粘度の溶融状態になる必要があり、溶融性の有機物が用いられ、分子量は小さい方が好ましく、混練中に過度の粉砕が生じない性状をもつものが好ましいものとなる。次工程の球状化の際、潤滑剤としても作用し、炭素粒子の微粉化を防ぐ効果がある。また、生産面を考慮すると、装置の金属磨耗、装置内部への炭素前駆体の付着を抑えるためにも、潤滑性を保持することが好ましい。
c. Melting organic matter A melting organic matter having a volatile content of 50% or more when heated to 400 ° C in air and a residual carbon ratio of 3% or less when heated to 800 ° C in an inert atmosphere can be suitably used. When melt-kneading carbonaceous particles and pitch, the organic material must be in a low-viscosity molten state, a meltable organic material is used, a smaller molecular weight is preferable, and no excessive pulverization occurs during kneading. Those having the are preferred. During the spheronization in the next step, it also acts as a lubricant and has the effect of preventing the carbon particles from being pulverized. In consideration of production, it is preferable to maintain lubricity in order to suppress metal wear of the apparatus and adhesion of the carbon precursor to the inside of the apparatus.

さらに、後工程で行う焼成炭化時には酸素(空気)を遮断した非酸化性雰囲気中で行うが、この時被焼成物中に含まれる有機物が揮散する際のガス圧によって、被焼成物周辺の酸素を追い出す、あるいは有機物と酸素が反応して酸素濃度を低下させるという効果もある。そのため、空気中400℃に加熱した時に50%以上が揮発する有機物が使用される。揮発分が50%より少ないと被焼成物周辺の酸素濃度が十分に低下せず、ピッチ由来の炭素の結晶性が低下することになり、可逆容量も低下することになる。また、溶融性有機物中の残炭分は可逆容量を低下させることになるので、できるだけ残炭率は低いことが望ましく、不活性雰囲気中で加熱し、800℃まで加熱した時の残炭率が3%以下のものが用いられる。このような溶融性の有機物としては、合成油、天然油、ステアリン酸、合成ワックス、天然ワックスなどが例示される。   Furthermore, during firing carbonization performed in a subsequent process, it is performed in a non-oxidizing atmosphere in which oxygen (air) is shut off. At this time, oxygen around the firing object is caused by gas pressure when the organic matter contained in the firing object is volatilized. There is also an effect that the oxygen concentration is lowered by reacting organic matter and oxygen. Therefore, an organic substance that volatilizes 50% or more when heated to 400 ° C. in air is used. If the volatile content is less than 50%, the oxygen concentration around the object to be fired is not sufficiently lowered, the crystallinity of pitch-derived carbon is lowered, and the reversible capacity is also lowered. In addition, since the residual carbon content in the meltable organic matter decreases the reversible capacity, it is desirable that the residual carbon ratio is as low as possible. The residual carbon ratio when heated in an inert atmosphere and heated to 800 ° C. is 3% or less is used. Examples of such fusible organic substances include synthetic oil, natural oil, stearic acid, synthetic wax, natural wax and the like.

本発明による処理工程について説明する。
《第一工程》(炭素質粒子のピッチ被覆および造粒)
本発明においては、ピッチ浸透・被覆を球状化装置でなく他の装置で済ませた後、球状化装置を用いて球状化する手法を適用できる。ピッチを黒鉛材内部にまで浸透・被覆させるには量産性に優れる混練装置(ニーダー)やその他のミキサーが工業的に好ましく用いられる。この場合、球状化装置の内容量に限定されずにピッチを黒鉛材内部にまで浸透・被覆させることができる。また、加圧蓋を設けた加圧式ニーダーを用いてもよい。
The process according to the present invention will be described.
<First step> (pitch coating and granulation of carbonaceous particles)
In the present invention, it is possible to apply a technique of spheroidizing using a spheroidizing device after the pitch permeation / coating is completed by another device instead of the spheroidizing device. In order to infiltrate and coat the pitch into the graphite material, a kneader (kneader) or other mixer excellent in mass productivity is preferably used industrially. In this case, the pitch can be penetrated and covered to the inside of the graphite material without being limited to the inner volume of the spheroidizing device. Further, a pressure kneader provided with a pressure lid may be used.

炭素質粒子を混練機内に投入し、混練しながら容器内の温度をピッチの軟化点を越える所定温度にまで昇温させ、ピッチを投入して十分に混練する。混練により、粒子の破壊や粒度分布の微粉部が合体して一部造粒が同時進行する。しかし、本発明の溶融性有機物の添加により、粒子の破壊が抑制される。そのため、表面に被覆された粒子、微粒子がピッチで造粒した状態の粒子の混合物となる。加熱混合により得られた粉体は、レーザー回折法により測定した体積基準メディアン径が10〜40μmである。混練する時間は、混練機の容量、混練羽形状、原料の投入量などにより左右されるがピッチの融点を超える温度で10分間〜2時間とする。その後、室温まで冷却してピッチを被覆した炭素質粒子を得る。   The carbonaceous particles are put into a kneader, the temperature in the container is raised to a predetermined temperature exceeding the softening point of the pitch while kneading, and the pitch is added and kneaded sufficiently. By kneading, the destruction of the particles and the fine powder portions of the particle size distribution are combined, and part of the granulation proceeds simultaneously. However, the addition of the fusible organic material of the present invention suppresses particle breakage. Therefore, it becomes a mixture of particles coated on the surface and particles in a state where fine particles are granulated with a pitch. The powder obtained by heating and mixing has a volume-based median diameter measured by a laser diffraction method of 10 to 40 μm. The time for kneading depends on the capacity of the kneader, the shape of the kneading blade, the amount of raw material charged, etc., but is 10 minutes to 2 hours at a temperature exceeding the melting point of the pitch. Then, it cools to room temperature and the carbonaceous particle which coat | covered the pitch is obtained.

イ、炭素質粒子に対するピッチの比率
黒鉛質炭素粒子100重量部に対して5〜40重量部とするのが好ましい。5重量部を下回る場合には、炭素質粒子表面をピッチで均一に被覆することが難しく、また、造粒ができずに粒度分布の微粉部が多いためブロードになる不具合が生じるので、電極作成時に負極材の密度が低下して電池容量が低下するためである。40重量部を上回る場合、黒鉛粉末同士が凝集するために個々の粒子一ケづつ解砕することが難しくなり、最終的に得られる複合粒子の粒子径が大きくなり過ぎて、解砕により得られる黒鉛質炭素粒子表面のピッチ被覆膜の厚さが不均一となり、ピッチ単独の粉末が存在することとなり易い。そのうえ、粗大な塊が形成されるために粉砕工程が必要となるうえに、電池特性として初回充放電ロスが大きくなる。また、第二工程(球状化)において、余分なピッチが装置内部に付着することにより、連続的な連続運転ができなくなる不具合も生じる。比率は使用する原料の種類によって適宜、調整するが、通常は5〜40重量部、より好ましくは10〜30部、さらに好ましくは15〜25部である。
(B) Ratio of pitch to carbonaceous particles It is preferably 5 to 40 parts by weight with respect to 100 parts by weight of graphitic carbon particles. When the amount is less than 5 parts by weight, it is difficult to uniformly coat the surface of the carbonaceous particles with a pitch, and since there is a large portion of fine particles with a particle size distribution that cannot be granulated, there is a problem that the electrode is broad. This is because sometimes the density of the negative electrode material decreases and the battery capacity decreases. When the amount exceeds 40 parts by weight, it becomes difficult to crush each individual particle because the graphite powder aggregates, and the particle size of the finally obtained composite particle becomes too large and is obtained by crushing. The thickness of the pitch coating film on the surface of the graphitic carbon particles becomes non-uniform, and powder with a single pitch tends to exist. In addition, since a coarse lump is formed, a pulverization process is required, and the initial charge / discharge loss is increased as battery characteristics. Further, in the second step (spheronization), an extra pitch adheres to the inside of the apparatus, which causes a problem that continuous continuous operation cannot be performed. The ratio is appropriately adjusted depending on the type of raw material used, but is usually 5 to 40 parts by weight, more preferably 10 to 30 parts, and still more preferably 15 to 25 parts.

