JP2021152996A - Negative electrode material for lithium ion secondary battery and production method thereof - Google Patents

Negative electrode material for lithium ion secondary battery and production method thereof Download PDF

Info

Publication number
JP2021152996A
JP2021152996A JP2020052396A JP2020052396A JP2021152996A JP 2021152996 A JP2021152996 A JP 2021152996A JP 2020052396 A JP2020052396 A JP 2020052396A JP 2020052396 A JP2020052396 A JP 2020052396A JP 2021152996 A JP2021152996 A JP 2021152996A
Authority
JP
Japan
Prior art keywords
binder
particles
amorphous carbon
graphite particles
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2020052396A
Other languages
Japanese (ja)
Inventor
健太郎 瀧澤
Kentaro Takizawa
健太郎 瀧澤
俊輝 山崎
Toshiteru Yamazaki
俊輝 山崎
智洋 建部
Tomohiro Takebe
智洋 建部
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Tokai Carbon Co Ltd
Original Assignee
Tokai Carbon Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Tokai Carbon Co Ltd filed Critical Tokai Carbon Co Ltd
Priority to JP2020052396A priority Critical patent/JP2021152996A/en
Priority to PCT/JP2021/004285 priority patent/WO2021192648A1/en
Publication of JP2021152996A publication Critical patent/JP2021152996A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/62Selection of inactive substances as ingredients for active masses, e.g. binders, fillers
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

To provide a negative electrode material for a lithium ion secondary battery arranged to use a graphite material, which is superior in high-speed charge/discharge characteristic.SOLUTION: A negative electrode material for a lithium ion secondary battery comprises: graphite particles; and a coating layer which contains an amorphous carbon particles and an amorphous carbonization-binding material, and which coats each graphite particle. According to surface observation, the coverage of the amorphous carbon particle is 50% or larger. In cross sectional observation, the percentage of the amorphous carbon particles buried is 10-90%.SELECTED DRAWING: Figure 1

Description

本発明は、リチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法に関する。 The present invention relates to a negative electrode material for a lithium ion secondary battery and a method for manufacturing a negative electrode material for a lithium ion secondary battery.

リチウムイオン二次電池は、携帯電話、パソコン等の多くの機器に搭載され、高容量で、高電圧、小型軽量である点から多様な分野で利用されるようになっている。 Lithium-ion secondary batteries are installed in many devices such as mobile phones and personal computers, and are used in various fields because of their high capacity, high voltage, small size and light weight.

近年、リチウムイオン二次電池は、車載用途の需要が急激に高まっており、車載用に求められる特性としては、高容量で、高寿命かつ高入出力であり、かつこれらの特性のバランスに優れていることが求められている。このため、エネルギー密度が高くかつ膨張収縮が小さい負極材が必要とされ、これらの特性を満たす負極材として黒鉛粒子製のものが広く利用されるようになっている。 In recent years, the demand for lithium-ion secondary batteries has been rapidly increasing for in-vehicle use, and the characteristics required for in-vehicle use are high capacity, long life, high input / output, and an excellent balance of these characteristics. Is required to be. Therefore, a negative electrode material having a high energy density and a small expansion / contraction is required, and a negative electrode material made of graphite particles has been widely used as a negative electrode material satisfying these characteristics.

そして、このような黒鉛粒子を用いるリチウムイオン二次電池用負極材の性能向上を目的として、黒鉛粒子を複合化した種々の複合粒子が開発されている。 Then, for the purpose of improving the performance of the negative electrode material for a lithium ion secondary battery using such graphite particles, various composite particles in which graphite particles are composited have been developed.

例えば、特許文献1には、リチウムイオンを放出及び吸蔵する正極と、該正極から放出されたリチウムイオンを吸蔵及び放出する負極と、該正極及び該負極の間に介在して該リチウムイオンを移動させる電解液とから構成されるリチウムイオン二次電池に用いられる負極材であって、前記リチウムイオンを吸蔵及び放出できる粒状の母粒子と、該母粒子の表面に一体化された該母粒子よりも粒子径の小さな炭素によりなる粒状の子粒子とから構成される複合粒子よりなることを特徴とするリチウムイオン二次電池用負極材が開示されている。特許文献1によれば、高エネルギー密度及び高出力密度を与えることができ、高負荷時においても電池のエネルギー密度及び出力密度を高いまま維持させることのできるリチウムイオン二次電池用負極材を提供することができることが記載されている。 For example, in Patent Document 1, a positive electrode that releases and stores lithium ions, a negative electrode that stores and releases lithium ions released from the positive electrode, and the lithium ions move between the positive electrode and the negative electrode. A negative electrode material used for a lithium ion secondary battery composed of an electrolytic solution to be generated, from a granular mother particle capable of storing and releasing the lithium ion and the mother particle integrated on the surface of the mother particle. Also disclosed is a negative electrode material for a lithium ion secondary battery, which is composed of composite particles composed of granular child particles made of carbon having a small particle size. According to Patent Document 1, a negative electrode material for a lithium ion secondary battery, which can provide a high energy density and a high output density and can maintain a high energy density and an output density of a battery even under a high load, is provided. It is stated that it can be done.

また、特許文献2には、人造黒鉛からなる芯材と、非粉体状の非晶質炭素材料及び粉体状の導電性炭素材料を含み前記芯材を被覆する被覆層とを有する複合黒鉛粒子であって、前記芯材の質量に対する前記非粉体状の非晶質炭素材料の質量の割合が0.2〜3.8質量%であり、前記芯材の質量に対する前記粉体状の導電性炭素材料の質量の割合が0.3〜5.0質量%である複合黒鉛粒子が開示されている。特許文献2によれば、リチウムイオン二次電池の入出力特性が向上させることができることが記載されている。 Further, Patent Document 2 describes a composite graphite having a core material made of artificial graphite and a coating layer containing a non-powder-like amorphous carbon material and a powder-like conductive carbon material and covering the core material. The ratio of the mass of the non-powdered amorphous carbon material to the mass of the core material of the particles is 0.2 to 3.8 mass%, and the mass of the powdery state is relative to the mass of the core material. Composite graphite particles in which the proportion of the mass of the conductive carbon material is 0.3 to 5.0 mass% are disclosed. According to Patent Document 2, it is described that the input / output characteristics of the lithium ion secondary battery can be improved.

また、特許文献3には、複数の鱗片状の黒鉛が集合して形成された黒鉛造粒物(A)と、該黒鉛造粒物(A)の内部空隙および/または外表面に、該黒鉛造粒物(A)よりも結晶性の低い炭素質層(B)が、充填および/または被覆されてなる複合黒鉛質粒子であって、前記炭素質層(B)が炭素質微粒子を含むことを特徴とする複合黒鉛質粒子が開示されている。特許文献3には、高い放電容量及び高い初期充放電効率、さらに優れたハイレート特性及びサイクル特性が得られるリチウムイオン二次電池用負極材料を提供することができることが記載されている。 Further, Patent Document 3 describes a graphite granule (A) formed by aggregating a plurality of scaly graphites, and the graphite in the internal voids and / or the outer surface of the graphite granules (A). The carbonaceous layer (B) having a lower crystallinity than the granulated product (A) is a composite graphite particle formed by filling and / or coating, and the carbonaceous layer (B) contains carbonaceous fine particles. The composite graphite particles characterized by the above are disclosed. Patent Document 3 describes that it is possible to provide a negative electrode material for a lithium ion secondary battery, which can obtain high discharge capacity, high initial charge / discharge efficiency, and further excellent high rate characteristics and cycle characteristics.

ここで、黒鉛材料を用いるリチウムイオン二次電池用負極材においては、黒鉛材料の結晶性を高めることにより、容量を高くすることが知られている。特に、車載用途においては、リチウムイオン二次電池用負極材には、容量が高いことに加えて、高速充放電特性に優れることが要求される。 Here, in a negative electrode material for a lithium ion secondary battery using a graphite material, it is known that the capacity is increased by increasing the crystallinity of the graphite material. In particular, in in-vehicle applications, the negative electrode material for a lithium ion secondary battery is required to have high capacity and excellent high-speed charge / discharge characteristics.

特許文献4には、天然黒鉛を球状に賦形した母材100重量部にカーボンブラック2〜50重量部、及びピッチを混合して天然黒鉛粒子を含浸・被覆して900℃〜1500℃で焼成し、表面に微小突起を形成したBET比表面積2m/g以上であるリチウムイオン二次電池用黒鉛粒子(A)が開示されている。特許文献4によれば、単位体積当たりの放電容量が高く、初期充放電時の容量ロスが小さいことに加え、高速充放電特性に優れるリチウムイオン二次電池用負極材を提供することができることが記載されている。 Patent Document 4 describes that 100 parts by weight of a base material formed by spherically shaping natural graphite is mixed with 2 to 50 parts by weight of carbon black and a pitch, impregnated and coated with natural graphite particles, and fired at 900 ° C to 1500 ° C. However, graphite particles (A) for a lithium ion secondary battery having a BET specific surface area of 2 m 2 / g or more having microprojections formed on the surface are disclosed. According to Patent Document 4, it is possible to provide a negative electrode material for a lithium ion secondary battery, which has a high discharge capacity per unit volume, a small capacity loss during initial charge / discharge, and excellent high-speed charge / discharge characteristics. Have been described.

特開平11−265716号公報Japanese Unexamined Patent Publication No. 11-265716 国際公開第2018/110263号International Publication No. 2018/110263 特開2004−63321号公報Japanese Unexamined Patent Publication No. 2004-63321 特開2011−233541号公報Japanese Unexamined Patent Publication No. 2011-233541

しかしながら、リチウムイオン二次電池用負極材の高速充放電特性の向上への要求は増々高まっており、特許文献4のリチウムイオン二次電池用負極材よりも、更に高速充放電特性に優れるリチウムイオン二次電池用負極材が求められている。 However, there is an increasing demand for improving the high-speed charge / discharge characteristics of the negative electrode material for lithium ion secondary batteries, and lithium ions having even better high-speed charge / discharge characteristics than the negative electrode material for lithium ion secondary batteries of Patent Document 4. Negative electrode materials for secondary batteries are required.

従って、本発明の目的は、黒鉛材料を用いるリチウムイオン二次電池用負極材であって、高速充放電特性に優れるリチウムイオン二次電池用負極材を提供することにある。 Therefore, an object of the present invention is to provide a negative electrode material for a lithium ion secondary battery using a graphite material, which is excellent in high-speed charge / discharge characteristics.

上記技術背景の下、本発明者は、鋭意検討重ねたところ、黒鉛粒子の表面を非晶質炭素化結合材料で覆い、その層に、非晶質炭素粒子を所定の埋没割合で埋め込むことにより、リチウムイオンのパスを増大させることができるので、高速充放電特性に優れるリチウムイオン二次電池用負極材が得られることを見出し、本発明を完成させるに至った。 Against the background of the above technical background, the present inventor has made extensive studies, and as a result, the surface of the graphite particles is covered with an amorphous carbonized bonding material, and the amorphous carbon particles are embedded in the layer at a predetermined burial ratio. Since it is possible to increase the pass of lithium ions, it has been found that a negative electrode material for a lithium ion secondary battery having excellent high-speed charge / discharge characteristics can be obtained, and the present invention has been completed.

すなわち、本発明(1)は、黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み、該黒鉛粒子を覆う被覆層と、からなり、
表面観察における該非晶質炭素粒子の被覆率が50%以上であり、
断面観察における該非晶質炭素粒子の埋没割合が30〜90%であること、
を特徴とするリチウムイオン二次電池用負極材を提供するものである。
That is, the present invention (1) comprises graphite particles and a coating layer containing amorphous carbon particles and an amorphous carbonized bonding material and covering the graphite particles.
The coverage of the amorphous carbon particles in surface observation is 50% or more,
The burial ratio of the amorphous carbon particles in the cross-sectional observation is 30 to 90%.
The present invention provides a negative electrode material for a lithium ion secondary battery, which is characterized by the above.

また、本発明(2)は、前記リチウムイオン二次電池用負極材の平均粒子径(D50)が5.0〜30.0μmであることを特徴とする(1)のリチウムイオン二次電池用負極材を提供するものである。 The lithium ion secondary battery of the present invention (2) is characterized in that the average particle size (D 50 ) of the negative electrode material for the lithium ion secondary battery is 5.0 to 30.0 μm. It provides a negative electrode material for use.

また、本発明(3)は、平均粒子径(D50)が5.0〜30.0μmである黒鉛粒子と、バインダーを混合することにより、該黒鉛粒子がバインダーで被覆されたバインダー被覆黒鉛粒子を得る被覆工程と、
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50〜300nmである非晶質炭素粒子を10.0〜40.0質量部混合し、次いで、圧縮及び摩擦させることにより、該バインダー被覆黒鉛粒子のバインダー層に該非晶質炭素粒子を埋め込み、非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を得る埋め込み工程と、
該非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を、焼成炭化する焼成炭化工程と、
を行い得られるリチウムイオン二次電池用負極材を提供するものである。
Further, in the present invention (3), binder-coated graphite particles in which the graphite particles are coated with a binder by mixing the binder with graphite particles having an average particle diameter (D 50) of 5.0 to 30.0 μm. And the coating process to obtain
The binder is obtained by mixing 10.0 to 40.0 parts by mass of amorphous carbon particles having an arithmetic average particle diameter of 50 to 300 nm with 100.0 parts by mass of the graphite particles, and then compressing and rubbing the particles. A process of embedding the amorphous carbon particles in the binder layer of the coated graphite particles to obtain the amorphous carbon particle-embedded binder-coated graphite particles, and an embedding step.
A calcining carbonization step of calcining carbonizing the binder-coated graphite particles in which the amorphous carbon particles are embedded,
The present invention provides a negative electrode material for a lithium ion secondary battery obtained by performing the above.

また、本発明(4)は、平均粒子径(D50)が5.0〜30.0μmである黒鉛粒子と、バインダーを混合することにより、該黒鉛粒子がバインダーで被覆されたバインダー被覆黒鉛粒子を得る被覆工程と、
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50〜300nmである非晶質炭素粒子を10.0〜40.0質量部混合し、次いで、炭化後の残炭量が2.0質量部以上となる量の樹脂溶液で被覆処理することにより、該非晶質炭素粒子が付着している黒鉛粒子を、該樹脂で再被覆し、非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を得る再被覆工程と、
該非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を、焼成炭化する焼成炭化工程と、
を行い得られるリチウムイオン二次電池用負極材を提供するものである。
Further, in the present invention (4), binder-coated graphite particles in which the graphite particles are coated with a binder by mixing the binder with graphite particles having an average particle diameter (D 50) of 5.0 to 30.0 μm. And the coating process to obtain
Amorphous carbon particles having an arithmetic average particle diameter of 50 to 300 nm are mixed with 100.0 parts by mass of the graphite particles by 10.0 to 40.0 parts by mass, and then the amount of residual carbon after carbonization is 2. By coating with a resin solution in an amount of 0 parts by mass or more, the graphite particles to which the amorphous carbon particles are attached are recoated with the resin, and the amorphous carbon particle-attached binder-coated graphite particles are re-coated. The recoating process to obtain the coating and
A calcining carbonization step of calcining and carbonizing the recoated material of the binder-coated graphite particles adhering to the amorphous carbon particles.
The present invention provides a negative electrode material for a lithium ion secondary battery obtained by performing the above.

また、本発明(5)は、平均粒子径(D50)が5.0〜30.0μmである黒鉛粒子と、バインダーを混合することにより、該黒鉛粒子がバインダーで被覆されたバインダー被覆黒鉛粒子を得る被覆工程と、
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50〜300nmである非晶質炭素粒子を10.0〜40.0質量部混合し、次いで、圧縮及び摩擦させることにより、該バインダー被覆黒鉛粒子のバインダー層に該非晶質炭素粒子を埋め込み、非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を得る埋め込み工程と、
該非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を、焼成炭化する焼成炭化工程と、
を有することを特徴とするリチウムイオン二次電池用負極材の製造方法を提供するものである。
Further, in the present invention (5), binder-coated graphite particles in which the graphite particles are coated with a binder by mixing the binder with graphite particles having an average particle diameter (D 50) of 5.0 to 30.0 μm. And the coating process to obtain
The binder is obtained by mixing 10.0 to 40.0 parts by mass of amorphous carbon particles having an arithmetic average particle diameter of 50 to 300 nm with 100.0 parts by mass of the graphite particles, and then compressing and rubbing the particles. A process of embedding the amorphous carbon particles in the binder layer of the coated graphite particles to obtain the amorphous carbon particle-embedded binder-coated graphite particles, and an embedding step.
A calcining carbonization step of calcining carbonizing the binder-coated graphite particles in which the amorphous carbon particles are embedded,
The present invention provides a method for producing a negative electrode material for a lithium ion secondary battery, which is characterized by having.

