JP7263284B2 - Manufacturing method of negative electrode material for lithium ion secondary battery - Google Patents

Manufacturing method of negative electrode material for lithium ion secondary battery Download PDF

Info

Publication number
JP7263284B2
JP7263284B2 JP2020052397A JP2020052397A JP7263284B2 JP 7263284 B2 JP7263284 B2 JP 7263284B2 JP 2020052397 A JP2020052397 A JP 2020052397A JP 2020052397 A JP2020052397 A JP 2020052397A JP 7263284 B2 JP7263284 B2 JP 7263284B2
Authority
JP
Japan
Prior art keywords
graphite particles
amorphous carbon
particles
negative electrode
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2020052397A
Other languages
Japanese (ja)
Other versions
JP2021152997A (en
Inventor
健太郎 瀧澤
俊輝 山崎
智洋 建部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2020052397A priority Critical patent/JP7263284B2/en
Priority to PCT/JP2021/004286 priority patent/WO2021192649A1/en
Publication of JP2021152997A publication Critical patent/JP2021152997A/en
Application granted granted Critical
Publication of JP7263284B2 publication Critical patent/JP7263284B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料に関する。 TECHNICAL FIELD The present invention relates to a negative electrode material for a lithium ion secondary battery, a method for producing a negative electrode material for a lithium ion secondary battery, and a material for producing a negative electrode material for a lithium ion secondary battery.

リチウムイオン二次電池は、携帯電話、パソコン等の多くの機器に搭載され、高容量で、高電圧、小型軽量である点から多様な分野で利用されるようになっている。 Lithium ion secondary batteries are installed in many devices such as mobile phones and personal computers, and are being used in various fields because of their high capacity, high voltage, small size and light weight.

近年、リチウムイオン二次電池は、車載用途の需要が急激に高まっており、車載用に求められる特性としては、高容量で、高寿命かつ高入出力であり、かつこれらの特性のバランスに優れていることが求められている。このため、エネルギー密度が高くかつ膨張収縮が小さい負極材が必要とされ、これらの特性を満たす負極材として黒鉛粒子製のものが広く利用されるようになっている。 In recent years, the demand for lithium-ion secondary batteries for automotive applications has increased rapidly, and the characteristics required for automotive applications are high capacity, long life, high input/output, and an excellent balance of these characteristics. It is required that Therefore, a negative electrode material with high energy density and low expansion and contraction is required, and graphite particles are widely used as a negative electrode material that satisfies these characteristics.

黒鉛材料を用いるリチウムイオン二次電池用負極材においては、黒鉛材料の結晶性を高めることにより、放電容量を向上し得ることが知られているが、リチウムイオン二次電池用負極材としては、放電容量が高いことに加えて、高速充放電特性に優れることが要求される。 In negative electrode materials for lithium ion secondary batteries using graphite materials, it is known that the discharge capacity can be improved by increasing the crystallinity of the graphite material. In addition to high discharge capacity, excellent high-speed charge/discharge characteristics are required.

そして、このような黒鉛粒子を用いるリチウムイオン二次電池用負極材の性能向上を目的として、黒鉛粒子を複合化した複合粒子が提案されるようになっている(例えば、特許文献1参照)。 For the purpose of improving the performance of negative electrode materials for lithium ion secondary batteries using such graphite particles, composite particles obtained by combining graphite particles have been proposed (see, for example, Patent Document 1).

特許文献1には、天然黒鉛を球状に賦形した母材100重量部にカーボンブラック2~50重量部及びピッチを混合して天然黒鉛粒子を含浸・被覆して900℃~1500℃で焼成し、表面に微小突起を形成したBET比表面積2m/g以上であるリチウムイオン二次電池用黒鉛粒子(A)が開示されている。特許文献1によれば、単位体積当たりの放電容量が高く、初期充放電時の容量ロスが小さいことに加え、高速充放電特性に優れるリチウムイオン二次電池用負極材を提供することができるとされている。 In Patent Document 1, 2 to 50 parts by weight of carbon black and pitch are mixed with 100 parts by weight of a base material in which natural graphite is formed into a spherical shape, impregnated and coated with natural graphite particles, and fired at 900 ° C. to 1500 ° C. , discloses graphite particles (A) for lithium ion secondary batteries having a BET specific surface area of 2 m 2 /g or more and having fine projections formed on the surface. According to Patent Document 1, it is possible to provide a negative electrode material for a lithium ion secondary battery that has a high discharge capacity per unit volume, a small capacity loss during initial charge and discharge, and excellent high-speed charge and discharge characteristics. It is

特開2011-233541号公報JP 2011-233541 A

しかしながら、本発明者等が検討したところ、特許文献1記載のリチウムイオン二次電池用黒鉛粒子は、リチウムイオン二次電池用負極材として用いた場合に初期効率の低下を招きやすいことが判明した。
これは、黒鉛粒子にカーボンブラックを被覆する際にバインダーとしてピッチを用いているために、カーボンブラック表面に付着したピッチを介して複合黒鉛粒子同士が強固に結合してしまい、焼成後に粉砕して複合黒鉛粒子を得ようとする際に強い衝撃を生じて、得られる複合黒鉛粒子が微粉化し易くなり、比表面積の増加を招き易いためと考えられた。
However, as a result of investigation by the present inventors, it was found that the graphite particles for lithium ion secondary batteries described in Patent Document 1 tend to cause a decrease in initial efficiency when used as a negative electrode material for lithium ion secondary batteries. .
This is because the pitch is used as a binder when the graphite particles are coated with carbon black, so the composite graphite particles are strongly bonded to each other via the pitch adhered to the carbon black surface, and are pulverized after firing. It is thought that this is because a strong impact is generated when trying to obtain composite graphite particles, and the resulting composite graphite particles tend to be pulverized, easily leading to an increase in the specific surface area.

また、従来より、高速充放電特性を向上させ得るリチウムイオン二次電池用負極材が強く望まれるようになっており、特許文献1記載のリチウムイオン二次電池用黒鉛粒子よりも、さらに高速充放電特性に優れるリチウムイオン二次電池用負極材が求められるようになっていた。 Further, there has been a strong demand for a negative electrode material for lithium ion secondary batteries that can improve high-speed charge/discharge characteristics. There has been a demand for a negative electrode material for lithium ion secondary batteries that has excellent discharge characteristics.

従って、本発明は、初期効率および高速充放電特性に優れたリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料を提供することを目的とするものである。 Accordingly, the present invention provides a negative electrode material for a lithium ion secondary battery having excellent initial efficiency and high-speed charge/discharge characteristics, a method for producing the negative electrode material for the lithium ion secondary battery, and a material for producing the negative electrode material for the lithium ion secondary battery. It is intended to

上記技術背景の下、本発明者等が鋭意検討を重ねたところ、黒鉛粒子の表面に樹脂溶液に由来する非晶質炭素化結合材料層を設け、係る非晶質炭素化結合材料層を介して非晶質炭素粒子を所定量固定した複合黒鉛粒子により、比表面積の増加を抑制しつつ、リチウムイオンのパスを増大させて高速放電特性に優れるリチウムイオン二次電池用負極材が得られることを見出し、本知見に基づいて本発明を完成させるに至った。 Under the above technical background, the inventors of the present invention conducted intensive studies and found that an amorphous carbonized binding material layer derived from a resin solution was provided on the surface of graphite particles, and through the amorphous carbonized binding material layer, Composite graphite particles in which a predetermined amount of amorphous carbon particles are fixed by means of the composite graphite particles suppress an increase in the specific surface area and increase the path of lithium ions to obtain a negative electrode material for a lithium ion secondary battery that is excellent in high-speed discharge characteristics. and completed the present invention based on this finding.

すなわち、本発明は
(1)リチウムイオン二次電池用負極材の製造方法であって、
黒鉛粒子と樹脂溶液とをピッチの不存在下に混合することにより、前記黒鉛粒子が樹脂で覆われた樹脂被覆黒鉛粒子を得る被覆工程と、
前記樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を前記黒鉛粒子100.0質量部当たり10.0~40.0質量部混合して、前記樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程と、
前記非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程と
を有する
ことを特徴とするリチウムイオン二次電池用負極材の製造方法、
)前記黒鉛粒子の平均粒子径D50が5.0~30.0μmであり、前記非晶質炭素粒子の平均粒子径が50~300nmである上記()に記載のリチウムイオン二次電池用負極材の製造方法、
(3)得られるリチウムイオン二次電池用負極材が、
黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み前記黒鉛粒子を覆う被覆層とを有する複合黒鉛粒子からなり、
当該複合黒鉛粒子は、表面観察したときに前記非晶質炭素粒子が黒鉛粒子を被覆する被覆率が50%以上である
上記(1)または(2)に記載のリチウムイオン二次電池用負極材の製造方法、
)黒鉛粒子の表面に、ピッチの不存在下に樹脂とともに非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子が、複数結着した結着集合物からなり、
当該結着集合物は、前記黒鉛粒子100.0質量部あたり前記非晶質炭素粒子を10.0~40.0質量部含む
ことを特徴とするリチウムイオン二次電池用負極材の製造材料(以下、適宜、本発明に係るリチウムイオン二次電池用負極材の製造材料1と称する)、
)黒鉛粒子の表面がピッチの炭素化物を含まない非晶質炭素化結合材料と非晶質炭素粒子によって被覆された非晶質炭素粒子被覆黒鉛粒子が、複数固着した固着集合物からなり、
当該固着集合物は、前記黒鉛粒子100.0質量部あたり前記非晶質炭素粒子を10.0~40.0質量部含み、
粉砕前後におけるタップ密度の変化割合を表すタップ密度変化率が10%~
60%のときに、窒素吸着比表面積の変化割合を示す比表面積変化率が20%以下である
ことを特徴とするリチウムイオン二次電池用負極材の製造材料(以下、適宜、本発明に係るリチウムイオン二次電池用負極材の製造材料2と称する)
を提供するものである。
That is , the present invention
(1 ) A method for producing a negative electrode material for a lithium ion secondary battery, comprising:
a coating step of obtaining resin-coated graphite particles in which the graphite particles are coated with a resin by mixing graphite particles and a resin solution in the absence of pitch ;
10.0 to 40.0 parts by mass of amorphous carbon particles per 100.0 parts by mass of the graphite particles are mixed with the resin-coated graphite particles, and the amorphous carbon particles are coated on the surfaces of the resin-coated graphite particles. a step of obtaining amorphous carbon particle-attached graphite particles to which
A method for producing a negative electrode material for a lithium ion secondary battery, characterized by comprising a calcining and carbonizing step of calcining and carbonizing the amorphous carbon particle-attached graphite particles,
( 2 ) The lithium ion secondary battery according to ( 1 ) above, wherein the graphite particles have an average particle size D50 of 5.0 to 30.0 μm, and the amorphous carbon particles have an average particle size of 50 to 300 nm. A method for producing a negative electrode material for
(3) The obtained negative electrode material for lithium ion secondary batteries is
Composed of composite graphite particles having graphite particles and a coating layer containing amorphous carbon particles and an amorphous carbonized binder material and covering the graphite particles,
The composite graphite particles have a coverage of 50% or more in which the amorphous carbon particles cover the graphite particles when the surface is observed.
A method for producing the negative electrode material for a lithium ion secondary battery according to (1) or (2) above,
( 4 ) Amorphous carbon particle-attached graphite particles , in which amorphous carbon particles are attached to the surface of graphite particles together with a resin in the absence of pitch , are composed of a plurality of bonded aggregates,
The bonded aggregate contains 10.0 to 40.0 parts by mass of the amorphous carbon particles per 100.0 parts by mass of the graphite particles, and is characterized in that the material for producing a negative electrode material for a lithium ion secondary battery ( Hereinafter, appropriately referred to as material 1 for producing a negative electrode material for a lithium ion secondary battery according to the present invention),
( 5 ) The surface of the graphite particles is composed of a plurality of adhered aggregates of an amorphous carbonized binder material that does not contain carbonized pitch and amorphous carbon particle-coated graphite particles that are coated with amorphous carbon particles. ,
The fixed aggregate contains 10.0 to 40.0 parts by mass of the amorphous carbon particles per 100.0 parts by mass of the graphite particles,
The tap density change rate, which indicates the change rate of the tap density before and after pulverization, is 10% or more.
A manufacturing material for a negative electrode material for a lithium ion secondary battery, characterized in that the specific surface area change rate, which indicates the change rate of the nitrogen adsorption specific surface area, is 20% or less when the nitrogen adsorption specific surface area is 60% (hereinafter referred to as appropriate according to the present invention Manufacturing material 2 for negative electrode material for lithium ion secondary battery)
It provides

本発明によれば、初期効率および高速充放電特性に優れたリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a negative electrode material for lithium ion secondary batteries having excellent initial efficiency and high-speed charge/discharge characteristics, a method for producing the negative electrode material for lithium ion secondary batteries, and a material for producing the negative electrode material for lithium ion secondary batteries are provided. can do.

本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の形態例における断面の概略図である。1 is a schematic cross-sectional view of an example of the form of composite graphite particles constituting a negative electrode material for a lithium ion secondary battery according to the present invention; FIG. 本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、非晶質炭素粒子が黒鉛粒子を被覆する被覆率の算出方法を説明するための模式図である。FIG. 2 is a schematic diagram for explaining a method of calculating a coverage ratio of amorphous carbon particles covering graphite particles in composite graphite particles constituting a negative electrode material for a lithium ion secondary battery according to the present invention. 本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、非晶質炭素粒子が非晶質炭素化結合材料に埋め込まれた埋没割合の算出方法を説明するための模式図である。FIG. 2 is a schematic diagram for explaining a method of calculating the embedding ratio of amorphous carbon particles embedded in an amorphous carbonized binder material in composite graphite particles constituting a negative electrode material for a lithium ion secondary battery according to the present invention; be. 黒鉛粒子の表面に樹脂とともに非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子が、複数結着した結着集合物を示す断面の概略図である。FIG. 3 is a schematic cross-sectional view showing a bound aggregate in which a plurality of amorphous carbon particle-attached graphite particles, in which amorphous carbon particles are attached to the surfaces of graphite particles together with a resin, are bound.

先ず、本発明に係るリチウムイオン二次電池用負極材について説明する。
本発明に係るリチウムイオン二次電池用負極材は、
黒鉛粒子と樹脂溶液とを混合することにより、前記黒鉛粒子が樹脂で覆われた樹脂被覆黒鉛粒子を得る被覆工程と、
前記樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を前記黒鉛粒子100.0質量部当たり10.0~40.0質量部混合して、前記樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程と、
前記非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程と
を施して得られる、
黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み前記黒鉛粒子を覆う被覆層とを有する複合黒鉛粒子からなり、
当該複合黒鉛粒子は、表面観察したときに前記非晶質炭素粒子が黒鉛粒子を被覆する被覆率が50%以上である
ことを特徴とするものである。
First, the negative electrode material for lithium ion secondary batteries according to the present invention will be described.
The negative electrode material for lithium ion secondary batteries according to the present invention is
a coating step of obtaining resin-coated graphite particles in which the graphite particles are coated with a resin by mixing the graphite particles and a resin solution;
10.0 to 40.0 parts by mass of amorphous carbon particles per 100.0 parts by mass of the graphite particles are mixed with the resin-coated graphite particles, and the amorphous carbon particles are coated on the surfaces of the resin-coated graphite particles. a step of obtaining amorphous carbon particle-attached graphite particles to which
obtained by performing a calcining and carbonizing step of calcining and carbonizing the amorphous carbon particle-attached graphite particles,
Composed of composite graphite particles having graphite particles and a coating layer containing amorphous carbon particles and an amorphous carbonized binder material and covering the graphite particles,
The composite graphite particles are characterized in that the amorphous carbon particles cover the graphite particles with a coverage of 50% or more when the surface is observed.