ロ、炭素質粒子に対する溶融性有機物の比率および添加時期
黒鉛質炭素粒子100重量部に対して1〜30重量部とする。より好ましい範囲は、3〜20重量部である。3重量部を下回る場合には、次工程のピッチを被覆した炭素質粒子の球状化する場合に微粉化した炭素質粒子が残存するので、除去が難しい上、収率が低下する。30重量部を上回る場合には、次工程のピッチを被覆した炭素質粒子の球状化が困難になるうえに、次工程のピッチを被覆した炭素質粒子の球状化する場合にも粗大な塊が形成される問題がある。
(B) Ratio of fusible organic substance to carbonaceous particles and timing of addition 1-30 parts by weight per 100 parts by weight of graphitic carbon particles. A more preferable range is 3 to 20 parts by weight. When the amount is less than 3 parts by weight, finely divided carbonaceous particles remain when the carbonaceous particles coated with the pitch in the next step are spheroidized, so that removal is difficult and the yield is reduced. When the amount exceeds 30 parts by weight, it becomes difficult to spheroidize the carbonaceous particles coated with the pitch of the next step, and also when the carbonaceous particles coated with the pitch of the next step are spheroidized, a coarse lump is formed. There are problems that are formed.

溶融性有機物は、以下の方法で混練する。
(1)炭素質粉末と溶融性有機物を充分に加熱混練して、その後ピッチを添加して混練する方法。
(2)炭素質粉末とピッチとを加熱混練して、その後溶融性有機物を添加して混練する方法。
(3)炭素質粉末とピッチと溶融性有機物とを加熱混練する方法。
炭素質粉末の過度の微粉砕化を防ぐ方法としては、(1)の炭素粉末と溶融性有機物を充分に加熱混練して、その後ピッチを添加して混練する方法や(3)の炭素粉末とピッチと溶融性有機物とを加熱混練する方法が好ましい態様である。
The meltable organic material is kneaded by the following method.
(1) A method in which carbonaceous powder and a meltable organic substance are sufficiently heated and kneaded, and then pitch is added and kneaded.
(2) A method in which carbonaceous powder and pitch are heat-kneaded, and then a meltable organic substance is added and kneaded.
(3) A method of heat-kneading carbonaceous powder, pitch and meltable organic matter.
As a method for preventing excessive pulverization of the carbonaceous powder, the carbon powder of (1) and the meltable organic material are sufficiently heated and kneaded, and then a pitch is added and kneaded, and the carbon powder of (3) A method in which pitch and meltable organic matter are kneaded with heat is a preferred embodiment.

《第二工程》(ピッチおよび溶融性有機物を被覆した炭素質粒子の球状化)
得られたピッチおよび溶融性有機物を被覆した炭素質粒子に対し、繰り返し、粒同士を圧縮、摩擦、衝突させることにより外部から機械的エネルギーを付与し続けることで、粒子の表面が徐々に削り取られて球状化される。球状化により発生した炭素微粉が軟化したピッチ及び溶融性有機物の混合層を介して粒子表面に埋め込まれるため、粒子径アスペクト比は1.0〜2.0に調整される。また、球状化処理後に粒子の表面が徐々に削り取られた微粉は残存しない。また、炭素粒子の黒鉛結晶層が折れ曲がることも混在し、最終的には粒同士の摩擦抵抗が小さい安定な球状に落ち着く。この際、ピッチおよび溶融性有機物の混合層が軟化し、粒同士の摩擦により表面は平滑化される。外部から機械的エネルギーを付与する具体的な装置としては、メカノフージョンシステム(ホソカワミクロン(株)製)、ハイブリダイザー((株)奈良機械製作所製)などが挙げられるが、これらの装置に限定されるものではない。
<< Second Step >> (spheroidization of carbonaceous particles coated with pitch and meltable organic matter)
By repeatedly applying mechanical energy from the outside by repeatedly compressing, rubbing, and colliding the resulting carbonaceous particles coated with pitch and meltable organic matter, the surface of the particles is gradually scraped off. And spheroidized. Since the carbon fine powder generated by the spheroidization is embedded in the particle surface through the softened pitch and fusible organic substance mixed layer, the particle diameter aspect ratio is adjusted to 1.0 to 2.0. Moreover, the fine powder from which the particle | grain surface was scraped off gradually after the spheroidization process does not remain. In addition, the graphite crystal layer of carbon particles is also bent, and finally settles into a stable sphere with a small frictional resistance between the grains. At this time, the mixed layer of pitch and meltable organic material is softened, and the surface is smoothed by friction between the grains. Specific devices for applying mechanical energy from the outside include mechano-fusion systems (manufactured by Hosokawa Micron Corporation), hybridizers (manufactured by Nara Machinery Co., Ltd.), and the like, but are limited to these apparatuses. It is not a thing.

例えば、粉体に対して機械的エネルギーを付与する方法としては、図1に示すハイブリダイザー((株)奈良機械製作所製)内に第一工程にて得られた粉体を原料投入口1より投入し、回転周速20〜100m/sで1〜3分間処理する。ハイブリダイザーは原料循環路2を通してドラム6と回転部8の隙間に投入した原料に対し、ドラム6と回転部8との回転速度の差異により生じる圧縮力、摩擦力、および衝突力を利用し、機械的エネルギーを与える装置である。3はステーター、4はジャケット、5は原料排出部、7はブレードである。   For example, as a method of imparting mechanical energy to the powder, the powder obtained in the first step in the hybridizer (manufactured by Nara Machinery Co., Ltd.) shown in FIG. And processed at a rotational peripheral speed of 20 to 100 m / s for 1 to 3 minutes. The hybridizer uses the compressive force, frictional force, and collision force generated by the difference in rotational speed between the drum 6 and the rotating part 8 for the raw material introduced into the gap between the drum 6 and the rotating part 8 through the raw material circulation path 2. A device that provides mechanical energy. 3 is a stator, 4 is a jacket, 5 is a raw material discharge part, and 7 is a blade.

ハイブリダイザー処理中における装置内部の温度は、機械的エネルギー付与により上昇するが、(ピッチの軟化点+20℃)の以下の温度に調整することが好ましい。(ピッチの軟化点+20℃)を超える温度雰囲気の場合、溶融ピッチが粒子間隙より溶出し、溶出したピッチが装置内部に付着するため、定常的な連続運転が不可能になる不具合が生じる。逆にピッチの軟化点が250℃以上では軟化状態が悪く、球状化が困難となるため好ましくない。   The temperature inside the apparatus during the hybridizer treatment rises due to the application of mechanical energy, but is preferably adjusted to the following temperature of (pitch softening point + 20 ° C.). In the case of the temperature atmosphere exceeding (pitch softening point + 20 ° C.), the molten pitch is eluted from the particle gap, and the eluted pitch adheres to the inside of the apparatus. Conversely, if the pitch softening point is 250 ° C. or higher, the softened state is poor and spheroidization becomes difficult, which is not preferable.

回転周速は20〜100m/sが好ましい。回転周速20m/s以下では粒子が受ける機械的エネルギーが小さく、球状化が進行しないため好ましくない。回転周速100m/s以上と100m/sでは得られる粉体に性能上、大差はなく、コスト的な面、装置の安全性等を考慮すると上限は100m/sとするのが好ましい。処理時間30秒以下では粒子径アスペクト比がまだ大きく、5分以上では粒子径アスペクト比が変化しないため、処理時間は30秒〜5分が好ましい。生産面を考慮すると1分〜3分がより好ましい。また、粒同士の摩擦力、圧縮力が強すぎて、回転周速が上昇して粒子の破壊が生じてしまう場合には、粒同士の磨耗を減らすために上記で説明した溶融性有機物を添加するのが好ましい。投入量、コスト、処理時間を考慮して、適宜、投入量は調節する。   The rotational peripheral speed is preferably 20 to 100 m / s. A rotational peripheral speed of 20 m / s or less is not preferable because the mechanical energy received by the particles is small and spheroidization does not proceed. The powder obtained at a rotational peripheral speed of 100 m / s or more and 100 m / s does not differ greatly in performance, and the upper limit is preferably set to 100 m / s in consideration of cost, safety of the apparatus, and the like. When the treatment time is 30 seconds or less, the particle diameter aspect ratio is still large, and when the treatment time is 5 minutes or more, the particle diameter aspect ratio does not change. Therefore, the treatment time is preferably 30 seconds to 5 minutes. Considering production, 1 to 3 minutes is more preferable. In addition, when the frictional force and compressive force between the grains are too strong, and the rotational peripheral speed increases and the destruction of the grains occurs, the above-described fusible organic matter is added to reduce the wear between the grains. It is preferable to do this. The input amount is appropriately adjusted in consideration of the input amount, cost, and processing time.