また、本発明(6)は、平均粒子径(D50)が5.0〜30.0μmである黒鉛粒子と、バインダーを混合することにより、該黒鉛粒子がバインダーで被覆されたバインダー被覆黒鉛粒子を得る被覆工程と、
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50〜300nmである非晶質炭素粒子を10.0〜40.0質量部混合し、次いで、炭化後の残炭量が2.0質量部以上となる量の樹脂溶液で被覆処理することにより、該非晶質炭素粒子が付着している黒鉛粒子を、該樹脂で再被覆し、非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を得る再被覆工程と、
該非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を、焼成炭化する焼成炭化工程と、
を有することを特徴とするリチウムイオン二次電池用負極材の製造方法を提供するものである。
Further, in the present invention (6), binder-coated graphite particles in which the graphite particles are coated with a binder by mixing the binder with graphite particles having an average particle diameter (D 50) of 5.0 to 30.0 μm. And the coating process to obtain
Amorphous carbon particles having an arithmetic average particle diameter of 50 to 300 nm are mixed with 100.0 parts by mass of the graphite particles by 10.0 to 40.0 parts by mass, and then the amount of residual carbon after carbonization is 2. By coating with a resin solution in an amount of 0 parts by mass or more, the graphite particles to which the amorphous carbon particles are attached are recoated with the resin, and the amorphous carbon particle-attached binder-coated graphite particles are re-coated. The recoating process to obtain the coating and
A calcining carbonization step of calcining and carbonizing the recoated material of the binder-coated graphite particles adhering to the amorphous carbon particles.
The present invention provides a method for producing a negative electrode material for a lithium ion secondary battery, which is characterized by having.

本発明によれば、黒鉛材料を用いるリチウムイオン二次電池用負極材であって、高速充放電特性に優れるリチウムイオン二次電池用負極材を提供することができる。 According to the present invention, it is possible to provide a negative electrode material for a lithium ion secondary battery using a graphite material, which is excellent in high-speed charge / discharge characteristics.

本発明のリチウムイオン二次電池用負極材の形態例の断面図である。It is sectional drawing of the form example of the negative electrode material for a lithium ion secondary battery of this invention. 図1に示すリチウムイオン二次電池用負極材の表面付近の拡大図である。It is an enlarged view near the surface of the negative electrode material for a lithium ion secondary battery shown in FIG. 1. 本発明のリチウムイオン二次電池用負極材の形態例を示す図である。It is a figure which shows the form example of the negative electrode material for a lithium ion secondary battery of this invention. 本発明の第一の形態のリチウムイオン二次電池用負極材を製造するための模式的な断面図である。It is a schematic cross-sectional view for manufacturing the negative electrode material for a lithium ion secondary battery of the 1st aspect of this invention. 本発明の第二の形態のリチウムイオン二次電池用負極材を製造するための模式的な断面図である。It is a schematic cross-sectional view for manufacturing the negative electrode material for a lithium ion secondary battery of the 2nd aspect of this invention.

本発明のリチウムイオン二次電池用負極材は、黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み、該黒鉛粒子を覆う被覆層と、からなり、
表面観察における該非晶質炭素粒子の被覆率が50%以上であり、
断面観察における該非晶質炭素粒子の埋没割合が30〜90%であること、
を特徴とする。
The negative electrode material for a lithium ion secondary battery of the present invention comprises graphite particles, amorphous carbon particles, and a coating layer containing amorphous carbon particles and an amorphous carbonized bonding material and covering the graphite particles.
The coverage of the amorphous carbon particles in surface observation is 50% or more,
The burial ratio of the amorphous carbon particles in the cross-sectional observation is 30 to 90%.
It is characterized by.

本発明のリチウムイオン二次電池用負極材について、図1〜図3を用いて説明する。図1は、本発明のリチウムイオン二次電池用負極材の形態例の断面図である。図2は、図1に示すリチウムイオン二次電池用負極材の表面付近の拡大図であり、非晶質炭素粒子の埋没割合を説明するための図である。図3は、本発明のリチウムイオン二次電池用負極材の形態例を示す図であり、非晶質炭素粒子の被覆率を説明するための図である。 The negative electrode material for a lithium ion secondary battery of the present invention will be described with reference to FIGS. 1 to 3. FIG. 1 is a cross-sectional view of a morphological example of the negative electrode material for a lithium ion secondary battery of the present invention. FIG. 2 is an enlarged view of the vicinity of the surface of the negative electrode material for a lithium ion secondary battery shown in FIG. 1, and is a diagram for explaining the burial ratio of amorphous carbon particles. FIG. 3 is a diagram showing a morphological example of the negative electrode material for a lithium ion secondary battery of the present invention, and is a diagram for explaining the coverage of amorphous carbon particles.

図1中、リチウムイオン二次電池用負極材10は、黒鉛粒子1と、黒鉛粒子1を覆う被覆層4と、からなる。被覆層4は、非晶質炭素粒子3及び非晶質炭素化結合材料2を含み、非晶質炭素粒子3は、非晶質炭素化結合材料2の層に埋め込まれるようにして、リチウムイオン二次電池用負極材10に固定されている。また、リチウムイオン二次電池用負極材10では、非晶質炭素粒子3は、黒鉛粒子1の表面に接していてもよいし、あるいは、接していなくてもよい。 In FIG. 1, the negative electrode material 10 for a lithium ion secondary battery is composed of graphite particles 1 and a coating layer 4 covering the graphite particles 1. The coating layer 4 contains the amorphous carbon particles 3 and the amorphous carbonized bonding material 2, and the amorphous carbon particles 3 are embedded in the layer of the amorphous carbonized bonding material 2 to form lithium ions. It is fixed to the negative electrode material 10 for a secondary battery. Further, in the negative electrode material 10 for a lithium ion secondary battery, the amorphous carbon particles 3 may or may not be in contact with the surface of the graphite particles 1.

図2に示すように、リチウムイオン二次電池用負極材10の断面において、非晶質炭素粒子3の輪郭と非晶質炭素化結合材料2の外側の輪郭との交点を、交点6a、交点6bとする。交点6aと交点6b結んだ線より黒鉛粒子側にある部分(図2(A)中、斜線で示した部分)が、非晶質炭素粒子3の埋没部分5である。非晶質炭素粒子3の全体面積7は、図2(B)中、斜線で示した部分である。そして、断面観察における非晶質炭素粒子の埋没割合(%)は、次式(1):
断面観察における非晶質炭素粒子の埋没割合(%)=(非晶質炭素粒子3の埋没部分5の面積/非晶質炭素粒子3の全体面積7)×100 (1)
により求められる。なお、説明の都合上、図2では、黒鉛粒子、非晶質炭素化結合材料、及び非晶質炭素粒子の輪郭のみを実線で示した。
As shown in FIG. 2, in the cross section of the negative electrode material 10 for a lithium ion secondary battery, the intersection of the contour of the amorphous carbon particles 3 and the outer contour of the amorphous carbonized bonding material 2 is the intersection 6a, the intersection. It is set to 6b. The portion on the graphite particle side of the line connecting the intersection 6a and the intersection 6b (the portion shown by the diagonal line in FIG. 2A) is the buried portion 5 of the amorphous carbon particles 3. The total area 7 of the amorphous carbon particles 3 is a portion shown by a diagonal line in FIG. 2 (B). Then, the burial ratio (%) of the amorphous carbon particles in the cross-sectional observation is calculated by the following equation (1):
Amorphous carbon particle burial ratio (%) in cross-sectional observation = (area of burial portion 5 of amorphous carbon particle 3 / total area of amorphous carbon particle 3 7) × 100 (1)
Demanded by. For convenience of explanation, in FIG. 2, only the outlines of the graphite particles, the amorphous carbonized bonding material, and the amorphous carbon particles are shown by solid lines.

また、図2中、符号8が、非晶質炭素化結合材料2の厚みである。 Further, in FIG. 2, reference numeral 8 is the thickness of the amorphous carbonized bonding material 2.

図3に示すように、リチウムイオン二次電池用負極材10の表面観察において、リチウムイオン二次電池用負極材10のうちの任意の計算範囲9(図3中、点線で示す範囲)を囲む。また、計算範囲9内の非晶質炭素粒子3の合計面積は、図3(B)中、斜線で示す部分の面積である。そして、表面観察における非晶質炭素粒子の被覆率(%)は、次式(2):
表面観察における非晶質炭素粒子の被覆率(%)=(計算範囲9内の非晶質炭素粒子3の合計面積/計算範囲9全体の面積)×100 (2)
により求められる。
As shown in FIG. 3, in the surface observation of the negative electrode material 10 for a lithium ion secondary battery, it surrounds an arbitrary calculation range 9 (the range shown by the dotted line in FIG. 3) of the negative electrode material 10 for a lithium ion secondary battery. .. Further, the total area of the amorphous carbon particles 3 in the calculation range 9 is the area of the portion indicated by the diagonal line in FIG. 3 (B). The coverage (%) of the amorphous carbon particles in the surface observation is calculated by the following equation (2):
Coverage of amorphous carbon particles (%) in surface observation = (total area of amorphous carbon particles 3 within calculation range 9 / total area of calculation range 9) × 100 (2)
Demanded by.

本発明のリチウムイオン二次電池用負極材は、黒鉛粒子と、黒鉛粒子を覆う被覆層と、からなる。 The negative electrode material for a lithium ion secondary battery of the present invention comprises graphite particles and a coating layer covering the graphite particles.

黒鉛粒子は、球状化された黒鉛であり、扁平状の黒鉛が球状に凝集したものである。黒鉛粒子は、天然黒鉛であっても、人造黒鉛であってもよい。 The graphite particles are spheroidized graphite, which is a spherical aggregate of flat graphite. The graphite particles may be natural graphite or artificial graphite.

黒鉛粒子の平均格子面間隔d(002)は、0.3360nm以下である。黒鉛粒子の平均格子面間隔d(002)が、0.3360nm以下であることにより、可逆容量が十分に大きくなる。黒鉛粒子の平均格子面間隔d(002)は、更に可逆容量が大きくなる点で、好ましくは0.3358nm以下である。 The average lattice spacing d (002) of the graphite particles is 0.3360 nm or less. When the average lattice spacing d (002) of the graphite particles is 0.3360 nm or less, the reversible capacitance becomes sufficiently large. The average lattice spacing d (002) of the graphite particles is preferably 0.3358 nm or less in that the reversible capacitance is further increased.

被覆層は、黒鉛粒子を覆っており、非晶質炭素粒子及び非晶質炭素化結合材料を含んでいる。非晶質炭素化結合材料は、被覆層を形成する非晶質炭素材料のうち、非晶質炭素粒子以外の部分である。 The coating layer covers the graphite particles and contains amorphous carbon particles and an amorphous carbonized bonding material. The amorphous carbonized bonding material is a portion of the amorphous carbon material forming the coating layer other than the amorphous carbon particles.

非晶質炭素粒子は、非晶質炭素化結合材料の層に埋め込まれるようにして、本発明のリチウムイオン二次電池用負極材に固定されている。 The amorphous carbon particles are fixed to the negative electrode material for a lithium ion secondary battery of the present invention so as to be embedded in a layer of an amorphous carbonized bonding material.

非晶質炭素粒子は、特に制限されないが、例えば、ファーネスブラック、サーマルブラック等のカーボンブラックが挙げられる。 The amorphous carbon particles are not particularly limited, and examples thereof include carbon black such as furnace black and thermal black.

非晶質炭素粒子の平均格子面間隔d(002)は、0.3370nm以上である。非晶質炭素粒子の平均格子面間隔d(002)が0.3370nm以上であることにより、粒子表面の反応抵抗が下がり高速充放電に優れる。非晶質炭素粒子の平均格子面間隔d(002)は、更に高速充放電性能が向上する点で、より好ましくは0.3400nm以上であり、更に高速充放電性能が向上する点で、特に好ましくは0.3500nm以上である。 The average lattice spacing d (002) of the amorphous carbon particles is 0.3370 nm or more. When the average lattice spacing d (002) of the amorphous carbon particles is 0.3370 nm or more, the reaction resistance of the particle surface is lowered and high-speed charging / discharging is excellent. The average lattice spacing d (002) of the amorphous carbon particles is more preferably 0.3400 nm or more in that the high-speed charge / discharge performance is further improved, and particularly preferably in that the high-speed charge / discharge performance is further improved. Is 0.3500 nm or more.

表面観察における非晶質炭素粒子の平均粒子径は、好ましくは50〜300nmである。表面観察における非晶質炭素粒子の平均粒子径が50〜300nmであることにより、不可逆容量増大を抑制しつつ、高速充放電特性に優れた材料となる。表面観察における非晶質炭素粒子の平均粒子径は、更に不可逆容量増大の抑制が可能となる点で、より好ましくは100nm以上であり、また、更に高速充放電性能が向上する点で、より好ましくは200nm以下である。 The average particle size of the amorphous carbon particles in the surface observation is preferably 50 to 300 nm. Since the average particle size of the amorphous carbon particles in the surface observation is 50 to 300 nm, the material has excellent high-speed charge / discharge characteristics while suppressing an increase in irreversible capacity. The average particle size of the amorphous carbon particles in the surface observation is more preferably 100 nm or more in that the increase in irreversible capacity can be further suppressed, and more preferably in that the high-speed charge / discharge performance is further improved. Is 200 nm or less.

なお、本発明のリチウムイオン二次電池用負極材において、表面観察における非晶質炭素粒子の平均粒子径は、任意に抽出したリチウムイオン二次電池用負極材の1粒子を、走査型電子顕微鏡(SEM)により表面観察し、得られるSEM画像中から任意に非晶質炭素粒子を選び、その粒子の外接円の直径を粒子径とする。そして、SEM画像から任意に少なくも10粒子の非晶質炭素粒子を抽出し、各粒子について、非晶質炭素粒子の径を求め、それらの径を平均し、表面観察における非晶質炭素粒子の平均粒子径とする。 In the negative electrode material for the lithium ion secondary battery of the present invention, the average particle size of the amorphous carbon particles in the surface observation is one particle of the negative electrode material for the lithium ion secondary battery extracted arbitrarily, using a scanning electron microscope. The surface is observed by (SEM), and amorphous carbon particles are arbitrarily selected from the obtained SEM images, and the diameter of the circumscribing circle of the particles is defined as the particle diameter. Then, at least 10 amorphous carbon particles are arbitrarily extracted from the SEM image, the diameters of the amorphous carbon particles are obtained for each particle, the diameters are averaged, and the amorphous carbon particles in the surface observation are observed. The average particle size of.

非晶質炭素化結合材料の平均格子面間隔d(002)は、0.3370nm以上である。非晶質炭素化結合材料の平均格子面間隔d(002)が0.3370nm以上であることにより、粒子表面の反応抵抗が下がり高速充放電に優れる。非晶質炭素化結合材料の平均格子面間隔d(002)は、更に高速充放電性能が向上する点で、より好ましくは0.3400nm以上であり、更に高速充放電性能が向上する点で、特に好ましくは0.3500nm以上である。 The average lattice spacing d (002) of the amorphous carbonized bonding material is 0.3370 nm or more. When the average lattice spacing d (002) of the amorphous carbonized bonding material is 0.3370 nm or more, the reaction resistance of the particle surface is lowered and high-speed charging / discharging is excellent. The average lattice spacing d (002) of the amorphous carbonized bonding material is more preferably 0.3400 nm or more in that the high-speed charge / discharge performance is further improved, and is further improved in the high-speed charge / discharge performance. Particularly preferably, it is 0.3500 nm or more.

断面観察における非晶質炭素化結合材料の厚みは、特に限定しないが、被覆粒子に埋没するためには15nm以上の厚みが好ましい。 The thickness of the amorphous carbonized bonding material in the cross-sectional observation is not particularly limited, but a thickness of 15 nm or more is preferable in order to bury it in the coating particles.

なお、本発明のリチウムイオン二次電池用負極材において、断面観察における非晶質炭素化結合材料の厚みは、任意に抽出したリチウムイオン二次電池用負極材の1粒子を、走査型電子顕微鏡(SEM)により断面観察し、得られるSEM画像中の非晶質炭素化結合材料の断面の厚みを、任意に10か所測定して、それらの平均を計算し、その値を非晶質炭素化結合材料の断面の厚みとする。そして、リチウムイオン二次電池用負極材から任意に少なくとも10粒子抽出し、各粒子について、非晶質炭素化結合材料の断面の厚みを求め、それらの厚みを平均し、断面観察における非晶質炭素化結合材料の断面の厚みとする。 In the negative electrode material for the lithium ion secondary battery of the present invention, the thickness of the amorphous carbonized bonding material in the cross-sectional observation is determined by scanning one particle of the negative electrode material for the lithium ion secondary battery extracted arbitrarily with a scanning electron microscope. The cross section is observed by (SEM), the thickness of the cross section of the amorphous carbonized bonding material in the obtained SEM image is arbitrarily measured at 10 points, the average thereof is calculated, and the value is calculated as amorphous carbon. It is the thickness of the cross section of the chemical bonding material. Then, at least 10 particles are arbitrarily extracted from the negative electrode material for the lithium ion secondary battery, the thickness of the cross section of the amorphous carbonized bonding material is obtained for each particle, the thicknesses are averaged, and the amorphous in the cross-sectional observation. It is the thickness of the cross section of the carbonized bonding material.