本発明に係るリチウムイオン二次電池用負極材は、上記被覆工程と、非晶質炭素粒子付着黒鉛粒子を得る工程と、焼成炭化工程とを施して得られる複合黒鉛粒子からなるものであり、これ等の工程の詳細は、後述する本発明に係るリチウムイオン二次電池用負極材の製造方法の説明で詳述するとおりである。
なお、本発明に係るリチウムイオン二次電池用負極材は、上記被覆工程と、非晶質炭素粒子付着黒鉛粒子を得る工程と、焼成炭化工程とを少なくとも行って得られるものであり、本発明の効果を損なわない範囲で、他の工程を行うことは許容される。
The negative electrode material for a lithium ion secondary battery according to the present invention is composed of composite graphite particles obtained by performing the coating step, the step of obtaining amorphous carbon particle-attached graphite particles, and the calcining and carbonizing step, The details of these steps are as described later in the description of the method for producing a negative electrode material for a lithium ion secondary battery according to the present invention.
The negative electrode material for a lithium ion secondary battery according to the present invention is obtained by performing at least the coating step, the step of obtaining amorphous carbon particle-attached graphite particles, and the calcining and carbonizing step. It is permissible to perform other steps as long as the effect of the above is not impaired.

本発明に係るリチウムイオン二次電池用負極材について、適宜、図1~図3を用いて説明する。図1は、本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の一形態例における断面の概略図である。 A negative electrode material for a lithium ion secondary battery according to the present invention will be described as appropriate with reference to FIGS. 1 to 3. FIG. FIG. 1 is a schematic cross-sectional view of one embodiment of composite graphite particles constituting a negative electrode material for a lithium ion secondary battery according to the present invention.

図1中、リチウムイオン二次電池用負極材を構成する複合黒鉛粒子10は、黒鉛粒子1と黒鉛粒子1を覆う被覆層4とからなる。被覆層4は、非晶質炭素粒子3及び非晶質炭素化結合材料2を含み、非晶質炭素粒子3は、通常、非晶質炭素化結合材料2の層に埋め込まれるようにして、リチウムイオン二次電池用負極材を構成する複合黒鉛粒子10に固定されている。また、リチウムイオン二次電池用負極材を構成する複合黒鉛粒子10において、複合黒鉛粒子を構成するほぼ全ての非晶質炭素粒子3が黒鉛粒子1の表面に接している。 In FIG. 1, a composite graphite particle 10 constituting a negative electrode material for a lithium ion secondary battery is composed of graphite particles 1 and a coating layer 4 covering the graphite particles 1 . The coating layer 4 comprises amorphous carbon particles 3 and an amorphous carbonized binder material 2, with the amorphous carbon particles 3 typically embedded in the layer of amorphous carbonized binder material 2, It is fixed to the composite graphite particles 10 constituting the negative electrode material for lithium ion secondary batteries. In the composite graphite particles 10 constituting the negative electrode material for lithium ion secondary batteries, almost all the amorphous carbon particles 3 constituting the composite graphite particles are in contact with the surfaces of the graphite particles 1 .

本発明に係るリチウムイオン二次電池用負極材において、複合黒鉛粒子の芯材となる黒鉛粒子としては、扁平状の黒鉛が球状に凝集した球状の黒鉛粒子を挙げることができる。黒鉛粒子は、天然黒鉛からなるものであってもよいし、人造黒鉛からなるものであってもよい。 In the negative electrode material for a lithium ion secondary battery according to the present invention, the graphite particles serving as the core material of the composite graphite particles include spherical graphite particles in which flat graphite is aggregated into a spherical shape. The graphite particles may consist of natural graphite, or may consist of artificial graphite.

黒鉛粒子の平均格子面間隔d(002)は、0.3360nm以下であり、黒鉛粒子の平均格子面間隔d(002)が0.3360nm以下であることにより、可逆容量を十分に大きくすることができる。黒鉛粒子の平均格子面間隔d(002)は、可逆容量をさらに向上させる上では、0.3358nm以下であることが好ましい。 The average lattice spacing d(002) of the graphite particles is 0.3360 nm or less, and the average lattice spacing d(002) of the graphite particles is 0.3360 nm or less, so that the reversible capacity can be sufficiently increased. can. The average lattice spacing d(002) of graphite particles is preferably 0.3358 nm or less in order to further improve the reversible capacity.

なお、本出願書類において、平均格子面間隔d(002)は、X線回折装置((株)リガク製UltimaIV)を用い、Cu-Kα線をNiフィルターで単色化したX線を使用して、高純度シリコンを標準物質として粉末X線回折法で測定を行い、得られた炭素(002)面の回折ピークの強度と半値幅より、日本学術振興会第117委員会によって定められた学振法に従って求めた値である。 In the present application documents, the average lattice spacing d (002) is measured using an X-ray diffractometer (Ultima IV manufactured by Rigaku Co., Ltd.), using X-rays obtained by monochromaticizing Cu-Kα rays with a Ni filter. Using high-purity silicon as a standard material, X-ray powder diffractometry is performed. From the intensity and half-value width of the diffraction peak of the carbon (002) plane obtained, the Gakushin method established by the 117th committee of the Japan Society for the Promotion of Science It is a value obtained according to

本発明のリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、被覆層は、非晶質炭素粒子及び非晶質炭素化結合材料(非晶質樹脂炭素化物)を含む。
上記非晶質炭素化結合材料は、黒鉛粒子表面を覆う樹脂が焼成され非晶質炭素化されたものであり、平均格子面間隔d(002)が0.3370nm以上であるものを意味する。
In the composite graphite particles constituting the negative electrode material for lithium ion secondary batteries of the present invention, the coating layer includes amorphous carbon particles and an amorphous carbonized binder material (amorphous carbonized resin).
The amorphous carbonized binding material is obtained by baking the resin covering the graphite particle surface to be amorphous carbonized, and has an average lattice spacing d(002) of 0.3370 nm or more.

図1に例示するように、複合黒鉛粒子10において、非晶質炭素粒子3は、通常、その一部が非晶質炭素化結合材料2に埋め込まれるようにして、黒鉛粒子1に固定されている。 As exemplified in FIG. 1, in the composite graphite particles 10, the amorphous carbon particles 3 are usually fixed to the graphite particles 1 such that a portion thereof is embedded in the amorphous carbonized binding material 2. there is

非晶質炭素粒子としては、特に制限されないが、例えば、ファーネスブラック、サーマルブラック等のカーボンブラックが挙げられる。 Examples of amorphous carbon particles include, but are not limited to, carbon black such as furnace black and thermal black.

非晶質炭素粒子の平均格子面間隔d(002)は、0.3370nm以上であり、非晶質炭素粒子の平均格子面間隔d(002)が0.3370nm以上であることにより、粒子表面の反応抵抗が下がり易くなりリチウムイオン二次電池用負極材として使用したときに優れた高速充放電特性を容易に発揮することができる。
非晶質炭素粒子の平均格子面間隔d(002)は、高速充放電性をさらに向上させる上では、0.3400nm以上であることが好ましく、更に高速充放電性能が向上する点で、0.3500nm以上であることがより好ましい。
The average lattice spacing d(002) of the amorphous carbon particles is 0.3370 nm or more, and the average lattice spacing d(002) of the amorphous carbon particles is 0.3370 nm or more. The reaction resistance tends to decrease, and when used as a negative electrode material for a lithium ion secondary battery, excellent high-speed charge/discharge characteristics can be easily exhibited.
The average lattice spacing d(002) of the amorphous carbon particles is preferably 0.3400 nm or more in order to further improve high-speed charge/discharge performance. It is more preferably 3500 nm or more.

複合黒鉛粒子を表面観察したときの非晶質炭素粒子の平均粒子径は、50~300nmが好ましく、表面観察における球状の非晶質炭素材料の平均粒子径が上記範囲にあることにより、不可逆容量の増大を抑制しつつ、リチウムイオン二次電池用負極材として高速充放電特性に優れた複合黒鉛粒子を容易に得ることができる。
複合黒鉛粒子を表面観察したときの非晶質炭素粒子の平均粒子径は、不可逆容量の増大をさらに抑制する上では、100nm以上がより好ましく、また、高速充放電性能をさらに向上させる上では、200nm以下がより好ましい。
The average particle size of the amorphous carbon particles when observing the surface of the composite graphite particles is preferably 50 to 300 nm. It is possible to easily obtain composite graphite particles excellent in high-speed charge/discharge characteristics as a negative electrode material for lithium ion secondary batteries while suppressing an increase in .
The average particle size of the amorphous carbon particles when the surface of the composite graphite particles is observed is more preferably 100 nm or more in order to further suppress the increase in irreversible capacity. 200 nm or less is more preferable.

なお、本出願書類において、複合黒鉛粒子を表面観察したときの非晶質炭素粒子の平均粒子径は、以下のとおり求めた値を意味する。
すなわち、複合黒鉛粒子を走査型電子顕微鏡(SEM、日本電子(株)製JSM7900F)により表面観察し、得られたSEM画像中から複合黒鉛粒子上の非晶質炭素粒子を任意に選択し、画像解析ソフト(三谷商事(株)製WINROOF)を用いて、係る非晶質炭素粒子の外接円の直径を粒子径として算出する。同様にして、SEM画像から任意に1000個以上の非晶質炭素粒子を抽出して各粒子径を求め、それらの算術平均値を表面観察における非晶質炭素粒子の平均粒子径とする。
In addition, in the present application documents, the average particle size of the amorphous carbon particles when observing the surface of the composite graphite particles means the value obtained as follows.
That is, the surface of the composite graphite particles is observed with a scanning electron microscope (SEM, JSM7900F manufactured by JEOL Ltd.), and the amorphous carbon particles on the composite graphite particles are arbitrarily selected from the obtained SEM image. Using analysis software (WINROOF manufactured by Mitani Shoji Co., Ltd.), the diameter of the circumscribed circle of the amorphous carbon particles is calculated as the particle diameter. In the same way, 1000 or more amorphous carbon particles are arbitrarily extracted from the SEM image to determine the particle size of each particle, and the arithmetic average value thereof is taken as the average particle size of the amorphous carbon particles in surface observation.

断面観察における非晶質炭素化結合材料の厚み(後述する図3に符号8で示す非晶質炭素化結合材料2の厚み)は、適宜選定され、被覆粒子の埋め込みを考慮した場合は、15nm~1μmであることが好ましい。断面観察における非晶質炭素化結合材料の厚みが上記範囲内にあることにより、非晶質炭素粒子の固定化および埋め込みが十分になされ、リチウムイオン二次電池用負極材として使用したときに高速充放電特性に優れた複合黒鉛粒を容易に得ることができる。 The thickness of the amorphous carbonized bonding material in cross-sectional observation (the thickness of the amorphous carbonized bonding material 2 indicated by reference numeral 8 in FIG. 3 to be described later) is appropriately selected, and is 15 nm when considering the embedding of the coating particles. It is preferably ˜1 μm. When the thickness of the amorphous carbonized bonding material in cross-sectional observation is within the above range, the amorphous carbon particles are sufficiently fixed and embedded, and when used as a negative electrode material for lithium ion secondary batteries, high speed Composite graphite particles having excellent charge-discharge characteristics can be easily obtained.

なお、本発明のリチウムイオン二次電池用負極材において、断面観察における非晶質炭素化結合材料の厚みは、複合黒鉛粒子のうち任意に抽出した1粒子を、走査型電子顕微鏡(SEM、日本電子(株)製JSM7900F)により断面観察し、得られるSEM画像中の非晶質炭素化結合材料の断面の厚みを、任意に10か所測定して、それらの平均を計算し、その値を非晶質炭素化結合材料の断面の厚みとする。
そして、複合黒鉛粒子を任意に少なくとも10粒子抽出し、各粒子について、非晶質炭素化結合材料の断面の厚みを求め、それらの厚みを平均し、断面観察における非晶質炭素化結合材料の断面の厚みとする。
In the lithium ion secondary battery negative electrode material of the present invention, the thickness of the amorphous carbonized bonding material in cross-sectional observation was determined by scanning one particle arbitrarily extracted from the composite graphite particles with a scanning electron microscope (SEM, Japan). Observe the cross section with JSM7900F manufactured by Denshi Co., Ltd.), measure the thickness of the cross section of the amorphous carbonized bonding material in the obtained SEM image at arbitrarily 10 points, calculate their average, and calculate the value. It is the thickness of the cross section of the amorphous carbonized bonding material.
Then, at least 10 composite graphite particles are arbitrarily extracted, the thickness of the cross section of the amorphous carbonized bonding material is obtained for each particle, the thicknesses are averaged, and the thickness of the amorphous carbonized bonding material in cross section observation is obtained. Let it be the thickness of the cross section.

本発明に係るリチウムイオン二次電池用負極材は、黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み前記黒鉛粒子を覆う被覆層とを有する複合黒鉛粒子からなる。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子は、表面観察したときに前記非晶質炭素粒子が黒鉛粒子を被覆する被覆率が、50%以上である。表面観察したときにおける非晶質炭素粒子の被覆率が50%以上であることにより、複合黒鉛粒子をリチウムイオン二次電池用負極材として用いたときに優れた高速充放電特性を容易に達成することができる。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、表面観察したときに前記非晶質炭素粒子が黒鉛粒子を被覆する被覆率は、高速充放電性をさらに向上する上では70%以上であることがより好ましく、高速充放電性を特に向上する上では80%以上であることがさらに好ましい。
上記被覆率の上限は特に制限されないが、通常、90%以下である。
A negative electrode material for a lithium ion secondary battery according to the present invention comprises composite graphite particles having graphite particles and a coating layer containing amorphous carbon particles and an amorphous carbonized binder material and covering the graphite particles.
In the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention, the coverage of the graphite particles with the amorphous carbon particles is 50% or more when the surface is observed. Since the coverage of the amorphous carbon particles is 50% or more when the surface is observed, when the composite graphite particles are used as a negative electrode material for a lithium ion secondary battery, excellent high-speed charge/discharge characteristics can be easily achieved. be able to.
In the composite graphite particles constituting the negative electrode material for lithium ion secondary batteries according to the present invention, the coverage rate at which the amorphous carbon particles cover the graphite particles when the surface is observed further improves the high-speed charge and discharge properties. is more preferably 70% or more, and more preferably 80% or more for particularly improving high-speed charge/discharge properties.
Although the upper limit of the coverage is not particularly limited, it is usually 90% or less.