《第三工程》(ピッチおよび溶融性有機物で被覆された球状化炭素質粒子の炭素化・解砕・分級)
機械的エネルギーを付与する処理により得られたピッチおよび溶融性有機物で被覆された球状化炭素質粒子は、非酸化性雰囲気下にて1,000℃〜3,000℃で溶融性有機物の揮散およびピッチを焼成炭化する。その後、解砕、分級して得られた粉体をリチウムイオン二次電池用の負極材とする。1,000℃未満では溶融性有機物の揮散が十分でなく、またピッチの低分子有機未燃分が残存し、リチウムイオン二次電池の充放電効率の低下やサイクル特性の劣化するので好ましくない。3,000℃を超えると、ピッチの炭化成分の黒鉛結晶子が発達し、高速放電効率の低下するため好ましくない。また、3,000℃を超えると、熱処理コストが高く、製造コストの増加を招くため好ましくない。
«Third step» (carbonization, disintegration, classification of spheroidized carbonaceous particles coated with pitch and meltable organic matter)
Spherical carbonaceous particles coated with pitch and fusible organic matter obtained by the treatment that imparts mechanical energy are volatilized of fugitive organic matter at 1,000 to 3,000 ° C. in a non-oxidizing atmosphere. Firing and carbonizing the pitch. Then, the powder obtained by crushing and classifying is used as a negative electrode material for a lithium ion secondary battery. If it is less than 1,000 ° C., the volatilization of the fusible organic substance is not sufficient, and the low molecular organic unburned portion of the pitch remains, which is not preferable because the charge / discharge efficiency of the lithium ion secondary battery is deteriorated and the cycle characteristics are deteriorated. If it exceeds 3,000 ° C., graphite crystallites of the carbonized component of the pitch develop and the high-speed discharge efficiency decreases, which is not preferable. Moreover, when it exceeds 3,000 degreeC, since the heat processing cost is high and causes the increase in manufacturing cost, it is unpreferable.

解砕装置としては、(株)マツボー製ターボミル、(株)セイシン企業製クイックミル、日清エンジニアリング(株)製スーパーローターなどの装置が例示される。分級工程では、最小粒子径1μm以上、最大粒子径55μm以下、メディアン粒子径5〜30μmに調整する。上記方法により、リチウムイオン二次電池用負極材として好適な炭素質粒子表面に炭素バインダーを被覆した球状化炭素質粒子を製造することが可能となる。   Examples of the crushing device include Matsubo's turbo mill, Seisin Corporation's quick mill, and Nisshin Engineering's super rotor. In the classification step, the minimum particle size is adjusted to 1 μm or more, the maximum particle size is 55 μm or less, and the median particle size is adjusted to 5 to 30 μm. By the above method, it becomes possible to produce spheroidized carbonaceous particles in which the surface of carbonaceous particles suitable as a negative electrode material for a lithium ion secondary battery is coated with a carbon binder.

上記の工程により、体積基準メディアン径が10〜30μm、粒子径アスペクト比が1.0〜2.0、BET比表面積が1.5〜5.0m/g、X線広角回折法により測定した(002)面の面間隔d(002)が0.3500nm未満、ラマンスペクトル強度比R=I1360/I1560が0.60以下で、タッピング比重が好ましくは1.0〜1.3の特性をそなえる球状化炭素質粒子からなるリチウム二次電池用炭素質負極材が得られる。 By the above steps, the volume-based median diameter was 10 to 30 μm, the particle diameter aspect ratio was 1.0 to 2.0, the BET specific surface area was 1.5 to 5.0 m 2 / g, and measured by the X-ray wide angle diffraction method. The (002) plane spacing d (002) is less than 0.3500 nm, the Raman spectrum intensity ratio R = I 1360 / I 1560 is 0.60 or less, and the tapping specific gravity is preferably 1.0 to 1.3. Thus, a carbonaceous negative electrode material for a lithium secondary battery comprising spheroidized carbonaceous particles is obtained.

本発明により得られる球状化炭素質粒子の性状について説明する。
《比表面積》
BET比表面積はNガスを用いたBET、10点法により算出した値とする。なお、窒素吸着比表面積は、表面積計((株)島津製作所製全自動表面積測定装置)を用い、測定対象(ここでは黒鉛材料)に対して窒素流通下350℃で30分間、予備乾燥を行なった後、大気圧に対する窒素の相対圧の値が0.3となるように正確に調整した窒素ヘリウム混合ガスを用い、ガス流動法による窒素吸着BET10点法によって測定した値である。得られる最終粉体のBET比表面積は1.5〜5m/gが好ましい。1.5m/g未満ではリチウムイオンの脱挿入に要する反応面積が小さいため出力特性を維持できず、5m/gを超えると反応面積が大きく、初回充電時に大きなロスを生じてしまうため好ましくない。比表面積の調節は黒鉛質炭素粒子を被覆するピッチの厚みやハイブリダイザー、粉砕機の回転速度、分級条件を調節することで可能となる。
The properties of the spheroidized carbonaceous particles obtained by the present invention will be described.
"Specific surface area"
The BET specific surface area is a value calculated by BET using N 2 gas and a 10-point method. Note that the nitrogen adsorption specific surface area was preliminarily dried at 350 ° C. for 30 minutes under a nitrogen flow with respect to the measurement target (here, a graphite material) using a surface area meter (manufactured by Shimadzu Corporation). Then, the value measured by a nitrogen adsorption BET 10-point method by a gas flow method using a nitrogen helium mixed gas that is accurately adjusted so that the value of the relative pressure of nitrogen with respect to atmospheric pressure is 0.3. The BET specific surface area of the final powder obtained is preferably 1.5 to 5 m 2 / g. If it is less than 1.5 m 2 / g, the output area cannot be maintained because the reaction area required for lithium ion desorption / insertion is small, and if it exceeds 5 m 2 / g, the reaction area is large and a large loss occurs during the first charge. Absent. The specific surface area can be adjusted by adjusting the thickness of the pitch covering the graphitic carbon particles, the speed of the hybridizer, the pulverizer, and the classification conditions.

《体積基準粒子径》
レーザー回折法により測定したメディアン径は5〜30μmが好ましい。メディアン径は、(株)島津製作所製SALD2000にて測定した値である。5μm未満の粒子はスラリー調整時における液中への分散が悪く、また比表面積が大きいため好ましくない。体積基準メディアン径が30μmを上回る場合には、リチウムイオン二次電池とし大電流放電する際、リチウムイオンの粒内拡散距離が長くなり、出力特性の低下を招くため好ましくない。また、活物質層塗工時における膜厚が制限され、より出力特性に優れる電極構造を設計する際、薄く均一な活物質層を塗工することが困難となる。通常、5〜30μm、より好ましくは10〜25μm、さらに好ましくは10〜20μmである。粒度調整は黒鉛質炭素粒子の粒子径、炭素前駆体配合比、粉砕機の回転速度、分級条件を調節することで可能となる。
《Volume-based particle size》
The median diameter measured by the laser diffraction method is preferably 5 to 30 μm. The median diameter is a value measured by SALD2000 manufactured by Shimadzu Corporation. Particles of less than 5 μm are not preferred because of poor dispersion in the liquid during slurry preparation and a large specific surface area. When the volume-based median diameter exceeds 30 μm, when a large current is discharged as a lithium ion secondary battery, the intragranular diffusion distance of lithium ions becomes long and the output characteristics are deteriorated. In addition, the film thickness at the time of active material layer coating is limited, and it becomes difficult to apply a thin and uniform active material layer when designing an electrode structure with more excellent output characteristics. Usually, it is 5-30 micrometers, More preferably, it is 10-25 micrometers, More preferably, it is 10-20 micrometers. The particle size can be adjusted by adjusting the particle size of the graphitic carbon particles, the carbon precursor blending ratio, the rotational speed of the pulverizer, and the classification conditions.