本発明のリチウムイオン二次電池用負極材の断面観察における次式(1):
断面観察における非晶質炭素粒子の埋没割合(%)=(断面観察における非晶質炭素粒子の埋没部分の面積/断面観察における非晶質炭素粒子の全体面積)×100(1)
で求められる断面観察における非晶質炭素粒子の埋没割合は、30〜90%である。断面観察における非晶質炭素粒子の埋没割合が、30〜90%であることにより、高速充放電特性が高くなる。断面観察における非晶質炭素粒子の埋没割合は、埋没の効果が十分に発揮され、高速充放電性能が向上する点で、より好ましくは50%以上であり、また、比表面積の低下による高速充放電性能が低下することを抑制する点で、より好ましくは80%以下である。
The following equation (1) in cross-sectional observation of the negative electrode material for a lithium ion secondary battery of the present invention:
Amorphous carbon particle burial ratio (%) in cross-sectional observation = (area of the buried portion of amorphous carbon particles in cross-sectional observation / total area of amorphous carbon particles in cross-sectional observation) × 100 (1)
The burial rate of the amorphous carbon particles in the cross-sectional observation obtained in 1) is 30 to 90%. When the burial ratio of the amorphous carbon particles in the cross-sectional observation is 30 to 90%, the high-speed charge / discharge characteristics are enhanced. The burial ratio of the amorphous carbon particles in the cross-sectional observation is more preferably 50% or more in that the burial effect is fully exhibited and the high-speed charge / discharge performance is improved, and high-speed filling due to a decrease in the specific surface area. It is more preferably 80% or less in terms of suppressing deterioration of the discharge performance.

なお、本発明において、断面観察における非晶質炭素粒子の埋没割合は、任意に抽出したリチウムイオン二次電池用負極材の1粒子を、走査型電子顕微鏡(SEM)により断面観察し、得られるSEM画像中の非晶質炭素粒子の埋没割合を求める。そして、SEM画像から任意に少なくとも10粒子抽出し、各粒子について、非晶質炭素粒子の埋没割合を求め、それらを平均し、断面観察における非晶質炭素粒子の埋没割合とする。 In the present invention, the burial ratio of the amorphous carbon particles in the cross-sectional observation can be obtained by observing the cross-section of one particle of the negative electrode material for a lithium ion secondary battery arbitrarily extracted by a scanning electron microscope (SEM). The burial ratio of amorphous carbon particles in the SEM image is determined. Then, at least 10 particles are arbitrarily extracted from the SEM image, the burial ratio of the amorphous carbon particles is obtained for each particle, and they are averaged to obtain the burial ratio of the amorphous carbon particles in the cross-sectional observation.

本発明のリチウムイオン二次電池用負極材の表面観察における次式(2):
表面観察における非晶質炭素粒子の被覆率(%)=(表面観察における計算範囲内の非晶質炭素粒子の合計面積/表面観察における計算範囲全体の面積)×100 (2)
で求められる表面観察における非晶質炭素粒子の被覆率は、50%以上である。表面観察における非晶質炭素粒子の被覆率が、50%以上であることにより、高速充放電特性が高くなる。表面観察における非晶質炭素粒子の被覆率は、更に高速充放電性能が向上する点で、より好ましくは70%以上であり、また、更に高速充放電性能が向上する点で、特に好ましくは80%以上である。
The following equation (2) in the surface observation of the negative electrode material for a lithium ion secondary battery of the present invention:
Coverage of amorphous carbon particles in surface observation (%) = (total area of amorphous carbon particles within the calculation range in surface observation / area of the entire calculation range in surface observation) × 100 (2)
The coverage of the amorphous carbon particles in the surface observation obtained in 1) is 50% or more. When the coverage of the amorphous carbon particles in the surface observation is 50% or more, the high-speed charge / discharge characteristics are enhanced. The coverage of the amorphous carbon particles in the surface observation is more preferably 70% or more in that the high-speed charge / discharge performance is further improved, and particularly preferably 80 in that the high-speed charge / discharge performance is further improved. % Or more.

なお、本発明において、表面観察における非晶質炭素粒子の被覆率は、任意に抽出したリチウムイオン二次電池用負極材の1粒子の表面を、走査型電子顕微鏡(SEM)により観察し、得られるSEM画像から計算範囲を定め、その範囲の非晶質炭素粒子の被覆率を求める。そして、リチウムイオン二次電池用負極材を任意に少なくとも10粒子抽出し、各粒子について、非晶質炭素粒子の被覆率を求め、それらを平均し、表面観察における非晶質炭素粒子の被覆率とする。 In the present invention, the coverage of amorphous carbon particles in surface observation is obtained by observing the surface of one particle of an arbitrarily extracted negative electrode material for a lithium ion secondary battery with a scanning electron microscope (SEM). A calculation range is determined from the SEM image obtained, and the coverage of amorphous carbon particles in that range is obtained. Then, at least 10 particles of the negative electrode material for the lithium ion secondary battery are arbitrarily extracted, the coverage of the amorphous carbon particles is obtained for each particle, and they are averaged to obtain the coverage of the amorphous carbon particles in the surface observation. And.

本発明のリチウムイオン二次電池用負極材の平均粒子径(D50)は、好ましくは5.0〜30.0μmである。リチウムイオン二次電池用負極材の平均粒子径(D50)が、5.0〜30.0μmであることにより、反応比表面積が増加することにより反応抵抗が下がり、高速充放電特性に優れる。本発明のリチウムイオン二次電池用負極材の平均粒子径(D50)は、初回充電時の不可逆容量増大の抑制が可能となる点で、より好ましくは7.0μm以上であり、また、更に高速充放電性能が向上する点で、より好ましくは25.0μm以下、更に高速充放電性能が向上する点で、特に好ましくは20.0μm以下である。 The average particle size (D 50 ) of the negative electrode material for a lithium ion secondary battery of the present invention is preferably 5.0 to 30.0 μm. When the average particle size (D 50 ) of the negative electrode material for a lithium ion secondary battery is 5.0 to 30.0 μm, the reaction specific surface area is increased, the reaction resistance is lowered, and the high-speed charge / discharge characteristics are excellent. The average particle size (D 50 ) of the negative electrode material for a lithium ion secondary battery of the present invention is more preferably 7.0 μm or more, and further preferably 7.0 μm or more, in that it is possible to suppress an increase in irreversible capacity at the time of initial charging. It is more preferably 25.0 μm or less in terms of improving the high-speed charge / discharge performance, and particularly preferably 20.0 μm or less in terms of further improving the high-speed charge / discharge performance.

なお、本発明において、粉末又は粒子のD50(平均粒子径)は、レーザー回折粒度分布測定装置を用いて体積基準積算粒度分布を測定したときの積算粒度が50%のときの粒径である。 In the present invention, D 50 (average particle size) of the powder or particles is the particle size when the integrated particle size is 50% when the volume-based integrated particle size distribution is measured using a laser diffraction particle size distribution measuring device. ..

本発明のリチウムイオン二次電池用負極材の比表面積は、好ましくは10.0m/g以下である。リチウムイオン二次電池用負極材の比表面積が、10.0m/g以下であることにより、初回充電時の不可逆容量の増大を抑制できる。本発明のリチウムイオン二次電池用負極材の比表面積は、初回充電時の不可逆容量増大の抑制が可能となる点で、より好ましくは7.5m/g以下であり、更に、初回充電時の不可逆容量増大の抑制が可能となる点で、特に好ましくは5.0m/g以下である。本発明のリチウムイオン二次電池用負極材の比表面積は、高速充放電性能の低下の抑制が可能となる点で、1.0m/g以上が好ましい。 The specific surface area of the negative electrode material for a lithium ion secondary battery of the present invention is preferably 10.0 m 2 / g or less. When the specific surface area of the negative electrode material for the lithium ion secondary battery is 10.0 m 2 / g or less, it is possible to suppress an increase in the irreversible capacity at the time of initial charging. The specific surface area of the negative electrode material for a lithium ion secondary battery of the present invention is more preferably 7.5 m 2 / g or less in that it is possible to suppress an increase in irreversible capacity at the time of initial charging, and further, at the time of initial charging. It is particularly preferably 5.0 m 2 / g or less in that the increase in irreversible capacity can be suppressed. The specific surface area of the negative electrode material for a lithium ion secondary battery of the present invention is preferably 1.0 m 2 / g or more in that deterioration of high-speed charge / discharge performance can be suppressed.

本発明のリチウムイオン二次電池用負極材のタップ密度は、好ましくは0.80g/cm以上である。リチウムイオン二次電池用負極材のタップ密度が、0.80g/cm以上であることにより、電極プレス工程において負荷を小さくすることが可能となり、粒子への損傷を小さくすることが可能となる。本発明のリチウムイオン二次電池用負極材のタップ密度は、更に電極プレス工程において負荷が小さくなり、粒子への損傷が小さくなる点で、より好ましくは0.90g/cm以上、更に、粒子への損傷が小さくなる点で、特に好ましくは1.00g/cm以上である。本発明のリチウムイオン二次電池用負極材のタップ密度は、粒子間導電パスの確保及び浸液性の確保が可能となる点で、より好ましくは1.20g/cm以下である。 The tap density of the negative electrode material for a lithium ion secondary battery of the present invention is preferably 0.80 g / cm 3 or more. When the tap density of the negative electrode material for the lithium ion secondary battery is 0.80 g / cm 3 or more, the load can be reduced in the electrode pressing process, and the damage to the particles can be reduced. .. The tap density of the negative electrode material for a lithium ion secondary battery of the present invention is more preferably 0.90 g / cm 3 or more, and more preferably 0.90 g / cm 3 or more, in that the load is further reduced in the electrode pressing step and the damage to the particles is reduced. It is particularly preferably 1.00 g / cm 3 or more in terms of reducing damage to the battery. The tap density of the negative electrode material for a lithium ion secondary battery of the present invention is more preferably 1.20 g / cm 3 or less in that it is possible to secure an interparticle conductive path and secure liquid immersion property.

本発明のリチウムイオン二次電池用負極材のラマンR値は、好ましくは0.30以上である。リチウムイオン二次電池用負極材のラマンR値が、0.30以上であることにより、粒子表面が十分に非晶質化されているため、反応抵抗が低く、高速充放電性能が向上する。本発明のリチウムイオン二次電池用負極材のラマンR値は、更に高速充放電性能が向上する点で、特に好ましくは0.40以上である。本発明のリチウムイオン二次電池用負極材のラマンR値は、初回充電時の不可逆容量増大の抑制が可能となる点で、1.20以下が好ましい。 The Raman R value of the negative electrode material for a lithium ion secondary battery of the present invention is preferably 0.30 or more. When the Raman R value of the negative electrode material for a lithium ion secondary battery is 0.30 or more, the particle surface is sufficiently amorphized, so that the reaction resistance is low and the high-speed charge / discharge performance is improved. The Raman R value of the negative electrode material for a lithium ion secondary battery of the present invention is particularly preferably 0.40 or more in that the high-speed charge / discharge performance is further improved. The Raman R value of the negative electrode material for a lithium ion secondary battery of the present invention is preferably 1.20 or less in that an increase in irreversible capacity at the time of initial charging can be suppressed.

本発明のリチウムイオン二次電池用負極材の初期容量は、好ましくは340mAh/g以上である。リチウムイオン二次電池用負極材の初期容量が、340mAh/g以上であることにより、電池を組んだ際に十分なエネルギー密度を確保することが可能となる。本発明のリチウムイオン二次電池用負極材の初期容量は、更に十分なエネルギー密度の確保が可能となる点で、特に好ましくは345mAh/g以上である。 The initial capacity of the negative electrode material for a lithium ion secondary battery of the present invention is preferably 340 mAh / g or more. When the initial capacity of the negative electrode material for a lithium ion secondary battery is 340 mAh / g or more, it is possible to secure a sufficient energy density when the battery is assembled. The initial capacity of the negative electrode material for a lithium ion secondary battery of the present invention is particularly preferably 345 mAh / g or more in that a sufficient energy density can be secured.

本発明の第一の形態のリチウムイオン二次電池用負極材の製造方法は、平均粒子径(D50)が5.0〜30.0μmである黒鉛粒子と、バインダーを混合することにより、該黒鉛粒子がバインダーで被覆されたバインダー被覆黒鉛粒子を得る被覆工程と、
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50〜300nmである非晶質炭素粒子を10.0〜40.0質量部混合し、圧縮及び摩擦させることにより、該バインダー被覆黒鉛粒子のバインダー層に該非晶質炭素粒子を埋め込み、非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を得る埋め込み工程と、
非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を、焼成炭化する焼成炭化工程と、
を有することを特徴とする。
The method for producing a negative electrode material for a lithium ion secondary battery according to the first aspect of the present invention is to mix graphite particles having an average particle diameter (D 50 ) of 5.0 to 30.0 μm with a binder. A coating step of obtaining binder-coated graphite particles in which graphite particles are coated with a binder,
The binder-coated graphite is obtained by mixing 10.0 to 40.0 parts by mass of amorphous carbon particles having an arithmetic average particle diameter of 50 to 300 nm with 100.0 parts by mass of the graphite particles, compressing and rubbing them. An embedding step of embedding the amorphous carbon particles in the binder layer of the particles to obtain the amorphous carbon particle embedding binder-coated graphite particles, and
A calcined carbonization step of calcining carbonized graphite particles coated with an amorphous carbon particle-embedded binder,
It is characterized by having.

本発明の第一の形態のリチウムイオン二次電池用負極材の製造方法について、図4を参照して説明する。図4は、本発明の第一の形態のリチウムイオン二次電池用負極材の製造方法を説明するための模式的な断面図である。なお、説明の都合上、図4では、黒鉛粒子及びバインダーの輪郭のみを実線で示した。 The method for producing the negative electrode material for a lithium ion secondary battery according to the first aspect of the present invention will be described with reference to FIG. FIG. 4 is a schematic cross-sectional view for explaining a method for manufacturing a negative electrode material for a lithium ion secondary battery according to the first aspect of the present invention. For convenience of explanation, in FIG. 4, only the outlines of the graphite particles and the binder are shown by solid lines.

図4中、先ず、黒鉛粒子1と、バインダー11を混合することにより、(A)に示すように、黒鉛粒子1がバインダー11で被覆されたバインダー被覆黒鉛粒子12を得る。次いで、バインダー被覆黒鉛粒子12に非晶質炭素粒子3を混合して、(B)に示すように、非晶質炭素粒子付着バインダー被覆黒鉛粒子13を得る。次いで、非晶質炭素粒子付着バインダー被覆黒鉛粒子13を、圧縮及び摩擦させることにより、バインダー層11に、非晶質炭素粒子3を埋め込み、非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子14を得る。次いで、非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子14を焼成することにより、バインダーが炭素化して、非晶質炭素化結合材料に変換され、リチウムイオン二次電池用負極材が得られる。 In FIG. 4, first, the graphite particles 1 and the binder 11 are mixed to obtain a binder-coated graphite particles 12 in which the graphite particles 1 are coated with the binder 11 as shown in (A). Next, the amorphous carbon particles 3 are mixed with the binder-coated graphite particles 12 to obtain the amorphous carbon particle-attached binder-coated graphite particles 13 as shown in (B). Next, the amorphous carbon particle-adhered binder-coated graphite particles 13 are compressed and rubbed to embed the amorphous carbon particles 3 in the binder layer 11 to obtain the amorphous carbon particle-embedded binder-coated graphite particles 14. Next, by firing the amorphous carbon particle-embedded binder-coated graphite particles 14, the binder is carbonized and converted into an amorphous carbonized bonding material to obtain a negative electrode material for a lithium ion secondary battery.

本発明の第一の形態のリチウムイオン二次電池用負極材の製造方法は、被覆工程と、埋め込み工程と、焼成炭化工程と、を有する。 The method for producing a negative electrode material for a lithium ion secondary battery according to the first aspect of the present invention includes a coating step, an embedding step, and a calcining carbonization step.

本発明の第一の形態のリチウムイオン二次電池用負極材の製造方法に係る被覆工程(以下、被覆工程(1)とも記載する。)は、黒鉛粒子と、バインダーを混合することにより、黒鉛粒子がバインダーで被覆されたバインダー被覆黒鉛粒子を得る工程である。 In the coating step (hereinafter, also referred to as coating step (1)) according to the method for producing a negative electrode material for a lithium ion secondary battery according to the first aspect of the present invention, graphite particles are mixed with a binder to obtain graphite. This is a step of obtaining binder-coated graphite particles in which the particles are coated with a binder.

被覆工程(1)に係る黒鉛粒子は、球状化された黒鉛であり、扁平状の黒鉛が球状に凝集したものである。黒鉛粒子は、天然黒鉛であっても、人造黒鉛であってもよい。 The graphite particles according to the coating step (1) are spheroidized graphite, and flat graphite is agglomerated into spheres. The graphite particles may be natural graphite or artificial graphite.