本出願書類において、複合黒鉛粒子を表面観察したときに非晶質炭素粒子が黒鉛粒子を被覆する被覆率の算出方法を、図2を用いて説明すると以下のとおりとなる。
図2(A)は、図1に示すリチウムイオン二次電池用負極材を構成する複合黒鉛粒子10の表面付近を走査型電子顕微鏡(SEM、日本電子(株)製JSM7900F)により観察したときの模式図であり、図2(A)に例示するように、SEM観察画像において、50個以上の任意の非晶質炭素粒子3が含まれるように枠線(破線)9で囲んで観察範囲とする。
図2(B)は、上記図2(A)に示す観察範囲内における非晶質炭素粒子3の合計面積α(斜線で示す面積)と、観察範囲全体の面積β(枠線9内の面積)を示すものである。
上記各面積を画像解析ソフトウェア(三谷商事(株)製WINROOF)を用いて算出した上で、各観察箇所における非晶質炭素粒子の被覆率を下記式(1)により求める。
各観察箇所における非晶質炭素粒子の被覆率(%)=(観察範囲内における非晶質炭素粒子の合計面積α/観察範囲全体の面積β)×100 (1)
そして、上記複合黒鉛粒子の表面の走査型電子顕微鏡(SEM)による観察を10箇所について行って各観察箇所における非晶質炭素粒子の被覆率を求め、得られた被覆率の算術平均値を、表面観察したときに非晶質炭素粒子が黒鉛粒子を被覆する被覆率とする。
In the present application documents, the method of calculating the coverage ratio of the amorphous carbon particles covering the graphite particles when observing the surface of the composite graphite particles will be described with reference to FIG. 2 as follows.
FIG. 2(A) shows the vicinity of the surface of the composite graphite particles 10 constituting the negative electrode material for the lithium ion secondary battery shown in FIG. It is a schematic diagram, and as exemplified in FIG. 2(A), in the SEM observation image, the observation range is surrounded by a frame (dashed line) 9 so that 50 or more arbitrary amorphous carbon particles 3 are included. do.
FIG. 2(B) shows the total area α of the amorphous carbon particles 3 within the observation range shown in FIG. ).
After calculating each of the above areas using image analysis software (WINROOF manufactured by Mitani Shoji Co., Ltd.), the coverage of the amorphous carbon particles at each observation point is determined by the following formula (1).
Coverage (%) of amorphous carbon particles at each observation point = (total area α of amorphous carbon particles within observation range/area β of entire observation range) × 100 (1)
Then, the surface of the composite graphite particles was observed at 10 locations with a scanning electron microscope (SEM) to determine the coverage of the amorphous carbon particles at each observation location. It is defined as a coverage ratio at which the amorphous carbon particles cover the graphite particles when the surface is observed.

図3は、図1に示すリチウムイオン二次電池用負極材の表面付近の拡大図であり、図3に例示するように、本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、被覆層は、通常、黒鉛粒子1の表面に層状に設けられた非晶質炭素化結合材料2に非晶質炭素粒子3の一部が埋設された状態になっている。 FIG. 3 is an enlarged view of the vicinity of the surface of the negative electrode material for lithium ion secondary batteries shown in FIG. In the particles, the coating layer is usually in a state in which a portion of the amorphous carbon particles 3 is embedded in the amorphous carbonized binder material 2 provided in a layer on the surface of the graphite particles 1 .

本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、当該複合黒鉛粒子を断面観察したときにおける、非晶質炭素粒子が非晶質炭素化結合材料に埋設された割合である埋没割合は、50~80%が好ましく、複合黒鉛粒子を断面観察したときの非晶質炭素粒子の埋没割合が上記範囲内にあることにより、優れた高速充放電特性を容易に発揮することができる。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、当該複合黒鉛粒子を断面観察したときにおける、非晶質炭素粒子が非晶質炭素化結合材料に埋設された割合である埋没割合は、高速充放電特性を向上する上で、60~80%がより好ましい。
In the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention, the ratio of the amorphous carbon particles embedded in the amorphous carbonized binding material when observing the cross section of the composite graphite particles A certain embedding ratio is preferably 50 to 80%, and when the composite graphite particles are cross-sectionally observed, the embedding ratio of the amorphous carbon particles is within the above range, so that excellent high-speed charge-discharge characteristics can be easily exhibited. can be done.
In the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention, the ratio of the amorphous carbon particles embedded in the amorphous carbonized binding material when observing the cross section of the composite graphite particles A certain embedding ratio is more preferably 60 to 80% in order to improve high-speed charge/discharge characteristics.

本出願書類において、複合黒鉛粒子を断面観察したときにおける、非晶質炭素粒子が非晶質炭素化結合材料に埋め混まれた割合である埋没割合の算出方法を、図3を用いて説明すると以下のとおりとなる。
すなわち、図3に示すように、リチウムイオン二次電池用負極材を構成する複合黒鉛粒子10を走査型電子顕微鏡(SEM、日本電子(株)製JSM7900F)により断面観察した場合において、非晶質炭素粒子3の輪郭と非晶質炭素化結合材料2の外側の輪郭との交点を、交点6a、交点6bとする。交点6aと交点6b結んだ線よりも黒鉛粒子1側にある部分(図3(A)の斜線部)が、非晶質炭素粒子3の埋没部分5である。そして、非晶質炭素粒子3の埋没部分5(図3(A)の斜線部)の面積γおよび非晶質炭素粒子3の全体7(図3(B)の斜線部)の面積δを、画像解析ソフトウェア(三谷商事(株)製WINROOF)を用いて算出した上で、各非晶質炭素粒子の埋没割合(%)を下記式(2)により求める。
断面観察による各非晶質炭素粒子の埋没割合(%)=(非晶質炭素粒子の埋没部分の面積γ/非晶質炭素粒子の全体の面積δ)×100 (2)
そして、上記断面の走査型電子顕微鏡(SEM)観察による各非晶質炭素粒子の埋没割合の算出を、10箇所について行って、その算術平均値を非晶質炭素粒子の埋没割合とする。
In this application document, the method for calculating the embedding ratio, which is the ratio of the amorphous carbon particles buried in the amorphous carbonized binder material, when observing the cross section of the composite graphite particles, will be described with reference to FIG. It is as follows.
That is, as shown in FIG. 3, when the cross section of the composite graphite particles 10 constituting the negative electrode material for a lithium ion secondary battery is observed with a scanning electron microscope (SEM, JSM7900F manufactured by JEOL Ltd.), amorphous The intersections of the outline of the carbon particles 3 and the outer outline of the amorphous carbonized bonding material 2 are defined as intersections 6a and 6b. A portion (hatched portion in FIG. 3A) on the graphite particle 1 side of the line connecting the intersection points 6a and 6b is the buried portion 5 of the amorphous carbon particles 3. As shown in FIG. Then, the area γ of the buried portion 5 of the amorphous carbon particles 3 (hatched area in FIG. 3A) and the area δ of the entire amorphous carbon particles 3 7 (hatched area in FIG. 3B) are After calculating using image analysis software (WINROOF manufactured by Mitani Shoji Co., Ltd.), the embedding ratio (%) of each amorphous carbon particle is determined by the following formula (2).
Buried ratio (%) of each amorphous carbon particle by cross-sectional observation = (Area γ of the buried portion of the amorphous carbon particle/Overall area δ of the amorphous carbon particle) × 100 (2)
Then, the embedding ratio of each amorphous carbon particle is calculated for 10 points by observing the cross section with a scanning electron microscope (SEM), and the arithmetic average value is taken as the embedding ratio of the amorphous carbon particle.

本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、黒鉛粒子100.0質量部に対する非晶質炭素粒子の割合は、好ましくは10.0~40.0質量部である。非晶質炭素粒子の割合が黒鉛粒子100質量部に対し10.0~40.0質量部であることにより、初回充電時の不可逆容量の増大を抑制しつつ、高速充放電特性を容易に向上することができる。黒鉛粒子100.0質量部に対する非晶質炭素粒子の割合は高速充放電性をさらに向上する上で、20.0質量部以上がより好ましく、また、被覆されずに単離する粒子の発生を抑制し、初回充電時における不可逆容量の増大を抑制する上では、30.0質量部以下が好ましい。 In the composite graphite particles constituting the negative electrode material for lithium ion secondary batteries according to the present invention, the ratio of the amorphous carbon particles to 100.0 parts by mass of the graphite particles is preferably 10.0 to 40.0 parts by mass. . Since the proportion of amorphous carbon particles is 10.0 to 40.0 parts by mass with respect to 100 parts by mass of graphite particles, it is possible to easily improve high-speed charge/discharge characteristics while suppressing an increase in irreversible capacity during the initial charge. can do. The ratio of the amorphous carbon particles to 100.0 parts by mass of the graphite particles is more preferably 20.0 parts by mass or more in order to further improve the high-speed charge/discharge property. 30.0 parts by mass or less is preferable in order to suppress the increase in the irreversible capacity during the initial charge.

本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子は、タップ密度が0.60g/cm以上であることが好ましく、タップ密度が0.60g/cm以上であることにより、微粒状物が少なく、大多数の粒子が比較的狭い粒度範囲内にあり、このために比表面積の増加を抑制して優れた初期効率を容易に発揮することができる。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子のタップ密度は、初期効率をさらに向上する上では、0.70g/cm以上がより好ましく、初期効率を特に向上する上では、0.80g/cm以上がさらに好ましい。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子のタップ密度の上限は特に制限されないが、上記タップ密度は、粒子間導電パスの確保及び浸液性の確保が可能となる点で、1.20g/cm以下が好ましい。
The composite graphite particles constituting the negative electrode material for lithium ion secondary batteries according to the present invention preferably have a tap density of 0.60 g/cm 3 or more. , there are few fine particles and most of the particles are within a relatively narrow particle size range, so that an increase in the specific surface area is suppressed and excellent initial efficiency can be easily exhibited.
The tap density of the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention is more preferably 0.70 g / cm 3 or more in order to further improve the initial efficiency. Then, 0.80 g/cm 3 or more is more preferable.
The upper limit of the tap density of the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention is not particularly limited, but the above tap density makes it possible to secure inter-particle conductive paths and liquid immersion. 1.20 g/cm 3 or less is preferable.

なお、本出願書類において、タップ密度は、25mlメスシリンダーに黒鉛粒子粉末5gを投入し、筒井理化学器械(株)製のタッピング式粉体減少度測定器を用いてギャップ10mmにて1000回タッピングを繰り返した後の見かけ体積の値と、メスシリンダーに投入した複合黒鉛粒子粉末の質量から、下記式(3)により算出した値を意味する。
タップ密度(g/cm)=メスシリンダーに投入した粉末の質量(g)/1000回タッピングを繰り返した後の見かけ体積の値(cm) (3)
In addition, in this application document, the tap density is measured by putting 5 g of graphite particle powder into a 25 ml graduated cylinder and tapping 1000 times with a gap of 10 mm using a tapping type powder reduction degree measuring instrument manufactured by Tsutsui Rikagaku Kikai Co., Ltd. It means a value calculated by the following formula (3) from the value of the apparent volume after repetition and the mass of the composite graphite particle powder put into the graduated cylinder.
Tap density (g/cm 3 ) = mass (g) of powder put into graduated cylinder/value of apparent volume after repeating tapping 1000 times (cm 3 ) (3)

レーザー回折粒度分布における複合黒鉛粒子の平均粒子径D50 は、5.0~30.0μmが好ましく、レーザー回折粒度分布における複合黒鉛粒子の平均粒子径D50 が5.0~30.0μmであることにより、反応比表面積が増加して反応抵抗が下がり優れた高速充放電特性を発揮するとともに、黒鉛粒子内のリチウムイオンの移動速度を向上させ易くなる。
レーザー回折粒度分布における複合黒鉛粒子の平均粒子径D50 は、初回充電時における不可逆容量の増大を抑制する上では7.0μm以上がより好ましく、また、高速充放電性能をさらに向上する上では25.0μm以下がより好ましく、高速充放電性能を特に向上する上では20.0μm以下がさらに好ましい。
The average particle diameter D50 of the composite graphite particles in the laser diffraction particle size distribution is preferably 5.0 to 30.0 μm, and the average particle diameter D50 of the composite graphite particles in the laser diffraction particle size distribution is 5.0 to 30.0 μm. As a result, the reaction specific surface area increases, the reaction resistance decreases, and excellent high-speed charge/discharge characteristics are exhibited, and the moving speed of lithium ions in the graphite particles can be easily improved.
The average particle diameter D50 of the composite graphite particles in the laser diffraction particle size distribution is more preferably 7.0 μm or more in order to suppress the increase in irreversible capacity during the initial charge, and is 25 in order to further improve the high-speed charge/discharge performance. 0 μm or less is more preferable, and 20.0 μm or less is even more preferable for particularly improving high-speed charging/discharging performance.

本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の粒度分布指数SPAN((D90-D10)/D50)は2.0未満が好ましく、粒度分布指数SPAN((D90-D10)/D50)が2.0未満であることにより、微粒状物が少なく、大多数の粒子が比較的狭い粒度範囲内にあることから、比表面積の増加を抑制してリチウムイオン二次電池において優れた初期効率を容易に発揮することができる。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の粒度分布指数SPAN((D90-D10)/D50)は、比表面積の増加を抑制してリチウムイオン二次電池においてさらに優れた初期効率を容易に発揮し得ることから、1.0未満がより好ましい。
The particle size distribution index SPAN ((D 90 −D 10 )/D 50 ) of the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention is preferably less than 2.0, and the particle size distribution index SPAN ((D 90 −D 10 )/D 50 ) is less than 2.0, the number of fine particles is small, and the majority of the particles are within a relatively narrow particle size range. Excellent initial efficiency can be easily exhibited in the ion secondary battery.
The particle size distribution index SPAN ((D 90 −D 10 )/D 50 ) of the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention suppresses an increase in the specific surface area and is a lithium ion secondary battery. It is more preferably less than 1.0 because it can easily exhibit even better initial efficiency at .

なお、本出願書類において、粉末又は粒子のD10、D50(平均粒子径)およびD90は、レーザー回折粒度分布測定装置((株)堀場製作所製LA-960S)を用いて体積基準積算粒度分布を測定したときの積算粒度が、それぞれ、10%、50%および90%の粒径を意味する。 In addition, in this application document, D 10 , D 50 (average particle diameter) and D 90 of powder or particles are measured using a laser diffraction particle size distribution analyzer (LA-960S manufactured by Horiba, Ltd.). The cumulative particle size when measuring the distribution means the particle size of 10%, 50% and 90% respectively.

本発明のリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の窒素吸着比表面積(NSA)は、3.0 ~7.0m/gが好ましく、複合黒鉛粒子の窒素吸着比表面積が上記範囲内にあることにより、リチウムイオン二次電池用負極材として使用したときに初期効率の低下を容易に抑制することができる。
本発明のリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の窒素吸着比表面積(NSA)は、初期効率の低下をさらに抑制する上では3.0~5.0m/gがより好ましい。
The nitrogen adsorption specific surface area (N 2 SA) of the composite graphite particles constituting the negative electrode material for a lithium ion secondary battery of the present invention is preferably 3.0 to 7.0 m 2 /g, and the nitrogen adsorption specific surface area of the composite graphite particles is within the above range, it is possible to easily suppress a decrease in initial efficiency when used as a negative electrode material for a lithium ion secondary battery.
The nitrogen adsorption specific surface area (N 2 SA) of the composite graphite particles constituting the negative electrode material for lithium ion secondary batteries of the present invention is 3.0 to 5.0 m 2 /g in order to further suppress the decrease in initial efficiency. more preferred.