《粒子径アスペクト比》
粒子径アスペクト比は1.0〜2.0が好ましい。SEM観察にて、球状化黒鉛質炭素粒子100個を任意に選び出し、粒子の最長径を最小径で除した値、その平均値を粒子径アスペクト比とする。粒子径アスペクト比が2.0より大きくなると、活物質層塗工時において黒鉛層方向が基盤と平行に配向しやすく、活物質層が基盤から剥離しやすくなり、サイクル特性が劣化する不具合が生じる。粒子径アスペクト比は通常1.0〜2.0、より好ましくは1.0〜1.6、さらに好ましくは1.0〜1.3である。
<Particle diameter aspect ratio>
The particle diameter aspect ratio is preferably 1.0 to 2.0. In SEM observation, 100 spheroidized graphitic carbon particles are arbitrarily selected, and the value obtained by dividing the longest diameter of the particles by the minimum diameter and the average value thereof are defined as the particle diameter aspect ratio. When the particle diameter aspect ratio is larger than 2.0, the graphite layer direction is likely to be oriented parallel to the substrate when the active material layer is applied, and the active material layer is easily peeled off from the substrate, resulting in deterioration of cycle characteristics. . The particle diameter aspect ratio is usually 1.0 to 2.0, more preferably 1.0 to 1.6, and still more preferably 1.0 to 1.3.

《ラマンスペクトル》
粒子表層の結晶構造の乱れ具合はラマンスペクトルで議論するのが妥当である。波長514.5nmのArレーザーを用いたラマン分光分析器(日本分光(株)製、NR1100)で測定し、表層での結晶欠陥および積層構造の不整合等による結晶構造の乱れに帰属する1360cm−1近傍のスペクトルI1360を炭素六角網面内の格子振動に相当するE2g型振動に帰属する1580cm−1近傍のスペクトルI1580で除したものである。ラマンスペクトルの強度比R=I1360/I1580で粒子表層の結晶構造の乱れ具合を表すことができる。
<< Raman Spectrum >>
It is appropriate to discuss the disorder of the crystal structure of the particle surface layer using the Raman spectrum. Measured with a Raman spectroscopic analyzer (NR1100, manufactured by JASCO Corporation) using an Ar laser with a wavelength of 514.5 nm, 1360 cm attributable to disorder of the crystal structure due to crystal defects on the surface layer and misalignment of the laminated structure, etc. the spectrum I 1360 of near 1 is obtained by dividing the spectrum I 1580 near 1580 cm -1 attributable to the E 2 g vibration corresponding to the lattice vibration of the carbon hexagonal net plane. The disorder ratio of the crystal structure of the particle surface layer can be expressed by the intensity ratio R = I 1360 / I 1580 of the Raman spectrum.

初回充電時の容量ロスを抑えつつ、優れた出力特性を有するには0.60以下が好ましい。ラマンスペクトルの強度比R=I1360/I1580の調節はハイブリダイザー、粉砕機の回転速度、使用する黒鉛質炭素粒子、炭素前駆体を選定することで調節可能である。 In order to have excellent output characteristics while suppressing capacity loss at the time of initial charge, 0.60 or less is preferable. The adjustment of the Raman spectrum intensity ratio R = I 1360 / I 1580 can be adjusted by selecting the hybridizer, the rotational speed of the pulverizer, the graphitic carbon particles to be used, and the carbon precursor.

《X線回折法により得られる黒鉛結晶子のd(002)面の層間距離》
粒子内部の結晶性はX線回折法により得られる黒鉛結晶子の(002)面の面間隔d(002)面で議論するのが妥当である。CuKα線をX線源、標準物質に高純度シリコンを使用し、(002)面の回折パターンのピーク位置、半値幅から学振法に基づきd(002)を算出する。d(002)は0.3500nm未満が好ましく、0.3500nm以上では放電可逆容量が小さくなるため好ましくない。天然黒鉛では理想黒鉛の0.3354nmに近い値を有し、易黒鉛化コークスは2,800℃以上の熱処理を施すことで0.3400nm未満にすることが可能である。通常、0.3500nm以下、より好ましくは0.3400nm以下、さらに好ましくは0.3358nm以下である。
<< Distance between d (002) planes of graphite crystallites obtained by X-ray diffraction method >>
It is appropriate to discuss the crystallinity inside the particle in terms of the plane spacing d (002) plane of the (002) plane of the graphite crystallite obtained by the X-ray diffraction method. Using CuKα ray as an X-ray source and high-purity silicon as a standard material, d (002) is calculated based on the Gakushin method from the peak position and half-value width of the diffraction pattern on the (002) plane. d (002) is preferably less than 0.3500 nm, and if it is 0.3500 nm or more, the discharge reversible capacity becomes small, which is not preferable. Natural graphite has a value close to 0.3354 nm of ideal graphite, and graphitizable coke can be made less than 0.3400 nm by performing a heat treatment at 2,800 ° C. or higher. Usually, it is 0.3500 nm or less, More preferably, it is 0.3400 nm or less, More preferably, it is 0.3358 nm or less.

以下、本発明の実施例を比較例と対比して説明し、その効果を実証する。なお、これらの実施例は本発明の一実施態様を示すものであり、本発明はこれらに限定されない。   Examples of the present invention will be described below in comparison with comparative examples to demonstrate the effects. In addition, these Examples show one embodiment of this invention, and this invention is not limited to these.

実施例1
(粉体調製)
メディアン径10.9μm、d(002)=0.3355nmの鱗片状天然黒鉛((株)中越黒鉛工業所製、BF−10A)100重量部に対し、コールタールピッチ(JFEケミカル(株)製PK―QL、軟化点70℃)(炭素前駆体)を30重量部、溶融性有機物として空気中で400℃に加熱した場合に70%が揮発し、かつ不活性雰囲気中で800℃に加熱した際の残炭率が0.6%の溶融機械油(直鎖状有機高分子体)5重量部をウェルナー型混練機にて150℃、30分間、混練した後、室温に冷却した。
Example 1
(Powder preparation)
Coal tar pitch (PK manufactured by JFE Chemical Co., Ltd.) with respect to 100 parts by weight of scaly natural graphite having a median diameter of 10.9 μm and d (002) = 0.3355 nm (manufactured by Chuetsu Graphite Industries Co., Ltd., BF-10A) -QL, softening point 70 ° C) (carbon precursor) 30 parts by weight, 70% volatilized when heated to 400 ° C in the air as a meltable organic substance, and when heated to 800 ° C in an inert atmosphere 5 parts by weight of a molten machine oil (linear organic polymer) having a residual carbon ratio of 0.6% was kneaded in a Werner type kneader at 150 ° C. for 30 minutes, and then cooled to room temperature.

次に、得られた粉体をハイブリダイザー装置((株)奈良機械製作所製、NHS−I型)内に投入し、装置内の最高温度を75℃±5℃に保ちながら、回転数4,800rpm(回転周速60m/s)で3分間処理した。得られた粉体は、個々の粒子が独立した粉体でアスペクト比が1.5の角取りされた球形化粉体であった。上記の製造条件を表1に示す。   Next, the obtained powder was put into a hybridizer apparatus (NHS-I type, manufactured by Nara Machinery Co., Ltd.), while maintaining the maximum temperature in the apparatus at 75 ° C. ± 5 ° C. It processed for 3 minutes at 800 rpm (rotational peripheral speed 60m / s). The obtained powder was a spheroidized powder in which individual particles were independent and the aspect ratio was 1.5. The production conditions are shown in Table 1.

Figure 2008305661
Figure 2008305661

引き続き、得られた球形化粉体を黒鉛坩堝に投入し、窒素ガス雰囲気下、1,000℃で焼成炭化した。ついで、解砕(装置名:日清エンジニアリング(株)製スーパーローター)し、分級(装置名:日清エンジニアリング(株)製ターボクラシファイア)してメディアン径13.6μmに調整した。得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とした。粉体物性を表2に示す。   Subsequently, the obtained spheroidized powder was put into a graphite crucible and calcined at 1,000 ° C. in a nitrogen gas atmosphere. Subsequently, it was crushed (device name: Nisshin Engineering Co., Ltd. Super Rotor) and classified (device name: Nisshin Engineering Co., Ltd. turbo classifier) to adjust the median diameter to 13.6 μm. The obtained carbon particles were used as a negative electrode material powder for a lithium ion secondary battery. Table 2 shows the powder physical properties.