被覆工程(1)に係る黒鉛粒子の平均粒子径(D50)は、好ましくは5.0〜30.0μmである。黒鉛粒子の平均粒子径(D50)が5.0〜30.0μmであることにより、反応比表面積が増加することにより反応抵抗が下がり、加えて、黒鉛粒子内のリチウムイオンの移動速度も速くなる。黒鉛粒子の平均粒子径(D50)は、初回充電時の不可逆容量増大の抑制が可能となる点で、より好ましくは7.0μm以上であり、また、更に高速充放電性能が向上する点で、より好ましくは25.0μm以下、更に、高速充放電性能が向上する点で、特に好ましくは20.0μm以下である。 The average particle size (D 50 ) of the graphite particles according to the coating step (1) is preferably 5.0 to 30.0 μm. When the average particle size (D 50 ) of the graphite particles is 5.0 to 30.0 μm, the reaction resistance decreases due to the increase in the reaction specific surface area, and in addition, the movement speed of lithium ions in the graphite particles is also high. Become. The average particle size (D 50 ) of the graphite particles is more preferably 7.0 μm or more in that it is possible to suppress an increase in irreversible capacity at the time of initial charging, and further improve high-speed charge / discharge performance. , More preferably 25.0 μm or less, and particularly preferably 20.0 μm or less in terms of improving high-speed charge / discharge performance.

被覆工程(1)に係る黒鉛粒子のd(002)は、0.3360nm以下である。黒鉛粒子の平均格子面間隔d(002)が0.3360nm以下であることにより、可逆容量が十分に大きくなる。黒鉛粒子のd(002)は、更に可逆容量が大きくなる点で、好ましくは0.3358nm以下である。 The d (002) of the graphite particles according to the coating step (1) is 0.3360 nm or less. When the average lattice spacing d (002) of the graphite particles is 0.3360 nm or less, the reversible capacitance becomes sufficiently large. The d (002) of the graphite particles is preferably 0.3358 nm or less in that the reversible capacity is further increased.

被覆工程(1)に係るバインダーは、焼成炭化工程において炭化し、非晶質の炭素材料となるものであれば、特に制限されず、コールタールピッチ、フェノール樹脂等が挙げられる。 The binder according to the coating step (1) is not particularly limited as long as it is carbonized in the firing carbonization step and becomes an amorphous carbon material, and examples thereof include coal tar pitch and phenol resin.

被覆工程(1)において、黒鉛粒子100.0質量部に対する、バインダーの混合量は、好ましくは10.0〜40.0質量部である。バインダーの混合量が黒鉛粒子100.0質量部に対し10.0〜40.0質量部であることにより、初回充電時の不可逆容量を抑制しつつ、被覆粒子を埋め込み、固定化することが可能となる。黒鉛粒子100.0質量部に対する、バインダーの混合量は、粒子表面を被覆し、初回充電時の不可逆容量増大の抑制が可能となる点で、より好ましくは20.0質量部以上であり、また、余剰なバインダーの炭化分の発生を抑制し、初回充電時の不可逆容量増大の抑制が可能となる点で、より好ましくは30.0質量部以下である。 In the coating step (1), the mixing amount of the binder with respect to 100.0 parts by mass of the graphite particles is preferably 10.0 to 40.0 parts by mass. Since the mixing amount of the binder is 10.0 to 40.0 parts by mass with respect to 100.0 parts by mass of the graphite particles, it is possible to embed and immobilize the coated particles while suppressing the irreversible capacity at the time of initial charging. It becomes. The mixing amount of the binder with respect to 100.0 parts by mass of the graphite particles is more preferably 20.0 parts by mass or more in that the particle surface is covered and the increase in irreversible capacity at the time of initial charging can be suppressed. It is more preferably 30.0 parts by mass or less in that the generation of carbonized components of excess binder can be suppressed and the increase in irreversible capacity at the time of initial charging can be suppressed.

被覆工程(1)において、黒鉛粒子とバインダーを混合する方法としては、特に制限されず、ヘンシェルミキサー、ハイスピードミキサー、捏合機等の加熱混合機を用いて混合する方法が挙げられる。 In the coating step (1), the method of mixing the graphite particles and the binder is not particularly limited, and examples thereof include a method of mixing using a heating mixer such as a Henschel mixer, a high speed mixer, or a kneader.

被覆工程(1)において、黒鉛粒子とバインダーを混合するときの混合温度は、常温で固体のバインダーの場合は、軟化点温度以上であり、常温で液体のバインダーの場合は、特に限定されないが、樹脂を用いる場合は通常硬化温度以下である。混合時間は、好ましくは10〜30分間である。 In the coating step (1), the mixing temperature when the graphite particles and the binder are mixed is equal to or higher than the softening point temperature in the case of a binder solid at room temperature, and is not particularly limited in the case of a binder liquid at room temperature. When a resin is used, it is usually below the curing temperature. The mixing time is preferably 10 to 30 minutes.

本発明の第一の形態のリチウムイオン二次電池用負極材の製造方法に係る埋め込み工程は、被覆工程(1)を行い得られるバインダー被覆黒鉛粒子に、非晶質炭素粒子を混合し、圧縮及び摩擦させることにより、バインダー被覆黒鉛粒子のバインダー層に非晶質炭素粒子を埋め込み、非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を得る工程である。 In the embedding step according to the method for producing a negative electrode material for a lithium ion secondary battery according to the first aspect of the present invention, amorphous carbon particles are mixed with the binder-coated graphite particles obtained by performing the coating step (1) and compressed. And by rubbing, the amorphous carbon particles are embedded in the binder layer of the binder-coated graphite particles, and the amorphous carbon particles-embedded binder-coated graphite particles are obtained.

埋め込み工程に係る非晶質炭素粒子は、特に制限されないが、例えば、ファーネスブラック、サーマルブラック等が挙げられる。 The amorphous carbon particles involved in the embedding step are not particularly limited, and examples thereof include furnace black and thermal black.

埋め込み工程に係る非晶質炭素粒子の平均格子面間隔d(002)は、0.3370nm以上である。非晶質炭素粒子の平均格子面間隔d(002)が0.3370nm以上であることにより、粒子表面の反応抵抗が下がり高速充放電に優れる。非晶質炭素粒子の平均格子面間隔d(002)は、更に高速充放電性が向上する点で、より好ましくは0.3400nm以上であり、更に高速充放電性能が向上する点で、特に好ましくは0.3500nm以上である。 The average lattice spacing d (002) of the amorphous carbon particles involved in the embedding step is 0.3370 nm or more. When the average lattice spacing d (002) of the amorphous carbon particles is 0.3370 nm or more, the reaction resistance of the particle surface is lowered and high-speed charging / discharging is excellent. The average lattice spacing d (002) of the amorphous carbon particles is more preferably 0.3400 nm or more in that the high-speed charge / discharge property is further improved, and particularly preferably in that the high-speed charge / discharge performance is further improved. Is 0.3500 nm or more.

埋め込み工程に係る非晶質炭素粒子の算術平均粒子径は、好ましくは50〜300nmである。表面観察における非晶質炭素粒子の平均粒子径が50〜300nmであることにより、不可逆容量の低下を抑制しつつ、高速充放電特性に優れた材料となる。非晶質炭素粒子の算術平均粒子径は、更に高速充放電性が向上する点で、より好ましくは100nm以上であり、また、初回充電時の不可逆容量増大の抑制が可能となる点で、より好ましくは200nm以下である。 The arithmetic mean particle size of the amorphous carbon particles involved in the embedding step is preferably 50 to 300 nm. Since the average particle size of the amorphous carbon particles in surface observation is 50 to 300 nm, the material has excellent high-speed charge / discharge characteristics while suppressing a decrease in irreversible capacity. The arithmetic mean particle size of the amorphous carbon particles is more preferably 100 nm or more in that the high-speed charge / discharge property is further improved, and more in that the increase in irreversible capacity at the time of initial charging can be suppressed. It is preferably 200 nm or less.

埋め込み工程に係る非晶質炭素粒子の算術平均粒子径は、透過型電子顕微鏡(TEM)で非晶質炭素粒子の観察を行い、得られる画像中の粒子の外接円の直径を粒子径として、画像ソフト(三谷商事社製WINROOF)を用いて、測定される10000個の粒子の粒子径の平均値である。 The arithmetic average particle size of the amorphous carbon particles involved in the embedding step is determined by observing the amorphous carbon particles with a transmission electron microscope (TEM) and using the diameter of the circumscribing circle of the particles in the obtained image as the particle size. It is an average value of the particle diameters of 10,000 particles measured using image software (WINROOF manufactured by Mitani Shoji Co., Ltd.).

埋め込み工程に係る非晶質炭素粒子がカーボンブラックの場合、カーボンブラックのDBP吸油量は、好ましくは300ml/100g以下である。カーボンブラックのDBP吸油量が300ml/100g以下であることにより、比表面積の増大を抑制し、初回充電時の不可逆容量を抑制することが可能となる。カーボンブラックのDBP吸油量は、初回充電時の不可逆容量増大の抑制が可能となる点で、より好ましくは250ml/100g以下であり、更に、初回充電時の不可逆容量増大の抑制が可能となる点で、特に好ましくは200ml/100g以下である。 When the amorphous carbon particles involved in the embedding step are carbon black, the DBP oil absorption amount of the carbon black is preferably 300 ml / 100 g or less. When the DBP oil absorption amount of carbon black is 300 ml / 100 g or less, it is possible to suppress an increase in the specific surface area and suppress an irreversible capacity at the time of initial charging. The DBP oil absorption amount of carbon black is more preferably 250 ml / 100 g or less in that it is possible to suppress an increase in irreversible capacity at the time of initial charging, and further, it is possible to suppress an increase in irreversible capacity at the time of initial charging. In particular, it is 200 ml / 100 g or less.

埋め込み工程において、黒鉛粒子100.0質量部に対する、非晶質炭素粒子の混合量は、好ましくは10.0〜40.0質量部である。非晶質炭素粒子の混合量が黒鉛粒子100.0質量部に対し10.0〜40.0質量部であることにより、初回充電時の不可逆容量を抑制しつつ、高速充放電性能を向上させることが可能となる。黒鉛粒子100.0質量部に対する、非晶質炭素粒子の混合量は、更に高速充放電性が向上する点で、より好ましくは20.0質量部以上であり、また、被覆されずに単離する粒子を抑制し、初回充電時の不可逆容量増大の抑制が可能となる点で、より好ましくは30.0質量部以下である。 In the embedding step, the mixing amount of the amorphous carbon particles with respect to 100.0 parts by mass of the graphite particles is preferably 10.0 to 40.0 parts by mass. Since the mixed amount of the amorphous carbon particles is 10.0 to 40.0 parts by mass with respect to 100.0 parts by mass of the graphite particles, the irreversible capacity at the time of initial charging is suppressed and the high-speed charge / discharge performance is improved. It becomes possible. The mixing amount of the amorphous carbon particles with respect to 100.0 parts by mass of the graphite particles is more preferably 20.0 parts by mass or more in terms of further improving the high-speed charge / discharge property, and isolated without being coated. It is more preferably 30.0 parts by mass or less in that the particles to be charged can be suppressed and the increase in irreversible capacity at the time of initial charging can be suppressed.

埋め込み工程において、バインダー被覆黒鉛粒子に非晶質炭素粒子を混合し、圧縮及び摩擦させることにより、バインダー被覆黒鉛粒子のバインダーの層に非晶質炭素粒子を埋め込む方法としては、特に制限されず、圧縮及び摩擦を利用して機械的エネルギーを付与する方法であり、例えば、ハイブリダイザー、メカノフュージョンシステム等の装置を用いて圧縮及び摩擦させる方法が挙げられる。 In the embedding step, the method of embedding the amorphous carbon particles in the binder layer of the binder-coated graphite particles by mixing the amorphous carbon particles with the binder-coated graphite particles, compressing and rubbing the particles is not particularly limited. It is a method of applying mechanical energy by utilizing compression and friction, and examples thereof include a method of compressing and rubbing using a device such as a hybridizer and a mechanofusion system.

埋め込み工程において、バインダー被覆黒鉛粒子に非晶質炭素粒子を混合し、圧縮及び摩擦させるときの処理温度は、バインダーの軟化点温度以上であれば特に限定されないが、軟化点に対し±20℃の温度が好ましい。軟化点に対し処理温度が高すぎると、バインダーの流動性が増し、被覆粒子のみの造粒体を形成しやすく、処理温度が低すぎるとピッチ層が硬くなり、被覆粒子を埋め込むことが困難となる。 In the embedding step, the treatment temperature when the amorphous carbon particles are mixed with the binder-coated graphite particles and compressed and rubbed is not particularly limited as long as it is equal to or higher than the softening point temperature of the binder, but is ± 20 ° C. with respect to the softening point. Temperature is preferred. If the treatment temperature is too high with respect to the softening point, the fluidity of the binder increases and it is easy to form granules containing only coated particles, and if the treatment temperature is too low, the pitch layer becomes hard and it is difficult to embed the coated particles. Become.

埋め込み工程を、ハイブリダイザー装置(奈良機械社製NHS−I型)を用いて行う場合の条件の一例を以下に示す。非晶質炭素粒子付着バインダー(ピッチ)被覆黒鉛粒子を装置内に投入し、1,200rpm(回転周速20m/s)で処理をする。装置内の温度がバインダー(ピッチ)の軟化点以上の温度で安定化したところで、回転数6,400rpm(回転周速80m/s)で処理をすることで、軟化したバインダー層(ピッチ層)に非晶質炭素粒子を埋め込む。 An example of the conditions when the embedding process is performed using a hybridizer device (NHS-I type manufactured by Nara Machinery Co., Ltd.) is shown below. Amorphous carbon particle-adhered binder (pitch) -coated graphite particles are put into the apparatus and treated at 1,200 rpm (rotational peripheral speed 20 m / s). When the temperature inside the device is stabilized at a temperature above the softening point of the binder (pitch), the softened binder layer (pitch layer) is formed by processing at a rotation speed of 6,400 rpm (rotational peripheral speed 80 m / s). Embed amorphous carbon particles.

本発明の第一の形態のリチウムイオン二次電池用負極材の製造方法に係る焼成炭化工程(以下、焼成炭化工程(1)とも記載する。)は、非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を、焼成炭化する工程である。 The calcined carbonization step (hereinafter, also referred to as calcined carbonization step (1)) according to the method for producing a negative electrode material for a lithium ion secondary battery according to the first aspect of the present invention is a binder-coated graphite particle in which amorphous carbon particles are embedded. Is a step of calcining and carbonizing.

非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を、焼成炭化するときの温度は、好ましくは800℃以上、より好ましくは1000℃以上である。焼成炭化温度が上記範囲にあることにより、特にカーボンブラック等の非晶質炭素粒子に含まれる未燃分を十分に除去することが可能となる。一方、焼成炭化温度が、上記範囲未満だと、カーボンブラック等の非晶質炭素粒子に含まれる未燃分を十分に除去することが出来ず、電池特性が悪くなる。また、焼成炭化時間は、適宜選択される。焼成炭化する温度の上限は特に制限されないが、非晶質炭素粒子付着黒鉛粒子を焼成炭化する温度は、3000℃以下が好ましく、高速充放電特性が向上する点でより好ましくは2000℃以下である。 The temperature at which the amorphous carbon particle-embedded binder-coated graphite particles are calcined and carbonized is preferably 800 ° C. or higher, more preferably 1000 ° C. or higher. When the calcination carbonization temperature is in the above range, it is possible to sufficiently remove unburned components contained in amorphous carbon particles such as carbon black. On the other hand, if the firing carbonization temperature is less than the above range, the unburned components contained in the amorphous carbon particles such as carbon black cannot be sufficiently removed, and the battery characteristics deteriorate. The firing carbonization time is appropriately selected. The upper limit of the temperature for calcining and carbonizing is not particularly limited, but the temperature for calcining and carbonizing the graphite particles adhering to amorphous carbon particles is preferably 3000 ° C. or lower, and more preferably 2000 ° C. or lower in terms of improving high-speed charge / discharge characteristics. ..

非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を、焼成炭化するときの雰囲気は、窒素ガス雰囲気、アルゴンガス雰囲気等の不活性ガス雰囲気である。 The atmosphere when the amorphous carbon particle-embedded binder-coated graphite particles are calcined and carbonized is an inert gas atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere.

本発明の第一の形態のリチウムイオン二次電池用負極材の製造方法では、炭化焼成工程(1)を行い得られる焼成炭化物に、必要に応じて、粉砕処理、分級処理を施してもよい。 In the method for producing a negative electrode material for a lithium ion secondary battery according to the first aspect of the present invention, the calcined carbide obtained by performing the carbonization firing step (1) may be subjected to a pulverization treatment and a classification treatment, if necessary. ..

このように、本発明の第一の形態のリチウムイオン二次電池用負極材の製造方法を行うことにより、本発明のリチウムイオン二次電池用負極材を得ることができる。 As described above, the negative electrode material for a lithium ion secondary battery of the present invention can be obtained by performing the method for producing a negative electrode material for a lithium ion secondary battery according to the first aspect of the present invention.