なお、本出願書類において、粉末又は粒子の窒素吸着比表面積(NSA)は、全自動表面積測定装置((株)島津製作所製ジェミニV)を用い、窒素吸着等温線における相対圧0.05~0.2の範囲におけるBET多点法により算出される値を意味する。 In addition, in the present application documents, the nitrogen adsorption specific surface area (N 2 SA) of the powder or particles is measured using a fully automatic surface area measuring device (Gemini V manufactured by Shimadzu Corporation), and the relative pressure in the nitrogen adsorption isotherm is 0.05. It means a value calculated by the BET multipoint method in the range of ~0.2.

本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子のララマンR(ラマンスペクトル強度比R)は、0.3以上が好ましく、リチウムイオン二次電池用負極材を構成する複合黒鉛粒子のラマンRが上記範囲内にあることにより、粒子表面が十分に非晶質化されているため、反応抵抗が低く、リチウムイオン二次電池用負極材の高速充放電特性を容易に向上させることができる。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子のララマンR(ラマンスペクトル強度比R)は、高速充放電性能をさらに向上する上では、0.4以上がより好ましい。
The Raraman R (Raman spectrum intensity ratio R) of the composite graphite particles constituting the negative electrode material for lithium ion secondary batteries according to the present invention is preferably 0.3 or more, and the composite graphite constituting the negative electrode material for lithium ion secondary batteries When the Raman R of the particles is within the above range, the particle surfaces are sufficiently amorphous, so the reaction resistance is low and the high-speed charge/discharge characteristics of the negative electrode material for lithium ion secondary batteries are easily improved. be able to.
The Raraman R (Raman spectrum intensity ratio R) of the composite graphite particles constituting the negative electrode material for lithium ion secondary batteries according to the present invention is more preferably 0.4 or more in order to further improve the high-speed charge/discharge performance.

なお、本出願書類において、ラマンRは、波長532nmのNd/YAGレーザーを備えたラマン分光分析器(堀場製作所社製、HR800 )で測定し、表層での結晶欠陥及び積層構造の不整合等による結晶構造の乱れに帰属する1360cm-1近傍のスペクトルI 1360を、炭素六角網面内の格子震動に相当するE2g型振動に帰属する1580cm-1近傍のスペクトルI 1580で除し、ラマンR=(I 1360/I 1580)により算出したときに、100μmの照射面積にて10点以上測定した平均値を意味する。 In the present application documents, Raman R is measured with a Raman spectrometer (HR800, manufactured by Horiba, Ltd.) equipped with a Nd/YAG laser with a wavelength of 532 nm, and is due to crystal defects in the surface layer and mismatching of the lamination structure. The spectrum I 1360 near 1360 cm −1 attributed to the disorder of the crystal structure is divided by the spectrum I 1580 near 1580 cm −1 attributed to the E2g-type vibration corresponding to the lattice vibration in the carbon hexagonal plane, Raman R=( I 1360/I 1580) means the average value measured at 10 or more points in an irradiation area of 100 μm 2 .

本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子は、平均格子面間隔d(002)が0.3360nm以下であることが好ましく、複合黒鉛粒子の平均格子面間隔d(002)が0.3360nm以下であることにより、リチウムイオン二次電池用負極材として使用したときに可逆容量を十分に向上させることができる。
本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子において、平均格子面間隔d(002)は、可逆容量をさらに向上する上では、0.3358nm以下であることがより好ましい。
The composite graphite particles constituting the negative electrode material for a lithium ion secondary battery according to the present invention preferably have an average lattice spacing d (002) of 0.3360 nm or less, and the average lattice spacing d (002 ) is 0.3360 nm or less, the reversible capacity can be sufficiently improved when used as a negative electrode material for a lithium ion secondary battery.
In the composite graphite particles constituting the negative electrode material for lithium ion secondary batteries according to the present invention, the average lattice spacing d(002) is more preferably 0.3358 nm or less in order to further improve the reversible capacity.

なお、本出願書類において、平均格子面間隔d(002)は、X線回折装置((株)リガク製UltimaIV)を用い、Cu-Kα線をNiフィルターで単色化したX線を使用して、高純度シリコンを標準物質として粉末X線回折法で測定を行い、得られた炭素(002)面の回折ピークの強度と半値幅より、日本学術振興会第117委員会によって定められた学振法に従って求めた値を意味する。 In the present application documents, the average lattice spacing d (002) is measured using an X-ray diffractometer (Ultima IV manufactured by Rigaku Co., Ltd.), using X-rays obtained by monochromaticizing Cu-Kα rays with a Ni filter. Using high-purity silicon as a standard material, X-ray powder diffractometry is performed. From the intensity and half-value width of the diffraction peak of the carbon (002) plane obtained, the Gakushin method established by the 117th committee of the Japan Society for the Promotion of Science means the value determined according to

本発明に係るリチウムイオン二次電池用負極材は、以下に詳述する本発明に係る製造方法により好適に製造することができる。 The negative electrode material for lithium ion secondary batteries according to the present invention can be suitably produced by the production method according to the present invention, which will be described in detail below.

本発明によれば、初期効率および高速充放電特性に優れたリチウムイオン二次電池用負極材を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the negative electrode material for lithium ion secondary batteries which were excellent in the initial efficiency and the high-speed charging/discharging characteristic can be provided.

次に、本発明に係るリチウムイオン二次電池用負極材の製造方法について説明する。
本発明に係るリチウムイオン二次電池用負極材の製造方法は、黒鉛粒子と樹脂溶液とを混合することにより、前記黒鉛粒子が樹脂で覆われた樹脂被覆黒鉛粒子を得る被覆工程と、
前記樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を前記黒鉛粒子100.0質量部当たり10.0~40.0質量部混合して、前記樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程と、
前記非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程と
を有する
ことを特徴とするものである。
Next, a method for producing a negative electrode material for lithium ion secondary batteries according to the present invention will be described.
A method for producing a negative electrode material for a lithium ion secondary battery according to the present invention includes a coating step of mixing graphite particles and a resin solution to obtain resin-coated graphite particles in which the graphite particles are coated with a resin;
10.0 to 40.0 parts by mass of amorphous carbon particles per 100.0 parts by mass of the graphite particles are mixed with the resin-coated graphite particles, and the amorphous carbon particles are coated on the surfaces of the resin-coated graphite particles. a step of obtaining amorphous carbon particle-attached graphite particles to which
and a calcining and carbonizing step of calcining and carbonizing the amorphous carbon particle-attached graphite particles.

本発明に係る製造方法においては、被覆工程において、黒鉛粒子と樹脂溶液とを混合することにより、上記黒鉛粒子が樹脂で覆われた樹脂被覆黒鉛粒子を得る。 In the production method according to the present invention, resin-coated graphite particles in which the graphite particles are coated with the resin are obtained by mixing the graphite particles and the resin solution in the coating step.

被覆工程に係る黒鉛粒子としては、特に制限されないが、扁平状の黒鉛が球状に凝集したものが好ましい。黒鉛粒子は、天然黒鉛からなるものであってもよいし、人造黒鉛からなるものであってもよい。 The graphite particles used in the coating step are not particularly limited, but are preferably spherical aggregates of flat graphite. The graphite particles may consist of natural graphite, or may consist of artificial graphite.

本発明に係る製造方法において、黒鉛粒子の平均粒子径D50は、5.0~30.0μmが好ましく、黒鉛粒子の平均粒子径D50が上記範囲内にあることにより、反応比表面積が増加して反応抵抗が低下し易くなるとともに、黒鉛粒子内のリチウムイオンの移動速度も向上し易くなる。
本発明に係る製造方法において、黒鉛粒子の平均粒子径D50は、初回充電時における不可逆容量の増大を抑制する上では、7.0μm以上がより好ましく、また、高速充放電性能をさらに向上する上では、25.0μm以下がより好ましく、高速充放電性能を特に向上する上では、20.0μm以下がさらに好ましい。
In the production method according to the present invention, the average particle diameter D50 of the graphite particles is preferably 5.0 to 30.0 μm, and when the average particle diameter D50 of the graphite particles is within the above range, the reaction specific surface area is increased. As a result, the reaction resistance tends to decrease, and the movement speed of lithium ions in the graphite particles tends to increase.
In the production method according to the present invention, the average particle diameter D50 of the graphite particles is more preferably 7.0 μm or more in order to suppress the increase in irreversible capacity during the initial charge, and further improves the high-speed charge-discharge performance. Above, 25.0 μm or less is more preferable, and 20.0 μm or less is even more preferable in order to particularly improve high-speed charging/discharging performance.

本発明に係る製造方法において、黒鉛粒子の平均格子面間隔d(002)は、0.3360nm以下であり、黒鉛粒子の平均格子面間隔d(002)が上記範囲内にあることにより、可逆容量を十分に大きくすることができる。
本発明に係る製造方法において、黒鉛粒子の平均格子面間隔d(002)は、可逆容量をさらに向上する上では、0.3358nm以下が好ましい。
In the production method according to the present invention, the average lattice spacing d(002) of the graphite particles is 0.3360 nm or less, and the average lattice spacing d(002) of the graphite particles is within the above range. can be made large enough.
In the production method according to the present invention, the average lattice spacing d(002) of the graphite particles is preferably 0.3358 nm or less in order to further improve the reversible capacity.

被覆工程で用いられる樹脂溶液を構成する樹脂は、結合剤として使用されるものであり、焼成炭化工程において炭化し非晶質の炭素材料となるものであれば、特に制限されない。
上記樹脂としては、例えば、ポリ塩化ビニル樹脂やアクリル樹脂などの熱可塑性樹脂、フェノール樹脂や尿素樹脂などの熱硬化性樹脂等の合成樹脂から選ばれる一種以上を挙げることができる。
The resin constituting the resin solution used in the coating step is used as a binder, and is not particularly limited as long as it is carbonized in the calcining and carbonizing step to form an amorphous carbon material.
Examples of the resin include one or more selected from thermoplastic resins such as polyvinyl chloride resins and acrylic resins, and synthetic resins such as thermosetting resins such as phenol resins and urea resins.

被覆工程で用いられる樹脂溶液を構成する溶剤としては、特に制限されず、水、ジエチレングリコール等のアルコール類、またはそれらの混合物から選ばれる一種以上を挙げることができる。 The solvent constituting the resin solution used in the coating step is not particularly limited, and may be one or more selected from water, alcohols such as diethylene glycol, and mixtures thereof.

上記樹脂溶液を構成する樹脂濃度は、後述する焼成炭化処理後において、黒鉛粒子100.0質量部あたり、4.0~16.0質量部の非晶質炭素化結合材料を生成する濃度であることが好ましく、上記樹脂溶液を構成する樹脂濃度が上記範囲内にあることにより、黒鉛粒子に対し、非晶質炭素粒子を所望の付着力で付着させることができる。
上記樹脂溶液を構成する樹脂濃度は、後述する焼成炭化処理後において、晶質炭素粒子の付着率を所望範囲に制御する上では、黒鉛粒子100.0質量部あたり、6.0~14.0質量部の非晶質炭素化結合材料を生成する濃度であることがより好ましく、非晶質炭素粒子の付着率をさらに所望範囲に制御する上では、黒鉛粒子100.0質量部あたり、8.0~12.0質量部の非晶質炭素化結合材料を生成する濃度であることがさらに好ましい。
The resin concentration constituting the resin solution is a concentration that produces 4.0 to 16.0 parts by mass of an amorphous carbonized binding material per 100.0 parts by mass of graphite particles after the calcination and carbonization treatment described later. When the concentration of the resin constituting the resin solution is within the above range, the amorphous carbon particles can be adhered to the graphite particles with a desired adhesion force.
The concentration of the resin constituting the resin solution is 6.0 to 14.0 parts per 100.0 parts by mass of the graphite particles in order to control the deposition rate of the amorphous carbon particles within the desired range after the calcination and carbonization treatment described later. It is more preferable that the concentration is such that 0 parts by mass of the amorphous carbonized binding material is produced. In order to further control the deposition rate of the amorphous carbon particles within the desired range, 8 parts by mass of the graphite particles per 100.0 parts by mass of the graphite particles More preferably, the concentration produces 0.0 to 12.0 parts by weight of the amorphous carbonized bonding material.

上記樹脂溶液の粘度は、0.005~40Pa・sが好ましく、上記樹脂溶液を構成する樹脂粘度が上記範囲内にあることにより、黒鉛粒子に対し、非晶性炭素粒子を均一に所望の付着力で付着させることができる。上記樹脂溶液の粘度は、非晶質炭素粒子の付着率を所望範囲に制御する上で、0.3~10Pa・sがより好ましい。
なお、本出願書類において、樹脂溶液の粘度は、回転式b型粘度計により測定される値を意味する。
The viscosity of the resin solution is preferably 0.005 to 40 Pa s, and the viscosity of the resin constituting the resin solution is within the above range, so that the amorphous carbon particles are uniformly attached to the graphite particles in a desired manner. It can be attached by force. The viscosity of the resin solution is more preferably 0.3 to 10 Pa·s in order to control the deposition rate of the amorphous carbon particles within the desired range.
In addition, in this application document, the viscosity of the resin solution means a value measured by a rotary b-type viscometer.

被覆工程において、黒鉛粒子に混合、接触させる樹脂の量は、黒鉛粒子100.0質量部あたり、10.0~60.0質量部であることが好ましく、被覆工程において黒鉛粒子に混合、接触させる樹脂の量が上記範囲内にあることにより、被覆粒子との結着面積が増大させて結着力を増加させるとともに、均一な被覆が可能となる。
被覆工程において、黒鉛粒子に混合、接触させる樹脂の量は、黒鉛粒子100.0質量部あたり、さらに均一な被覆を可能とする上では10.0~50.0質量部であることがより好ましく、特に均一な被覆を可能とする上では10.0~40.0質量部であることがさらに好ましい。
In the coating step, the amount of the resin mixed and brought into contact with the graphite particles is preferably 10.0 to 60.0 parts by mass per 100.0 parts by mass of the graphite particles, and mixed and brought into contact with the graphite particles in the coating step. When the amount of the resin is within the above range, the binding area with the coated particles is increased, the binding force is increased, and uniform coating becomes possible.
In the coating step, the amount of the resin mixed and brought into contact with the graphite particles is more preferably 10.0 to 50.0 parts by mass per 100.0 parts by mass of the graphite particles in order to enable more uniform coating. In particular, it is more preferably 10.0 to 40.0 parts by mass to enable uniform coating.

被覆工程において、黒鉛粒子と樹脂溶液を混合する方法としては、特に制限されず、ニーダー、トリミクス、ハイスピードミキサー、ヘンシェルミキサー等の混合機を用いて混合する方法が挙げられる。 In the coating step, the method of mixing the graphite particles and the resin solution is not particularly limited, and examples thereof include a method of mixing using a mixer such as a kneader, trimix, high speed mixer, Henschel mixer and the like.

被覆工程において、黒鉛粒子と樹脂溶液を混合するときの混合温度は、特に限定されないが、樹脂の粘度が0.005~40Pa・sとなるよう調整することが好ましい。 In the coating step, the mixing temperature for mixing the graphite particles and the resin solution is not particularly limited, but it is preferable to adjust the viscosity of the resin to 0.005 to 40 Pa·s.