Figure 2008305661
Figure 2008305661

(リチウムイオン二次電池の作製)
(スラリーの調製)
上記炭素粒子100重量部に対し、増粘剤として1wt%のカルボキシメチルセルロース(CMC)水溶液を適量投入して30分間攪拌混合した後、結合剤として40wt%のスチレン−ブタジエンゴム(SBR)水溶液を適量投入して5分間攪拌混合し、負極合材ペーストを調製した。
(Production of lithium ion secondary battery)
(Preparation of slurry)
An appropriate amount of a 1 wt% carboxymethylcellulose (CMC) aqueous solution as a thickener is added to 100 parts by weight of the carbon particles and stirred and mixed for 30 minutes, and then an appropriate amount of 40 wt% styrene-butadiene rubber (SBR) aqueous solution is used as a binder. The mixture was stirred and mixed for 5 minutes to prepare a negative electrode mixture paste.

(作用極の作製)
得られた負極合材ペーストを厚さ18μmの銅箔(集電体)上に塗布し、真空中で130℃に加熱して溶媒を完全に揮発させた。得られたシートを極板密度が1.5g/ccになるようローラープレスで圧延し、ポンチで打ち抜いて作用極を得た。
(Production of working electrode)
The obtained negative electrode mixture paste was applied onto a copper foil (current collector) having a thickness of 18 μm and heated to 130 ° C. in a vacuum to completely evaporate the solvent. The obtained sheet was rolled with a roller press so that the electrode plate density was 1.5 g / cc, and punched with a punch to obtain a working electrode.

(対極の作製)
不活性雰囲気下、リチウム金属箔をポンチで打ち抜いたニッケルメッシュ(集電体)にめり込ませ、対極を得た。
(Production of counter electrode)
Under an inert atmosphere, a lithium metal foil was embedded in a nickel mesh (current collector) punched with a punch to obtain a counter electrode.

(可逆放電容量評価用ボタン型電池の作製)
前記の作用極、対極を使用し、評価用電池として図2に示すボタン型電池を不活性雰囲気下で組み立てた。電解液は1mol/dmのリチウム塩LiPFを溶解したエチレンカーボネート(EC)、ジエチルカーボネート(DEC)1:1混合溶液を使用した。充電は電流密度0.2mA/cm、終止電圧5mVで定電流充電を終えた後、下限電流0.02mA/cmとなるまで定電位保持する。放電は電流密度0.2mA/cmにて終止電圧1.5Vまで定電流放電を行い、5サイクル終了後の放電容量を可逆放電容量とした。図2において、9は負極側ステンレスキャップ、10は負極、11は銅箔、12は絶縁ガスケット、13は電解液含浸セパレータ、14はニッケルメッシュ、15は正極側ステンレスキャップ、16は正極である。
(Production of button type battery for reversible discharge capacity evaluation)
Using the above working electrode and counter electrode, a button type battery shown in FIG. 2 as an evaluation battery was assembled in an inert atmosphere. As the electrolytic solution, a 1: 1 mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in which 1 mol / dm 3 of a lithium salt LiPF 6 was dissolved was used. Charging current density 0.2 mA / cm 2, after finishing the constant current charging at a final voltage 5 mV, holding a constant potential to the lower limit current 0.02 mA / cm 2. The discharge was a constant current discharge to a final voltage of 1.5 V at a current density of 0.2 mA / cm 2 , and the discharge capacity after the end of 5 cycles was defined as a reversible discharge capacity. In FIG. 2, 9 is a negative electrode side stainless steel cap, 10 is a negative electrode, 11 is a copper foil, 12 is an insulating gasket, 13 is an electrolyte-impregnated separator, 14 is a nickel mesh, 15 is a positive electrode side stainless steel cap, and 16 is a positive electrode.

出力特性評価はSOC=100%の満充電状態から10mA/cmで放電した際の容量維持率で負極材の出力特性を調べた。測定結果を表2に示した。 In the output characteristic evaluation, the output characteristic of the negative electrode material was examined by the capacity retention rate when discharged at 10 mA / cm 2 from the fully charged state of SOC = 100%. The measurement results are shown in Table 2.

(サイクル耐久性評価用ボタン型電池の作製)
対極をリチウムコバルト酸化物に変え、上記と同様、ボタン型電池を組み立てて、60℃、0.2Cの電流密度にて4.1V〜3.0V間を100回、繰り返し充放電を行った後の容量維持率を調べた。測定結果を表2に示した。
(Production of button-type battery for cycle durability evaluation)
After changing the counter electrode to lithium cobalt oxide and assembling the button-type battery, charging and discharging was repeated 100 times between 4.1 V and 3.0 V at a current density of 60 ° C. and 0.2 C. The capacity maintenance rate of was examined. The measurement results are shown in Table 2.

実施例2
メディアン径19.2μm、d(002)=0.3359nmの石油系ニードルコークス黒鉛化品100重量部に対し、コールタールピッチ(JFEケミカル(株)製PK―E、軟化点89℃)を20重量部、実施例1の溶融機械油に代えて空気中で400℃に加熱した場合の揮発分が63%、不活性雰囲気中で800℃に加熱した際の残炭率が0.4%のステアリン酸5重量部を、混練機にて150℃、60分間、混練した後、室温に冷却した。
Example 2
20 weights of coal tar pitch (PK-E manufactured by JFE Chemical Co., Ltd., softening point 89 ° C) to 100 parts by weight of petroleum-based needle coke graphitized product with a median diameter of 19.2 µm and d (002) = 0.3359 nm Part, stearin having a volatile content of 63% when heated to 400 ° C. in air instead of the molten machine oil of Example 1, and a residual carbon ratio of 0.4% when heated to 800 ° C. in an inert atmosphere 5 parts by weight of the acid was kneaded in a kneader at 150 ° C. for 60 minutes, and then cooled to room temperature.

次に、得られた粉体をハイブリダイザー装置((株)奈良機械製作所製、NHS−I型)内に投入し、装置内の最高温度を85±5℃に保ちながら、回転数8,000rpm(回転周速100m/s)で30秒間処理した。得られた粉体は、個々の粒子が独立した粉体でアスペクト比が1.7の角取りされた球形化粉体であった。上記の製造条件を表1に示す。   Next, the obtained powder was put into a hybridizer apparatus (NHS-I type, manufactured by Nara Machinery Co., Ltd.), and the rotation speed was 8,000 rpm while maintaining the maximum temperature in the apparatus at 85 ± 5 ° C. It processed for 30 seconds at (rotational peripheral speed 100m / s). The obtained powder was a spheroidized powder in which individual particles were independent and the aspect ratio was 1.7. The production conditions are shown in Table 1.

引き続き、得られた粉体を黒鉛坩堝に投入し、窒素ガス雰囲気下、2,100℃で焼成炭化した。ついで、実施例1と同様に解砕・分級してメディアン径20.2μmに調整した。得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示した。実施例1と同様、ボタン型電池を作製し、充放電試験を行った。測定結果を表2に示した。   Subsequently, the obtained powder was put into a graphite crucible and calcined at 2100 ° C. in a nitrogen gas atmosphere. Subsequently, crushing and classification were performed in the same manner as in Example 1 to adjust the median diameter to 20.2 μm. The obtained carbon particles are used as a negative electrode material powder for a lithium ion secondary battery. The powder physical properties are shown in Table 2. As in Example 1, a button type battery was prepared and a charge / discharge test was performed. The measurement results are shown in Table 2.

実施例3
メディアン径25.5μm、d(002)=0.3359nmの人造黒鉛電極粉砕粉(オリエンタル産業(株)製、AT−No.10S)100重量部に対し、メソフェーズピッチ(JFEケミカル(株)製MCP−250D、軟化点250℃)を5重量部、実施例1の溶融機械油に代えて空気中で400℃に加熱した場合の揮発分が63%、不活性雰囲気中で800℃に加熱した際の残炭率が0.4%のステアリン酸5重量部、混練機にて250℃、90分間、混練した後、室温に冷却した。
Example 3
Mesophase pitch (MCP manufactured by JFE Chemical Co., Ltd.) with respect to 100 parts by weight of artificial graphite electrode pulverized powder (Oriental Sangyo Co., Ltd., AT-No. 10S) having a median diameter of 25.5 μm and d (002) = 0.359 nm -250D, softening point 250 ° C.), 5 parts by weight, 63% volatile content when heated to 400 ° C. in air instead of the melting machine oil of Example 1, when heated to 800 ° C. in an inert atmosphere 5% by weight of stearic acid having a residual carbon ratio of 0.4% was kneaded in a kneader at 250 ° C. for 90 minutes, and then cooled to room temperature.