本発明の第二の形態のリチウムイオン二次電池用負極材の製造方法は、平均粒子径(D50)が5.0〜30.0μmである黒鉛粒子と、バインダーを混合することにより、該黒鉛粒子がバインダーで被覆されたバインダー被覆黒鉛粒子を得る被覆工程と、
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50〜300nmである非晶質炭素粒子を10.0〜40.0質量部混合し、次いで、炭化後の残炭量が2.0質量部以上となる量の樹脂溶液で被覆処理することにより、該非晶質炭素粒子が付着している黒鉛粒子を、該樹脂で再被覆し、非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を得る再被覆工程と、
該非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を、焼成炭化する焼成炭化工程と、
を有することを特徴とする。
The method for producing the negative electrode material for a lithium ion secondary battery according to the second aspect of the present invention is to mix graphite particles having an average particle diameter (D 50 ) of 5.0 to 30.0 μm with a binder. A coating step of obtaining binder-coated graphite particles in which graphite particles are coated with a binder,
Amorphous carbon particles having an arithmetic average particle diameter of 50 to 300 nm are mixed with 100.0 parts by mass of the graphite particles by 10.0 to 40.0 parts by mass, and then the amount of residual carbon after carbonization is 2. By coating with a resin solution in an amount of 0 parts by mass or more, the graphite particles to which the amorphous carbon particles are attached are recoated with the resin, and the amorphous carbon particle-attached binder-coated graphite particles are re-coated. The recoating process to obtain the coating and
A calcining carbonization step of calcining and carbonizing the recoated material of the binder-coated graphite particles adhering to the amorphous carbon particles.
It is characterized by having.

本発明の第二の形態のリチウムイオン二次電池用負極材の製造方法について、図5を参照して説明する。図5は、本発明の第二の形態のリチウムイオン二次電池用負極材の製造方法を説明するための模式的な断面図である。なお、説明の都合上、図5では、黒鉛粒子、バインダー及び樹脂の輪郭のみを実線で示した。 A method for producing a negative electrode material for a lithium ion secondary battery according to a second aspect of the present invention will be described with reference to FIG. FIG. 5 is a schematic cross-sectional view for explaining a method for manufacturing a negative electrode material for a lithium ion secondary battery according to a second aspect of the present invention. For convenience of explanation, in FIG. 5, only the outlines of the graphite particles, the binder and the resin are shown by solid lines.

図5中、先ず、黒鉛粒子1と、バインダー11を混合することにより、(A)に示すように、黒鉛粒子1がバインダー11で被覆されたバインダー被覆黒鉛粒子12を得る。次いで、バインダー被覆黒鉛粒子12に非晶質炭素粒子3を混合して、(B)に示すように、非晶質炭素粒子付着バインダー被覆黒鉛粒子13を得る。次いで、非晶質炭素粒子付着バインダー被覆黒鉛粒子13に、樹脂溶液を混合し、バインダー層11の表面を、樹脂溶液で覆い、次いで、乾燥することにより、バインダー層11の表面を樹脂15で被覆して、非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物16を得る。次いで、非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物16を焼成することにより、バインダー及び樹脂が炭素化して、非晶質炭素化結合材料に変換され、リチウムイオン二次電池用負極材が得られる。 In FIG. 5, first, by mixing the graphite particles 1 and the binder 11, as shown in (A), the binder-coated graphite particles 12 in which the graphite particles 1 are coated with the binder 11 are obtained. Next, the amorphous carbon particles 3 are mixed with the binder-coated graphite particles 12 to obtain the amorphous carbon particle-attached binder-coated graphite particles 13 as shown in (B). Next, a resin solution is mixed with the amorphous carbon particle-adhered binder-coated graphite particles 13, the surface of the binder layer 11 is covered with the resin solution, and then dried to cover the surface of the binder layer 11 with the resin 15. Then, a recoated material 16 of the binder-coated graphite particles adhering to the amorphous carbon particles is obtained. Next, by firing the recoated material 16 of the binder-coated graphite particles adhering to the amorphous carbon particles, the binder and the resin are carbonized and converted into an amorphous carbonized bonding material, which is a negative electrode material for a lithium ion secondary battery. Is obtained.

本発明の第二の形態のリチウムイオン二次電池用負極材の製造方法は、被覆工程と、再被覆工程と、焼成炭化工程と、を有する。 The method for producing a negative electrode material for a lithium ion secondary battery according to the second aspect of the present invention includes a coating step, a recoating step, and a calcining carbonization step.

本発明の第二の形態のリチウムイオン二次電池用負極材の製造方法に係る被覆工程(以下、被覆工程(2)とも記載する。)は、黒鉛粒子と、バインダーを混合することにより、黒鉛粒子がバインダーで被覆されたバインダー被覆黒鉛粒子を得る工程である。 In the coating step (hereinafter, also referred to as coating step (2)) according to the method for producing a negative electrode material for a lithium ion secondary battery according to the second aspect of the present invention, graphite particles are mixed with a binder to obtain graphite. This is a step of obtaining binder-coated graphite particles in which the particles are coated with a binder.

被覆工程(2)に係る黒鉛粒子は、球状化された黒鉛であり、扁平状の黒鉛が球状に凝集したものである。黒鉛粒子は、天然黒鉛であっても、人造黒鉛であってもよい。 The graphite particles according to the coating step (2) are spheroidized graphite, and flat graphite is agglomerated into spheres. The graphite particles may be natural graphite or artificial graphite.

被覆工程(2)に係る黒鉛粒子の平均粒子径(D50)は、好ましくは5.0〜30.0μmである。黒鉛粒子の平均粒子径(D50)が5.0〜30.0μmであることにより、反応比表面積が増加することにより反応抵抗が下がり、加えて、黒鉛粒子内のリチウムイオンの移動速度も速くなる。黒鉛粒子の平均粒子径(D50)は、初回充電時の不可逆容量増大の抑制が可能となる点で、より好ましくは7.0μm以上であり、また、更に高速充放電性能が向上する点で、より好ましくは25.0μm以下であり、更に、高速充放電性能が向上する点で、特に好ましくは20.0μm以下である。 The average particle size (D 50 ) of the graphite particles according to the coating step (2) is preferably 5.0 to 30.0 μm. When the average particle size (D 50 ) of the graphite particles is 5.0 to 30.0 μm, the reaction resistance decreases due to the increase in the reaction specific surface area, and in addition, the movement speed of lithium ions in the graphite particles is also high. Become. The average particle size (D 50 ) of the graphite particles is more preferably 7.0 μm or more in that it is possible to suppress an increase in irreversible capacity at the time of initial charging, and further improve high-speed charge / discharge performance. , More preferably 25.0 μm or less, and particularly preferably 20.0 μm or less in terms of improving high-speed charge / discharge performance.

被覆工程(2)に係る黒鉛粒子のd(002)は、0.3360nm以下である。黒鉛粒子の平均格子面間隔d(002)が0.3360nm以下であることにより、可逆容量が十分に大きくなる。黒鉛粒子のd(002)は、更に可逆容量が大きくなる点で、好ましくは0.3358nm以下である。 The d (002) of the graphite particles according to the coating step (2) is 0.3360 nm or less. When the average lattice spacing d (002) of the graphite particles is 0.3360 nm or less, the reversible capacitance becomes sufficiently large. The d (002) of the graphite particles is preferably 0.3358 nm or less in that the reversible capacity is further increased.

被覆工程(2)に係るバインダーは、焼成炭化工程において炭化し、非晶質の炭素材料となるものであれば、特に制限されず、コールタールピッチ、フェノール樹脂等が挙げられる。 The binder according to the coating step (2) is not particularly limited as long as it is carbonized in the firing carbonization step and becomes an amorphous carbon material, and examples thereof include coal tar pitch and phenol resin.

被覆工程(2)において、黒鉛粒子100.0質量部に対する、バインダーの混合量は、好ましくは10.0〜30.0質量部である。バインダーの混合量が黒鉛粒子100.0質量部に対し10.0〜30.0質量部であることにより、初回充電時の不可逆容量を抑制しつつ、被覆粒子を埋め込み、固定化することが可能となる。黒鉛粒子100.0質量部に対する、バインダーの混合量は、粒子表面を被覆し、初回充電時の不可逆容量増大の抑制が可能となる点で、より好ましくは15.0質量部以上であり、また、余剰なバインダーの炭化分の発生を抑制し、初回充電時の不可逆容量増大の抑制が可能となる点で、より好ましくは20.0質量部以下である。 In the coating step (2), the mixing amount of the binder with respect to 100.0 parts by mass of the graphite particles is preferably 10.0 to 30.0 parts by mass. Since the mixing amount of the binder is 10.0 to 30.0 parts by mass with respect to 100.0 parts by mass of the graphite particles, it is possible to embed and immobilize the coated particles while suppressing the irreversible capacity at the time of initial charging. It becomes. The mixing amount of the binder with respect to 100.0 parts by mass of the graphite particles is more preferably 15.0 parts by mass or more in that the particle surface is covered and the increase in irreversible capacity at the time of initial charging can be suppressed. It is more preferably 20.0 parts by mass or less in that the generation of carbonized components of excess binder can be suppressed and the increase in irreversible capacity at the time of initial charging can be suppressed.

被覆工程(2)において、黒鉛粒子とバインダーを混合する方法としては、特に制限されず、ヘンシェルミキサー、ハイスピードミキサー、捏合機等の加熱混合機を用いて混合する方法が挙げられる。 In the coating step (2), the method of mixing the graphite particles and the binder is not particularly limited, and examples thereof include a method of mixing using a heating mixer such as a Henschel mixer, a high speed mixer, or a kneader.

被覆工程(2)において、黒鉛粒子とバインダーを混合するときの混合温度は、常温で固体のバインダーの場合は、軟化点温度以上であり、常温で液体のバインダーの場合は、特に限定されないが、樹脂を用いる場合は通常硬化温度以下である。混合時間は、好ましくは10〜30分間である。 In the coating step (2), the mixing temperature when the graphite particles and the binder are mixed is equal to or higher than the softening point temperature in the case of a binder solid at room temperature, and is not particularly limited in the case of a binder liquid at room temperature. When a resin is used, it is usually below the curing temperature. The mixing time is preferably 10 to 30 minutes.

本発明の第二の形態のリチウムイオン二次電池用負極材の製造方法に係る再被覆工程は、被覆工程(2)を行い得られるバインダー被覆黒鉛粒子に、非晶質炭素粒子を混合し、次いで、樹脂溶液で被覆処理することにより、非晶質炭素粒子が付着している黒鉛粒子を、樹脂で再被覆し、非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を得る工程である。 In the recoating step according to the method for producing the negative electrode material for a lithium ion secondary battery of the second aspect of the present invention, amorphous carbon particles are mixed with the binder-coated graphite particles obtained by performing the coating step (2). Next, the graphite particles to which the amorphous carbon particles are attached are recoated with the resin by coating with a resin solution to obtain a recoated product of the binder-coated graphite particles to which the amorphous carbon particles are attached. ..

再被覆工程では、先ず、被覆工程(2)を行い得られるバインダー被覆黒鉛粒子に、非晶質炭素粒子を混合することにより、バインダー被覆黒鉛粒子のバインダー層の表面に、非晶質炭素粒子を付着させ、非晶質炭素粒子付着バインダー被覆黒鉛粒子を得る。 In the recoating step, first, the amorphous carbon particles are mixed with the binder-coated graphite particles obtained in the coating step (2), so that the amorphous carbon particles are formed on the surface of the binder layer of the binder-coated graphite particles. Amorphous carbon particles are attached to obtain binder-coated graphite particles.

再被覆工程に係る非晶質炭素粒子は、特に制限されないが、例えば、ファーネスブラック、サーマルブラック等が挙げられる。 The amorphous carbon particles involved in the recoating step are not particularly limited, and examples thereof include furnace black and thermal black.

再被覆工程に係る非晶質炭素粒子の平均格子面間隔d(002)は、0.3370nm以上である。非晶質炭素粒子の平均格子面間隔d(002)が0.3370nm以上であることにより、粒子表面の反応抵抗が下がり高速充放電に優れる。非晶質炭素粒子の平均格子面間隔d(002)は、更に高速充放電性が向上する点で、より好ましくは0.3400nm以上であり、更に高速充放電性能が向上する点で、特に好ましくは0.3500nm以上である。 The average lattice spacing d (002) of the amorphous carbon particles involved in the recoating step is 0.3370 nm or more. When the average lattice spacing d (002) of the amorphous carbon particles is 0.3370 nm or more, the reaction resistance of the particle surface is lowered and high-speed charging / discharging is excellent. The average lattice spacing d (002) of the amorphous carbon particles is more preferably 0.3400 nm or more in that the high-speed charge / discharge property is further improved, and particularly preferably in that the high-speed charge / discharge performance is further improved. Is 0.3500 nm or more.

再被覆工程に係る非晶質炭素粒子の算術平均粒子径は、好ましくは50〜300nmである。表面観察における非晶質炭素粒子の平均粒子径が50〜300nmであることにより、不可逆容量の低下を抑制しつつ、高速充放電特性に優れた材料となる。非晶質炭素粒子の算術平均粒子径は、初回充電時の不可逆容量増大の抑制が可能となる点で、より好ましくは100nm以上であり、また、更に初回充電時の不可逆容量増大の抑制が可能となる点で、200nm以下である。 The arithmetic mean particle size of the amorphous carbon particles involved in the recoating step is preferably 50 to 300 nm. Since the average particle size of the amorphous carbon particles in surface observation is 50 to 300 nm, the material has excellent high-speed charge / discharge characteristics while suppressing a decrease in irreversible capacity. The arithmetic mean particle size of the amorphous carbon particles is more preferably 100 nm or more in that the increase in irreversible capacity at the time of initial charging can be suppressed, and further, the increase in irreversible capacity at the time of initial charging can be suppressed. In that respect, it is 200 nm or less.

再被覆工程に係る非晶質炭素粒子の算術平均粒子径は、透過型電子顕微鏡(TEM)で非晶質炭素粒子の観察を行い、得られる画像中の粒子の外接円の直径を粒子径として、画像ソフト(三谷商事社製WINROOF)を用いて、測定される10000個の粒子の粒子径の平均値である。 The arithmetic average particle size of the amorphous carbon particles involved in the recoating step is determined by observing the amorphous carbon particles with a transmission electron microscope (TEM) and using the diameter of the circumscribing circle of the particles in the obtained image as the particle size. , An average value of the particle diameters of 10,000 particles measured using image software (WINROOF manufactured by Mitani Shoji Co., Ltd.).

再被覆工程に係る非晶質炭素粒子がカーボンブラックの場合、カーボンブラックのDBP吸油量は、好ましくは300ml/100g以下である。カーボンブラックのDBP吸油量が300ml/100g以下であることにより、比表面積の増大を抑制し、初回充電時の不可逆容量を抑制することが可能となる。カーボンブラックのDBP吸油量は、初回充電時の不可逆容量増大の抑制が可能となる点で、より好ましくは250ml/100g以下であり、更に、初回充電時の不可逆容量増大の抑制が可能となる点で、特に好ましくは200ml/100g以下である。 When the amorphous carbon particles involved in the recoating step are carbon black, the DBP oil absorption amount of the carbon black is preferably 300 ml / 100 g or less. When the DBP oil absorption amount of carbon black is 300 ml / 100 g or less, it is possible to suppress an increase in the specific surface area and suppress an irreversible capacity at the time of initial charging. The DBP oil absorption amount of carbon black is more preferably 250 ml / 100 g or less in that it is possible to suppress an increase in irreversible capacity at the time of initial charging, and further, it is possible to suppress an increase in irreversible capacity at the time of initial charging. In particular, it is 200 ml / 100 g or less.

再被覆工程において、黒鉛粒子100.0質量部に対する、非晶質炭素粒子の混合量は、好ましくは10.0〜40.0質量部である。非晶質炭素粒子の混合量が黒鉛粒子100.0質量部に対し10.0〜40.0質量部であることにより、初回充電時の不可逆容量を抑制しつつ、高速充放電性能を向上させることが可能となる。黒鉛粒子100.0質量部に対する、非晶質炭素粒子の混合量は、更に高速充放電性が向上する点で、より好ましくは20.0質量部以上であり、また、初回充電時の不可逆容量増大の抑制が可能となる点で、より好ましくは30.0質量部以下である。 In the recoating step, the mixing amount of the amorphous carbon particles with respect to 100.0 parts by mass of the graphite particles is preferably 10.0 to 40.0 parts by mass. Since the mixed amount of the amorphous carbon particles is 10.0 to 40.0 parts by mass with respect to 100.0 parts by mass of the graphite particles, the irreversible capacity at the time of initial charging is suppressed and the high-speed charge / discharge performance is improved. It becomes possible. The mixing amount of the amorphous carbon particles with respect to 100.0 parts by mass of the graphite particles is more preferably 20.0 parts by mass or more in that the high-speed charge / discharge property is further improved, and the irreversible capacity at the time of initial charging. It is more preferably 30.0 parts by mass or less in that the increase can be suppressed.