本発明に係る製造方法においては、被覆工程において、黒鉛粒子に樹脂溶液を混合、接触させて樹脂を付着することにより、後述する非晶質炭素粒子を固定する結合剤(バインダー)とする。
このとき、樹脂溶液の濃度、粘度ないしは使用量を適宜調整することにより、黒鉛粒子や後述する非晶質炭素粒子への付着量や、黒鉛粒子表面における樹脂層の厚さを容易に制御することができ、このために、焼成炭化して得られる塊状物を粉砕処理して複合黒鉛粒子を得る際に、衝撃を緩和して、微粉状物の生成を抑制し、粒度分布の狭い粒度の揃った複合黒鉛粒子を容易に得ることができる。
このため、本発明に係る製造方法によれば、リチウムイオン二次電池用負極材として使用したときに優れた初期効率を発揮する複合黒鉛粒子を容易に製造することができる。
In the manufacturing method according to the present invention, in the coating step, the graphite particles are mixed with a resin solution and brought into contact with each other to adhere the resin, thereby forming a binder for fixing the amorphous carbon particles to be described later.
At this time, by appropriately adjusting the concentration, viscosity, or amount used of the resin solution, the amount of adhesion to the graphite particles and the amorphous carbon particles described later, and the thickness of the resin layer on the graphite particle surface can be easily controlled. For this reason, when the agglomerates obtained by calcination and carbonization are pulverized to obtain composite graphite particles, the impact is reduced, the generation of fine powder is suppressed, and the particle size distribution is narrow and uniform. Composite graphite particles can be easily obtained.
Therefore, according to the production method of the present invention, it is possible to easily produce composite graphite particles that exhibit excellent initial efficiency when used as a negative electrode material for lithium ion secondary batteries.

本発明に係る製造方法においては、被覆工程で得られた樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を前記黒鉛粒子100.0質量部当たり10.0~40.0質量部混合して、前記樹脂被覆黒鉛粒子の表面に非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る。 In the production method according to the present invention, the resin-coated graphite particles obtained in the coating step are mixed with 10.0 to 40.0 parts by mass of amorphous carbon particles per 100.0 parts by mass of the graphite particles, Amorphous carbon particle-attached graphite particles are obtained in which amorphous carbon particles are attached to the surfaces of the resin-coated graphite particles.

上記非晶質炭素粒子としては、特に制限されないが、例えば、ファーネスブラック、サーマルブラック等のカーボンブラックから選ばれる一種以上を挙げることができる。 The amorphous carbon particles are not particularly limited, but may include, for example, one or more selected from carbon black such as furnace black and thermal black.

本発明に係る製造方法において、非晶質炭素粒子の平均粒子径は、50~300nmであることが好ましく、非晶質炭素粒子の平均粒子径が上記範囲内にあることにより、不可逆容量の増大を抑制しつつ、リチウムイオン二次電池用負極材として高速充放電特性に優れた複合黒鉛粒子を容易に得ることができる。
本発明に係る製造方法において、非晶質炭素粒子の平均粒子径は、不可逆容量の増大をさらに抑制する上では、100nm以上がより好ましく、また、高速充放電性能をさらに向上させる上では、200nm以下がより好ましい。
In the production method according to the present invention, the average particle size of the amorphous carbon particles is preferably 50 to 300 nm, and the average particle size of the amorphous carbon particles is within the above range, thereby increasing the irreversible capacity. can be easily obtained as a negative electrode material for a lithium ion secondary battery while suppressing the high-speed charge/discharge characteristics.
In the production method according to the present invention, the average particle size of the amorphous carbon particles is more preferably 100 nm or more in order to further suppress the increase in irreversible capacity, and is 200 nm in order to further improve the high-speed charge/discharge performance. The following are more preferred.

なお、本出願書類において、本発明に係る製造方法で使用する非晶質炭素粒子の平均粒子径は、透過型電子顕微鏡(TEM、(株)日立製作所製H-7650型透過型電子顕微鏡)を用いて各非晶質炭素粒子を観察したときに、画像解析ソフト(三谷商事(株)製WINROOF)により、各非晶質炭素粒子の外接円の直径を各々の粒子径として、10,000個の非晶質炭素粒子の粒子径を求めたときの算術平均値を意味する。 In the present application documents, the average particle size of the amorphous carbon particles used in the production method according to the present invention is determined by a transmission electron microscope (TEM, H-7650 type transmission electron microscope manufactured by Hitachi, Ltd.). When each amorphous carbon particle was observed using the image analysis software (WINROOF manufactured by Mitani Shoji Co., Ltd.), the diameter of the circumscribed circle of each amorphous carbon particle was defined as the particle diameter of each 10,000 particles. means the arithmetic mean value when the particle diameter of the amorphous carbon particles is determined.

本発明に係る製造方法において、非晶質炭素粒子の平均格子面間隔d(002)は、0.3370nm以上であり、非晶質炭素粒子の平均格子面間隔d(002)が上記範囲内にあることにより、粒子表面の反応抵抗が低下し易くなり優れた高速充放電特性を発揮し易くなる。
本発明に係る製造方法において、非晶質炭素粒子の平均格子面間隔d(002)は、高速充放電特性を向上する上で、0.3400nm以上であることが好ましく、さらに高速充放電性能を向上し得る点で、0.3500nm以上であることがより好ましい。
In the production method according to the present invention, the average lattice spacing d(002) of the amorphous carbon particles is 0.3370 nm or more, and the average lattice spacing d(002) of the amorphous carbon particles is within the above range. With this, the reaction resistance of the particle surface is likely to be lowered, and excellent high-speed charge/discharge characteristics are likely to be exhibited.
In the production method according to the present invention, the average lattice spacing d(002) of the amorphous carbon particles is preferably 0.3400 nm or more in order to improve high-speed charge/discharge characteristics. It is more preferably 0.3500 nm or more because it can be improved.

本発明に係る製造方法において、非晶質炭素粒子がカーボンブラックである場合、カーボンブラックのDBP吸油量は、300ml/100g以下が好ましく、カーボンブラックのDBP吸油量が300ml/100g以下であることにより、得られる複合黒鉛粒子の比表面積の増大を抑制し、リチウムイオン二次電池用負極材として使用したときに初回充電時における不可逆容量の増大を容易に抑制することができる。
本発明に係る製造方法において、非晶質炭素粒子がカーボンブラックである場合、カーボンブラックのDBP吸油量は、不可逆容量の増大をさらに抑制する上で250ml/100g以下がより好ましく、不可逆容量の増大を特に抑制する上で200ml/100g以下がさらに好ましい。
In the production method according to the present invention, when the amorphous carbon particles are carbon black, the DBP oil absorption of the carbon black is preferably 300 ml/100 g or less, and the DBP oil absorption of the carbon black is 300 ml/100 g or less. Therefore, it is possible to suppress an increase in the specific surface area of the obtained composite graphite particles and easily suppress an increase in the irreversible capacity during the initial charge when used as a negative electrode material for a lithium ion secondary battery.
In the production method according to the present invention, when the amorphous carbon particles are carbon black, the DBP oil absorption of the carbon black is more preferably 250 ml/100 g or less in order to further suppress the increase in the irreversible capacity, and the increase in the irreversible capacity. is more preferably 200 ml/100 g or less in order to particularly suppress the

本発明に係る製造方法においては、樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を、(樹脂被覆黒鉛粒子を構成する)黒鉛粒子100.0質量部当たり、10.0~40.0質量部混合する。
非晶質炭素粒子の混合量が上記範囲内にあることにより、得られる複合黒鉛粒子をリチウムイオン二次電池用負極材として使用したときに、初回充電時の不可逆容量の増大を抑制しつつ、高速充放電性能を容易に向上させることができる。
本発明に係る製造方法においては、樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を、(樹脂被覆黒鉛粒子を構成する)黒鉛粒子100.0質量部に対する、非晶質炭素粒子の混合量は、高速充放電性をさらに向上する上では、20.0質量部以上がより好ましく、また、初回充電時における不可逆容量の増大を抑制する上では、30.0質量部以下がより好ましい。
In the production method according to the present invention, 10.0 to 40.0 parts by mass of the amorphous carbon particles per 100.0 parts by mass of the graphite particles (constituting the resin-coated graphite particles) are added to the resin-coated graphite particles. Mix.
When the mixed amount of the amorphous carbon particles is within the above range, when the obtained composite graphite particles are used as a negative electrode material for a lithium ion secondary battery, an increase in the irreversible capacity during the initial charge is suppressed, High-speed charge/discharge performance can be easily improved.
In the production method according to the present invention, the amorphous carbon particles are mixed with the resin-coated graphite particles. 20.0 parts by mass or more is more preferable for further improving high-speed charge/discharge properties, and 30.0 parts by mass or less is more preferable for suppressing an increase in irreversible capacity during the initial charge.

本発明に係る製造方法においては、樹脂被覆黒鉛粒子に対し非晶質炭素粒子を混合することにより、樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る。 In the production method according to the present invention, by mixing amorphous carbon particles with resin-coated graphite particles, amorphous carbon particle-attached graphite particles in which the amorphous carbon particles are attached to the surface of the resin-coated graphite particles are obtained. get

樹脂被覆黒鉛粒子に対し、特定の非晶質炭素粒子を混合するときの処理温度は、特に限定されないが、樹脂の粘度が0.005~40Pa・sとなるよう調整することが好ましい。 The treatment temperature when the specific amorphous carbon particles are mixed with the resin-coated graphite particles is not particularly limited, but it is preferable to adjust the viscosity of the resin to 0.005 to 40 Pa·s.

樹脂被覆黒鉛粒子に対し非晶質炭素粒子を混合する工程において、混合手段としては、ニーダー、トリミクス、ハイスピードミキサー、ヘンシェルミキサー等から選ばれる一種以上の混合装置を挙げることができる。
本発明に係る製造方法において、樹脂被覆黒鉛粒子と非晶質炭素粒子との混合を、ヘンシェルミキサー(三井鉱山(株)製FM20C)を用いて行う場合、例えば、樹脂被覆黒鉛粒子を収容したヘンシェルミキサーの槽内にカーボンブラック等の非晶質炭素粒子を投入し、所定の温度に到達した後、周速30m/sで15分間処理をする。樹脂被覆黒鉛粒子を構成する黒鉛粒子100質量部に対する非晶質炭素粒子が30質量部を超える場合は、非晶質炭素粒子を3分割して順次で投入することにより、得られる複合黒鉛粒子における非晶質炭素粒子の被覆の均一性を容易に向上させることができる。
In the step of mixing resin-coated graphite particles with amorphous carbon particles, the mixing means may include one or more mixing devices selected from kneaders, trimixes, high-speed mixers, Henschel mixers, and the like.
In the production method according to the present invention, when the resin-coated graphite particles and the amorphous carbon particles are mixed using a Henschel mixer (FM20C manufactured by Mitsui Mining Co., Ltd.), for example, a Henschel mixer containing the resin-coated graphite particles is used. Amorphous carbon particles such as carbon black are put into the tank of the mixer, and after reaching a predetermined temperature, they are treated at a peripheral speed of 30 m/s for 15 minutes. When the amount of the amorphous carbon particles exceeds 30 parts by mass with respect to 100 parts by mass of the graphite particles constituting the resin-coated graphite particles, the amorphous carbon particles are divided into three parts and added in order to obtain composite graphite particles. The uniformity of coating of amorphous carbon particles can be easily improved.

本発明に係る製造方法においては、樹脂被覆黒鉛粒子の表面に非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子に対し、これを焼成炭化する焼成炭化工程を施す。 In the production method according to the present invention, the amorphous carbon particle-attached graphite particles, which are resin-coated graphite particles with amorphous carbon particles attached to their surfaces, are subjected to a sintering and carbonizing step of sintering and carbonizing.

非晶質炭素粒子付着黒鉛粒子を焼成炭化する温度は、800℃以上が好ましく、焼成炭化温度が上記範囲内にあることにより、特にカーボンブラック等に含まれる未燃分を十分に除去することができる。非晶質炭素粒子付着黒鉛粒子を焼成炭化する温度は、未燃焼分を除去する上では1000℃以上がより好ましい。
焼成炭化する温度の上限は特に制限されないが、非晶質炭素粒子付着黒鉛粒子を焼成炭化する温度は、3000℃以下が好ましく、高速充放電特性が向上する点で2000℃以下がより好ましい。
The temperature at which the amorphous carbon particle-attached graphite particles are calcined and carbonized is preferably 800° C. or higher. When the calcined carbonization temperature is within the above range, it is possible to sufficiently remove unburned components contained in carbon black and the like. can. The temperature for calcining and carbonizing the amorphous carbon particle-attached graphite particles is more preferably 1000° C. or higher in order to remove the unburned portion.
Although the upper limit of the temperature for calcination and carbonization is not particularly limited, the temperature for calcination and carbonization of the amorphous carbon particle-attached graphite particles is preferably 3000° C. or less, and more preferably 2000° C. or less from the viewpoint of improving high-speed charge/discharge characteristics.

非晶質炭素粒子付着黒鉛粒子を焼成炭化する時間は、1時間以上であることが好ましく、焼成炭化時間が1時間以上であることにより、特にカーボンブラック等に含まれる未燃分を十分に除去することができる。
非晶質炭素粒子付着黒鉛粒子を焼成炭化する時間は、未燃焼分を除去する上では2時間以上であることがより好ましい。
The time for calcination and carbonization of the amorphous carbon particle-attached graphite particles is preferably 1 hour or more, and the calcination and carbonization time of 1 hour or more sufficiently removes particularly unburned components contained in carbon black and the like. can do.
The time for calcining and carbonizing the amorphous carbon particle-attached graphite particles is more preferably 2 hours or more in order to remove the unburned portion.

非晶質炭素粒子付着黒鉛粒子を焼成炭化するときの雰囲気は、窒素ガス雰囲気、アルゴンガス雰囲気等の不活性ガス雰囲気である。 The atmosphere in which the amorphous carbon particle-attached graphite particles are calcined and carbonized is an inert gas atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere.

本発明に係るリチウムイオン二次電池用負極材の製造方法では、炭化焼成工程を行って得られる焼成炭化物に粉砕処理を施し、必要に応じて分級処理等を施してもよい。 In the method for producing a negative electrode material for a lithium ion secondary battery according to the present invention, the calcined carbide obtained by performing the carbonization calcination step may be subjected to a pulverization treatment and, if necessary, a classification treatment or the like.

本発明に係る製造方法によって得られるリチウムイオン二次電池用負極材としては、本発明に係るリチウムイオン二次電池用負極材を挙げることができる。 Examples of the negative electrode material for lithium ion secondary batteries obtained by the manufacturing method according to the present invention include the negative electrode material for lithium ion secondary batteries according to the present invention.

本発明によれば、初期効率および高速充放電特性に優れたリチウムイオン二次電池用負極材の製造方法を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the negative electrode material for lithium ion secondary batteries which were excellent in the initial efficiency and the high-speed charging/discharging characteristic can be provided.

次に、本発明に係るリチウムイオン二次電池用負極材の製造材料について説明する。
本発明に係るリチウムイオン二次電池用負極材の製造材料1は、
黒鉛粒子の表面に樹脂とともに非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子が、複数結着した結着集合物からなり、
当該結着集合物は、前記黒鉛粒子100.0質量部あたり前記非晶質炭素粒子を10.0~40.0質量部含む
ことを特徴とするものである。
Next, materials for manufacturing the negative electrode material for lithium ion secondary batteries according to the present invention will be described.
The manufacturing material 1 of the negative electrode material for lithium ion secondary batteries according to the present invention is
The amorphous carbon particle-attached graphite particles, in which the amorphous carbon particles are attached to the surface of the graphite particles together with the resin, are composed of a bound aggregate in which a plurality of the particles are bound,
The bound aggregate contains 10.0 to 40.0 parts by mass of the amorphous carbon particles per 100.0 parts by mass of the graphite particles.