次に、得られた粉体をハイブリダイザー装置((株)奈良機械製作所製、NHS−I型)内に投入し、装置内の最高温度を250±5℃に保ちながら、回転数8,000rpm(回転周速100m/s)で5分間処理した。得られた粉体は、個々の粒子が独立した粉体でアスペクト比が1.7の角取りされた球形化粉体であった。上記の製造条件を表1に示す。   Next, the obtained powder was put into a hybridizer apparatus (NHS-I type, manufactured by Nara Machinery Co., Ltd.), and the rotation speed was 8,000 rpm while keeping the maximum temperature in the apparatus at 250 ± 5 ° C. It was processed for 5 minutes at a rotational peripheral speed of 100 m / s. The obtained powder was a spheroidized powder in which individual particles were independent and the aspect ratio was 1.7. The production conditions are shown in Table 1.

引き続き、得られた粉体を黒鉛坩堝に投入し、窒素ガス雰囲気下、3,000℃で焼成炭化した。ついで、実施例1と同様に解砕・分級してメディアン径27.3μmに調整した。得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示した。実施例1と同様、ボタン型電池を作製し、充放電試験を行った。測定結果を表2に示す。   Subsequently, the obtained powder was put into a graphite crucible and calcined at 3,000 ° C. in a nitrogen gas atmosphere. Subsequently, crushing and classification were performed in the same manner as in Example 1 to adjust the median diameter to 27.3 μm. The obtained carbon particles are used as a negative electrode material powder for a lithium ion secondary battery. The powder physical properties are shown in Table 2. As in Example 1, a button type battery was prepared and a charge / discharge test was performed. The measurement results are shown in Table 2.

実施例4
実施例1で使用した鱗片状天然黒鉛の代わりにメディアン径17.0μm、d(002)=0.3355nmである球状化黒鉛(日本黒鉛工業(株)製、CGC−15)を使用した以外は実施例1と同様の処理を行ない、メディアン径16.4μmに調整した。(表1参照)得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示す。実施例1と同様、ボタン型電池を作製し、充放電試験を行った。測定結果を表2に示す。
Example 4
A spheroidized graphite (manufactured by Nippon Graphite Industry Co., Ltd., CGC-15) having a median diameter of 17.0 μm and d (002) = 0.355 nm was used in place of the scale-like natural graphite used in Example 1. The same processing as in Example 1 was performed to adjust the median diameter to 16.4 μm. (See Table 1) The obtained carbon particles are used as a negative electrode material powder for a lithium ion secondary battery. Table 2 shows the powder physical properties. As in Example 1, a button type battery was prepared and a charge / discharge test was performed. The measurement results are shown in Table 2.

比較例1
実施例1において、溶融性有機物としての溶融機械油を使用しない他は、実施例1と同じ方法で溶融混練し、混練物を実施例1と同じ方法により焼成炭化、黒鉛化および粉砕、篩分けして、メディアン径を12.9μmに調整した。(表1参照)得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示す。実施例1と同様、ボタン型電池を作製し、充放電試験を行った。測定結果を表2に示す。
Comparative Example 1
In Example 1, except that the melted mechanical oil as a meltable organic material is not used, it is melt kneaded in the same manner as in Example 1, and the kneaded product is calcined, graphitized and pulverized, and sieved in the same manner as in Example 1. The median diameter was adjusted to 12.9 μm. (See Table 1) The obtained carbon particles are used as a negative electrode material powder for a lithium ion secondary battery. Table 2 shows the powder physical properties. As in Example 1, a button type battery was prepared and a charge / discharge test was performed. The measurement results are shown in Table 2.

比較例2
実施例1において、溶融機械油に代えて空気中で400℃に加熱した場合の揮発分が60%、不活性雰囲気中で800℃に加熱した際の残炭率が4.4%のPVC(ポリ塩化ビニル)を用いた他は、実施例1と同じ方法で溶融混練し、混練物を実施例と同じ方法により焼成炭化、黒鉛化および粉砕、篩分けして、メディアン径を13.1μmに調整した。(表1参照)得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示す。実施例1と同様、ボタン型電池を作製し、充放電試験を行った。測定結果を表2に示す。
Comparative Example 2
In Example 1, a volatile matter when heated to 400 ° C. in air instead of molten machine oil was 60%, and a residual carbon ratio when heated to 800 ° C. in an inert atmosphere was 4.4% ( Except for the use of (polyvinyl chloride), it was melt-kneaded in the same manner as in Example 1, and the kneaded product was calcined, graphitized and pulverized and sieved in the same manner as in Example 1 to give a median diameter of 13.1 μm. It was adjusted. (See Table 1) The obtained carbon particles are used as a negative electrode material powder for a lithium ion secondary battery. Table 2 shows the powder physical properties. As in Example 1, a button type battery was prepared and a charge / discharge test was performed. The measurement results are shown in Table 2.

比較例3
実施例1において、ハイブリダイザー装置による処理を行わない他は、実施例1と同じ方法により焼成炭化、黒鉛化および粉砕、篩分けして、メディアン径を15.4μmに調整した。(表1参照)得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示す。実施例1と同様、ボタン型電池を作製し、充放電試験を行った。測定結果を表2に示す。
Comparative Example 3
In Example 1, the median diameter was adjusted to 15.4 μm by firing carbonization, graphitization, pulverization, and sieving by the same method as in Example 1 except that the treatment by the hybridizer apparatus was not performed. (See Table 1) The obtained carbon particles are used as a negative electrode material powder for a lithium ion secondary battery. Table 2 shows the powder physical properties. As in Example 1, a button type battery was prepared and a charge / discharge test was performed. The measurement results are shown in Table 2.

比較例4
実施例1で使用した鱗片状天然黒鉛の代わりにメディアン径17.0μm、d(002)=0.3355nmである球状化黒鉛(日本黒鉛工業(株)製、CGC−15)を使用し、コールタールピッチ(JFEケミカル(株)製PK―QL、軟化点70℃)40重量部とをウェルナー型混練機にて150℃、30分間、混練した後、室温に冷却した。
Comparative Example 4
Instead of the scale-like natural graphite used in Example 1, spheroidized graphite (CGC-15, manufactured by Nippon Graphite Industry Co., Ltd.) having a median diameter of 17.0 μm and d (002) = 0.3355 nm was used. 40 parts by weight of tar pitch (JK Chemical Co., Ltd. PK-QL, softening point 70 ° C.) was kneaded with a Werner type kneader at 150 ° C. for 30 minutes, and then cooled to room temperature.

次に、得られた粉体をハイブリダイザー装置((株)奈良機械製作所製、NHS−I型)内に投入し、装置内の最高温度を75℃±5℃に保ちながら、回転数4,800rpm(回転周速60m/s)で3分間処理した。得られた粉体は、個々の粒子が独立した粉体でアスペクト比が1.6の角取りされた粉体が混在するものであった。上記の製造条件を表1に示す。   Next, the obtained powder was put into a hybridizer apparatus (NHS-I type, manufactured by Nara Machinery Co., Ltd.), while maintaining the maximum temperature in the apparatus at 75 ° C. ± 5 ° C. It processed for 3 minutes at 800 rpm (rotational peripheral speed 60m / s). The obtained powder was a mixture of powders with individual particles and a chamfered powder with an aspect ratio of 1.6. The production conditions are shown in Table 1.

引き続き、得られた球形化粉体を黒鉛坩堝に投入し、窒素ガス雰囲気下、1,000℃で焼成炭化した。ついで、実施例1と同様に解砕・分級してメディアン径15.6μmに調整した。得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示す。   Subsequently, the obtained spheroidized powder was put into a graphite crucible and calcined at 1,000 ° C. in a nitrogen gas atmosphere. Subsequently, crushing and classification were performed in the same manner as in Example 1 to adjust the median diameter to 15.6 μm. The obtained carbon particles are used as a negative electrode material powder for a lithium ion secondary battery. Table 2 shows the powder physical properties.