再被覆工程において、バインダー被覆黒鉛粒子と非晶質炭素粒子を混合する方法としては、特に制限されず、ヘンシェルミキサー、ハイスピードミキサー、捏合機等の加熱混合機を用いて混合する方法が挙げられる。 In the recoating step, the method of mixing the binder-coated graphite particles and the amorphous carbon particles is not particularly limited, and examples thereof include a method of mixing using a heating mixer such as a Henschel mixer, a high-speed mixer, or a kneader. ..

再被覆工程において、バインダー被覆黒鉛粒子と非晶質炭素粒子を混合するときの混合温度は、常温で固体のバインダーの場合は、軟化点温度以上であり、常温で液体のバインダーの場合は、特に限定されないが、樹脂を用いる場合は通常硬化温度以下である。混合時間は、好ましくは10〜30分間である。 In the recoating step, the mixing temperature when the binder-coated graphite particles and the amorphous carbon particles are mixed is equal to or higher than the softening point temperature in the case of a solid binder at room temperature, and particularly in the case of a liquid binder at room temperature. Although not limited, when a resin is used, it is usually below the curing temperature. The mixing time is preferably 10 to 30 minutes.

再被覆工程では、次いで、非晶質炭素粒子付着バインダー被覆黒鉛粒子を、樹脂溶液で被覆処理することにより、非晶質炭素粒子が付着している黒鉛粒子を、樹脂で再被覆し、非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を得る。 In the recoating step, the graphite particles to which the amorphous carbon particles are attached are then coated with a resin solution to recoat the graphite particles to which the amorphous carbon particles are attached with a resin, and the amorphous carbon particles are coated with a resin. A recoated product of binder-coated graphite particles adhering to quality carbon particles is obtained.

再被覆工程に係る樹脂は、焼成炭化工程において炭化し、炭化後の残炭量が、黒鉛粒子100.0質量部に対し、2.0質量部以上に調整可能なものであれば、特に制限されない。再被覆工程に係る樹脂としては、ポリ塩化ビニル樹脂、アクリル樹脂などの熱可塑性樹脂、フェノール樹脂、尿素樹脂などの熱硬化性樹脂等の合成樹脂が挙げられ、これらのうち、水溶性のフェノール樹脂が好ましい。 The resin involved in the recoating step is particularly limited as long as it is carbonized in the firing carbonization step and the amount of residual carbon after carbonization can be adjusted to 2.0 parts by mass or more with respect to 100.0 parts by mass of graphite particles. Not done. Examples of the resin involved in the recoating step include thermoplastic resins such as polyvinyl chloride resin and acrylic resin, and synthetic resins such as thermosetting resins such as phenol resin and urea resin. Among these, water-soluble phenol resin Is preferable.

樹脂溶液は、樹脂が溶媒に溶解している溶液である。溶媒としては、樹脂が溶解すれば特に制限されず、水、エタノール、ジエチレングリコール等が挙げられる。 The resin solution is a solution in which the resin is dissolved in a solvent. The solvent is not particularly limited as long as the resin is dissolved, and examples thereof include water, ethanol, and diethylene glycol.

樹脂の混合量(樹脂分の混合量、溶媒は除く)は、炭化後の残炭量が、黒鉛粒子100.0質量部に対し、2.0質量部以上となる量である。樹脂の混合量が、炭化後の残炭量が黒鉛粒子100.0質量部に対し2.0質量部以上となる量であることにより、非晶質炭素粒子と黒鉛粒子間に生じた隙間を埋め、高速充放電特を向上させることが可能となる。樹脂の混合量(樹脂分の混合量、溶媒は除く)は、余剰の樹脂が炭化することを抑制し、初回充電時の不可逆容量増大の抑制が可能となる点で、炭化後の残炭量が、黒鉛粒子100.0質量部に対し、好ましくは14.0質量部以下となる量である。 The mixed amount of the resin (mixed amount of the resin component and excluding the solvent) is such that the amount of residual coal after carbonization is 2.0 parts by mass or more with respect to 100.0 parts by mass of the graphite particles. When the amount of the resin mixed is such that the amount of residual carbon after carbonization is 2.0 parts by mass or more with respect to 100.0 parts by mass of the graphite particles, the gap generated between the amorphous carbon particles and the graphite particles is formed. It is possible to fill and improve the high-speed charge / discharge characteristics. The mixed amount of resin (mixed amount of resin content, excluding solvent) suppresses carbonization of excess resin, and it is possible to suppress an increase in irreversible capacity at the time of initial charging. However, the amount is preferably 14.0 parts by mass or less with respect to 100.0 parts by mass of the graphite particles.

樹脂溶液の粘度は、特に制限されないが、1500mPa・s以下、好ましくは2〜1000mPa・sである。樹脂溶液の粘度が上記範囲にあることにより、非晶質炭素粒子と黒鉛粒子間の隙間又は非晶質炭素粒子間の隙間に、樹脂溶液が浸透し易くなる。上記範囲未満であると、流動性が高くなり、混合容器内で非晶質炭素粒子を均一に被覆することが困難となる。 The viscosity of the resin solution is not particularly limited, but is 1500 mPa · s or less, preferably 2 to 1000 mPa · s. When the viscosity of the resin solution is in the above range, the resin solution easily permeates into the gap between the amorphous carbon particles and the graphite particles or the gap between the amorphous carbon particles. If it is less than the above range, the fluidity becomes high, and it becomes difficult to uniformly coat the amorphous carbon particles in the mixing container.

再被覆工程において、非晶質炭素粒子付着バインダー被覆黒鉛粒子に、樹脂溶液を混合する方法としては、特に制限されず、ヘンシェルミキサー、ハイスピードミキサー等の混合機を用いて混合する方法が挙げられる。 In the recoating step, the method of mixing the resin solution with the binder-coated graphite particles adhering to the amorphous carbon particles is not particularly limited, and examples thereof include a method of mixing using a mixer such as a Henschel mixer or a high-speed mixer. ..

再被覆工程において、非晶質炭素粒子付着バインダー被覆黒鉛粒子に、樹脂溶液を混合するときの混合温度は、樹脂溶液の溶媒の沸点以下で、適宜選択される。 In the recoating step, the mixing temperature when the resin solution is mixed with the binder-coated graphite particles adhering to the amorphous carbon particles is appropriately selected at a temperature equal to or lower than the boiling point of the solvent of the resin solution.

また、再被覆工程において、非晶質炭素粒子付着バインダー被覆黒鉛粒子と、樹脂溶液の混合を、ヘンシェルミキサー装置(三井鉱山社製FM20C)を用いて行う場合の条件の一例を以下に示す。バインダー被覆黒鉛粒子と非晶質炭素粒子との混合を行った後、非晶質炭素粒子付着バインダー被覆黒鉛粒子の温度が常温付近に下がったことを確認した後、更にフェノール樹脂溶液(住友ベークライト社製PR56265:水=1:1)を、黒鉛粒子100.0質量部に対し、10.0質量部添加し、周速30m/sで処理することにより、非晶質炭素粒子と黒鉛粒子間の隙間又は非晶質炭素粒子間の隙間に、樹脂溶液を充填させる。 Further, an example of conditions in the case where the amorphous carbon particle-adhered binder-coated graphite particles and the resin solution are mixed by using a Henschel mixer device (FM20C manufactured by Mitsui Mining Co., Ltd.) in the recoating step is shown below. After mixing the binder-coated graphite particles and the amorphous carbon particles, after confirming that the temperature of the amorphous carbon particle-attached binder-coated graphite particles has dropped to around room temperature, a phenol resin solution (Sumitomo Bakelite Co., Ltd.) PR56265: Water = 1: 1) was added to 100.0 parts by mass of graphite particles by 10.0 parts by mass and treated at a peripheral speed of 30 m / s, whereby between the amorphous carbon particles and the graphite particles. The gap or the gap between the amorphous carbon particles is filled with the resin solution.

そして、再被覆工程において、非晶質炭素粒子付着バインダー被覆黒鉛粒子に、水等の溶媒で希釈され、粘度が低くなった樹脂溶液を混合することにより、非晶質炭素粒子と黒鉛粒子間の隙間又は非晶質炭素粒子間の隙間に、樹脂溶液が浸透し、非晶質炭素粒子付着バインダー被覆黒鉛粒子のバインダー層の表面が、樹脂溶液で覆われ、次いで、乾燥して、樹脂溶液から溶媒を除去することにより、非晶質炭素粒子付着バインダー被覆黒鉛粒子のバインダー層の表面が、樹脂で再被覆され、非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物が得られる。 Then, in the recoating step, the amorphous carbon particles adhered to the binder-coated graphite particles are mixed with a resin solution diluted with a solvent such as water to reduce the viscosity, so that the amorphous carbon particles and the graphite particles are separated from each other. The resin solution permeates the gaps or the gaps between the amorphous carbon particles, and the surface of the binder layer of the amorphous carbon particle-attached binder-coated graphite particles is covered with the resin solution, and then dried to be removed from the resin solution. By removing the solvent, the surface of the binder layer of the amorphous carbon particle-attached binder-coated graphite particles is recoated with the resin, and a recoated product of the amorphous carbon particle-attached binder-coated graphite particles is obtained.

本発明の第二の形態のリチウムイオン二次電池用負極材の製造方法に係る焼成炭化工程(以下、焼成炭化工程(2)とも記載する。)は、非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を、焼成炭化する工程である。 The calcined carbonization step (hereinafter, also referred to as calcined carbonization step (2)) according to the method for producing a negative electrode material for a lithium ion secondary battery according to the second aspect of the present invention is a binder-coated graphite particle having amorphous carbon particles attached. This is a step of calcining and carbonizing the recoated product of.

非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を、焼成炭化するときの温度は、好ましくは800℃以上、より好ましくは1000℃以上である。焼成炭化温度が上記範囲にあることにより、特にカーボンブラック等の非晶質炭素粒子に含まれる未燃分を十分に除去することが可能となる。一方、焼成炭化温度が、上記範囲未満だと、カーボンブラック等の非晶質炭素粒子に含まれる未燃分を十分に除去することが出来ず、電池特性が悪くなる。また、焼成炭化時間は、適宜選択される。焼成炭化する温度の上限は特に制限されないが、非晶質炭素粒子付着黒鉛粒子を焼成炭化する温度は、3000℃以下が好ましく、高速充放電特性が向上する点でより好ましくは2000℃以下である。 The temperature at which the recoated material of the binder-coated graphite particles adhering to the amorphous carbon particles is calcined and carbonized is preferably 800 ° C. or higher, more preferably 1000 ° C. or higher. When the calcination carbonization temperature is in the above range, it is possible to sufficiently remove unburned components contained in amorphous carbon particles such as carbon black. On the other hand, if the firing carbonization temperature is less than the above range, the unburned components contained in the amorphous carbon particles such as carbon black cannot be sufficiently removed, and the battery characteristics deteriorate. The firing carbonization time is appropriately selected. The upper limit of the temperature for calcining and carbonizing is not particularly limited, but the temperature for calcining and carbonizing the graphite particles adhering to amorphous carbon particles is preferably 3000 ° C. or lower, and more preferably 2000 ° C. or lower in terms of improving high-speed charge / discharge characteristics. ..

非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を、焼成炭化するときの雰囲気は、窒素ガス雰囲気、アルゴンガス雰囲気等の不活性ガス雰囲気である。 The atmosphere when the recoated material of the binder-coated graphite particles adhering to the amorphous carbon particles is calcined and carbonized is an inert gas atmosphere such as a nitrogen gas atmosphere or an argon gas atmosphere.

本発明の第二の形態のリチウムイオン二次電池用負極材の製造方法では、炭化焼成工程(2)を行い得られる焼成炭化物に、必要に応じて、粉砕処理、分級処理を施してもよい。 In the method for producing a negative electrode material for a lithium ion secondary battery according to the second aspect of the present invention, the calcined carbide obtained by performing the carbonization firing step (2) may be subjected to a pulverization treatment and a classification treatment, if necessary. ..

このように、本発明の第二の形態のリチウムイオン二次電池用負極材の製造方法を行うことにより、本発明のリチウムイオン二次電池用負極材を得ることができる。 As described above, the negative electrode material for a lithium ion secondary battery of the present invention can be obtained by performing the method for producing a negative electrode material for a lithium ion secondary battery according to the second aspect of the present invention.

本発明のリチウムイオン二次電池用負極材の製造方法を行うことにより得られるリチウムイオン二次電池用負極材の物性、特性及び性能は、上述した本発明のリチウムイオン二次電池用負極材の物性、特性及び性能と同様である。 The physical properties, characteristics, and performance of the negative electrode material for a lithium ion secondary battery obtained by performing the method for producing a negative electrode material for a lithium ion secondary battery of the present invention are the same as those of the negative electrode material for a lithium ion secondary battery of the present invention described above. Similar to physical properties, characteristics and performance.

本発明の他の形態のリチウムイオン二次電池用負極材は、本発明の第一の形態又は第二の形態のリチウムイオン二次電池用負極材の製造方法を行うことにより得られるリチウムイオン二次電池用負極材である。すなわち、本発明のリチウムイオン二次電池用負極材は、平均粒子径(D50)が5.0〜30.0μmである黒鉛粒子と、バインダーを混合することにより、該黒鉛粒子がバインダーで被覆されたバインダー被覆黒鉛粒子を得る被覆工程(1)と、
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50〜300nmである非晶質炭素粒子を10.0〜40.0質量部混合し、次いで、圧縮及び摩擦させることにより、該バインダー被覆黒鉛粒子のバインダー層に該非晶質炭素粒子を埋め込み、非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を得る埋め込み工程と、
該非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を、焼成炭化する焼成炭化工程(1)と、
を行い得られるリチウムイオン二次電池用負極材である。なお、上記本発明のリチウムイオン二次電池用負極材は、被覆工程(1)と、埋め込み工程と、焼成炭化工程(1)と、を少なくとも行い得られるものであり、本発明の効果を損なわない範囲で、他の工程を行うことは許容される。
The negative electrode material for a lithium ion secondary battery of another embodiment of the present invention can be obtained by carrying out the method for producing a negative electrode material for a lithium ion secondary battery of the first or second embodiment of the present invention. It is a negative electrode material for the next battery. That is, in the negative electrode material for a lithium ion secondary battery of the present invention, graphite particles having an average particle diameter (D 50 ) of 5.0 to 30.0 μm are mixed with a binder, so that the graphite particles are coated with the binder. The coating step (1) for obtaining the binder-coated graphite particles, and
The binder is obtained by mixing 10.0 to 40.0 parts by mass of amorphous carbon particles having an arithmetic average particle diameter of 50 to 300 nm with 100.0 parts by mass of the graphite particles, and then compressing and rubbing the particles. A process of embedding the amorphous carbon particles in the binder layer of the coated graphite particles to obtain the amorphous carbon particle-embedded binder-coated graphite particles, and an embedding step.
In the calcining carbonization step (1) of calcining carbonizing the binder-coated graphite particles embedded with amorphous carbon particles,
It is a negative electrode material for a lithium ion secondary battery that can be obtained. The negative electrode material for a lithium ion secondary battery of the present invention can at least perform a coating step (1), an embedding step, and a calcining carbonization step (1), and impairs the effect of the present invention. It is permissible to carry out other steps to the extent that it does not exist.

また、本発明のリチウムイオン二次電池用負極材は、平均粒子径(D50)が5.0〜30.0μmである黒鉛粒子と、バインダーを混合することにより、該黒鉛粒子がバインダーで被覆されたバインダー被覆黒鉛粒子を得る被覆工程(2)と、
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50〜300nmである非晶質炭素粒子を10.0〜40.0質量部混合し、次いで、炭化後の残炭量が2.0質量部以上となる量の樹脂溶液で被覆処理することにより、該非晶質炭素粒子が付着している黒鉛粒子を、該樹脂で再被覆し、非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を得る再被覆工程と、
該非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を、焼成炭化する焼成炭化工程(2)と、
を行い得られるリチウムイオン二次電池用負極材である。なお、上記本発明のリチウムイオン二次電池用負極材は、被覆工程(2)と、再被覆工程と、焼成炭化工程(2)と、を少なくとも行い得られるものであり、本発明の効果を損なわない範囲で、他の工程を行うことは許容される。
Further, in the negative electrode material for a lithium ion secondary battery of the present invention, graphite particles having an average particle diameter (D 50 ) of 5.0 to 30.0 μm are mixed with a binder so that the graphite particles are coated with the binder. The coating step (2) for obtaining the binder-coated graphite particles, and
Amorphous carbon particles having an arithmetic average particle diameter of 50 to 300 nm are mixed with 100.0 parts by mass of the graphite particles by 10.0 to 40.0 parts by mass, and then the amount of residual carbon after carbonization is 2. By coating with a resin solution in an amount of 0 parts by mass or more, the graphite particles to which the amorphous carbon particles are attached are recoated with the resin, and the amorphous carbon particle-attached binder-coated graphite particles are re-coated. The recoating process to obtain the coating and
The calcined carbonization step (2) in which the recoated material of the binder-coated graphite particles adhering to the amorphous carbon particles is calcined and carbonized,
It is a negative electrode material for a lithium ion secondary battery that can be obtained. The negative electrode material for a lithium ion secondary battery of the present invention can be obtained by performing at least a coating step (2), a recoating step, and a calcining carbonization step (2), and the effect of the present invention can be achieved. It is permissible to carry out other steps as long as they are not impaired.