本発明に係るリチウムイオン二次電池用負極材の製造材料1は、本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の製造するための中間体と称すべきものであり、本発明に係る製造方法において、樹脂被覆黒鉛粒子に対し非晶質炭素粒子を混合して、樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程を施すことにより得られるものに相当する。
このため、本発明に係るリチウムイオン二次電池用負極材の製造材料1において、結着集合物を構成する、黒鉛粒子、非晶質炭素粒子および樹脂の詳細は、本発明に係る製造方法の説明で述べた内容と同様である。
また、本発明に係るリチウムイオン二次電池用負極材の製造材料1は、本発明に係る製造方法において述べたように、樹脂被覆黒鉛粒子に対し非晶質炭素粒子を混合して、樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程を施すことにより製造することができ、その詳細は本発明に係る製造方法の説明で述べたとおりである。
The manufacturing material 1 of the negative electrode material for lithium ion secondary batteries according to the present invention should be called an intermediate for manufacturing the composite graphite particles constituting the negative electrode material for lithium ion secondary batteries according to the present invention. In the production method according to the present invention, resin-coated graphite particles are mixed with amorphous carbon particles to obtain amorphous carbon particle-attached graphite particles in which the amorphous carbon particles are attached to the surfaces of resin-coated graphite particles. It corresponds to the one obtained by performing the process.
For this reason, the details of the graphite particles, the amorphous carbon particles and the resin that constitute the bound aggregates in the production material 1 of the negative electrode material for lithium ion secondary batteries according to the present invention are described in the production method according to the present invention. The contents are the same as those described in the description.
In addition, as described in the production method of the present invention, the material 1 for producing a negative electrode material for a lithium ion secondary battery according to the present invention is obtained by mixing resin-coated graphite particles with amorphous carbon particles and obtaining a resin-coated material. It can be produced by performing a step of obtaining amorphous carbon particle-attached graphite particles in which the amorphous carbon particles are attached to the surface of graphite particles, and the details are as described in the explanation of the production method according to the present invention. is.

本発明に係るリチウムイオン二次電池用負極材の製造材料1において、結着集合物は、黒鉛粒子100.0質量部あたり、非晶質炭素粒子を10.0~40.0質量部含むものであり、非晶質炭素粒子の割合が黒鉛粒子100.0質量部に対し10.0~40.0質量部であることにより、得られるリチウムイオン二次電池用負極材において、初回充電時における不可逆容量の増大を抑制しつつ、高速充放電特性を容易に向上することができる。黒鉛粒子100.0質量部に対する非晶質炭素粒子の割合は、高速充放電性をさらに向上させる上では、20.0質量部以上がより好ましく、また、被覆されずに単離する粒子の発生を抑制し、初回充電時における不可逆容量の増大を抑制する上では、30.0質量部以下がより好ましい。 In the manufacturing material 1 of the negative electrode material for a lithium ion secondary battery according to the present invention, the bound aggregate contains 10.0 to 40.0 parts by mass of amorphous carbon particles per 100.0 parts by mass of graphite particles. and the ratio of the amorphous carbon particles is 10.0 to 40.0 parts by mass with respect to 100.0 parts by mass of the graphite particles, and in the negative electrode material for the lithium ion secondary battery obtained, at the time of the first charge High-speed charge/discharge characteristics can be easily improved while suppressing an increase in irreversible capacity. The ratio of the amorphous carbon particles to 100.0 parts by mass of the graphite particles is more preferably 20.0 parts by mass or more in order to further improve the high-speed charge/discharge property. is more preferably 30.0 parts by mass or less in order to suppress the increase in the irreversible capacity during the initial charge.

図4は、黒鉛粒子1の表面に樹脂とともに非晶質炭素粒子3が付着した非晶質炭素粒子付着黒鉛粒子20が、複数結着した結着集合物30を示す断面の概略図である。
図4に例示するように、本発明に係るリチウムイオン二次電池用負極材の製造材料1は、非晶質炭素粒子付着黒鉛粒子20が複数結着した結着集合物30からなり、各非晶質炭素粒子付着黒鉛粒子20は、互いに膜状の樹脂を介して適度な結着力で結着している。
このため、上記結着集合物を焼成炭化処理し、次いで粉砕する際に、粒子間に余分な衝撃力を加えることなく粉砕処理し得ることから、粒度分布が狭く粒度の揃った複合黒鉛粒子を好適に調製することができ、かつ、得られる複合黒鉛粒子の比表面積の増大を抑制することができる。このためにリチウムイオン二次電池用負極材として使用したときに、優れた初期効率を発揮し得る複合黒鉛粒子を提供することができる。
FIG. 4 is a schematic cross-sectional view showing a bound aggregate 30 in which a plurality of amorphous carbon particle-attached graphite particles 20, in which amorphous carbon particles 3 are attached to the surfaces of graphite particles 1 together with a resin, are bound.
As illustrated in FIG. 4, a manufacturing material 1 for a negative electrode material for a lithium ion secondary battery according to the present invention is composed of a bound aggregate 30 in which a plurality of amorphous carbon particle-attached graphite particles 20 are bound. The crystalline carbon particle-attached graphite particles 20 are bound to each other with an appropriate binding force through the film-like resin.
For this reason, when the above-mentioned bound aggregates are calcined and carbonized and then pulverized, the pulverization process can be performed without applying excessive impact force between particles, so that composite graphite particles having a narrow particle size distribution and uniform particle size can be obtained. It can be suitably prepared, and an increase in the specific surface area of the resulting composite graphite particles can be suppressed. For this reason, it is possible to provide composite graphite particles that can exhibit excellent initial efficiency when used as a negative electrode material for lithium ion secondary batteries.

また、本発明に係るリチウムイオン二次電池用負極材の製造材料2は、黒鉛粒子の表面が非晶質炭素化結合材料と非晶質炭素粒子によって被覆された非晶質炭素粒子被覆黒鉛粒子が、複数固着した固着集合物からなり、
当該固着集合物は、前記黒鉛粒子100.0質量部あたり前記非晶質炭素粒子を10.0~40.0質量部含み、
粉砕前後におけるタップ密度の変化割合を表すタップ密度変化率が10%~60%のときに、窒素吸着比表面積の変化割合を示す比表面積変化率が20%以下である
ことを特徴とするものである。
Further, the material 2 for producing a negative electrode material for a lithium ion secondary battery according to the present invention is amorphous carbon particle-coated graphite particles in which the surfaces of graphite particles are coated with an amorphous carbonized binding material and amorphous carbon particles. consists of a plurality of fixed aggregates,
The fixed aggregate contains 10.0 to 40.0 parts by mass of the amorphous carbon particles per 100.0 parts by mass of the graphite particles,
The specific surface area change rate, which indicates the change rate of the nitrogen adsorption specific surface area, is 20% or less when the tap density change rate, which indicates the change rate of the tap density before and after pulverization, is 10% to 60%. be.

本発明に係るリチウムイオン二次電池用負極材の製造材料2も、本発明に係るリチウムイオン二次電池用負極材を構成する複合黒鉛粒子の製造するための中間体と称すべきものであり、本発明に係る製造方法において、固着集合物は、非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程を施すことにより得られるものに相当する。
このため、本発明に係るリチウムイオン二次電池用負極材の製造材料2において、固着集合物の原料となる、黒鉛粒子、非晶質炭素粒子および樹脂の詳細は、本発明に係る製造方法の説明で述べた内容と同様である。
また、本発明に係るリチウムイオン二次電池用負極材の製造材料2は、本発明に係る製造方法において述べたように、非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程を施すことにより製造することができ、その詳細は本発明に係る製造方法の説明で述べたとおりである。
The production material 2 of the negative electrode material for lithium ion secondary batteries according to the present invention should also be called an intermediate for producing the composite graphite particles constituting the negative electrode material for lithium ion secondary batteries according to the present invention. In the production method according to the present invention, the adhered aggregate corresponds to that obtained by performing a calcining and carbonizing step of calcining and carbonizing the amorphous carbon particle-attached graphite particles.
For this reason, in the manufacturing material 2 of the negative electrode material for a lithium ion secondary battery according to the present invention, the details of the graphite particles, the amorphous carbon particles and the resin, which are the raw materials of the adhered aggregates, are described in the manufacturing method according to the present invention. The contents are the same as those described in the description.
In addition, the production material 2 of the negative electrode material for a lithium ion secondary battery according to the present invention is subjected to a calcination and carbonization step of calcining and carbonizing the amorphous carbon particle-attached graphite particles as described in the production method according to the present invention. The details are as described in the description of the manufacturing method according to the present invention.

本発明に係るリチウムイオン二次電池用負極材の製造材料2において、固着集合物は、黒鉛粒子100.0質量部あたり、非晶質炭素粒子を10.0~40.0質量部含むものであり、固着集合物が、非晶質炭素粒子の割合が黒鉛粒子100.0質量部に対し10.0~40.0質量部含むことにより、得られるリチウムイオン二次電池用負極材において、初回充電時における不可逆容量の増大を抑制しつつ、高速充放電特性を容易に向上することができる。固着集合物を構成する黒鉛粒子100.0質量部に対する非晶質炭素粒子の割合は、高速充放電性をさらに向上する上では、20.0質量部以上がより好ましく、また、被覆されずに単離する粒子の発生を抑制し、初回充電時における不可逆容量の増大を抑制する上では、30.0質量部以下である。 In the manufacturing material 2 of the negative electrode material for lithium ion secondary batteries according to the present invention, the adhered aggregates contain 10.0 to 40.0 parts by mass of amorphous carbon particles per 100.0 parts by mass of graphite particles. In the negative electrode material for a lithium ion secondary battery obtained by the fixed aggregate containing 10.0 to 40.0 parts by mass of amorphous carbon particles with respect to 100.0 parts by mass of graphite particles, the first time It is possible to easily improve high-speed charge/discharge characteristics while suppressing an increase in irreversible capacity during charging. The ratio of the amorphous carbon particles to 100.0 parts by mass of the graphite particles constituting the adhered aggregates is more preferably 20.0 parts by mass or more in order to further improve the high-speed charge/discharge property. It is 30.0 parts by mass or less in order to suppress the generation of isolated particles and to suppress the increase in irreversible capacity during the initial charge.

本発明に係るリチウムイオン二次電池用負極材の製造材料2は、固着集合物の粉砕前後におけるタップ密度の変化割合を表すタップ密度変化率が10%~60%のときに、窒素吸着比表面積の変化割合を示す比表面積変化率が20%以下であることを特徴とするものである。 The manufacturing material 2 of the negative electrode material for lithium ion secondary batteries according to the present invention has a nitrogen adsorption specific surface area when the tap density change rate, which represents the change rate of the tap density before and after pulverization of the adhered aggregate, is 10% to 60%. It is characterized in that the specific surface area change rate, which indicates the change rate of , is 20% or less.

本発明に係るリチウムイオン二次電池用負極材の製造材料2は、固着集合物の粉砕前後におけるタップ密度の変化割合を表すタップ密度変化率が10%~60%のときに、窒素吸着比表面積の変化割合を示す比表面積変化率が、20%以下であり、固着集合物の粉砕前後における比表面積変化率が上記範囲内にあることにより、衝撃粉砕時における複合黒鉛粒子の損傷を低減し、比表面積の増大を抑制することで、初回充電時における不可逆容量の増大を容易に低減することができる。
本発明に係るリチウムイオン二次電池用負極材の製造材料2は、固着集合物の粉砕前後におけるタップ密度の変化割合を表すタップ密度変化率が10%~60%のときに、窒素吸着比表面積の変化割合を示す比表面積変化率が、不可逆容量の増大をさらに抑制する上で15%以下であることが好ましく、不可逆容量の増大を特に抑制する上で10%以下であることがより好ましい。
The manufacturing material 2 of the negative electrode material for lithium ion secondary batteries according to the present invention has a nitrogen adsorption specific surface area when the tap density change rate, which represents the change rate of the tap density before and after pulverization of the adhered aggregate, is 10% to 60%. is 20% or less, and the specific surface area change rate before and after pulverization of the adhered aggregates is within the above range, thereby reducing damage to the composite graphite particles during impact pulverization, By suppressing the increase in the specific surface area, it is possible to easily reduce the increase in the irreversible capacity during the initial charge.
The manufacturing material 2 of the negative electrode material for lithium ion secondary batteries according to the present invention has a nitrogen adsorption specific surface area when the tap density change rate, which represents the change rate of the tap density before and after pulverization of the adhered aggregate, is 10% to 60%. is preferably 15% or less for further suppressing an increase in irreversible capacity, and more preferably 10% or less for particularly suppressing an increase in irreversible capacity.

なお、本出願書類において、上記タップ密度変化率及び比表面積変化率を算出する際の固着集合物の粉砕処理は、日清エンジニアリング(株)製のスーパーローター(SR25)を用いて4000rpmの回転数で処理することにより行われる。
また、粉砕前後のタップ密度および窒素吸着比表面積は、上述した方法により測定される値を意味し、タップ密度変化率および比表面積変化率は各々下記式(4)および(5)により算出される値を意味する。
タップ密度変化率=(粉砕後のタップ密度-粉砕前のタップ密度)/(粉砕前のタップ密度)×100(4)
比表面積変化率=(粉砕後の窒素吸着比表面積-粉砕前の窒素吸着比表面積)/(粉砕前の窒素吸着比表面積)×100 (5)
In addition, in the present application documents, the pulverization of the adhered aggregates when calculating the tap density change rate and the specific surface area change rate is performed at a rotation speed of 4000 rpm using a super rotor (SR25) manufactured by Nisshin Engineering Co., Ltd. This is done by processing with
In addition, the tap density and nitrogen adsorption specific surface area before and after pulverization mean the values measured by the above-described method, and the tap density change rate and specific surface area change rate are calculated by the following formulas (4) and (5), respectively. means value.
Tap density change rate = (tap density after pulverization - tap density before pulverization) / (tap density before pulverization) x 100 (4)
Specific surface area change rate = (nitrogen adsorption specific surface area after pulverization - nitrogen adsorption specific surface area before pulverization) / (nitrogen adsorption specific surface area before pulverization) x 100 (5)

本発明に係るリチウムイオン二次電池用負極材の製造材料2は、非晶質炭素粒子被覆黒鉛粒子が複数固着した固着集合物からなり、各非晶質炭素粒子被覆黒鉛粒子は、互いに膜状の非晶質炭素化結合材料を介して適度な固着力で固着している。
このため、上記固着集合物を粉砕する際に、粒子間に余分な衝撃力を加えることなく粉砕処理し得ることから、粒度分布が狭く粒度の揃った複合黒鉛粒子を好適に調製することができ、タップ密度変化率が10%~60%である場合においても比表面積変化率を20%以下に抑制することができる。
従って、本発明に係るリチウムイオン二次電池用負極材の製造材料2をリチウムイオン二次電池用負極材として使用したときに、優れた初期効率を発揮することができる。
The manufacturing material 2 of the negative electrode material for a lithium ion secondary battery according to the present invention is composed of a fixed aggregate in which a plurality of amorphous carbon particle-coated graphite particles are fixed, and each amorphous carbon particle-coated graphite particle is formed into a film. It is fixed with a moderate fixing force through the amorphous carbonized bonding material.
Therefore, when pulverizing the adhered aggregates, the pulverization process can be performed without applying excessive impact force between the particles, so that composite graphite particles with a narrow particle size distribution and uniform particle size can be suitably prepared. Even when the tap density change rate is 10% to 60%, the specific surface area change rate can be suppressed to 20% or less.
Therefore, when the manufacturing material 2 of the negative electrode material for lithium ion secondary batteries according to the present invention is used as the negative electrode material for lithium ion secondary batteries, excellent initial efficiency can be exhibited.

本発明によれば、初期効率および高速充放電特性に優れたリチウムイオン二次電池用負極材の製造材料を提供することができる。 ADVANTAGE OF THE INVENTION According to this invention, the manufacturing material of the negative electrode material for lithium ion secondary batteries excellent in initial efficiency and high-speed charging/discharging characteristics can be provided.

(実施例1)
天然黒鉛(平均粒子径(D50)10.4μm、BET吸着比表面積7.4m/g、タップ密度0.76g/cm)100.0質量部と、樹脂水溶液(住友ベークライト(株)製PR-56265:水=4:1(質量比))を20.0質量部とを、それぞれ混合機(三井鉱山(株)製ヘンシェルミキサー)に投入し、40℃で15分間混合した。次いで、40℃のまま、上記天然黒鉛100.0質量部に対し、平均粒子径が122nmのファーネスブラック(東海カーボン(株)製S-TA)20.0質量部を投入し、さらに10分間混合した。
得られた粉体を窒素ガス雰囲気下、1000℃で2時間焼成炭化した。次いで、得られた焼成粉を粉砕機(日清エンジニアリング(株)製スーパーローター:SR25)を用いて4000rpmで粉砕した後、分級装置(装置名:篩分級、目開き45μm)で分級して、篩下分として複合黒鉛粒子(被覆率90%、タップ密度0.96g/cm、平均粒子径D5012.5μm、粒度分布指数SPAN0.9、窒素吸着比表面積4.9m/g)からなるリチウムイオン二次電池用負極材を得た。
上記粉砕処理前後におけるタップ密度変化率は20%、比表面積変化率は 13%であった。
得られたリチウムイオン二次電池用負極材の分析結果及び評価結果を表1に示す。
(Example 1)
100.0 parts by mass of natural graphite (average particle diameter (D 50 ) 10.4 μm, BET adsorption specific surface area 7.4 m 2 /g, tap density 0.76 g/cm 3 ), and an aqueous resin solution (manufactured by Sumitomo Bakelite Co., Ltd. PR-56265: water = 4:1 (mass ratio)) and 20.0 parts by mass were put into a mixer (Henschel mixer manufactured by Mitsui Mining Co., Ltd.) and mixed at 40°C for 15 minutes. Next, at 40 ° C., 20.0 parts by mass of furnace black (S-TA manufactured by Tokai Carbon Co., Ltd.) with an average particle size of 122 nm is added to 100.0 parts by mass of the natural graphite, and mixed for 10 minutes. bottom.
The obtained powder was calcined and carbonized at 1000° C. for 2 hours in a nitrogen gas atmosphere. Next, after pulverizing the obtained fired powder at 4000 rpm using a pulverizer (super rotor: SR25 manufactured by Nisshin Engineering Co., Ltd.), classifying with a classifier (device name: sieve classification, mesh size 45 μm), Composite graphite particles (90% coverage, tap density 0.96 g/cm 3 , average particle diameter D 50 12.5 µm, particle size distribution index SPAN 0.9, nitrogen adsorption specific surface area 4.9 m 2 /g) as under-sieves A negative electrode material for a lithium ion secondary battery was obtained.
The tap density change rate before and after the pulverization treatment was 20%, and the specific surface area change rate was 13%.
Table 1 shows the analysis results and evaluation results of the obtained negative electrode material for lithium ion secondary batteries.

(実施例2)
実施例1において、樹脂水溶液(住友ベークライト(株)製PR-56265:水=4:1(質量比))を樹脂水溶液(住友ベークライト(株)製PR-56265:水=1:1(質量比))に変更した以外は、実施例1と同様にして、複合黒鉛粒子(被覆率85%、タップ密度0.93g/cm、平均粒子径D5012.4μm、粒度分布指数SPAN0.9、窒素吸着比表面積4.3m/g)からなるリチウムイオン二次電池用負極材を得た。
なお、粉砕前後におけるタップ密度変化率は21%、比表面積変化率は7%であった。
(Example 2)
In Example 1, an aqueous resin solution (PR-56265 manufactured by Sumitomo Bakelite Co., Ltd.: water = 4: 1 (mass ratio)) was changed to an aqueous resin solution (PR-56265 manufactured by Sumitomo Bakelite Co., Ltd.: water = 1: 1 (mass ratio )) in the same manner as in Example 1 except that the A negative electrode material for a lithium ion secondary battery having a nitrogen adsorption specific surface area of 4.3 m 2 /g) was obtained.
The tap density change rate before and after pulverization was 21%, and the specific surface area change rate was 7%.

(比較例1)
実施例1において、樹脂水溶液(住友ベークライト(株)製PR-56265:水=4:1(質量比))20.0質量部に代えてピッチ40.0質量部を用いた以外は、実施例1と同様にして、複合黒鉛粒子(被覆率75%、タップ密度0.91g/cm、平均粒子径D5017.1μm、粒度分布指数SPAN1.0、窒素吸着比表面積6.1m/g)からなるリチウムイオン二次電池用負極材を得た。
(Comparative example 1)
In Example 1, except that 40.0 parts by mass of pitch was used instead of 20.0 parts by mass of the resin aqueous solution (PR-56265: water = 4:1 (mass ratio) manufactured by Sumitomo Bakelite Co., Ltd.) 1, composite graphite particles (75% coverage, tap density 0.91 g/cm 3 , average particle diameter D 50 17.1 μm, particle size distribution index SPAN 1.0, nitrogen adsorption specific surface area 6.1 m 2 /g ) was obtained as a negative electrode material for a lithium ion secondary battery.

(比較例2)
天然黒鉛100.0質量部に対するファーネスブラック(東海カーボン(株)製S-TA)の投入量を20.0質量部から5.0質量部に変更した以外は、実施例1と同様にして、複合黒鉛粒子(被覆率12%、タップ密度0.94g/cm、平均粒子径D5012.1μm、粒度分布指数SPAN0.9、窒素吸着比表面積4.7m/g)からなるリチウムイオン二次電池用負極材を得た。
(Comparative example 2)
In the same manner as in Example 1, except that the amount of furnace black (S-TA manufactured by Tokai Carbon Co., Ltd.) with respect to 100.0 parts by mass of natural graphite was changed from 20.0 parts by mass to 5.0 parts by mass. Lithium ion dice made of composite graphite particles (12% coverage, tap density 0.94 g/cm 3 , average particle diameter D 50 12.1 μm, particle size distribution index SPAN 0.9, nitrogen adsorption specific surface area 4.7 m 2 /g). A negative electrode material for a secondary battery was obtained.

(比較例3)
天然黒鉛100.0質量部に対するファーネスブラック(東海カーボン(株)製S-TA)の投入量を20.0質量部から50.0質量部に変更した以外は、実施例1と同様にして、複合黒鉛粒子(被覆率95%、タップ密度0.92g/cm、平均粒子径D5014.3μm、粒度分布指数SPAN1.1、窒素吸着比表面積6.4m/g)からなるリチウムイオン二次電池用負極材を得た。
(Comparative Example 3)
In the same manner as in Example 1, except that the amount of furnace black (S-TA manufactured by Tokai Carbon Co., Ltd.) with respect to 100.0 parts by mass of natural graphite was changed from 20.0 parts by mass to 50.0 parts by mass. Lithium ion dice made of composite graphite particles (coverage 95%, tap density 0.92 g/cm 3 , average particle diameter D 50 14.3 μm, particle size distribution index SPAN 1.1, nitrogen adsorption specific surface area 6.4 m 2 /g). A negative electrode material for a secondary battery was obtained.

<被覆率測定時における走査型電子顕微鏡(SEM)測定条件>
分析装置:日本電子(株)製JSM7900F
加速電圧:2-5kVで加速した電子線を試料に当て二次電子像を観察。
<Scanning electron microscope (SEM) measurement conditions at the time of coverage measurement>
Analyzer: JSM7900F manufactured by JEOL Ltd.
An electron beam accelerated at an acceleration voltage of 2 to 5 kV is applied to the sample and a secondary electron image is observed.

<カーボンブラックの平均粒子径測定時における透過型電子顕微鏡(TEM)測定条件>
分析装置:透過型電子顕微鏡(TEM、(株)日立製作所製H-7650型透過型電子顕微鏡
加速電圧:100kV
<Transmission electron microscope (TEM) measurement conditions when measuring the average particle size of carbon black>
Analysis device: Transmission electron microscope (TEM, Hitachi Ltd. H-7650 type transmission electron microscope Acceleration voltage: 100 kV

<平均粒子径D50およびSPANの測定条件>
分析装置:堀場製作所社製:LA-960S
光源 :半導体レーザー(650nm)
蒸留水100質量部に対して10質量%の両性界面活性剤を添加した水溶液に対し、粉末を投入して超音波で分散させた。分散させた粉末を装置内の測定セルにフローし、レーザーを照射する。散乱光をリング状検出器で検出、解析することで求めた粒度分布から、平均粒子径D50およびSPANを求めた。
<Measurement conditions for average particle size D50 and SPAN>
Analyzer: LA-960S manufactured by Horiba Ltd.
Light source: semiconductor laser (650 nm)
The powder was added to an aqueous solution containing 10% by mass of an amphoteric surfactant with respect to 100 parts by mass of distilled water, and dispersed by ultrasonic waves. The dispersed powder is flowed into a measuring cell in the device and irradiated with a laser. The average particle diameter D50 and SPAN were determined from the particle size distribution obtained by detecting and analyzing the scattered light with a ring-shaped detector.

<タップ密度の測定条件>
25mlメスシリンダーに黒鉛粒子粉末5gを投入し、筒井理化学器械(株)製のタッピング式粉体減少度測定器を用いてギャップ10mmにて1000回タッピングを繰り返した後の見かけ体積の値と、メスシリンダーに投入した黒鉛粒子粉末の質量から、下記式(3)により算出した。
タップ密度(g/cm)=メスシリンダーに投入した粉末の質量(g)/1000回タッピングを繰り返した後の見かけ体積の値(cm) (3)
<Tap density measurement conditions>
Put 5 g of graphite particle powder into a 25 ml graduated cylinder and repeat tapping 1000 times at a gap of 10 mm using a tapping type powder reduction measuring instrument manufactured by Tsutsui Rikagaku Kikai Co., Ltd. It was calculated by the following formula (3) from the mass of the graphite particle powder put into the cylinder.
Tap density (g/cm 3 ) = mass (g) of powder put into graduated cylinder/value of apparent volume after repeating tapping 1000 times (cm 3 ) (3)

(電池特性評価方法)
各実施例および比較例で得られた複合黒鉛粒子を用いて、以下の方法により極板密度を測定するとともに、ラミネート電池を作製して各種電池特性を求めた。
(Battery characteristic evaluation method)
Using the composite graphite particles obtained in each example and comparative example, the electrode plate density was measured by the following method, and various battery characteristics were obtained by producing laminated batteries.

<極板密度>
(1)電極シートの作製
複合黒鉛粒子90.2重量%に対し、N-メチル-2ピロリドンに溶解した有機系結着材ポリフッ化ビニリデン(PVDF)を固形分で9.8重量%加えて攪拌混合し、負極合材ペーストを調製する。
得られた負極合材ペーストを厚さ20μmの銅箔(集電体)上にドクターブレード法で塗布した後、乾燥機で90℃で90分間、更に真空中で130℃で11時間加熱して溶媒を完全に揮発させ、目付量が3.5±0.2mg/cmである電極シートを得る。
なお、ここで目付量とは、電極シートの単位面積当たりの複合黒鉛粒子の重量を意味する。
<Plate density>
(1) Preparation of electrode sheet To 90.2% by weight of composite graphite particles, 9.8% by weight of organic binder polyvinylidene fluoride (PVDF) dissolved in N-methyl-2-pyrrolidone is added and stirred. Mix to prepare a negative electrode mixture paste.
After applying the obtained negative electrode mixture paste on a copper foil (current collector) having a thickness of 20 μm by a doctor blade method, it was heated at 90° C. for 90 minutes in a dryer and further at 130° C. for 11 hours in a vacuum. The solvent is completely evaporated to obtain an electrode sheet having a basis weight of 3.5±0.2 mg/cm 2 .
Here, the basis weight means the weight of the composite graphite particles per unit area of the electrode sheet.

(2)極板密度の測定
上記電極シートを幅6cmの短冊状に切り出し、極板密度が1.2g/cmとなるようにローラープレスによる圧延を行う。プレスした電極シートは縦2.8cm、横5.5cmに切断する。各重量A(g)と中心部分の厚みB(cm)から下記式(6)によって各々得られる極板密度の算術平均値を極板密度とした。
(2) Measurement of Electrode Density The electrode sheet is cut into strips with a width of 6 cm and rolled by a roller press so that the electrode density becomes 1.2 g/cm 3 . The pressed electrode sheet is cut into a length of 2.8 cm and a width of 5.5 cm. The arithmetic average value of the electrode plate densities obtained by the following formula (6) from each weight A (g) and the thickness B (cm) of the central portion was taken as the electrode plate density.

極板密度(g/cm)={(A(g)-銅箔重量(g))×負極合材層中の複合黒鉛粒子の重量割合(0.902)}/{(B(cm)-銅箔厚み(cm))×電極面積(cm)} (6)
<ラミネート電池の作製>
上記極板密度の測定に使用したものと同一の電極シートを作製し負極とした。
その上で、評価用電池として、正極(Li金属、セパレータ(ポリプロピレン)、負極を順に積層し、さらに、Niタブを取り付けた後、積層物をアルミラミネートして、ラミネート電池を不活性雰囲気下で組み立てた。電解液は1 mol/dmのリチウム塩LiPFを溶解したエチレンカーボネート(EC)、ジエチルカーボネート(DEC)1:1混合溶液を使用した。充電は電流密度0.2mA/cm、終止電圧5mVで定電流充電を終えた後、下限電流0.02mA/cmとなるまで定電位保持する。放電は電流密度0.2mA/cmにて終止電圧1.5Vまで定電流放電を行い、3サイクル終了後の放電容量を可逆容量とした。初期効率は、1サイクル目の放電容量を1サイクル目の充電容量で除した値(%)である。5Cの充電容量は、3サイクル後の完放電の状態から、12分間で満充電させたときの充電容量である。
Electrode plate density (g/cm 3 ) = {(A (g) - copper foil weight (g)) × weight ratio of composite graphite particles in negative electrode mixture layer (0.902)}/{(B (cm) -Copper foil thickness (cm) × electrode area (cm 2 )} (6)
<Production of laminated battery>
The same electrode sheet as that used for the measurement of the electrode plate density was prepared and used as a negative electrode.
On top of that, as a battery for evaluation, the positive electrode (Li metal, separator (polypropylene), and negative electrode are laminated in order, and after attaching a Ni tab, the laminate is aluminum-laminated, and the laminated battery is placed in an inert atmosphere. The electrolyte used was a 1:1 mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in which 1 mol/dm 3 of lithium salt LiPF 6 was dissolved.Charging was performed at a current density of 0.2 mA/cm 2 . After constant current charging was completed at a final voltage of 5 mV, the constant potential was maintained until the lower limit current reached 0.02 mA/cm 2. Discharge was performed at a current density of 0.2 mA/cm 2 to a final voltage of 1.5 V. The discharge capacity after 3 cycles was taken as the reversible capacity.The initial efficiency is the value (%) obtained by dividing the discharge capacity at the 1st cycle by the charge capacity at the 1st cycle.The charge capacity at 5C is 3 cycles. This is the charge capacity when the battery is fully charged in 12 minutes after the fully discharged state.

上記各実施例および比較例で使用した原料配合(質量部)、得られた複合黒鉛粒子の特性を表1に示す。また、上記各実施例および比較例で得られた負極材からなる電極(負極)を用いて各々ラミネート電池を作製したときの電池特性を表1に示す。 Table 1 shows the raw material blends (parts by mass) used in the above Examples and Comparative Examples and the characteristics of the obtained composite graphite particles. Table 1 shows the battery characteristics when laminated batteries were produced using the electrodes (negative electrodes) made of the negative electrode materials obtained in the above Examples and Comparative Examples.

Figure 0007263284000001
Figure 0007263284000001

表1より、実施例1~実施例3で得られたリチウムイオン二次電池用負極材は、特定工程として、被覆工程、非晶質炭素粒子付着黒鉛粒子を得る工程および焼成炭化工程を施して得られた、特定の複合黒鉛粒子からなるものであることから、リチウムイオン二次電池に用いたときに優れた初期効率および高速充放電特性を発揮し得るものであることが分かる。 From Table 1, the negative electrode materials for lithium ion secondary batteries obtained in Examples 1 to 3 were subjected to a coating step, a step of obtaining amorphous carbon particle-attached graphite particles, and a calcination carbonization step as specific steps. Since it consists of the obtained specific composite graphite particles, it can be seen that excellent initial efficiency and high-speed charge/discharge characteristics can be exhibited when used in a lithium ion secondary battery.

一方、表1より、比較例1~比較例3で得られたリチウムイオン二次電池用負極材は、被覆工程で樹脂を用いていなかったり(比較例1)、複合黒鉛粒子の被覆率が50%未満であったり(比較例2)、非晶質炭素粒子付着黒鉛粒子を得る工程で使用する黒鉛粒子100.0質量部当たりの非晶質炭素粒子量が所定範囲外である(比較例3)ために、リチウムイオン二次電池に用いたときに初期効率または高速充放電特性に劣ることが分かる。 On the other hand, from Table 1, the negative electrode materials for lithium ion secondary batteries obtained in Comparative Examples 1 to 3 did not use resin in the coating process (Comparative Example 1), and the composite graphite particles had a coverage of 50 % (Comparative Example 2), or the amount of amorphous carbon particles per 100.0 parts by mass of graphite particles used in the step of obtaining amorphous carbon particle-attached graphite particles is outside the predetermined range (Comparative Example 3 ), the initial efficiency or high-speed charge/discharge characteristics are inferior when used in a lithium ion secondary battery.

本発明によれば、初期効率および高速充放電特性に優れたリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極材の製造方法およびリチウムイオン二次電池用負極材の製造材料を提供することができる。 INDUSTRIAL APPLICABILITY According to the present invention, a negative electrode material for lithium ion secondary batteries having excellent initial efficiency and high-speed charge/discharge characteristics, a method for producing the negative electrode material for lithium ion secondary batteries, and a material for producing the negative electrode material for lithium ion secondary batteries are provided. can do.

1 黒鉛粒子
2 非晶質炭素化結合材料
3 非晶質炭素粒子
4 被覆層
5 非晶質炭素粒子埋没部分
6a、6b 交点
7 非晶質炭素粒子全体
8 非晶質炭素化結合材料の厚み
9 枠線
10 複合黒鉛粒子
20 非晶質炭素粒子付着黒鉛粒子
30 結着集合物
REFERENCE SIGNS LIST 1 graphite particles 2 amorphous carbonized binding material 3 amorphous carbon particles 4 coating layer 5 amorphous carbon particle embedded portion 6a, 6b intersection point
7 Whole amorphous carbon particles 8 Thickness of amorphous carbonized binding material 9 Frame line 10 Composite graphite particles 20 Amorphous carbon particle-attached graphite particles 30 Bonded aggregates

Claims (3)

リチウムイオン二次電池用負極材の製造方法であって、
黒鉛粒子と樹脂溶液とをピッチの不存在下に混合することにより、前記黒鉛粒子が樹脂で覆われた樹脂被覆黒鉛粒子を得る被覆工程と、
前記樹脂被覆黒鉛粒子に対し、非晶質炭素粒子を前記黒鉛粒子100.0質量部当たり10.0~40.0質量部混合して、前記樹脂被覆黒鉛粒子の表面に前記非晶質炭素粒子が付着した非晶質炭素粒子付着黒鉛粒子を得る工程と、
前記非晶質炭素粒子付着黒鉛粒子を焼成炭化する焼成炭化工程と
を有する
ことを特徴とするリチウムイオン二次電池用負極材の製造方法。
A method for producing a negative electrode material for a lithium ion secondary battery, comprising:
a coating step of obtaining resin-coated graphite particles in which the graphite particles are coated with a resin by mixing graphite particles and a resin solution in the absence of pitch;
10.0 to 40.0 parts by mass of amorphous carbon particles per 100.0 parts by mass of the graphite particles are mixed with the resin-coated graphite particles, and the amorphous carbon particles are coated on the surfaces of the resin-coated graphite particles. a step of obtaining amorphous carbon particle-attached graphite particles to which
A method for producing a negative electrode material for a lithium ion secondary battery, comprising: a calcining and carbonizing step of calcining and carbonizing the amorphous carbon particle-attached graphite particles.
前記黒鉛粒子の平均粒子径D50が5.0~30.0μmであり、前記非晶質炭素粒子の平均粒子径が50~300nmである請求項1に記載のリチウムイオン二次電池用負極材の製造方法。 2. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the graphite particles have an average particle diameter D50 of 5.0 to 30.0 μm, and the amorphous carbon particles have an average particle diameter of 50 to 300 nm. Production method. 得られるリチウムイオン二次電池用負極材が、
黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み前記黒鉛粒子を覆う被覆層とを有する複合黒鉛粒子からなり、
当該複合黒鉛粒子は、表面観察したときに前記非晶質炭素粒子が黒鉛粒子を被覆する被覆率が50%以上である
請求項1または請求項2に記載のリチウムイオン二次電池用負極材の製造方法
The obtained negative electrode material for lithium ion secondary batteries is
Composed of composite graphite particles having graphite particles and a coating layer containing amorphous carbon particles and an amorphous carbonized binder material and covering the graphite particles,
3. The negative electrode material for a lithium ion secondary battery according to claim 1 or 2, wherein the composite graphite particles have a coverage of 50% or more that the amorphous carbon particles cover the graphite particles when the surface is observed. manufacturing method .
JP2020052397A 2020-03-24 2020-03-24 Manufacturing method of negative electrode material for lithium ion secondary battery Active JP7263284B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020052397A JP7263284B2 (en) 2020-03-24 2020-03-24 Manufacturing method of negative electrode material for lithium ion secondary battery
PCT/JP2021/004286 WO2021192649A1 (en) 2020-03-24 2021-02-05 Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, and manufacturing material for negative electrode material for lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020052397A JP7263284B2 (en) 2020-03-24 2020-03-24 Manufacturing method of negative electrode material for lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2021152997A JP2021152997A (en) 2021-09-30
JP7263284B2 true JP7263284B2 (en) 2023-04-24

Family

ID=77887401

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020052397A Active JP7263284B2 (en) 2020-03-24 2020-03-24 Manufacturing method of negative electrode material for lithium ion secondary battery

Country Status (2)

Country Link
JP (1) JP7263284B2 (en)
WO (1) WO2021192649A1 (en)

Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229914A (en) 2000-02-10 2001-08-24 Toyo Tanso Kk Negative pole and secondary battery
JP2008027664A (en) 2006-07-19 2008-02-07 Nippon Carbon Co Ltd Negative electrode for lithium ion secondary battery, and negative electrode active material
JP2008305722A (en) 2007-06-08 2008-12-18 Tokai Carbon Co Ltd Negative electrode for lithium ion secondary battery material and its manufacturing method
JP2010170878A (en) 2009-01-23 2010-08-05 Nec Tokin Corp Lithium ion cell
JP2010218758A (en) 2009-03-13 2010-09-30 Tokai Carbon Co Ltd Negative electrode material for lithium secondary battery and method for manufacturing the same
JP2014186956A (en) 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp Carbon material for anode of nonaqueous secondary battery, anode for nonaqueous secondary battery and nonaqueous secondary battery
JP2017054703A (en) 2015-09-09 2017-03-16 三洋化成工業株式会社 Resin for coating nonaqueous secondary battery active materials, coated active material for nonaqueous secondary battery, and method for manufacturing coated active materials for nonaqueous secondary battery
WO2018030176A1 (en) 2016-08-09 2018-02-15 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
US20180301699A1 (en) 2015-12-18 2018-10-18 Huawei Technologies Co., Ltd. Lithium-ion rechargeable battery negative electrode active material and preparation method thereof, lithium-ion rechargeable battery negative electrode plate, and lithium-ion rechargeable battery
WO2018207410A1 (en) 2017-05-11 2018-11-15 日立化成株式会社 Lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode material production method, lithium ion secondary battery negative electrode, and lithium ion secondary battery
WO2019189800A1 (en) 2018-03-29 2019-10-03 三菱ケミカル株式会社 Negative electrode material for nonaqueous secondary batteries, negative electrode for nonaqueous secondary batteries, and nonaqueous secondary battery

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN106099079A (en) * 2016-08-26 2016-11-09 宁德时代新能源科技股份有限公司 Secondary battery negative electrode material, preparation method thereof and battery containing negative electrode material
JPWO2018110263A1 (en) * 2016-12-12 2019-10-24 昭和電工株式会社 Composite graphite particles, production method thereof and use thereof

Patent Citations (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001229914A (en) 2000-02-10 2001-08-24 Toyo Tanso Kk Negative pole and secondary battery
JP2008027664A (en) 2006-07-19 2008-02-07 Nippon Carbon Co Ltd Negative electrode for lithium ion secondary battery, and negative electrode active material
JP2008305722A (en) 2007-06-08 2008-12-18 Tokai Carbon Co Ltd Negative electrode for lithium ion secondary battery material and its manufacturing method
JP2010170878A (en) 2009-01-23 2010-08-05 Nec Tokin Corp Lithium ion cell
JP2010218758A (en) 2009-03-13 2010-09-30 Tokai Carbon Co Ltd Negative electrode material for lithium secondary battery and method for manufacturing the same
JP2014186956A (en) 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp Carbon material for anode of nonaqueous secondary battery, anode for nonaqueous secondary battery and nonaqueous secondary battery
JP2017054703A (en) 2015-09-09 2017-03-16 三洋化成工業株式会社 Resin for coating nonaqueous secondary battery active materials, coated active material for nonaqueous secondary battery, and method for manufacturing coated active materials for nonaqueous secondary battery
US20180301699A1 (en) 2015-12-18 2018-10-18 Huawei Technologies Co., Ltd. Lithium-ion rechargeable battery negative electrode active material and preparation method thereof, lithium-ion rechargeable battery negative electrode plate, and lithium-ion rechargeable battery
WO2018030176A1 (en) 2016-08-09 2018-02-15 パナソニックIpマネジメント株式会社 Nonaqueous electrolyte secondary battery
WO2018207410A1 (en) 2017-05-11 2018-11-15 日立化成株式会社 Lithium ion secondary battery negative electrode material, lithium ion secondary battery negative electrode material production method, lithium ion secondary battery negative electrode, and lithium ion secondary battery
WO2019189800A1 (en) 2018-03-29 2019-10-03 三菱ケミカル株式会社 Negative electrode material for nonaqueous secondary batteries, negative electrode for nonaqueous secondary batteries, and nonaqueous secondary battery

Also Published As

Publication number Publication date
JP2021152997A (en) 2021-09-30
WO2021192649A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
EP3731315A1 (en) Negative electrode material for lithium ion secondary battery, and method of manufacturing negative electrode material for lithium ion secondary battery
WO2008056820A1 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JPWO2007086603A1 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP6621664B2 (en) Method for producing conductive carbon, method for producing electrode material containing carbon, method for producing electrode using this electrode material, and method for producing electricity storage device provided with this electrode
JP6621663B2 (en) Method for producing conductive carbon, method for producing electrode material containing carbon, method for producing electrode using this electrode material, and method for producing electricity storage device provided with this electrode
JP7201634B2 (en) Method for producing negative electrode material for lithium ion secondary battery and production material for negative electrode material for lithium ion secondary battery
WO2019031543A1 (en) Negative electrode active material for secondary battery, and secondary battery
JP5186409B2 (en) Negative electrode active material for secondary battery, secondary battery including the same, and manufacturing method thereof
JP4021652B2 (en) Positive electrode plate for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode plate
JP6957127B1 (en) Carbon material for negative electrode of lithium ion secondary battery and its manufacturing method, and negative electrode and lithium ion secondary battery using it
JP4542352B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP6276573B2 (en) Anode material for secondary battery and secondary battery using the same
WO2021152778A1 (en) Negative-electrode material for lithium-ion secondary cell, method for manufacturing same, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP6447013B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5636689B2 (en) Graphite particles, negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP7263284B2 (en) Manufacturing method of negative electrode material for lithium ion secondary battery
JPWO2020044931A1 (en) Negative electrode active material for non-aqueous electrolyte secondary batteries, negative electrode for non-aqueous electrolyte secondary batteries, and non-aqueous electrolyte secondary batteries
JP4053763B2 (en) Lithium ion secondary battery
JP2022032057A (en) Graphite material for lithium ion secondary battery electrode
JP7009049B2 (en) Lithium-ion secondary battery Carbon material for negative electrode, its intermediate, its manufacturing method, and negative electrode or battery using it
JP2005032571A (en) Graphite particle for nonaqueous electrolytic solution secondary battery negative electrode and its production method, nonaqueous electrolytic solution secondary battery negative electrode and nonaqueous electrolytic solution secondary battery
WO2022219836A1 (en) Negative electrode material for lithium ion secondary batteries, and method for producing negative electrode material for lithium ion secondary batteries
WO2021192651A1 (en) Negative electrode material for lithium ion secondary batteries and method for producing negative electrode material for lithium ion secondary batteries
WO2021192648A1 (en) Negative electrode material for lithium ion secondary batteries and method for producing negative electrode material for lithium ion secondary batteries
WO2020110943A1 (en) Lithium ion secondary battery negative electrode and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220808

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20221115

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20221202

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20230328

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20230412

R150 Certificate of patent or registration of utility model

Ref document number: 7263284

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150