比較例5
メディアン径17.0μm、d(002)=0.3355nmである球状化黒鉛(日本黒鉛工業(株)製、CGC−15)100重量部に、コールタールピッチ(JFEケミカル(株)製PK―QL、軟化点70℃)を40重量部、溶融性有機物として空気中で400℃に加熱した場合に70%が揮発し、かつ不活性雰囲気中で800℃に加熱した際の残炭率が0.6%の溶融機械油5重量部をウェルナー型混練機にて150℃、30分間、混練した後、室温に冷却した。
Comparative Example 5
To 100 parts by weight of spheroidized graphite (Nippon Graphite Industries Co., Ltd., CGC-15) having a median diameter of 17.0 μm and d (002) = 0.355 nm, coal tar pitch (PFE-QL manufactured by JFE Chemical Co., Ltd.) , The softening point is 70 ° C.), 70% is volatilized when heated to 400 ° C. in the air as a meltable organic substance, and the residual carbon ratio when heated to 800 ° C. in an inert atmosphere is 0. 5 parts by weight of 6% molten mechanical oil was kneaded in a Werner type kneader at 150 ° C. for 30 minutes, and then cooled to room temperature.

次に、ハイブリダイザー装置による処理を行うことなく、実施例4と同様の処理を行ない、メディアン径17.4μmに調整した。(表1参照)得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示す。実施例1と同様、ボタン型電池を作製し、充放電試験を行った。測定結果を表2に示す。   Next, the same processing as in Example 4 was performed without performing processing by the hybridizer apparatus, and the median diameter was adjusted to 17.4 μm. (See Table 1) The obtained carbon particles are used as a negative electrode material powder for a lithium ion secondary battery. Table 2 shows the powder physical properties. As in Example 1, a button type battery was prepared and a charge / discharge test was performed. The measurement results are shown in Table 2.

比較例6
メディアン径10.9μm、d(002)=0.3355nmの鱗片状天然黒鉛((株)中越黒鉛工業所製、BF−10A)100重量部に対し、コールタールピッチ(JFEケミカル(株)製PK―QL、軟化点70℃)を30重量部をウェルナー型混練機にて150℃、30分間、混練した後、室温に冷却した。
Comparative Example 6
Coal tar pitch (PK manufactured by JFE Chemical Co., Ltd.) with respect to 100 parts by weight of scaly natural graphite having a median diameter of 10.9 μm and d (002) = 0.3355 nm (manufactured by Chuetsu Graphite Industries Co., Ltd., BF-10A) -QL, softening point 70 ° C) was kneaded in a Werner type kneader for 30 minutes at 150 ° C, and then cooled to room temperature.

引き続き、得られた粉体を黒鉛坩堝に投入し、窒素ガス雰囲気下、1,000℃で焼成炭化した。ついで、実施例1と同様に解砕・分級してメディアン径13.6μmに調整した。上記の製造条件を表1に示す。得られた炭素粒子をリチウムイオン二次電池用の負極材粉体とする。粉体物性を表2に示す。   Subsequently, the obtained powder was put into a graphite crucible and calcined at 1,000 ° C. in a nitrogen gas atmosphere. Subsequently, crushing and classification were performed in the same manner as in Example 1 to adjust the median diameter to 13.6 μm. The production conditions are shown in Table 1. The obtained carbon particles are used as a negative electrode material powder for a lithium ion secondary battery. Table 2 shows the powder physical properties.

表2に示すように、本発明に従う実施例1〜4においては、黒鉛結晶子の破壊を抑えることで比表面積の増加を抑えることが可能となり、高い初期効率を有しており、また、粒子径アスペクト比が2以下であるため電池基盤と活物質層との接着が強く、サイクル維持率も高い値を有しており、優れた電池特性が達成されているのが認められる。   As shown in Table 2, in Examples 1 to 4 according to the present invention, it is possible to suppress an increase in specific surface area by suppressing the destruction of graphite crystallites, and has a high initial efficiency. Since the diameter aspect ratio is 2 or less, the adhesion between the battery substrate and the active material layer is strong, the cycle retention ratio is also high, and it is recognized that excellent battery characteristics are achieved.

粉体に対して機械的エネルギーを付与するハイブリダイザーを示す図である。It is a figure which shows the hybridizer which provides mechanical energy with respect to powder. ボタン型電池を示す図である。It is a figure which shows a button type battery.

符号の説明Explanation of symbols

1 原料投入口
2 原料循環路
3 ステーター
4 ジャケット
5 原料排出部
6 ドラム
7 ブレード
8 回転部
9 負極側ステンレスキャップ
10 負極
11 銅箔
12 絶縁ガスケット
13 電解液含浸セパレータ
14 ニッケルメッシュ
15 正極側ステンレスキャップ
16 正極
DESCRIPTION OF SYMBOLS 1 Raw material inlet 2 Raw material circulation path 3 Stator 4 Jacket 5 Raw material discharge part 6 Drum 7 Blade 8 Rotating part 9 Negative electrode side stainless cap 10 Negative electrode 11 Copper foil 12 Insulation gasket 13 Electrolyte impregnation separator 14 Nickel mesh 15 Positive electrode side stainless steel cap 16 Positive electrode

Claims (4)

ピッチおよび溶融性有機物で被覆された炭素質粒子を焼成炭化して得られるリチウム二次電池用炭素質負極材であって、体積基準メディアン径が5〜30μm、粒子径アスペクト比が1.0〜2.0、BET比表面積が1.5〜5.0m/g、X線広角回折法により測定した(002)面の面間隔d(002)が0.3500nm未満、ラマンスペクトル強度比R=I1360/I1560が0.60以下の特性をそなえることを特徴とするリチウムイオン二次電池用負極材。 A carbonaceous negative electrode material for a lithium secondary battery obtained by firing and carbonizing carbonaceous particles coated with pitch and meltable organic matter, having a volume-based median diameter of 5 to 30 μm and a particle diameter aspect ratio of 1.0 to 2.0, BET specific surface area of 1.5 to 5.0 m 2 / g, (002) plane spacing d (002) measured by X-ray wide angle diffraction method is less than 0.3500 nm, Raman spectral intensity ratio R = A negative electrode material for a lithium ion secondary battery, wherein I 1360 / I 1560 has a characteristic of 0.60 or less. 体積基準メディアン径が1μm〜30μmの炭素質粒子と、軟化点70℃〜250℃のピッチと、空気中で400℃に加熱した時の揮発分が50%以上、不活性雰囲気中で800℃に加熱した時の残炭率が3%以下の溶融性有機物とを加熱混合することにより、ピッチおよび溶融性有機物で被覆された炭素質粒子を得る工程、得られたピッチおよび溶融性有機物で被覆された炭素質粒子を圧縮、摩擦させることにより粒子径アスペクト比が1.0〜2.0のピッチおよび溶融性有機物で被覆された球状化炭素質粒子を得る工程、得られた球状化炭素質粒子を引き続き非酸化性雰囲気中で1,000〜3,000℃の温度で焼成炭化し、解砕・分級することを特徴とするリチウムイオン二次電池用負極材の製造方法。   Carbonaceous particles with a volume-based median diameter of 1 μm to 30 μm, pitches with a softening point of 70 ° C. to 250 ° C., volatile content when heated to 400 ° C. in air is 50% or more, and 800 ° C. in an inert atmosphere. A step of obtaining carbonaceous particles coated with pitch and meltable organic matter by heating and mixing with a meltable organic matter having a residual carbon ratio of 3% or less when heated, and the resulting pitch and meltable organic matter are coated. A step of obtaining spherical carbonaceous particles coated with a pitch and a meltable organic substance having a particle diameter aspect ratio of 1.0 to 2.0 by compressing and rubbing the obtained carbonaceous particles, and the obtained spherical carbonaceous particles Is subsequently calcined at a temperature of 1,000 to 3,000 ° C. in a non-oxidizing atmosphere, and pulverized and classified. A method for producing a negative electrode material for a lithium ion secondary battery. 前記炭素質粒子のX線広角回折法により測定した(002)面の面間隔d(002)が0.3500nm未満以下であることを特徴とする請求項2記載のリチウムイオン二次電池用負極材の製造方法。   The negative electrode material for a lithium ion secondary battery according to claim 2, wherein the (002) plane spacing d (002) of the carbonaceous particles measured by an X-ray wide angle diffraction method is less than 0.3500 nm. Manufacturing method. 加熱混合により得られたピッチおよび溶融性有機物で被覆された炭素質粒子は、レーザー回折法により測定した体積基準メディアン径が10〜40μmであることを特徴とする請求項2または3記載のリチウムイオン二次電池用負極材の製造方法。   4. The lithium ion according to claim 2, wherein the carbonaceous particles coated with the pitch and the meltable organic substance obtained by heating and mixing have a volume-based median diameter of 10 to 40 μm as measured by a laser diffraction method. A method for producing a negative electrode material for a secondary battery.
JP2007151602A 2007-06-07 2007-06-07 Negative electrode material for lithium ion secondary battery, and its manufacturing method Pending JP2008305661A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007151602A JP2008305661A (en) 2007-06-07 2007-06-07 Negative electrode material for lithium ion secondary battery, and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007151602A JP2008305661A (en) 2007-06-07 2007-06-07 Negative electrode material for lithium ion secondary battery, and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2008305661A true JP2008305661A (en) 2008-12-18