本発明の他の形態のリチウムイオン二次電池用負極材に係る被覆工程(1)、埋め込み工程及び焼成炭化工程(1)並びに被覆工程(2)、再被覆工程及び焼成炭化工程(2)は、本発明のリチウムイオン二次電池用負極材の製造方法に係る被覆工程、埋め込み工程及び焼成炭化工程と同様である。 The coating step (1), the embedding step and the calcined carbonization step (1) and the coating step (2), the recoating step and the calcined carbonization step (2) relating to the negative electrode material for the lithium ion secondary battery of another embodiment of this invention are carried out. , The same as the coating step, the embedding step and the calcined carbonization step according to the method for manufacturing the negative electrode material for a lithium ion secondary battery of the present invention.

本発明において、比表面積(SA)は、全自動表面積測定装置((マイクロトラックベル社製BELSORP−miniX)を用い、窒素吸着等温線における相対圧0.05〜0.2の範囲におけるBET多点法により算出される値を意味する。 In the present invention, the specific surface area (SA) uses a fully automatic surface area measuring device ((BELSORP-miniX manufactured by Microtrac Bell)) and has multiple BET points in the range of relative pressure of 0.05 to 0.2 on the nitrogen adsorption isotherm. It means the value calculated by the method.

本発明において、タップ密度は、25mlメスシリンダーに黒鉛粒子粉末5gを投入し、タッピング式粉体減少度測定器(筒井理化学器械社製)を用いてギャップ10mmにて1000回タッピングを繰り返した後の見かけ体積の値と、メスシリンダーに投入した黒鉛粒子粉末の質量から、下記式(3)により算出した値を意味する。 In the present invention, the tap density is obtained after 5 g of graphite particle powder is put into a 25 ml graduated cylinder and tapping is repeated 1000 times with a gap of 10 mm using a tapping type powder reduction measuring instrument (manufactured by Tsutsui Rikagaku Kikai Co., Ltd.). It means a value calculated by the following formula (3) from the value of the apparent volume and the mass of the graphite particle powder charged into the measuring cylinder.

タップ密度(g/cm)=メスシリンダーに投入した粉末の質量(g)/1000回タッピングを繰り返した後の見かけ体積の値(cm) (3) Tap density (g / cm 3 ) = mass of powder charged into the graduated cylinder (g) / value of apparent volume after repeated tapping 1000 times (cm 3 ) (3)

なお、本発明において、極板密度は、以下の方法で測定した値を意味する。 In the present invention, the plate density means a value measured by the following method.

(1)電極シートの作製
黒鉛粒子球状凝集体90.2重量%に対し、N−メチル−2ピロリドンに溶解した有機系結着材ポリフッ化ビニリデン(PVDF)を固形分で9.8重量%加えて攪拌混合し、負極合材ペーストを調製する。
得られた負極合材ペーストを厚さ20μmの銅箔(集電体)上にドクターブレード法で塗布した後、常圧下90℃で90分間、更に真空下130℃で11時間加熱して溶媒を完全に揮発させ、目付量が3.5±0.2mg/cmである電極シートを得る。
なお、ここで目付量とは、電極シートの単位面積当たりの黒鉛粒子球状凝集体の重量を意味する。
(1) Preparation of Electrode Sheet To 90.2% by weight of spherical aggregates of graphite particles, 9.8% by weight of polyvinylidene fluoride (PVDF), an organic binder dissolved in N-methyl-2pyrrolidone, was added as a solid content. Stir and mix to prepare a negative electrode mixture paste.
The obtained negative electrode mixture paste is applied onto a copper foil (current collector) having a thickness of 20 μm by the doctor blade method, and then heated at 90 ° C. under normal pressure for 90 minutes and further at 130 ° C. under vacuum for 11 hours to prepare a solvent. It is completely volatilized to obtain an electrode sheet having a basis weight of 3.5 ± 0.2 mg / cm 2.
Here, the basis weight means the weight of the graphite particle spherical aggregates per unit area of the electrode sheet.

(2)極板密度の測定
上記電極シートを幅6cmの短冊状に切り出し、極板密度が1.2g/cmとなるようロールプレスによる圧延を行う。プレスした電極シートは縦2.8cm、横5.5cmに切断する。極板密度は各重量A(g)と中心部分の厚みB(cm)から、下記式(4)により算出して確認した。
(2) Measurement of electrode plate density The electrode sheet is cut into strips having a width of 6 cm and rolled by a roll press so that the electrode plate density is 1.2 g / cm 3. The pressed electrode sheet is cut into a length of 2.8 cm and a width of 5.5 cm. The electrode plate density was calculated and confirmed by the following formula (4) from each weight A (g) and the thickness B (cm) of the central portion.

極板密度(g/cm)={(A(g)−銅箔重量(g))×負極合材層中の黒鉛粒子球状凝集体の重量割合(0.902)}/{(B(cm)−銅箔厚み(cm))×電極面積(cm)} (4) Electrode plate density (g / cm 3 ) = {(A (g) -copper foil weight (g)) x weight ratio of graphite particle spherical aggregates in the negative electrode mixture layer (0.902)} / {(B (B (B) cm) -Copper foil thickness (cm)) x electrode area (cm 2 )} (4)

本発明において、平均格子面間隔d(002)は、X線回折装置((株)リガク製UltimaIV)を用い、Cu−Kα線をNiフィルターで単色化したX線を使用して、高純度シリコンを標準物質として粉末X線回折法で測定を行い、得られた炭素(002)面の回折ピークの強度と半値幅より、日本学術振興会第117委員会によって定められた学振法に従って求めた値である。 In the present invention, the average lattice spacing d (002) is high-purity silicon using an X-ray diffractometer (Ultima IV manufactured by Rigaku Co., Ltd.) and X-rays obtained by monochromaticizing Cu-Kα rays with a Ni filter. Was measured by powder X-ray diffraction method using The value.

本発明において、ラマンRは、波長532nmのNd/YAGレーザーを備えたラマン分光分析器(堀場製作所社製、HR800)で測定し、表層での結晶欠陥及び積層構造の不整合等による結晶構造の乱れに帰属する1360cm−1近傍のスペクトルI1360 を、炭素六角網面内の格子震動に相当するE2g型振動に帰属する1580cm−1近傍のスペクトルI1580で除し、ラマンスペクトル強度比R=I1360/I1580として求めた。なお、100μmの照射面積にて10点以上測定した平均値を代表値とした。 In the present invention, Raman R is measured by a Raman spectroscopic analyzer (manufactured by Horiba Seisakusho Co., Ltd., HR800) equipped with an Nd / YAG laser having a wavelength of 532 nm, and has a crystal structure due to crystal defects on the surface layer and inconsistency of the laminated structure. the 1360 cm -1 spectral neighboring I1360 attributable to disturbances, divided by the spectrum I1580 near 1580 cm -1 attributable to E2g vibration corresponding to the lattice vibration of the carbon hexagonal net plane, the Raman spectrum intensity ratio R = I1360 / I1580 Asked as. The average value measured at 10 points or more in an irradiation area of 100 μm 2 was used as a representative value.

(実施例1)
平均粒子径(D50)10.4μmの球形化天然黒鉛(平均格子面間隔d(002):0.3356nm、比表面積:7.4m/g)100.0質量部に対し、コールタールピッチ(JFEケミカル株式会社製PKQL、軟化点70℃)20.0質量部を混合機(三井鉱山社製ヘンシェルミキサー)に投入し、90℃で15分間混合した。次いで、90℃のまま、算術平均粒子径が122nmのファーネスブラック(東海カーボン株式会社製、S−TA)20.0質量部を投入し、更に10分間混合した。得られた混合粉をハイブリダイザー装置(奈良機械製作所製)内に投入し、装置内の最高温度を75℃±5℃に保ちながら、回転数6400rpmで3分間処理した。
得られた粉体を窒素ガス雰囲気下、1000℃で焼成炭化した。次いで、得られた焼成粉を粉砕(装置名:スーパーローター、日清エンジニアリング社製)、分級(装置名:篩分級、目開き45μm) し、篩下分を、リチウムイオン二次電池用負極材として製造した。
(Example 1)
Coal tar pitch with respect to 100.0 parts by mass of spherical natural graphite (average lattice spacing d (002): 0.3356 nm, specific surface area: 7.4 m 2 / g) with an average particle size (D 50) of 10.4 μm. (PKQL manufactured by JFE Chemical Co., Ltd., softening point 70 ° C.) 20.0 parts by mass was put into a mixer (Henshell mixer manufactured by Mitsui Mining Co., Ltd.) and mixed at 90 ° C. for 15 minutes. Then, at 90 ° C., 20.0 parts by mass of furnace black (manufactured by Tokai Carbon Co., Ltd., S-TA) having an arithmetic mean particle size of 122 nm was added, and the mixture was further mixed for 10 minutes. The obtained mixed powder was put into a hybridizer device (manufactured by Nara Machinery Co., Ltd.) and treated at a rotation speed of 6400 rpm for 3 minutes while maintaining the maximum temperature in the device at 75 ° C. ± 5 ° C.
The obtained powder was calcined by calcining at 1000 ° C. in a nitrogen gas atmosphere. Next, the obtained calcined powder is crushed (device name: Super Rotor, manufactured by Nisshin Engineering Co., Ltd.) and classified (device name: sieve classification, opening 45 μm), and the subsieving component is used as a negative electrode material for a lithium ion secondary battery. Manufactured as.

(実施例2)
平均粒子径(D50)10.4μmの球形化天然黒鉛(平均格子面間隔d(002):0.3356nm、比表面積:7.4m/g)100.0質量部に対し、コールタールピッチ(JFEケミカル株式会社製PKQL、軟化点70℃)20.0質量部を混合機(三井鉱山社製ヘンシェルミキサー)に投入し、90℃で15分間混合した。次いで、90℃のまま、算術平均粒子径が122nmのファーネスブラック(東海カーボン株式会社製、S−TA)20.0質量部を投入し、更に10分間混合した。槽内が40℃となったところで、樹脂水溶液(住友ベークライト社製PR56165:水=1:1)10.0質量部を加えて、更に10分間混合した。次いで、得られた混合粉を乾燥した。
得られた粉体を窒素ガス雰囲気下、1000℃で焼成炭化した。次いで、得られた焼成粉を粉砕(装置名:スーパーローター、日清エンジニアリング社製)、分級(装置名:篩分級、目開き45μm)し、篩下分を、リチウムイオン二次電池用負極材として製造した。なお、焼成炭化後の樹脂水溶液中の樹脂の炭化後の残炭量は、球形化天然黒鉛100.0質量部に対し、2.5質量部である。
得られたリチウムイオン二次電池用負極材の分析結果及び評価結果を表1に示す。
(Example 2)
Coal tar pitch with respect to 100.0 parts by mass of spherical natural graphite (average lattice spacing d (002): 0.3356 nm, specific surface area: 7.4 m 2 / g) with an average particle size (D 50) of 10.4 μm. (PKQL manufactured by JFE Chemical Co., Ltd., softening point 70 ° C.) 20.0 parts by mass was put into a mixer (Henshell mixer manufactured by Mitsui Mining Co., Ltd.) and mixed at 90 ° C. for 15 minutes. Then, at 90 ° C., 20.0 parts by mass of furnace black (manufactured by Tokai Carbon Co., Ltd., S-TA) having an arithmetic mean particle size of 122 nm was added, and the mixture was further mixed for 10 minutes. When the temperature inside the tank reached 40 ° C., 10.0 parts by mass of an aqueous resin solution (PR56165 manufactured by Sumitomo Bakelite Co., Ltd .: water = 1: 1) was added, and the mixture was further mixed for 10 minutes. Then, the obtained mixed powder was dried.
The obtained powder was calcined by calcining at 1000 ° C. in a nitrogen gas atmosphere. Next, the obtained calcined powder is crushed (device name: Super Rotor, manufactured by Nisshin Engineering Co., Ltd.) and classified (device name: sieve classification, opening 45 μm), and the subsieving component is used as a negative electrode material for a lithium ion secondary battery. Manufactured as. The amount of carbon remaining after carbonization of the resin in the aqueous resin solution after calcining is 2.5 parts by mass with respect to 100.0 parts by mass of spherical natural graphite.
Table 1 shows the analysis results and evaluation results of the obtained negative electrode material for a lithium ion secondary battery.

(比較例1)
平均粒子径(D50)10.4μmの球形化天然黒鉛(平均格子面間隔d(002):0.3356nm、比表面積:7.4m/g)100.0質量部に対し、コールタールピッチ(JFEケミカル株式会社製PKQL、軟化点70℃)20.0質量部を混合機(三井鉱山社製ヘンシェルミキサー)に投入し、90℃で15分間混合した。得られた粉体を窒素ガス雰囲気下、1000℃で焼成炭化した。次いで、得られた焼成粉を粉砕(装置名:スーパーローター、日清エンジニアリング社製)、分級(装置名:篩分級、目開き45μm)し、篩下分を、リチウムイオン二次電池用負極材として製造した。
(Comparative Example 1)
Coal tar pitch with respect to 100.0 parts by mass of spherical natural graphite (average lattice spacing d (002): 0.3356 nm, specific surface area: 7.4 m 2 / g) with an average particle size (D 50) of 10.4 μm. (PKQL manufactured by JFE Chemical Co., Ltd., softening point 70 ° C.) 20.0 parts by mass was put into a mixer (Henshell mixer manufactured by Mitsui Mining Co., Ltd.) and mixed at 90 ° C. for 15 minutes. The obtained powder was calcined by calcining at 1000 ° C. in a nitrogen gas atmosphere. Next, the obtained calcined powder is crushed (device name: Super Rotor, manufactured by Nisshin Engineering Co., Ltd.) and classified (device name: sieve classification, opening 45 μm), and the subsieving component is used as a negative electrode material for a lithium ion secondary battery. Manufactured as.

(比較例2)
ファーネスブラックの添加量を5.0質量部とした以外は、実施例1と同様に行った。
(Comparative Example 2)
The same procedure as in Example 1 was carried out except that the amount of furnace black added was 5.0 parts by mass.

(比較例3)
ハイブリダイザーでの埋め込み工程を省略した以外は実施例1と同様に行った。
(Comparative Example 3)
The procedure was the same as in Example 1 except that the embedding step with the hybridizer was omitted.

(比較例4)
ハイブリダイザーの回転数を8000rpmとした以外は実施例1と同様に行った。
(Comparative Example 4)
The same procedure as in Example 1 was carried out except that the rotation speed of the hybridizer was set to 8000 rpm.

(分析方法)
・SEM分析装置及び条件
分析装置:日本電子社製JSM7900F
加速電圧2−5kvで加速した電子線を試料に当て二次電子像を観察。
断面資料作製装置:日本電子社製IB-19530CP
電極シートを所定のサイズに切り出し、加工位置に対し遮蔽版を設置する。アルゴンイオンビームを照射することで、遮蔽版のエッジに沿って切断される。
・TEM分析装置及び条件
分析装置:日立社製H−7650型透過型電子顕微鏡(100kV)
カーボンブラックをアセトン等の有機溶媒中に分散させた後、アモルファスカーボン膜付きのグリッド上に滴下し、乾燥させ、100kVの加速電圧にて観察を行った。
・レーザー回折粒度分布測定装置及び分析条件
分析装置:堀場製作所社製:LA−960
光源:半導体レーザー(650nm)
蒸留水100質量部に対し、10質量%の両性界面活性剤を添加した水溶液に対し、粉末を超音波で分散させた。分散させた粉末を装置内の測定セルにフローし、レーザーを照射する。散乱光をリング状検出器で検出、解析することで粒度分布を得る。
(Analysis method)
・ SEM analyzer and conditions Analyzer: JSM7900F manufactured by JEOL Ltd.
An electron beam accelerated at an acceleration voltage of 2-5 kv is applied to the sample, and the secondary electron image is observed.
Cross-section data preparation device: IB-19530CP manufactured by JEOL Ltd.
The electrode sheet is cut out to a predetermined size, and a shielding plate is installed at the processing position. By irradiating with an argon ion beam, it is cut along the edge of the shielding plate.
-TEM analyzer and conditions Analyzer: Hitachi H-7650 transmission electron microscope (100 kV)
After carbon black was dispersed in an organic solvent such as acetone, it was dropped onto a grid with an amorphous carbon film, dried, and observed at an acceleration voltage of 100 kV.
-Laser diffraction particle size distribution measuring device and analytical conditions Analytical device: manufactured by HORIBA, Ltd .: LA-960
Light source: Semiconductor laser (650 nm)
The powder was ultrasonically dispersed in an aqueous solution containing 10% by mass of an amphoteric surfactant with respect to 100 parts by mass of distilled water. The dispersed powder is flowed to a measurement cell in the apparatus and irradiated with a laser. The particle size distribution is obtained by detecting and analyzing the scattered light with a ring-shaped detector.

(評価方法)
(ラミネート電池の作製)
前記の作用極、対極を使用し、評価用電池として、正極(Li金属)、セパレータ(ポリプロピレン)、負極(試験負極材)を順に積層し、更に、Niタブを取り付けた後、積層物をアルミラミネートして、ラミネート電池を不活性雰囲気下で組み立てた。電解液は1 mol/dmのリチウム塩LiPFを溶解したエチレンカーボネート(EC)、ジエチルカーボネート(DEC)1:1混合溶液を使用した。充電は電流密度0 .2mA/cm、終止電圧5mV で定電流充電を終えた後、下限電流0.02mA/cmとなるまで定電位保持する。放電は電流密度0.2mA/cmにて終止電圧1.5Vまで定電流放電を行い、3サイクル終了後の放電容量を可逆容量とした。初期効率は、1サイクル目の放電容量を1サイクル目の充電容量で除した値(%)である。5Cの充電容量は、3サイクル後の完放電の状態から、12分間で満充電させたときの充電容量である。
(Evaluation method)
(Making laminated batteries)
Using the above-mentioned working electrode and counter electrode, a positive electrode (Li metal), a separator (polypropylene), and a negative electrode (test negative electrode material) are laminated in this order as an evaluation battery, and a Ni tab is attached, and then the laminate is made of aluminum. Laminated and the laminated battery was assembled in an inert atmosphere. As the electrolytic solution, a 1: 1 mixed solution of ethylene carbonate (EC) and diethyl carbonate (DEC) in which 1 mol / dm 3 lithium salt LiPF 6 was dissolved was used. Charging has a current density of 0. After the constant current charging is completed at 2 mA / cm 2 and the final voltage 5 mV, the constant potential is maintained until the lower limit current becomes 0.02 mA / cm 2. For discharge, constant current discharge was performed at a current density of 0.2 mA / cm 2 up to a final voltage of 1.5 V, and the discharge capacity after the end of 3 cycles was defined as a reversible capacity. The initial efficiency is a value (%) obtained by dividing the discharge capacity of the first cycle by the charge capacity of the first cycle. The charge capacity of 5C is the charge capacity when fully charged in 12 minutes from the fully discharged state after 3 cycles.

Figure 2021152996
Figure 2021152996

表1の結果から分かるように、実施例1及び2は、容量が高く且つ比較例1〜4に比べ、5C充電容量が高くなっているので、実施例1及び2は、高い容量を有しつつ、且つ、比較例1〜4に比べ、高速充放電特性に優れていることが分かる。また、実施例1及び2は、初期効率が高く、不可逆容量の抑制もできている。 As can be seen from the results in Table 1, Examples 1 and 2 have a high capacity and a 5C charge capacity is higher than that of Comparative Examples 1 to 4, so that Examples 1 and 2 have a high capacity. At the same time, it can be seen that the high-speed charge / discharge characteristics are superior to those of Comparative Examples 1 to 4. Further, in Examples 1 and 2, the initial efficiency is high and the irreversible capacity can be suppressed.

本発明によれば、高速充放電特性に優れたリチウムイオン二次電池用負極材およびリチウムイオン二次電池用負極材の製造方法を提供することができる。 According to the present invention, it is possible to provide a method for manufacturing a negative electrode material for a lithium ion secondary battery and a negative electrode material for a lithium ion secondary battery, which are excellent in high-speed charge / discharge characteristics.

1 黒鉛粒子
2 非晶質炭素化結合材料
3 非晶質炭素粒子
4 被覆層
5 埋没部分
6a、6b 交点
7 非晶質炭素粒子全体
8 非晶質炭素化結合材料の厚み
9 計算範囲
10 リチウムイオン二次電池用負極材
11 バインダー
12 バインダー被覆黒鉛粒子
13 非晶質炭素粒子付着バインダー被覆黒鉛粒子
14 非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子
15 樹脂
16 非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物
1 Graphite particles 2 Amorphous carbonized bonding material 3 Amorphous carbon particles 4 Coating layer 5 Buried parts 6a, 6b intersections
7 Whole amorphous carbon particles 8 Thickness of amorphous carbonized bonding material 9 Calculation range 10 Negative material for lithium ion secondary battery 11 Binder 12 Binder coated graphite particles 13 Amorphous carbon particles Adhering binder coated graphite particles 14 Aspherical Quality Carbon particles embedded binder-coated graphite particles 15 Resin 16 Amorphous carbon particles-attached binder-coated graphite particles recoated

Claims (6)

黒鉛粒子と、非晶質炭素粒子及び非晶質炭素化結合材料を含み、該黒鉛粒子を覆う被覆層と、からなり、
表面観察における該非晶質炭素粒子の被覆率が50%以上であり、
断面観察における該非晶質炭素粒子の埋没割合が30〜90%であること、
を特徴とするリチウムイオン二次電池用負極材。
It comprises graphite particles and a coating layer containing amorphous carbon particles and an amorphous carbonized bonding material and covering the graphite particles.
The coverage of the amorphous carbon particles in surface observation is 50% or more,
The burial ratio of the amorphous carbon particles in the cross-sectional observation is 30 to 90%.
Negative electrode material for lithium-ion secondary batteries.
前記リチウムイオン二次電池用負極材の平均粒子径(D50)が5.0〜30.0μmであることを特徴とする請求項1のリチウムイオン二次電池用負極材。 The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the average particle size (D 50) of the negative electrode material for a lithium ion secondary battery is 5.0 to 30.0 μm. 平均粒子径(D50)が5.0〜30.0μmである黒鉛粒子と、バインダーを混合することにより、該黒鉛粒子がバインダーで被覆されたバインダー被覆黒鉛粒子を得る被覆工程と、
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50〜300nmである非晶質炭素粒子を10.0〜40.0質量部混合し、次いで、圧縮及び摩擦させることにより、該バインダー被覆黒鉛粒子のバインダー層に該非晶質炭素粒子を埋め込み、非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を得る埋め込み工程と、
該非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を、焼成炭化する焼成炭化工程と、
を行い得られるリチウムイオン二次電池用負極材。
A coating step of mixing graphite particles having an average particle diameter (D 50 ) of 5.0 to 30.0 μm with a binder to obtain binder-coated graphite particles in which the graphite particles are coated with a binder.
The binder is obtained by mixing 10.0 to 40.0 parts by mass of amorphous carbon particles having an arithmetic average particle diameter of 50 to 300 nm with 100.0 parts by mass of the graphite particles, and then compressing and rubbing the particles. A process of embedding the amorphous carbon particles in the binder layer of the coated graphite particles to obtain the amorphous carbon particle-embedded binder-coated graphite particles, and an embedding step.
A calcining carbonization step of calcining carbonizing the binder-coated graphite particles in which the amorphous carbon particles are embedded,
A negative electrode material for lithium-ion secondary batteries that can be obtained.
平均粒子径(D50)が5.0〜30.0μmである黒鉛粒子と、バインダーを混合することにより、該黒鉛粒子がバインダーで被覆されたバインダー被覆黒鉛粒子を得る被覆工程と、
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50〜300nmである非晶質炭素粒子を10.0〜40.0質量部混合し、次いで、炭化後の残炭量が2.0質量部以上となる量の樹脂溶液で被覆処理することにより、該非晶質炭素粒子が付着している黒鉛粒子を、該樹脂で再被覆し、非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を得る再被覆工程と、
該非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を、焼成炭化する焼成炭化工程と、
を行い得られるリチウムイオン二次電池用負極材。
A coating step of mixing graphite particles having an average particle diameter (D 50 ) of 5.0 to 30.0 μm with a binder to obtain binder-coated graphite particles in which the graphite particles are coated with a binder.
Amorphous carbon particles having an arithmetic average particle diameter of 50 to 300 nm are mixed with 100.0 parts by mass of the graphite particles by 10.0 to 40.0 parts by mass, and then the amount of residual carbon after carbonization is 2. By coating with a resin solution in an amount of 0 parts by mass or more, the graphite particles to which the amorphous carbon particles are attached are recoated with the resin, and the amorphous carbon particle-attached binder-coated graphite particles are re-coated. The recoating process to obtain the coating and
A calcining carbonization step of calcining and carbonizing the recoated material of the binder-coated graphite particles adhering to the amorphous carbon particles.
A negative electrode material for lithium-ion secondary batteries that can be obtained.
平均粒子径(D50)が5.0〜30.0μmである黒鉛粒子と、バインダーを混合することにより、該黒鉛粒子がバインダーで被覆されたバインダー被覆黒鉛粒子を得る被覆工程と、
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50〜300nmである非晶質炭素粒子を10.0〜40.0質量部混合し、次いで、圧縮及び摩擦させることにより、該バインダー被覆黒鉛粒子のバインダー層に該非晶質炭素粒子を埋め込み、非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を得る埋め込み工程と、
該非晶質炭素粒子埋め込みバインダー被覆黒鉛粒子を、焼成炭化する焼成炭化工程と、
を有することを特徴とするリチウムイオン二次電池用負極材の製造方法。
A coating step of mixing graphite particles having an average particle diameter (D 50 ) of 5.0 to 30.0 μm with a binder to obtain binder-coated graphite particles in which the graphite particles are coated with a binder.
The binder is obtained by mixing 10.0 to 40.0 parts by mass of amorphous carbon particles having an arithmetic average particle diameter of 50 to 300 nm with 100.0 parts by mass of the graphite particles, and then compressing and rubbing the particles. A process of embedding the amorphous carbon particles in the binder layer of the coated graphite particles to obtain the amorphous carbon particle-embedded binder-coated graphite particles, and an embedding step.
A calcining carbonization step of calcining carbonizing the binder-coated graphite particles in which the amorphous carbon particles are embedded,
A method for producing a negative electrode material for a lithium ion secondary battery.
平均粒子径(D50)が5.0〜30.0μmである黒鉛粒子と、バインダーを混合することにより、該黒鉛粒子がバインダーで被覆されたバインダー被覆黒鉛粒子を得る被覆工程と、
該黒鉛粒子100.0質量部に対し、算術平均粒子径が50〜300nmである非晶質炭素粒子を10.0〜40.0質量部混合し、次いで、炭化後の残炭量が2.0質量部以上となる量の樹脂溶液で被覆処理することにより、該非晶質炭素粒子が付着している黒鉛粒子を、該樹脂で再被覆し、非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を得る再被覆工程と、
該非晶質炭素粒子付着バインダー被覆黒鉛粒子の再被覆物を、焼成炭化する焼成炭化工程と、
を有することを特徴とするリチウムイオン二次電池用負極材の製造方法。
A coating step of mixing graphite particles having an average particle diameter (D 50 ) of 5.0 to 30.0 μm with a binder to obtain binder-coated graphite particles in which the graphite particles are coated with a binder.
Amorphous carbon particles having an arithmetic average particle diameter of 50 to 300 nm are mixed with 100.0 parts by mass of the graphite particles by 10.0 to 40.0 parts by mass, and then the amount of residual carbon after carbonization is 2. By coating with a resin solution in an amount of 0 parts by mass or more, the graphite particles to which the amorphous carbon particles are attached are recoated with the resin, and the amorphous carbon particle-attached binder-coated graphite particles are re-coated. The recoating process to obtain the coating and
A calcining carbonization step of calcining and carbonizing the recoated material of the binder-coated graphite particles adhering to the amorphous carbon particles.
A method for producing a negative electrode material for a lithium ion secondary battery.
JP2020052396A 2020-03-24 2020-03-24 Negative electrode material for lithium ion secondary battery and production method thereof Pending JP2021152996A (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2020052396A JP2021152996A (en) 2020-03-24 2020-03-24 Negative electrode material for lithium ion secondary battery and production method thereof
PCT/JP2021/004285 WO2021192648A1 (en) 2020-03-24 2021-02-05 Negative electrode material for lithium ion secondary batteries and method for producing negative electrode material for lithium ion secondary batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2020052396A JP2021152996A (en) 2020-03-24 2020-03-24 Negative electrode material for lithium ion secondary battery and production method thereof

Publications (1)

Publication Number Publication Date
JP2021152996A true JP2021152996A (en) 2021-09-30

Family

ID=77887425

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2020052396A Pending JP2021152996A (en) 2020-03-24 2020-03-24 Negative electrode material for lithium ion secondary battery and production method thereof

Country Status (2)

Country Link
JP (1) JP2021152996A (en)
WO (1) WO2021192648A1 (en)

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027664A (en) * 2006-07-19 2008-02-07 Nippon Carbon Co Ltd Negative electrode for lithium ion secondary battery, and negative electrode active material
JP2008305722A (en) * 2007-06-08 2008-12-18 Tokai Carbon Co Ltd Negative electrode for lithium ion secondary battery material and its manufacturing method
JP2010218758A (en) * 2009-03-13 2010-09-30 Tokai Carbon Co Ltd Negative electrode material for lithium secondary battery and method for manufacturing the same
JP2014186956A (en) * 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp Carbon material for anode of nonaqueous secondary battery, anode for nonaqueous secondary battery and nonaqueous secondary battery
CN106099079A (en) * 2016-08-26 2016-11-09 宁德时代新能源科技股份有限公司 Secondary battery negative electrode material, preparation method thereof and battery containing negative electrode material
WO2018110263A1 (en) * 2016-12-12 2018-06-21 昭和電工株式会社 Composite graphite particles, method for producing same, and use thereof

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2008027664A (en) * 2006-07-19 2008-02-07 Nippon Carbon Co Ltd Negative electrode for lithium ion secondary battery, and negative electrode active material
JP2008305722A (en) * 2007-06-08 2008-12-18 Tokai Carbon Co Ltd Negative electrode for lithium ion secondary battery material and its manufacturing method
JP2010218758A (en) * 2009-03-13 2010-09-30 Tokai Carbon Co Ltd Negative electrode material for lithium secondary battery and method for manufacturing the same
JP2014186956A (en) * 2013-03-25 2014-10-02 Mitsubishi Chemicals Corp Carbon material for anode of nonaqueous secondary battery, anode for nonaqueous secondary battery and nonaqueous secondary battery
CN106099079A (en) * 2016-08-26 2016-11-09 宁德时代新能源科技股份有限公司 Secondary battery negative electrode material, preparation method thereof and battery containing negative electrode material
WO2018110263A1 (en) * 2016-12-12 2018-06-21 昭和電工株式会社 Composite graphite particles, method for producing same, and use thereof

Also Published As

Publication number Publication date
WO2021192648A1 (en) 2021-09-30

Similar Documents

Publication Publication Date Title
EP3780169A1 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
KR102500915B1 (en) Carbon material and nonaqueous secondary battery using carbon material
KR101498328B1 (en) Mixed carbon material and negative electrode for nonaqueous rechargeable battery
JP5413645B2 (en) Method for producing negative electrode material for lithium secondary battery
EP2695857A1 (en) Modified natural graphite particles
CN115571875A (en) Carbon material, method for producing carbon material, and nonaqueous secondary battery using carbon material
JP2008305722A (en) Negative electrode for lithium ion secondary battery material and its manufacturing method
TW201547090A (en) Negative electrode active material for lithium ion secondary battery and manufacturing thereof
JP2014067638A (en) Carbon material for nonaqueous secondary battery, negative electrode, and nonaqueous secondary battery
JP6864250B2 (en) Carbon material and non-aqueous secondary battery
JP2008305661A (en) Negative electrode material for lithium ion secondary battery, and its manufacturing method
WO2001091211A1 (en) Lithium secondary cell and positive electrode active material, positive plate, and method for manufacturing them
KR102240593B1 (en) Conductive carbon, electrode material including said carbon, electrode in which said electrode material is used, and electric storage device provided with said electrode
JP6634720B2 (en) Carbon materials and non-aqueous secondary batteries
JP2014067639A (en) Carbon material for nonaqueous secondary battery, negative electrode for nonaqueous secondary battery, and nonaqueous secondary battery
WO2021192650A1 (en) Negative electrode material for lithium ion secondary batteries, method for producing negative electrode material for lithium ion secondary batteries, and material for producing negative electrode material for lithium ion secondary batteries
JP2003157831A (en) Positive electrode plate for lithium ion secondary battery, its manufacturing method and lithium secondary battery using it
JP2009110968A (en) Graphite particle, lithium ion secondary battery, negative electrode material therefor, and negative electrode
WO2021192648A1 (en) Negative electrode material for lithium ion secondary batteries and method for producing negative electrode material for lithium ion secondary batteries
WO2021192651A1 (en) Negative electrode material for lithium ion secondary batteries and method for producing negative electrode material for lithium ion secondary batteries
JP2013229343A (en) Composite graphite particle for nonaqueous secondary battery, negative electrode material containing the same, negative electrode and nonaqueous secondary battery
JP4053763B2 (en) Lithium ion secondary battery
WO2021192649A1 (en) Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, and manufacturing material for negative electrode material for lithium ion secondary battery
JP2016051557A (en) Negative electrode material for lithium ion secondary battery, method of manufacturing the same, and lithium ion secondary battery
WO2022219836A1 (en) Negative electrode material for lithium ion secondary batteries, and method for producing negative electrode material for lithium ion secondary batteries

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20210804

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20220705

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20220819

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20221206