Family

ID=40234197

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007151602A Pending JP2008305661A (en) 2007-06-07 2007-06-07 Negative electrode material for lithium ion secondary battery, and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2008305661A (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157478A1 (en) * 2008-06-25 2009-12-30 三菱化学株式会社 Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
WO2010110441A1 (en) * 2009-03-27 2010-09-30 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
WO2010110443A1 (en) * 2009-03-27 2010-09-30 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
JP2010262925A (en) * 2009-04-30 2010-11-18 Ls Mtron Ltd Anode active material for lithium secondary battery, and lithium secondary battery including the same
WO2012137770A1 (en) * 2011-04-08 2012-10-11 住友金属工業株式会社 Modified natural graphite particles
JP2014114197A (en) * 2012-12-12 2014-06-26 Nippon Coke & Engineering Co Ltd Method for producing spheroidized graphite particle
WO2016006617A1 (en) * 2014-07-07 2016-01-14 三菱化学株式会社 Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material
JP2016105396A (en) * 2014-11-19 2016-06-09 三菱化学株式会社 Carbon material for nonaqueous secondary battery, and nonaqueous secondary battery
JP2016186916A (en) * 2015-03-27 2016-10-27 三菱化学株式会社 Carbon material and nonaqueous secondary battery
JP2016186912A (en) * 2015-03-27 2016-10-27 三菱化学株式会社 Composite carbon material for nonaqueous secondary battery, and nonaqueous secondary battery
JP2016186913A (en) * 2015-03-27 2016-10-27 三菱化学株式会社 Carbon material and nonaqueous secondary battery
JP2017062898A (en) * 2015-09-24 2017-03-30 三菱化学株式会社 Carbon material, and nonaqueous secondary battery
JP2017126426A (en) * 2016-01-12 2017-07-20 三菱ケミカル株式会社 Method for producing negative electrode material for nonaqueous secondary battery and nonaqueous secondary battery using negative electrode material for nonaqueous secondary battery
WO2022131361A1 (en) * 2020-12-17 2022-06-23 株式会社クレハ Method for producing carbon precursor particles and carbonaceous material for secondary battery negative electrode
CN114883558A (en) * 2016-11-14 2022-08-09 昭和电工材料株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7496000B2 (en) 2020-12-17 2024-06-05 株式会社クレハ Method for producing carbon precursor particles and carbonaceous material for secondary battery negative electrode

Cited By (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2009157478A1 (en) * 2008-06-25 2009-12-30 三菱化学株式会社 Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
JP2010034036A (en) * 2008-06-25 2010-02-12 Mitsubishi Chemicals Corp Compound graphite particles for nonaqueous secondary battery, negative electrode material containing the same, negative electrode, and nonaqueous secondary battery
US8974968B2 (en) 2008-06-25 2015-03-10 Mitsubishi Chemical Corporation Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
CN102362380A (en) * 2009-03-27 2012-02-22 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
WO2010110443A1 (en) * 2009-03-27 2010-09-30 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
US8920977B2 (en) 2009-03-27 2014-12-30 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
WO2010110441A1 (en) * 2009-03-27 2010-09-30 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using same
US8974969B2 (en) 2009-03-27 2015-03-10 Mitsubishi Chemical Corporation Negative electrode material for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2010262925A (en) * 2009-04-30 2010-11-18 Ls Mtron Ltd Anode active material for lithium secondary battery, and lithium secondary battery including the same
WO2012137770A1 (en) * 2011-04-08 2012-10-11 住友金属工業株式会社 Modified natural graphite particles
JPWO2012137770A1 (en) * 2011-04-08 2014-07-28 中央電気工業株式会社 Modified natural graphite particles
JP2014114197A (en) * 2012-12-12 2014-06-26 Nippon Coke & Engineering Co Ltd Method for producing spheroidized graphite particle
WO2016006617A1 (en) * 2014-07-07 2016-01-14 三菱化学株式会社 Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material
US11936044B2 (en) 2014-07-07 2024-03-19 Mitsubishi Chemical Corporation Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material
JP2016105396A (en) * 2014-11-19 2016-06-09 三菱化学株式会社 Carbon material for nonaqueous secondary battery, and nonaqueous secondary battery
JP2016186916A (en) * 2015-03-27 2016-10-27 三菱化学株式会社 Carbon material and nonaqueous secondary battery
JP2016186912A (en) * 2015-03-27 2016-10-27 三菱化学株式会社 Composite carbon material for nonaqueous secondary battery, and nonaqueous secondary battery
JP2016186913A (en) * 2015-03-27 2016-10-27 三菱化学株式会社 Carbon material and nonaqueous secondary battery
JP2017062898A (en) * 2015-09-24 2017-03-30 三菱化学株式会社 Carbon material, and nonaqueous secondary battery
JP2017126426A (en) * 2016-01-12 2017-07-20 三菱ケミカル株式会社 Method for producing negative electrode material for nonaqueous secondary battery and nonaqueous secondary battery using negative electrode material for nonaqueous secondary battery
CN114883558A (en) * 2016-11-14 2022-08-09 昭和电工材料株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2022131361A1 (en) * 2020-12-17 2022-06-23 株式会社クレハ Method for producing carbon precursor particles and carbonaceous material for secondary battery negative electrode
JP7496000B2 (en) 2020-12-17 2024-06-05 株式会社クレハ Method for producing carbon precursor particles and carbonaceous material for secondary battery negative electrode

Similar Documents

Publication Publication Date Title
JP2008305661A (en) Negative electrode material for lithium ion secondary battery, and its manufacturing method
JP5257740B2 (en) Composite carbon material for negative electrode material of lithium secondary battery and method for producing the same
JP5476411B2 (en) Graphite composite particles for non-aqueous secondary battery, negative electrode active material containing the same, negative electrode and non-aqueous secondary battery
JP5413645B2 (en) Method for producing negative electrode material for lithium secondary battery
US8974968B2 (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
JP5268018B2 (en) Non-aqueous secondary battery composite graphite particles, negative electrode material containing the same, negative electrode and non-aqueous secondary battery
JP5062596B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP4252846B2 (en) Lithium secondary battery
JP5407196B2 (en) Non-aqueous secondary battery composite graphite particles, negative electrode material containing the same, negative electrode and non-aqueous secondary battery
JP2008305722A (en) Negative electrode for lithium ion secondary battery material and its manufacturing method
KR102087465B1 (en) Process for manufacturing graphite powder for lithium secondary battery negative electrode material
JP6003886B2 (en) Non-aqueous secondary battery carbon material, negative electrode using the carbon material, and non-aqueous secondary battery
JP7201616B2 (en) Manufacturing method of negative electrode material for lithium ion secondary battery
JP5064728B2 (en) Graphite composite particles for non-aqueous secondary battery, negative electrode active material containing the same, negative electrode and non-aqueous secondary battery
TW201547090A (en) Negative electrode active material for lithium ion secondary battery and manufacturing thereof
KR100752058B1 (en) Anode active material for non-aqueous lithium ion battery
JP2008282547A (en) Anode material for lithium ion secondary battery and its manufacturing method
WO2015041063A1 (en) Composite particles of silicon phase-containing substance and graphite, and method for producing same
JP2018088403A (en) Anode material for nonaqueous secondary battery, anode for nonaqueous secondary battery, and nonaqueous secondary battery
JP2009158105A (en) Method of manufacturing composite carbon material for negative electrode material of lithium ion secondary battery
JP5196365B2 (en) Carbon particle powder for negative electrode material of lithium ion secondary battery, method for producing the same, and negative electrode material of lithium ion secondary battery
JP2013229343A (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
TW202036969A (en) All-solid lithium ion battery negative electrode mixture and all-solid lithium ion battery
JP5229664B2 (en) Composite carbon material for negative electrode material of lithium secondary battery and method for producing the same
JP2013179101A (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery