JP2004210634A - COMPOSITE GRAPHITE PARTICLE, ITS PRODUCTION METHOD, Li ION SECONDARY BATTERY CATHODE MATERIAL, Li ION SECONDARY BATTERY CATHODE AND Li ION SECONDARY BATTERY - Google Patents

COMPOSITE GRAPHITE PARTICLE, ITS PRODUCTION METHOD, Li ION SECONDARY BATTERY CATHODE MATERIAL, Li ION SECONDARY BATTERY CATHODE AND Li ION SECONDARY BATTERY Download PDF

Info

Publication number
JP2004210634A
JP2004210634A JP2003423522A JP2003423522A JP2004210634A JP 2004210634 A JP2004210634 A JP 2004210634A JP 2003423522 A JP2003423522 A JP 2003423522A JP 2003423522 A JP2003423522 A JP 2003423522A JP 2004210634 A JP2004210634 A JP 2004210634A
Authority
JP
Japan
Prior art keywords
resin
graphite particles
composite graphite
graphite
composite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2003423522A
Other languages
Japanese (ja)
Other versions
JP4215633B2 (en
Inventor
Kunihiko Eguchi
邦彦 江口
Makiko Ijiri
真樹子 井尻
Kazuaki Tabayashi
一晃 田林
Kazuyuki Murakami
一幸 村上
Hidetoshi Morotomi
秀俊 諸富
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2003423522A priority Critical patent/JP4215633B2/en
Publication of JP2004210634A publication Critical patent/JP2004210634A/en
Application granted granted Critical
Publication of JP4215633B2 publication Critical patent/JP4215633B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a composite graphite particle capable of obtaining a Li ion secondary battery having a high discharge capacity and a high initial charge-discharge efficiency, and also excellent in rapid discharge characteristics and cycle characteristics, when it is used as a cathode material for the Li ion secondary battery. <P>SOLUTION: The composite graphite particle has a carbon material obtained by heating and carbonizing a carbonizable material composed of only a resin or a resin material wherein a graphite prepared by pelletizing a scale-like graphite has the composite graphite particle of 0.50-20 mass% after being carbonized. A production method of the composite graphite particle, a Li ion secondary battery cathode material, a Li ion secondary battery cathode and a Li ion secondary battery, are provided. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

本発明は、リチウムイオン二次電池用の負極材として、高負荷特性および高サイクル特性を有し、さらに高放電容量で、低不可逆容量の複合黒鉛粒子の提供を目的とする。
また、本発明は、リチウムイオン二次電池およびその構成材料に関する。具体的には、物性の異なる少なくとも2種の材料からなる複合黒鉛粒子の新規な製造法に関する。さらには、この方法によって得られる新規な構造を有する複合黒鉛粒子、これを含むリチウムイオン二次電池負極材、この負極材を用いたリチウムイオン二次電池負極、およびこの負極を用いたリチウムイオン二次電池に関する。
An object of the present invention is to provide composite graphite particles having high load characteristics and high cycle characteristics, high discharge capacity, and low irreversible capacity as a negative electrode material for a lithium ion secondary battery.
Further, the present invention relates to a lithium ion secondary battery and a constituent material thereof. Specifically, the present invention relates to a novel method for producing composite graphite particles composed of at least two kinds of materials having different physical properties. Further, a composite graphite particle having a novel structure obtained by this method, a negative electrode material of a lithium ion secondary battery containing the same, a negative electrode of a lithium ion secondary battery using the negative electrode material, and a lithium ion secondary battery using the negative electrode Next battery.

近年、電子機器や通信機器の小型化および軽量化が急速に進んでおり、これらの駆動用電源として用いられる二次電池に対しても小型化および軽量化の要求が強く、高エネルギー密度で、かつ高電圧を有するリチウムイオン二次電池が提案されている。リチウムイオン二次電池は、正極に、例えば、コバルト酸リチウムを使用し、負極に黒鉛などの炭素質材料を使用して、充電時にリチウムイオンを負極に吸蔵させ、放電時にこれらのリチウムイオンを負極から放出させるものである。   In recent years, the miniaturization and weight reduction of electronic devices and communication devices are rapidly progressing, and there is a strong demand for miniaturization and weight reduction of secondary batteries used as power sources for driving these devices, with high energy density, A lithium ion secondary battery having a high voltage has been proposed. Lithium-ion secondary batteries use, for example, lithium cobaltate for the positive electrode, use a carbonaceous material such as graphite for the negative electrode, occlude lithium ions in the negative electrode during charging, and transfer these lithium ions to the negative electrode during discharging. Is to be released from

この負極材としては、天然の鉱物資源である天然黒鉛と石油系あるいは石炭系の重質油から誘導されるMCMB(メソカーボンマイクロビーズ)や、特許文献1に記載のように、メソフェーズピッチの微粒子を黒鉛化した人造黒鉛が使用されている。一般的には、炭素質材料の黒鉛化性とそれを用いた負極材の放電容量には相関性があり、炭素質材料の黒鉛化性がよい程、電極として用いた場合に放電容量が高くなる傾向にある。そのため、高結晶性である鱗片状天然黒鉛は、黒鉛の理論放電容量である372mAh/gに匹敵する放電容量を示す。ただし、形状が鱗片状であるために、集電体への塗工性に劣り、集電体に対する粒子の配向が起こる。このような物理的な問題のために、電極面内の電気抵抗が高くなり、結果的には、負極材として用いた場合、電池の不可逆容量が大きくなったり、高負荷特性が悪くなったり、電池としてのサイクル特性が悪くなるなどの問題が出てきている。   Examples of the negative electrode material include MCMB (mesocarbon microbeads) derived from natural graphite which is a natural mineral resource and petroleum or coal-based heavy oil, or fine particles of mesophase pitch as described in Patent Document 1. Graphite is used as artificial graphite. In general, there is a correlation between the graphitization property of a carbonaceous material and the discharge capacity of a negative electrode material using the same. The better the graphitization property of a carbonaceous material, the higher the discharge capacity when used as an electrode. Tend to be. Therefore, scaly natural graphite having high crystallinity exhibits a discharge capacity comparable to the theoretical discharge capacity of graphite, 372 mAh / g. However, since the shape is scale-like, the coating property on the current collector is inferior, and the particles are oriented with respect to the current collector. Due to such physical problems, the electric resistance in the electrode surface increases, and as a result, when used as a negative electrode material, the irreversible capacity of the battery increases, or the high load characteristics deteriorate, There have been problems such as deterioration of cycle characteristics as a battery.

近年、電子機器の小型化あるいは高性能化に伴い、電池の高エネルギー密度化に対する要望はますます高まっている。リチウムイオン二次電池は、他の二次電池に比べて高電圧化が可能なのでエネルギー密度を高められるため注目されている。リチウムイオン二次電池は、負極、正極および非水電解質を主たる構成要素とする。非水電解質から生じるリチウムイオンは、放電および充電過程で負極および正極間を移動し、二次電池となる。通常、上記のリチウムイオン二次電池の負極材料には、炭素材料が使用される。このような炭素材料として、特に充放電特性に優れ、大きい放電容量と電位平坦性とを示す黒鉛が有望視されている(特許文献2など)。   2. Description of the Related Art In recent years, with the miniaturization or high performance of electronic devices, demands for higher energy density of batteries have been increasing. Lithium-ion secondary batteries are attracting attention because they can increase the voltage and can increase the energy density as compared with other secondary batteries. A lithium ion secondary battery has a negative electrode, a positive electrode, and a non-aqueous electrolyte as main components. Lithium ions generated from the non-aqueous electrolyte move between the negative electrode and the positive electrode during the discharging and charging processes, and become a secondary battery. Usually, a carbon material is used as the negative electrode material of the above-mentioned lithium ion secondary battery. As such a carbon material, graphite which has particularly excellent charge / discharge characteristics and exhibits a large discharge capacity and potential flatness is considered promising (Patent Document 2 and the like).

黒鉛は、縮合多環六角網平面(本発明では、炭素網面とも呼ぶ)からなる三次元結晶規則性(本発明では、結晶性とも呼ぶ)が発達するほど、リチウムとの層間化合物を安定して形成しやすい。よって、黒鉛の結晶性が高いほど、多量のリチウムが炭素網面の層間に挿入されるので、放電容量を大きくできることが報告されている(非特許文献1など)。炭素網面層へのリチウムの挿入量により種々の層構造が形成され、それらが共存する領域では平坦でかつリチウム金属に近い高い電位を示すことも報告されている(非特許文献2など)。従って、黒鉛を負極材に用いてリチウムイオン二次組電池を組み立てた場合には、高出力を得ることが可能となる。一般的に、負極材料として黒鉛を使用した場合の理論容量は、最終的に黒鉛とリチウムとが理想的な黒鉛層間化合物であるLiC6を形成した場合の放電容量と規定されており、この限界放電容量は372mAh/gとされている。 The more the three-dimensional crystal regularity (also referred to as crystallinity in the present invention) consisting of fused polycyclic hexagonal network planes (also referred to as carbon network planes in the present invention) develops, the more stable the intercalation compound with lithium becomes. Easy to form. Therefore, it is reported that the higher the crystallinity of graphite, the greater the amount of lithium inserted between the layers of the carbon mesh surface, and the greater the discharge capacity (Non-Patent Document 1, etc.). It has also been reported that various layer structures are formed depending on the amount of lithium inserted into the carbon netting layer, and exhibit a flat and high potential close to lithium metal in a region where they coexist (Non-Patent Document 2 and the like). Therefore, when a lithium ion secondary battery is assembled using graphite as a negative electrode material, high output can be obtained. Generally, the theoretical capacity when graphite is used as a negative electrode material is defined as the discharge capacity when graphite and lithium finally form LiC 6 which is an ideal graphite intercalation compound. The discharge capacity is 372 mAh / g.

しかし、黒鉛を負極材料としたリチウムイオン二次電池では、黒鉛の結晶性が高くなるほど、初回の充電時に電解液の分解などの副反応が黒鉛表面で起こりやすくなる。この副反応は、分解生成物が黒鉛表面に堆積して成長し、黒鉛の電子が溶媒などに直接移動できない程度の厚みになるまで継続する。初回充電時の副反応は、電池反応には関与しないので、初回の放電過程で電気量として取り出すことができない所謂不可逆容量を著しく増加させる。すなわち、初回の充電容量に対する初回の放電容量の比率(本発明では、初期充放電効率とも呼ぶ)が低下するという問題がある(非特許文献3など)。不可逆容量は、下式により表される。
不可逆容量=初回の充電容量−初回の放電容量
However, in a lithium ion secondary battery using graphite as a negative electrode material, as the crystallinity of graphite increases, side reactions such as decomposition of an electrolytic solution at the first charging tend to occur on the graphite surface. This side reaction is continued until the decomposition product accumulates and grows on the graphite surface, and the thickness of the graphite is such that electrons of the graphite cannot directly move to a solvent or the like. Since the side reaction at the time of the first charge does not participate in the battery reaction, the so-called irreversible capacity which cannot be taken out as an electric quantity in the first discharge process significantly increases. That is, there is a problem that the ratio of the initial discharge capacity to the initial charge capacity (also referred to as initial charge / discharge efficiency in the present invention) is reduced (Non-Patent Document 3 and the like). The irreversible capacity is represented by the following equation.
Irreversible capacity = initial charge capacity-initial discharge capacity

また、溶媒分子とリチウムイオンとがコインターカレート(co-intercalation)して黒鉛表面層が剥げ落ち、新たに露出した黒鉛表面が電解液と反応することにより初期充放電効率が低下することも報告されている(非特許文献4)。このような初期充放電効率の低下を補償する手段として、二次電池の正極材を追加する方法が知られている。しかし、余分な正極材の添加は、エネルギー密度を減少させるという新たな問題を発生させてしまう。   Also, the initial charge / discharge efficiency may decrease due to co-intercalation of the solvent molecules and lithium ions, causing the graphite surface layer to peel off and the newly exposed graphite surface to react with the electrolyte. It has been reported (Non-Patent Document 4). As a means for compensating for such a decrease in the initial charge / discharge efficiency, a method of adding a positive electrode material of a secondary battery is known. However, the addition of the extra cathode material causes a new problem of reducing the energy density.

上記のように、黒鉛を負極材料として用いたリチウムイオン二次電池では、大きい放電容量と高い初期充放電効率を両立させることは、黒鉛の結晶化度に依存する二律背反する要求となる。これを解決する方法として、放電容量の増大に有利な高結晶性の黒鉛を核として、その表面を初期充放電効率の向上に有利な低結晶性の黒鉛あるいは炭素で被覆し、複合構造とする方法が提案されている。なぜなら、低結晶性の炭素は、放電容量は小さいものの電解液に対する分解反応性が低いからである。   As described above, in a lithium ion secondary battery using graphite as a negative electrode material, achieving both a large discharge capacity and a high initial charge / discharge efficiency is a conflicting demand depending on the crystallinity of graphite. As a method to solve this, a high-density graphite, which is advantageous for increasing the discharge capacity, is used as a nucleus, and its surface is coated with low-crystalline graphite or carbon, which is advantageous for improving the initial charge and discharge efficiency, to form a composite structure. A method has been proposed. This is because low-crystalline carbon has a low discharge capacity but a low decomposition reactivity to an electrolytic solution.

このような結晶性の異なる複合構造の炭素材を用いた従来技術を大別すれば、次のようになる。
(1)核となる高結晶性黒鉛の表面を、プロパンやベンゼンなどの有機化合物の熱分解ガスから導かれる低結晶性の炭素で被覆するもの(例えば、特許文献3および4)。
(2)核となる高結晶性黒鉛に、ピッチや硬化性樹脂などを液相で被覆あるいは含浸した後、1,000℃程度の温度で焼成して表層に低結晶性の炭素を形成するもの(例えば、特許文献5〜12)。
The prior art using such a composite material having a different crystallinity can be roughly classified as follows.
(1) Coating the surface of highly crystalline graphite as a nucleus with low crystalline carbon derived from a pyrolysis gas of an organic compound such as propane or benzene (for example, Patent Documents 3 and 4).
(2) A high crystalline graphite as a nucleus is coated or impregnated with a pitch or a curable resin in a liquid phase, and then fired at a temperature of about 1,000 ° C. to form a low crystalline carbon on a surface layer. (For example, Patent Documents 5 to 12).

しかしながら、何れの方法も、放電容量の増大に関する近年の要求レベルに対しては未だに充分とはいえない。上記(1)の方法は、工業的生産の観点からは製造工程が煩雑でコストが高く、生産性に問題がある。また、表面の低結晶性炭素が極薄膜状に被覆されるため、比表面積が高く初期充放電効率が低いという問題がある。また、上記(2)の方法は、1,000℃程度で焼成した際に、表層の低結晶性炭素同士が融着し、これを解砕した場合に表層の低結晶性炭素が核である黒鉛から剥れ落ち、比表面積や嵩密度などの粉体特性、初期充放電効率などの電池特性が低下するという問題がある。   However, none of these methods is still sufficient for the recent demand level for increasing the discharge capacity. The method (1) has a complicated production process, high cost, and has a problem in productivity from the viewpoint of industrial production. Further, since the low-crystalline carbon on the surface is coated in an extremely thin film, there is a problem that the specific surface area is high and the initial charge / discharge efficiency is low. In the above method (2), the low-crystalline carbon in the surface layer is fused together when fired at about 1,000 ° C., and when this is crushed, the low-crystalline carbon in the surface layer is the core. There is a problem in that it is exfoliated from graphite, and powder characteristics such as specific surface area and bulk density, and battery characteristics such as initial charge / discharge efficiency are reduced.

また、上記(1)と(2)の方法においては、核である黒鉛と表層の低結晶性炭素とは、充放電に伴う膨張および収縮挙動が異なるため、急速充放電時や充放電を繰り返すにつれて、表層の低結晶性炭素が剥がれ落ち、上記と同様の問題を引き起こすこともある。   In the above methods (1) and (2), graphite as the nucleus and low-crystalline carbon of the surface layer have different expansion and contraction behaviors due to charge and discharge, and therefore, rapid charge and discharge and charge and discharge are repeated. As a result, the low-crystalline carbon of the surface layer may peel off, causing the same problem as described above.

電池の放電容量は、負極を構成する黒鉛の容積当りの放電容量に大きく依存する。従って、電池の放電容量を大きくするためには、単位重量当りの放電容量(mAh/g)が大きい黒鉛を高密度に充填する方が有利である。ところが、黒鉛を高密度に充填して負極を形成した場合には、上記の(1)と(2)の方法では、黒鉛と表層の低結晶性炭素の密着力が不足しがちである。すると、低結晶性炭素の被膜が黒鉛から剥がれ、電解液との反応性が高い黒鉛表面が露出し、初期充放電効率が低下することがある。   The discharge capacity of a battery largely depends on the discharge capacity per volume of graphite constituting the negative electrode. Therefore, in order to increase the discharge capacity of the battery, it is more advantageous to fill graphite having a large discharge capacity per unit weight (mAh / g) at a high density. However, when a negative electrode is formed by filling graphite at a high density, the adhesion between graphite and the low-crystalline carbon of the surface layer tends to be insufficient in the above methods (1) and (2). Then, the low-crystalline carbon film is peeled off from the graphite, the graphite surface having high reactivity with the electrolytic solution is exposed, and the initial charge / discharge efficiency may decrease.

なお、特許文献12においては、黒鉛にピッチを被覆後、2,800℃で熱処理することも実施例に示されているが、形成された被膜は結晶性が低く(ラマン分光のR値が0.32、R値の測定法は後述する)、上記と同様の問題を生じる。また、角取りされた鱗片状黒鉛を芯材に用いているが、黒鉛のアスペクト比が大きく、負極を製造した場合に黒鉛が配向することも急速放電特性やサイクル特性の低下を招いている。   In addition, in Patent Document 12, it is shown in Examples that a graphite is coated with a pitch and then heat-treated at 2,800 ° C., but the formed film has low crystallinity (Ra value of Raman spectroscopy is 0). .32, and the method of measuring the R value will be described later), which causes the same problem as described above. In addition, although flaky graphite flakes are used as the core material, the graphite has a large aspect ratio and the orientation of the graphite when a negative electrode is manufactured also causes a decrease in rapid discharge characteristics and cycle characteristics.

上記の従来技術とは別に、複合黒鉛の粒子形状を球状に近づけた特許文献13の場合は、急速充放電特性やサイクル特性に一定の効果が認められる。しかしながら、特許文献13では、最外層と内部との結晶性の違いは言及されていない。複数の偏平状のコークスとピッチとを混合および焼成し、アスペクト比が5以下になるように粉砕した後、黒鉛化するという該方法からすれば、単に高結晶性の複合黒鉛粒子が得られるのみであり、初期充放電効率は低いままである。   Apart from the above-mentioned prior art, in the case of Patent Document 13 in which the particle shape of the composite graphite is made closer to a sphere, a certain effect is recognized in the rapid charge / discharge characteristics and cycle characteristics. However, Patent Document 13 does not mention the difference in crystallinity between the outermost layer and the inside. According to the method of mixing and firing a plurality of flat cokes and pitches, pulverizing them so that the aspect ratio becomes 5 or less, and then graphitizing, only high-crystalline composite graphite particles can be obtained. And the initial charge / discharge efficiency remains low.

特開平9−251855号公報JP-A-9-251855 特公昭62−23433号公報JP-B-62-23433 特開平4−368778号公報JP-A-4-368778 特開平5−275076号公報JP-A-5-275076 特開平4−368778号公報JP-A-4-368778 特開平5−94838号公報JP-A-5-94838 特開平5−217604号公報JP-A-5-217604 特開平6−84516号公報JP-A-6-84516 特開平7−302595号公報JP-A-7-302595 特開平11−54123号公報JP-A-11-54123 特開2000−229924公報JP 2000-229924 A 特開2000−3708号公報JP 2000-3708 A 特開2001−89118号公報JP 2001-89118 A 電気化学および工業物理化学、61(2),1383(1993)Electrochemistry and industrial physical chemistry, 61 (2), 1383 (1993) J.Electrochem.Soc.,Vol.140,9,2490(1993)J. Electrochem. Soc., Vol. 140, 9, 2490 (1993) J.Electrochem.Soc.,Vol.117 222(1970)J. Electrochem. Soc., Vol. 117 222 (1970) J.Electrochem.Soc.,Vol.137, 2009(1990)J. Electrochem. Soc., Vol. 137, 2009 (1990)

そのため最近では、炭素質材料が高結晶性であっても、その粉砕方法を工夫したり、あるいはメカニカルフュージョンなどの方法で、アスペクト比が3以下の比較的塊状または球に近い高結晶性黒鉛または天然黒鉛が生産されるようになってきた。しかし、これらの天然黒鉛は、比較的比表面積が大きいために、リチウムイオン二次電池の負極材として用いた場合、電解液との反応性が高くなり、不可逆容量が大きくなるなどの欠点をもつ。しかし、これら天然黒鉛は、理論値に近い放電容量を示すので、その利用への要望は強い。
従って、本発明の第1の目的は、リチウムイオン二次電池用の負極材として高負荷特性および高サイクル特性を有し、さらに高放電容量で、低不可逆容量の複合黒鉛粒子を提供することである。
Therefore, recently, even if the carbonaceous material is highly crystalline, a method of pulverizing the carbonaceous material, or a method such as mechanical fusion or the like, has a relatively bulky or sphere-like highly crystalline graphite or an aspect ratio of 3 or less. Natural graphite has begun to be produced. However, since these natural graphites have a relatively large specific surface area, when used as a negative electrode material of a lithium ion secondary battery, they have disadvantages such as high reactivity with an electrolytic solution and large irreversible capacity. . However, these natural graphites exhibit a discharge capacity close to the theoretical value, and there is a strong demand for their use.
Accordingly, a first object of the present invention is to provide composite graphite particles having high load characteristics and high cycle characteristics as a negative electrode material for a lithium ion secondary battery, and further having a high discharge capacity and a low irreversible capacity. is there.

また、本発明は、複合構造の炭素材を生産性よく、低コストで製造することを第2の目的とする。さらに、本発明は、黒鉛をリチウムイオン二次電池の負極材料に用いた時に、二律背反する性能、すなわち、大きい放電容量と高い初期充放電効率を兼備するとともに急速放電特性とサイクル特性にも優れるリチウムイオン二次電池を得ることを第3の目的とする。具体的には、大きい放電容量と高い初期充放電効率を兼備するとともに、急速放電特性とサイクル特性にも優れるリチウムイオン二次電池を得ることができる新規な複合黒鉛粒子およびその製造方法、ならびに複合黒鉛粒子を用いた負極材およびリチウムイオン二次電池を提供することをも目的とする。   A second object of the present invention is to produce a carbon material having a composite structure with good productivity and at low cost. Furthermore, the present invention provides a lithium-ion secondary battery which uses lithium as a negative electrode material, which has a trade-off between performance, namely, high discharge capacity and high initial charge / discharge efficiency, as well as excellent rapid discharge characteristics and cycle characteristics. A third object is to obtain an ion secondary battery. Specifically, a novel composite graphite particle having both a large discharge capacity and a high initial charge / discharge efficiency, and capable of obtaining a lithium ion secondary battery having excellent rapid discharge characteristics and cycle characteristics, a method for producing the same, and a composite Another object is to provide a negative electrode material and a lithium ion secondary battery using graphite particles.

上記目的は以下の発明によって達成される。すなわち、本発明は、鱗片状黒鉛を機械的外力で造粒球状化した球状黒鉛粒子が、炭化後に複合黒鉛粒子の0.50〜20質量%となる、樹脂単独または樹脂とピッチとの混合物を加熱炭化してなる炭素材によって被覆されていることを特徴とする複合黒鉛粒子を提供する。   The above object is achieved by the following invention. That is, the present invention provides a resin alone or a mixture of a resin and a pitch, in which spherical graphite particles obtained by granulating and spheroidizing flaky graphite by mechanical external force become 0.50 to 20% by mass of the composite graphite particles after carbonization. Provided is a composite graphite particle characterized by being coated with a carbon material obtained by heating and carbonizing.

上記本発明においては、前記樹脂が、フェノール樹脂またはフェノール樹脂の前駆体またはフェノール樹脂のモノマー混合物であることが好ましい。また、前記ピッチが、石油系または石炭系ピッチであることが好ましい。また、樹脂とピッチとの混合割合が、樹脂/ピッチ=5/95〜100/0(質量比)であることが好ましい。   In the present invention, it is preferable that the resin is a phenol resin, a precursor of the phenol resin, or a monomer mixture of the phenol resin. Preferably, the pitch is a petroleum-based or coal-based pitch. Further, the mixing ratio of the resin and the pitch is preferably resin / pitch = 5/95 to 100/0 (mass ratio).

また、上記造粒球状化した球状黒鉛粒子が、平均粒径が5〜60μm、アスペクト比が3以下、比表面積が0.5〜10m2/gおよびX線回折の測定値であるLcが40nm以上、Laが40nm以上、d002が0.337nm以下、アルゴンレーザーを用いたラマン分光法により測定した1360cm-1ピーク強度(I1360)と1580cm-1ピーク強度(I1580)の比I1360/I1580(R値)が0.06〜0.30、および1580cm-1バンドの半値幅が10〜60である高結晶性の人造または天然黒鉛からなることが好ましい。 The granulated spheroidal graphite particles have an average particle size of 5 to 60 μm, an aspect ratio of 3 or less, a specific surface area of 0.5 to 10 m 2 / g, and an Lc value measured by X-ray diffraction of 40 nm. above, La is 40nm or more, d 002 is 0.337nm less, 1360 cm -1 peak intensity measured by Raman spectroscopy using an argon laser (I 1360) and 1580 cm -1 peak intensity (I 1580) of the ratio I 1360 / It is preferably made of highly crystalline artificial or natural graphite having an I 1580 (R value) of 0.06 to 0.30 and a half width of a 1580 cm −1 band of 10 to 60.

また、上記炭素材が、アルゴンレーザーを用いたラマン分光法により測定した1360cm-1ピーク強度(I1360)と1580cm-1ピーク強度(I1580)の比I1360/I1580(R値)が0.05〜0.40であることが好ましい。 The carbon material has a ratio of 1360 / I 1580 (R value) of 1360 cm -1 peak intensity (I 1360 ) to 1580 cm -1 peak intensity (I 1580 ) measured by Raman spectroscopy using an argon laser. It is preferably from 0.05 to 0.40.

さらに、本発明は、鱗片状黒鉛を機械的外力で造粒球状化した球状黒鉛粒子を、樹脂単独または樹脂とピッチとの混合物で被覆し、該被覆粒子を熱処理して被覆層を炭化することを特徴とする前記本発明の何れかの複合黒鉛粒子の製造方法を提供する。該製造方法においては、球状黒鉛粒子を、樹脂単独または樹脂とピッチとの混合物で被覆した後、空気中または不活性雰囲気下において200〜300℃で熱処理後、2,000〜3,200℃で焼成することが好ましい。   Further, the present invention is to cover the spherical graphite particles obtained by granulating and spheroidal graphite by mechanical external force with a resin alone or a mixture of a resin and pitch, and heat-treat the coated particles to carbonize the coating layer. The present invention also provides a method for producing the composite graphite particles according to any one of the above aspects of the present invention. In the production method, the spherical graphite particles are coated with a resin alone or a mixture of a resin and a pitch, and then heat-treated at 200 to 300 ° C. in the air or under an inert atmosphere. Firing is preferred.

さらに本発明は、前記本発明の何れかの複合黒鉛粒子からなることを特徴とするリチウムイオン二次電池負極材、および前記本発明の何れかの複合黒鉛粒子が、負極材として使用されていることを特徴とするリチウムイオン二次電池を提供する。   Further, the present invention provides a negative electrode material for a lithium ion secondary battery, comprising any of the composite graphite particles of the present invention, and any of the composite graphite particles of the present invention is used as a negative electrode material. A lithium ion secondary battery is provided.

さらに本発明は、黒鉛に、樹脂材料を含有する炭化可能材料を混合し、得られた混合物を2,000℃〜3,200℃で炭化する複合黒鉛粒子の製造方法において、炭化後に、複合黒鉛粒子の0.50〜20質量%が炭化可能材料を加熱炭化してなる炭素材になるように炭化可能材料を混合することを特徴とする複合黒鉛粒子の製造方法を提供する。   Further, the present invention provides a method for producing composite graphite particles in which a carbonizable material containing a resin material is mixed with graphite and the resulting mixture is carbonized at 2,000 to 3,200 ° C. A method for producing composite graphite particles, characterized in that a carbonizable material is mixed so that 0.50 to 20% by mass of the particles becomes a carbon material obtained by heating and carbonizing a carbonizable material.

上記製造法においては、上記炭化可能材料が、樹脂材料とタール類との混合物であり、かつ樹脂材料/タール類=5/95〜100/0(質量比)であることが好ましい。また、上記樹脂材料が、樹脂の原料および樹脂の前駆体からなる群より選ばれる少なくとも1種であることが好ましい。また、上記樹脂材料が、熱硬化性樹脂の原料および熱硬化性樹脂の前駆体からなる群より選ばれる少なくとも1種であることが好ましい。また、上記熱硬化性樹脂がフェノール樹脂であることが好ましい。また、上記黒鉛が、鱗片状黒鉛を造粒したものであることが好ましい。また、上記黒鉛に、樹脂材料を含有する炭化可能材料を混合し、得られた混合物を炭化するに先だって該混合物を200〜300℃で加熱した後炭化することが好ましい。   In the above production method, it is preferable that the carbonizable material is a mixture of a resin material and tars, and the ratio of resin material / tars is 5/95 to 100/0 (mass ratio). It is preferable that the resin material is at least one selected from the group consisting of resin raw materials and resin precursors. Further, it is preferable that the resin material is at least one selected from the group consisting of a thermosetting resin raw material and a thermosetting resin precursor. Further, the thermosetting resin is preferably a phenol resin. Preferably, the graphite is obtained by granulating flaky graphite. Further, it is preferable that a carbonizable material containing a resin material is mixed with the graphite, and the mixture is heated at 200 to 300 ° C. and carbonized before carbonizing the obtained mixture.

さらに本発明は、黒鉛の少なくとも表面部分に、炭化後に複合黒鉛粒子の0.50〜20質量%となる樹脂材料を含有する炭化可能材料を加熱炭化してなる炭素材を有する複合黒鉛粒子を提供する。該複合黒鉛粒子は、X線回折の面間隔d002が0.337nm未満である黒鉛の少なくとも表面部分に、炭素材を有する複合黒鉛粒子であって、複合黒鉛粒子のアスペクト比が3以下で、複合黒鉛粒子のラマンスペクトルにおける1580cm-1のピーク強度(I1580)に対する1360cm-1のピーク強度(I1360)の比(I1580)/(I1360)が0.1以上から0.3未満であることが好ましい。 Further, the present invention provides a composite graphite particle having a carbon material obtained by heating and carbonizing a carbonizable material containing a resin material that accounts for 0.50 to 20% by mass of the composite graphite particle after carbonization on at least a surface portion of the graphite. I do. The composite graphite particles are composite graphite particles having a carbon material on at least a surface portion of graphite having a plane spacing d 002 of less than 0.337 nm in X-ray diffraction, and the aspect ratio of the composite graphite particles is 3 or less, peak intensity of 1580 cm -1 in the Raman spectrum of the composite graphite particle (I 1580) for the ratio (I 1580) of the peak intensity of 1360cm -1 (I 1360) / ( I 1360) of less than 0.3 from 0.1 or more Preferably, there is.

また、上記炭素材のX線回折の面間隔d002が、0.343nm未満で、かつ黒鉛の面間隔d002に対する比が1.001以上から1.02未満であることが好ましい。また、上記炭化可能材料が、樹脂材料とタール類との混合物であり、かつ樹脂材料/タール類=5/95〜100/0(質量比)であることが好ましい。 The carbon material preferably has an X-ray diffraction plane distance d 002 of less than 0.343 nm and a ratio of graphite to the plane distance d 002 of 1.001 or more to less than 1.02. Further, it is preferable that the carbonizable material is a mixture of a resin material and tars, and the ratio of resin material / tars is 5/95 to 100/0 (mass ratio).

また、上記樹脂材料が、樹脂の原料および樹脂の前駆体からなる群より選ばれる少なくとも1種であることが好ましい。また、樹脂材料が、熱硬化性樹脂の原料および熱硬化性樹脂の前駆体からなる群より選ばれる少なくとも1種であることが好ましい。また、上記熱硬化性樹脂が、フェノール樹脂であることが好ましい。また、上記黒鉛が、鱗片状黒鉛を造粒したものであることが好ましい。   It is preferable that the resin material is at least one selected from the group consisting of resin raw materials and resin precursors. It is preferable that the resin material is at least one selected from the group consisting of a thermosetting resin raw material and a thermosetting resin precursor. Further, it is preferable that the thermosetting resin is a phenol resin. Preferably, the graphite is obtained by granulating flaky graphite.

さらに本発明は、上記何れかの本発明の複合黒鉛粒子を含むことを特徴とするリチウムイオン二次電池負極材、該リチウムイオン二次電池負極材を用いたことを特徴とする負極、および該負極を用いたことを特徴とするリチウムイオン二次電池を提供する。   Further, the present invention provides a negative electrode material for a lithium ion secondary battery, comprising any one of the composite graphite particles of the present invention described above, a negative electrode using the negative electrode material for a lithium ion secondary battery, and Provided is a lithium ion secondary battery using a negative electrode.

本発明者らは、前記従来技術の課題を解決するために、鋭意検討の結果、これらの天然黒鉛のような高結晶性黒鉛を球状に近い形状に造粒した粒子を、難黒鉛化性を示す樹脂やピッチなどの炭化可能材料と混合し、該粒子表面を被覆し、高温熱処理を行うことによって、炭化可能材料を炭化し、上記黒鉛粒子の比表面積を簡単に低下させ、かつ負荷特性を上げる方法を見出した。この方法により製造された複合黒鉛粒子は、黒鉛化性が高く、比表面積が低いので、リチウムイオン二次電池用の負極材として、高放電容量で、低不可逆容量および高負荷特性の材料である。   The present inventors have conducted intensive studies in order to solve the above-mentioned problems of the prior art, and as a result of these studies, particles obtained by granulating highly crystalline graphite such as natural graphite into a shape close to a sphere have been reduced in graphitization property. By mixing with a carbonizable material such as resin or pitch shown, coating the particle surface, and performing a high-temperature heat treatment, the carbonizable material is carbonized, the specific surface area of the graphite particles is easily reduced, and the load characteristics are reduced. I found a way to raise it. Since the composite graphite particles produced by this method have high graphitization properties and a low specific surface area, they are high discharge capacity, low irreversible capacity and high load characteristics materials as negative electrode materials for lithium ion secondary batteries. .

本発明によれば、リチウムイオン二次電池用の負極材として高負荷特性および高サイクル特性を有し、さらに高放電容量で、低不可逆容量の黒鉛粒子を提供することができる。また、本発明によれば、被覆材として樹脂とピッチとの混合物などの炭化可能材料を用いることによって、高い放電容量とレート特性を維持しながら、本質的に高密度な電極を得ることができるうえに、電極製造時におけるプレス圧力の依存性が少なく、均一な密度を有する電極を容易に製造することができる。   According to the present invention, graphite particles having high load characteristics and high cycle characteristics as a negative electrode material for a lithium ion secondary battery, and having a high discharge capacity and a low irreversible capacity can be provided. Further, according to the present invention, by using a carbonizable material such as a mixture of resin and pitch as a coating material, it is possible to obtain an essentially high-density electrode while maintaining a high discharge capacity and rate characteristics. In addition, it is possible to easily produce an electrode having a uniform density with little dependency on the pressing pressure at the time of producing the electrode.

また、本発明の方法によれば、複合構造の炭素材が、生産性良く、低コストで製造することができる。しかもこの方法によれば、従来製造できなかった、リチウムイオン二次電池の負極材として好適な複合黒鉛粒子が製造できる。これを負極材に用いたリチウムイオン二次電池は、従来、二律背反して達成が困難であった高い初期充放電効率と大きい放電容量の両性能を高度に達成できる。さらに優れた急速放電特性とサイクル特性を有する。よって、本発明の複合黒鉛粒子により、電池エネルギーの高密度化に対する近年の要望も満足できる。さらに、本発明の負極材およびリチウム二次電池を搭載する機器は、小型化および高性能化が可能となり、広く社会に貢献できる。   Further, according to the method of the present invention, a carbon material having a composite structure can be produced with good productivity and at low cost. Moreover, according to this method, composite graphite particles suitable as a negative electrode material of a lithium ion secondary battery, which could not be produced conventionally, can be produced. A lithium ion secondary battery using this as a negative electrode material can highly achieve both high initial charge / discharge efficiency and large discharge capacity, which have been difficult to achieve conventionally. Furthermore, it has excellent rapid discharge characteristics and cycle characteristics. Therefore, the composite graphite particles of the present invention can satisfy the recent demand for higher density of battery energy. Further, the device on which the negative electrode material and the lithium secondary battery of the present invention are mounted can be reduced in size and improved in performance, and can widely contribute to society.

次に好ましい実施の形態を挙げて本発明をさらに詳しく説明する。本発明で使用する球状黒鉛粒子とは、人造または天然の高黒鉛化鱗片状黒鉛を、機械的外力で造粒球状化した球状黒鉛粒子である。機械的外力とは、機械的に粉砕および造粒することであり、鱗片状黒鉛を造粒球状化することができる。鱗片状黒鉛の粉砕装置としては、例えば、カウンタジェットミル(ホソカワミクロン(株)製)、カレントジェット(日清エンジニアリング(株)製)などの粉砕装置が使用可能であり、例えば、平均粒径5〜60μm、好ましくは平均粒径15〜25μmに粉砕する。   Next, the present invention will be described in more detail with reference to preferred embodiments. The spheroidal graphite particles used in the present invention are spheroidal graphite particles obtained by granulating and spheroidizing artificial or natural highly graphitized flaky graphite with an external mechanical force. The mechanical external force refers to mechanical pulverization and granulation, and can make flake graphite into granulated spheroids. Examples of a flake graphite crushing device include a crushing device such as a counter jet mill (manufactured by Hosokawa Micron Corp.) and a current jet (manufactured by Nisshin Engineering Co., Ltd.). Milling to 60 μm, preferably 15-25 μm average particle size.

上記粉砕品は、その表面が鋭角な部分を有しているが、本発明では、粉砕品を造粒球状化して使用する。粉砕品の造粒球状化装置としては、例えば、GRANUREX(フロイト産業(株)製)、ニューグラマシン((株)セイシン企業)、アグロマスター(ホソカワミクロン(株)製)などの造粒機、ハイブリダイゼーション((株)奈良機械製作所製)、メカノマイクロス((株)奈良機械製作所製)、メカノフュージョンシステム(ホソカワミクロン(株)製)などのせん断圧縮加工装置が使用可能であり、本発明において「球状」とは、鱗片状黒鉛粒子が、平均粒径が5〜60μm、アスペクト比が3以下、比表面積が0.5〜10m2/gであるものをいう。なお、Lcは黒鉛構造のc軸方向の結晶子の大きさLc(002)、Laは黒鉛構造のa軸方向の結晶子の大きさLa(110)である。 Although the pulverized product has an acute-angled surface, the pulverized product is granulated and used in the present invention. Examples of the granulating and spheroidizing apparatus for the pulverized product include granulating machines such as GRANUREX (manufactured by Freud Sangyo Co., Ltd.), NEW GRAM MACHINE (manufactured by Seisin Corporation), and Agromaster (manufactured by Hosokawa Micron Corporation), and hybridization. (Nara Machinery Co., Ltd.), Mechano Micros (Nara Machinery Co., Ltd.), Mechano Fusion System (Hosokawa Micron Co., Ltd.) and other shear compression processing devices can be used. "" Refers to flake graphite particles having an average particle size of 5 to 60 m, an aspect ratio of 3 or less, and a specific surface area of 0.5 to 10 m2 / g. Lc is the crystallite size Lc (002) of the graphite structure in the c-axis direction, and La is the crystallite size La (110) of the graphite structure in the a-axis direction.

また、本発明で使用する黒鉛粒子は、その結晶性が、X線回折の測定値であるLcが40nm以上、Laが40nm以上、d002が0.337nm以下、アルゴンレーザーを用いたラマン分光法により測定した1360cm-1ピーク強度(I1360)と1580cm-1ピーク強度(I1580)の比I1360/I1580(R値)が0.06〜0.30、および1580cm-1バンドの半値幅が10〜60である高結晶性の人造または天然黒鉛の粒子であることが好ましい。このような特性を有さない黒鉛では、本発明の目的が充分に達成されない場合がある。なお、Lcは黒鉛構造のc軸方向の結晶子の大きさLc(002)、Laは黒鉛構造のa軸方向の結晶子の大きさLa(110)である。 The graphite particles used in the present invention have a crystallinity as measured by X-ray diffraction, Lc is 40 nm or more, La is 40 nm or more, d 002 is 0.337 nm or less, Raman spectroscopy using an argon laser. half-width ratio I 1360 / I 1580 (R value) of 0.06 to 0.30, and 1580 cm -1 band of the measured 1360 cm -1 peak intensity (I 1360) and 1580 cm -1 peak intensity (I 1580) by Is preferably a high crystalline artificial or natural graphite particle having a particle size of 10 to 60. In the case of graphite having no such properties, the object of the present invention may not be sufficiently achieved. Lc is the crystallite size Lc (002) of the graphite structure in the c-axis direction, and La is the crystallite size La (110) of the graphite structure in the a-axis direction.

本発明は、上記黒鉛粒子を炭素材で被覆することを特徴としている。炭素材を形成する材料としては、炭化が可能である炭化可能材料を用いる。特に、炭化が容易である各種樹脂であれば、特に限定されないが、好ましい材料はフェノール樹脂単独、またはフェノール樹脂とピッチととの混合物である。上記「フェノール樹脂」とは、フェノール樹脂それ自体(置換基を有してもよいフェノール類とホルムアルデヒドとの高度縮合物)、フェノール類とホルムアルデヒドとの初期縮合物(フェノール樹脂の前駆体)、およびフェノール類とホルムアルデヒドとの混合物(モノマー混合物)が何れも使用できる。これらのフェノール樹脂による前記黒鉛粒子の被覆を均一に行うためには、熱による溶融または溶液化が可能なフェノール樹脂の前駆体、または水溶液とすることができる前記モノマー混合物を用いることが好ましい。樹脂、特にフェノール樹脂を単独で用いる場合には、本発明の複合黒鉛粒子における炭素材は、黒鉛化することがなく、黒鉛粒子表面に適切な炭素材による被覆層が形成され、高い放電レートおよび低い比表面積を有する本発明の複合黒鉛粒子が得られる。   The present invention is characterized in that the graphite particles are coated with a carbon material. As a material forming the carbon material, a carbonizable material capable of being carbonized is used. In particular, the resin is not particularly limited as long as it is various resins that can be easily carbonized, but a preferable material is a phenol resin alone or a mixture of a phenol resin and a pitch. The above-mentioned “phenol resin” includes a phenol resin itself (a highly condensed product of a phenol which may have a substituent and formaldehyde), an initial condensate of a phenol and formaldehyde (a precursor of a phenol resin), and Any mixture of phenols and formaldehyde (monomer mixture) can be used. In order to uniformly coat the graphite particles with these phenolic resins, it is preferable to use a phenolic resin precursor that can be melted or turned into solution by heat, or the above-mentioned monomer mixture that can be used as an aqueous solution. When a resin, particularly a phenolic resin alone, is used, the carbon material in the composite graphite particles of the present invention does not graphitize, and a coating layer of an appropriate carbon material is formed on the surface of the graphite particles, and a high discharge rate and The composite graphite particles of the present invention having a low specific surface area are obtained.

上記樹脂は単独でも使用できるし、また、ピッチとの混合物としても使用できる。使用するピッチとしては、例えば、石油系または石炭系のタールを濃縮および熱重合させて得られるタールピッチが好ましい。黒鉛粒子の被覆材として樹脂(特にフェノール樹脂)とピッチとを混合して使用する場合には、樹脂とピッチとの混合割合が、樹脂/ピッチ=5/95〜100/0(質量比)となる比率とすることが好ましい(樹脂/ピッチ=100/0の場合は、上記樹脂単独使用と同一である)。   The above resin can be used alone or as a mixture with pitch. As the pitch to be used, for example, a tar pitch obtained by concentrating and thermally polymerizing petroleum or coal tar is preferable. When a resin (especially a phenol resin) and a pitch are mixed and used as a coating material for graphite particles, the mixing ratio of the resin and the pitch is such that resin / pitch = 5/95 to 100/0 (mass ratio). It is preferable that the ratio be as follows (in the case of resin / pitch = 100/0, it is the same as the above-mentioned resin alone).

樹脂の使用割合が上記範囲未満であると、形成される炭素材の黒鉛化が進み過ぎてレート特性の点で好ましくない。樹脂とピッチとを併用する場合の両者の好ましい使用割合は、樹脂とピッチの質量比において、5/95〜100/0の比率が好ましく、さらに30/70〜70/30の比率が好ましい。樹脂とピッチとを併用することにより、形成される炭素材は、黒鉛化の進行が所望の程度に抑えられて、黒鉛粒子表面に適切な炭素材による被覆層が形成され、高い放電レートおよび低い比表面積を有する本発明の複合黒鉛粒子が得られる。   If the use ratio of the resin is less than the above range, graphitization of the formed carbon material proceeds excessively, which is not preferable in terms of rate characteristics. When a resin and a pitch are used in combination, a preferable ratio of both of them is preferably 5/95 to 100/0, more preferably 30/70 to 70/30 in mass ratio of the resin and the pitch. By using the resin and the pitch together, the formed carbon material has a graphitization progress suppressed to a desired degree, a coating layer of an appropriate carbon material is formed on the graphite particle surface, and a high discharge rate and a low discharge rate are obtained. The composite graphite particles of the present invention having a specific surface area are obtained.

前記黒鉛粒子表面を上記炭素材により被覆する工程においては、強剪断応力を加えることのできる混合機に黒鉛粒子と炭化可能材料を投入し、炭化可能材料の液状化温度以上の温度領域で混練することで、黒鉛粒子の被覆処理を行うことができる。または、樹脂単独または樹脂とピッチとの混合物を溶解できる溶剤に溶かし、これら炭化可能材料の溶液と黒鉛粒子とを混合攪拌した後、蒸留して溶剤を取り除く方法でも行うことができる。または、樹脂のモノマー混合物または低分子量樹脂(樹脂の前駆体)やピッチ溶液中に黒鉛粒子を加えて攪拌し、粒子表面上に樹脂または樹脂/ピッチ複合物を付着させるか、または、重合させながら付着させて被覆することもできる。   In the step of coating the surface of the graphite particles with the carbon material, the graphite particles and the carbonizable material are charged into a mixer capable of applying a strong shearing stress, and kneaded in a temperature range equal to or higher than the liquefaction temperature of the carbonizable material. Thereby, the coating treatment of the graphite particles can be performed. Alternatively, the method can be carried out by dissolving the resin alone or a mixture of the resin and the pitch in a solvent capable of dissolving, mixing and stirring the solution of the carbonizable material and the graphite particles, and then removing the solvent by distillation. Alternatively, graphite particles are added to a resin monomer mixture or a low molecular weight resin (precursor of resin) or a pitch solution and stirred to adhere the resin or the resin / pitch composite on the particle surface, or while polymerizing. It can also be applied and coated.

さらに、炭素材を均質もしくは層構造に被覆することも可能である。均質とは、炭素材が単一成分または複数成分を均質に混合したものであることを意味し、層構造の被覆とは、薄い被覆を行った後に、さらに別の炭素材を再度被覆することを意味する。例えば、黒鉛粒子表面に第1層として、フェノールとホルムアルデヒドとからなるフェノール樹脂で被覆した後、ジメチルフェノール(キシレノール)とホルムアルデヒドとからなるキシレノール樹脂を第2層として被覆したり、黒鉛粒子表面に第1層としてピッチを被覆した後、フェノール樹脂を第2層として被覆することもできる。このような多様な手法を用いることにより、任意の割合の炭素材で黒鉛粒子表面を被覆することができる。   Furthermore, it is possible to coat the carbon material in a homogeneous or layered structure. Homogeneous means that the carbon material is a single component or a mixture of multiple components homogeneously.Coating with a layered structure means that after thin coating, another carbon material is coated again. Means For example, the surface of graphite particles is coated as a first layer with a phenolic resin composed of phenol and formaldehyde, and then the surface of graphite particles is coated with a xylenol resin composed of dimethylphenol (xylenol) and formaldehyde as a second layer. After coating the pitch as one layer, the phenolic resin can be coated as a second layer. By using such various techniques, the surface of the graphite particles can be coated with an arbitrary ratio of the carbon material.

炭素材の含有量は、炭化後の複合黒鉛粒子に対する、炭化可能材料を加熱炭化してなる炭素の割合(質量%)である。   The content of the carbon material is a ratio (mass%) of carbon obtained by heating and carbonizing the carbonizable material to the composite graphite particles after carbonization.

炭素材の含有量は、複合黒鉛粒子全体の0.50〜20質量%である。特に8〜12質量%が好ましい。0.5質量%より少ないと、黒鉛粒子には実質として被覆されきれていない表面ができるなど、充分な被覆効果が得られない。一方、20質量%を超えると被覆層が厚すぎて、得られる複合黒鉛粒子の放電容量低下などの逆効果になるばかりでなく、炭化可能材料の残炭率(殆どの場合40〜60%)を考慮すると、黒鉛粒子に対する炭素材量が多く、被覆(混合)、加熱(硬化)、または炭化工程において著しい黒鉛粒子の融着が起こる。この融着粒子を粉砕する際に、炭素材の割れや剥離が起こり、被覆が不均一になるため、製法上好ましくない。上記において、含有量が比較的多い場合は、炭化処理前に、350〜1,500℃程度の温度で予備的な焼成を行うと、後に炭化処理時の過度のガス発生を抑えることができ、操業上好ましい。なお、炭素材の含有量は複合黒鉛粒子全体の平均として上記範囲内にあればよい。個々の粒子全てが上記範囲内にある必要はなく、上記範囲以外の粒子を一部含んでいてもよい。   The content of the carbon material is 0.50 to 20% by mass of the entire composite graphite particles. Particularly, 8 to 12% by mass is preferable. If the amount is less than 0.5% by mass, a sufficient coating effect cannot be obtained, for example, a surface that is not substantially coated with the graphite particles is formed. On the other hand, if it exceeds 20% by mass, the coating layer is too thick, which not only has the adverse effect of reducing the discharge capacity of the obtained composite graphite particles, but also the residual carbon ratio of the carbonizable material (in most cases, 40 to 60%). In consideration of the above, the amount of the carbon material with respect to the graphite particles is large, and remarkable fusion of the graphite particles occurs in the coating (mixing), heating (curing), or carbonization process. When the fused particles are pulverized, the carbon material is cracked or peeled off, and the coating becomes non-uniform. In the above, when the content is relatively large, if preliminary firing is performed at a temperature of about 350 to 1,500 ° C. before carbonization, excessive gas generation during carbonization can be suppressed later, Operationally favorable. The content of the carbon material may be within the above range as an average of the entire composite graphite particles. Not all of the individual particles need to be within the above range, and some of the particles outside the above range may be included.

本発明においては、黒鉛粒子の被覆処理を行った後、炭化する。この工程において、200〜300℃の加熱工程を置くことが望ましい。加熱工程は炭化可能材料、つまり樹脂やピッチ中に含まれる軽揮発分の揮発が起こるため、充分な時間(例えば、4〜6時間)をかけて昇温する必要がある。この時間を短くすると、急激なガス発生に由来する危険性が増すばかりだけでなく、被覆材の硬化速度が軟化速度に達せず、被覆黒鉛粒子の凝着が増大し、製造工程において好ましくない。   In the present invention, carbonization is performed after the graphite particles are coated. In this step, it is desirable to provide a heating step at 200 to 300 ° C. In the heating step, since the carbonizable material, that is, light volatile components contained in the resin and the pitch are volatilized, it is necessary to raise the temperature over a sufficient time (for example, 4 to 6 hours). If this time is shortened, not only does the risk of sudden gas generation increase, but also the curing rate of the coating material does not reach the softening rate, and the adhesion of the coated graphite particles increases, which is not preferable in the production process.

炭化は2,000〜3,200℃の高温焼成を行うことで達成できるが、本発明においては好ましくは2,500〜3,200℃、より好ましくは2,800〜3,200℃で炭化する。この時の炭化方法には、アチスン炉などに代表される一般的な黒鉛化炉を用いることができる。このような炭化において形成される炭素材は、アルゴンレーザーを用いたラマン分光法により測定した1360cm-1ピーク強度(I1360)と1580cm-1ピーク強度(I1580)の比I1360/I1580(R値)が0.05〜0.40であることが好ましく、さらに好ましくは0.05〜0.20である。このような特性を有さない炭素材では本発明の目的が充分に達成されない場合がある。 Carbonization can be achieved by performing high-temperature baking at 2,000 to 3,200 ° C, but in the present invention, carbonization is preferably performed at 2,500 to 3,200 ° C, more preferably at 2,800 to 3,200 ° C. . As the carbonization method at this time, a general graphitization furnace typified by an Atisen furnace or the like can be used. The carbon material formed in such carbonization has a ratio I 1360 / I 1580 ( 1360 cm −1 peak intensity (I 1360 ) to 1580 cm −1 peak intensity (I 1580 ) measured by Raman spectroscopy using an argon laser. (R value) is preferably 0.05 to 0.40, and more preferably 0.05 to 0.20. The purpose of the present invention may not be sufficiently achieved with a carbon material having no such characteristics.

以上のような工程を経て製造された本発明の複合黒鉛粒子は、リチウムイオン二次電池の負極材として有用である。例えば、本発明の複合黒鉛粒子を、バインダーとして、例えば、水系バインダーとしてのゴム系微粒子バインダー(SBR)と、分散液としての水と、増粘剤としてのカルボキシメチルセルロース(CMC)とでスラリーを作成し、または有機溶剤系バインダーとして、ポリフッ化ビニリデンとN−メチルピロリドンの有機溶剤溶液とでスラリーとした後、銅箔上に塗布、乾燥およびプレスして負極とすることができる。   The composite graphite particles of the present invention produced through the above steps are useful as a negative electrode material of a lithium ion secondary battery. For example, a slurry is prepared by using the composite graphite particles of the present invention as a binder, for example, a rubber-based fine particle binder (SBR) as an aqueous binder, water as a dispersion, and carboxymethyl cellulose (CMC) as a thickener. Alternatively, a negative electrode can be obtained by forming a slurry of polyvinylidene fluoride and an organic solvent solution of N-methylpyrrolidone as an organic solvent-based binder, applying the slurry on a copper foil, drying and pressing.

一方、正極として、例えば、コバルト酸リチウムを、セパレータとして多孔質ポリプロピレン膜を、電解液として、例えば、エチレンカーボネート(EC)とジメチルカーボネート(DMC)との混合液にLiPF6を溶解させたものを用いて電池を製造することができる。このように、樹脂単独または樹脂とピッチとの混合物を用いて、黒鉛粒子を炭素材で被覆することによって、高い負荷特性とプレス時に過度に変形することのない、負極用黒鉛粒子を得ることができる。従って、本発明の複合黒鉛粒子は、リチウムイオン二次電池負極材として有用であり、高性能のリチウムイオン二次電池を提供することができる。 On the other hand, for example, a material obtained by dissolving LiPF 6 in a mixed solution of ethylene carbonate (EC) and dimethyl carbonate (DMC) as an electrolytic solution, for example, lithium cobalt oxide as a positive electrode, a porous polypropylene film as a separator, and an electrolytic solution, for example, is used. Can be used to produce a battery. As described above, by coating the graphite particles with the carbon material using the resin alone or the mixture of the resin and the pitch, it is possible to obtain graphite particles for a negative electrode that have high load characteristics and are not excessively deformed during pressing. it can. Therefore, the composite graphite particles of the present invention are useful as a negative electrode material of a lithium ion secondary battery, and can provide a high performance lithium ion secondary battery.

また、第2の目的および第3の目的に関する本発明を実施するための最良の形態について詳細に説明する。
本発明は、黒鉛に、樹脂材料を含有する炭化可能材料を混合し、得られた混合物を2,000℃〜3,200℃で炭化する複合黒鉛粒子の製造方法において、炭化後に複合黒鉛粒子の0.50〜20質量%が炭化可能材料を加熱炭化してなる炭素材になるように炭化可能材料を混合することを特徴とする複合黒鉛粒子の製造方法である。
Further, the best mode for carrying out the present invention with respect to the second and third objects will be described in detail.
The present invention relates to a method for producing composite graphite particles in which graphite is mixed with a carbonizable material containing a resin material, and the resulting mixture is carbonized at 2,000 ° C to 3,200 ° C. A method for producing composite graphite particles, characterized in that a carbonizable material is mixed so that 0.50 to 20% by mass of the carbonizable material is carbonized by heating and carbonizing the carbonizable material.

上記製造方法に関する本発明の対象は、黒鉛に、樹脂材料を含有する炭化可能材料を混合し、得られた混合物を2,000℃〜3,200℃で炭化する複合黒鉛粒子である。この複合黒鉛粒子に着目した理由を以下に述べる。
黒鉛としては、粒状の黒鉛を用いることが好ましい。鱗片状や繊維状のものを用いず、望ましくは球状に近い粒子状のものを用いると、最終的に得られる複合黒鉛粒子の形状が、アスペクト比(粒子の最大径と最大径と直交する径の比)の小さいものとなる。アスペクト比が小さいほど、負極を形成した場合に黒鉛結晶がランダムに配置され、充放電に伴う黒鉛の膨張収縮方向が均一化し、充放電後の黒鉛粒子の接触を保つことができる。また、電解液の吸液性や保持性にも優れる。これらの作用によって、急速充放電特性やサイクル特性の優れたものとなる。
An object of the present invention relating to the above-mentioned production method is a composite graphite particle in which a carbonizable material containing a resin material is mixed with graphite, and the resulting mixture is carbonized at 2,000 to 3,200 ° C. The reason for paying attention to the composite graphite particles will be described below.
It is preferable to use granular graphite as the graphite. If flake-like or fibrous particles are not used, and preferably spherical particles are used, the shape of the composite graphite particles finally obtained is changed by the aspect ratio (the maximum diameter of the particles and the diameter orthogonal to the maximum diameter). Ratio) is small. As the aspect ratio becomes smaller, graphite crystals are arranged at random when a negative electrode is formed, the direction of expansion and contraction of graphite accompanying charge and discharge becomes uniform, and contact of graphite particles after charge and discharge can be maintained. Also, it is excellent in the liquid absorption and retention of the electrolyte. By these actions, rapid charge / discharge characteristics and cycle characteristics are excellent.

粒状黒鉛に混合する材料として、樹脂材料を含有する炭化可能材料を用いるのは、2,000℃〜3,200℃で炭化することによって、放電容量と初期充放電効率のバランスに優れた炭化物が得られるからである。従来技術にあるタールやピッチのみを炭化可能材料として用いると、高い放電容量が得られても初期充放電効率が低下する。   As a material to be mixed with the granular graphite, a carbonizable material containing a resin material is used. By carbonizing at 2,000 to 3,200 ° C, a carbide having an excellent balance between discharge capacity and initial charge / discharge efficiency is obtained. Because it is obtained. When only the tar and the pitch in the prior art are used as the carbonizable material, the initial charge / discharge efficiency is reduced even if a high discharge capacity is obtained.

また、高い放電容量を得る観点から、炭化温度を2,000℃〜3,200℃とする。従来技術のように1,000℃程度で炭化した場合には、初期充放電効率が高くなるものの、放電容量が低下したり、急速充放電特性やサイクル特性が低いものとなるからである。   Further, from the viewpoint of obtaining a high discharge capacity, the carbonization temperature is set to 2,000 to 3,200 ° C. This is because, when carbonized at about 1,000 ° C. as in the related art, although the initial charge / discharge efficiency is increased, the discharge capacity is reduced, and the rapid charge / discharge characteristics and cycle characteristics are reduced.

本発明の製造方法においては、樹脂材料として樹脂の原料および樹脂の前駆体からなる群より選ばれる少なくとも1種を用いることが好ましい。さらに好ましいのは、樹脂材料として熱硬化性樹脂の原料および熱硬化性樹脂の前駆体からなる群より選ばれる少なくとも1種を用いることである。樹脂として高分子量化されたものを出発原料した場合に比べて、樹脂の原料や樹脂の前駆体を原料に用いると、製造過程における複合構造の破壊を抑制でき、最終的に得られる複合黒鉛粒子の炭素材と黒鉛との密着性が非常に強固なものとなり、後述する電池特性の改善に寄与する。   In the production method of the present invention, it is preferable to use at least one selected from the group consisting of resin raw materials and resin precursors as the resin material. More preferably, at least one selected from the group consisting of a thermosetting resin raw material and a thermosetting resin precursor is used as the resin material. Compared with the case where the starting material is a resin having a high molecular weight, the use of a resin raw material or a resin precursor as a raw material makes it possible to suppress the destruction of the composite structure in the manufacturing process, and finally obtain composite graphite particles. The adhesion between the carbon material and graphite becomes very strong, which contributes to the improvement of the battery characteristics described later.

熱硬化樹脂の原料、前駆体を用いると炭化率が高く比較的少ない量で所望の複合黒鉛粒子を得ることができるのでより好ましい。また、熱硬化性樹脂として、フェノール樹脂、つまり樹脂材料としてフェノール樹脂の原料およびフェノール樹脂の前駆体からなる群より選ばれる少なくとも1種を用いると、特に炭化率が高く、比較的少ない原料で所望の複合黒鉛粒子を得ることができるので最も好ましい。すなわち、粒状黒鉛と炭化可能材料とを混合する工程において、投入する樹脂材料の原料が少ないため、前述の融着の問題を回避することができる。   It is more preferable to use a raw material or a precursor of a thermosetting resin because desired composite graphite particles can be obtained in a relatively small amount with a high carbonization rate. In addition, when a phenol resin is used as the thermosetting resin, that is, at least one selected from the group consisting of a phenol resin raw material and a phenol resin precursor is used as the resin material, the carbonization rate is particularly high and a relatively small amount of raw material is used. Is most preferable because it is possible to obtain composite graphite particles of That is, in the step of mixing the granular graphite and the carbonizable material, since the amount of the raw material of the resin material to be charged is small, the above-described problem of the fusion can be avoided.

本発明の製造方法の最大の特徴は、炭化後に複合黒鉛粒子の0.50〜20質量%が炭化可能材料を加熱炭化してなる炭素材になるように炭化可能材料を混合する点にある。従来技術にあるように、炭素材の含有量が20%超になると、相対的に樹脂材料の含有量が増え、複合黒鉛粒子の製造過程において粒子間の融着を生じる。炭素材の含有量を0.50〜20質量%に限定することによって、樹脂の原料や樹脂の前駆体の混合過程、焼成過程において、材料間の融着を抑え、樹脂材料の偏在や複合黒鉛粒子の凝集を抑制することができ、好適な形状を容易に得ることができる。その結果、融着による解砕工程を追加する必要もなく、生産性が向上する。なお、炭素材の含有量は複合黒鉛粒子全体の平均として上記範囲内にあればよい。個々の粒子全てが上記範囲内にある必要はなく、上記範囲以外の粒子を一部含んでいてもよい。   The most significant feature of the production method of the present invention is that the carbonizable material is mixed so that 0.50 to 20% by mass of the composite graphite particles after heating is carbonized by heating and carbonizing the carbonizable material. As in the prior art, when the content of the carbon material exceeds 20%, the content of the resin material relatively increases, and fusion between the particles occurs during the production process of the composite graphite particles. By limiting the content of the carbon material to 0.50 to 20% by mass, in the process of mixing and firing the resin raw material and the resin precursor, fusion between the materials is suppressed, and uneven distribution of the resin material and composite graphite are prevented. Aggregation of particles can be suppressed, and a suitable shape can be easily obtained. As a result, there is no need to add a crushing step by fusion, and the productivity is improved. The content of the carbon material may be within the above range as an average of the entire composite graphite particles. Not all of the individual particles need to be within the above range, and some of the particles outside the above range may be included.

本発明の製造方法においては、望ましくは炭化可能材料を、樹脂材料とタール類との混合物とする。タール類を単独で用いると初期充放電効率の低下を生じるが、適正範囲で樹脂材料とタール類とを混合することにより、電池特性が最大となるように結晶性を制御することができるのである。樹脂材料/タール類の割合は、5/95〜100/0の範囲が好ましい。   In the production method of the present invention, the carbonizable material is desirably a mixture of a resin material and tars. When the tars are used alone, the initial charge / discharge efficiency is reduced, but by mixing the resin material and the tars in an appropriate range, the crystallinity can be controlled so that the battery characteristics are maximized. . The ratio of resin material / tars is preferably in the range of 5/95 to 100/0.

また、黒鉛として、鱗片状黒鉛を造粒したもの、特に機械的外力で球状に賦形した黒鉛を用いることが好ましい。このような操作によって、炭素材との密着性がさらに高まるほか、創出された粒状黒鉛の隙間に炭化可能材料を加熱炭化してなる炭素材が浸透することも密着性向上に寄与する。炭素材と粒状黒鉛との密着性が高いので、製造過程においてこれらが剥離することがない。さらに鱗片状黒鉛が有する、電解液との反応性の高い黒鉛構造のエッヂ部分の表面への露出を減らすことができ、炭化可能材料の混合量を低減しても目的の電池特性を発現することができる。炭化可能材料の必要量が少ないので、原料である黒鉛の形状をそのまま複合黒鉛粒子の形状に反映でき、品質制御、工業的生産の観点からも大変効率がよい。   Further, it is preferable to use, as the graphite, one obtained by granulating flaky graphite, in particular, graphite formed into a spherical shape by a mechanical external force. By such an operation, the adhesion to the carbon material is further enhanced, and the penetration of the carbon material obtained by heating and carbonizing the carbonizable material into the gaps between the created granular graphites also contributes to the improvement of the adhesion. Since the adhesion between the carbon material and the granular graphite is high, they do not separate during the manufacturing process. Furthermore, it is possible to reduce the exposure of the edge portion of the graphite structure, which is highly reactive with the electrolytic solution, of the flaky graphite to the surface, and to achieve the desired battery characteristics even if the amount of the carbonizable material is reduced. Can be. Since the required amount of the carbonizable material is small, the shape of the graphite as a raw material can be directly reflected on the shape of the composite graphite particles, which is very efficient from the viewpoint of quality control and industrial production.

さらに、本発明の製造方法においては、前記黒鉛に樹脂材料を含有する炭化可能材料とを混合し、得られた混合物を炭化するに先だって該混合物を200〜300℃で加熱したのち炭化することが好ましい。炭化の前に200〜300℃で加熱することにより、樹脂材料やタール類に含まれる揮発物の揮発や、熱硬化性樹脂材料の原料や前駆体を用いた場合には熱硬化性樹脂の硬化が生じることにより、黒鉛と炭化可能材料との密着性が増し、複合黒鉛粒子の充放電時における炭素材の剥離を防止でき、電池特性の向上に寄与する。なお、この加熱は低い昇温速度とすることが好ましい。   Further, in the production method of the present invention, it is possible to mix the graphite with a carbonizable material containing a resin material, heat the mixture at 200 to 300 ° C. before carbonizing the obtained mixture, and then carbonize the mixture. preferable. By heating at 200 to 300 ° C. before carbonization, volatilization of volatiles contained in resin materials and tars, and curing of thermosetting resin when using raw materials or precursors of thermosetting resin material This increases the adhesion between the graphite and the carbonizable material, prevents the carbon material from peeling during charging and discharging of the composite graphite particles, and contributes to the improvement of battery characteristics. Note that this heating is preferably performed at a low heating rate.

次に、本発明の方法で得られる複合黒鉛粒子のうち、これをリチウムイオン二次電池の負極材に用いた時に、従来に無いほど、大きい放電容量と高い初期充放電効率を兼備するとともに急速放電特性とサイクル特性を発現する新規な複合黒鉛粒子の発明についてより具体的に説明する。   Next, among the composite graphite particles obtained by the method of the present invention, when the composite graphite particles are used for a negative electrode material of a lithium ion secondary battery, they have both a large discharge capacity and a high initial charge / discharge efficiency as well as ever before, and have a high speed. The invention of a novel composite graphite particle exhibiting discharge characteristics and cycle characteristics will be described more specifically.

本発明者らは、高結晶性の黒鉛の少なくとも表面部分に、黒鉛よりも結晶性が低い炭素材を有する複合黒鉛粒子とし、炭素材の割合を電池特性が最大となる観点から適正化し、さらに、複合黒鉛粒子のアスペクト比、最外層の結晶性を適正範囲に規定した。
すなわち、本発明は、黒鉛の少なくとも表面部分に炭化後に複合黒鉛粒子の0.50〜20質量%となる樹脂材料を含有する炭化可能材料を加熱炭化してなる炭素材を有する複合黒鉛粒子である。
The present inventors, at least on the surface portion of highly crystalline graphite, composite graphite particles having a carbon material having a lower crystallinity than graphite, the ratio of the carbon material is optimized from the viewpoint that battery characteristics are maximized, and In addition, the aspect ratio of the composite graphite particles and the crystallinity of the outermost layer were specified in appropriate ranges.
That is, the present invention is a composite graphite particle having a carbon material obtained by heating and carbonizing a carbonizable material containing a resin material that accounts for 0.50 to 20% by mass of the composite graphite particle after carbonization in at least a surface portion of the graphite. .

さらに本発明は、X線回折の面間隔d002が0.337nm未満である黒鉛の少なくとも表面部分に、炭素材を有する複合黒鉛粒子であって、複合黒鉛粒子のアスペクト比が3以下で、複合黒鉛粒子のラマンスペクトルにおける1580cm-1のピーク強度(I1580)に対する1360cm-1のピーク強度(I1360)の比(I1580)/(I1360)が0.1以上から0.3未満である複合黒鉛粒子である。 Further, the present invention provides a composite graphite particle having a carbon material on at least a surface portion of graphite having an interplanar spacing d 002 of less than 0.337 nm in X-ray diffraction, wherein the composite graphite particle has an aspect ratio of 3 or less. the ratio of the peak intensity of 1360cm -1 (I 1360) (I 1580) / (I 1360) is less than 0.3 0.1 or more to the peak intensity of 1580cm -1 (I 1580) in the Raman spectrum of the graphite particle It is a composite graphite particle.

[黒鉛]
本発明の複合黒鉛粒子の芯材を構成する黒鉛は、X線回折の測定値であるd002が0.337nm未満を示す高結晶性の黒鉛である。このような黒鉛としては、市販の鱗片状天然黒鉛が代表的である。結晶性の高い黒鉛ほど、結晶が規則的に成長しており、一般に鱗片状を呈している。また、最終的に得られる複合黒鉛粒子の形状はこの黒鉛の形状が反映されることから、黒鉛の形状は球状に近いものが好ましく、アスペクト比(粒子の最大径の最大径と直交する径の比)が3以下の粒状黒鉛を用いるのがよい。アスペクト比が3を超えると、これを用いて負極を製造した場合に黒鉛が配向し、電池特性が劣化するおそれがあるからである。ただし、このアスペクト比は、黒鉛全体の平均として3以下であるのが好ましいものであり、個々の黒鉛粒子全てのアスペクト比が3以下である必要はなく、3を超える粒子を一部に含んでいてもよい。このような粒状黒鉛は、例えば、鱗片状黒鉛を原料として以下の方法で作ることができる。
[graphite]
Graphite constituting the core material of the composite graphite particles of the present invention, d 002 is a measurement of X-ray diffraction is highly crystalline graphite shows less than 0.337 nm. As such graphite, commercially available flaky natural graphite is typical. As the graphite has higher crystallinity, the crystal grows regularly, and generally has a flaky shape. In addition, since the shape of the composite graphite particles finally obtained reflects the shape of the graphite, the shape of the graphite is preferably close to spherical, and the aspect ratio (the diameter of the particle orthogonal to the maximum diameter of the maximum diameter of the particle) is preferable. It is preferable to use granular graphite having a ratio of 3 or less. If the aspect ratio exceeds 3, graphite may be oriented when a negative electrode is manufactured using the same, and the battery characteristics may be deteriorated. However, this aspect ratio is preferably 3 or less as an average of the entire graphite, and the aspect ratio of all individual graphite particles does not need to be 3 or less, and some of the graphite particles include particles exceeding 3 in some cases. It may be. Such granular graphite can be produced, for example, by using flaky graphite as a raw material in the following manner.

まず、鱗片状黒鉛としては、すでに鱗片状を呈した市販品を用いる、あるいは様々な形状の黒鉛(粗粒の天然黒鉛や人造黒鉛)を公知の粉砕装置を用いて粉砕して調製することもできる。この際、粉砕物の平均粒径を5〜60μmに調整するのが好ましい。粉砕装置としては、カウンタジェットミル(ホソカワミクロン(株)製)、カレントジェット(日清エンジニアリング(株))などが使用できる。粉砕などによって得た鱗片状黒鉛は、その表面に鋭角な部分を有しているが、本発明では、これに機械的外力を加えて球状に賦形し、表面が平滑な粒状黒鉛に造粒することが好ましい。この造粒工程では、通常、複数の粉砕された鱗片状黒鉛を用いて、アスペクト比が3以下の粒状黒鉛になるように造粒される。しかし、本発明では、粉砕された鱗片状黒鉛を単独で用いることを排除するものではない。造粒する方法は、特に限定されず、例えば、接着剤や樹脂などの造粒助剤の共存下で複数の鱗片状黒鉛を混合する方法、複数の鱗片状の黒鉛に接着剤を用いずに機械的外力を加える方法、両者の併用などが挙げられる。しかし、このような造粒助剤を用いずに機械的外力を加えて球状に造粒する方法が最も好ましい。   First, as the flaky graphite, a commercially available flake-like product may be used, or graphite of various shapes (coarse-grained natural graphite or artificial graphite) may be pulverized using a known pulverizing apparatus. it can. At this time, it is preferable to adjust the average particle size of the pulverized product to 5 to 60 μm. As a pulverizer, a counter jet mill (manufactured by Hosokawa Micron Corp.), a current jet (Nisshin Engineering Co., Ltd.), or the like can be used. Although flaky graphite obtained by pulverization or the like has an acute portion on its surface, in the present invention, it is granulated into granular graphite having a smooth surface by applying a mechanical external force thereto. Is preferred. In this granulation step, granulation is usually performed using a plurality of pulverized flaky graphite so that the aspect ratio becomes 3 or less. However, the present invention does not exclude the use of ground flake graphite alone. The method of granulation is not particularly limited, for example, a method of mixing a plurality of flaky graphite in the presence of a granulating auxiliary such as an adhesive or a resin, without using an adhesive for a plurality of flaky graphite. A method of applying a mechanical external force, a combination of both, and the like can be given. However, a method in which a mechanical external force is applied without using such a granulating aid to granulate into a spherical shape is most preferable.

上記の造粒装置としては、GRANUREX(フロイント産業(株)製)、ニューグラマシン((株)セイシン企業製)、アグロマスター(ホソカワミクロン(株)製)などの造粒機、ハイブリダイゼーションシステム((株)奈良機械製作所製)、メカノマイクロス((株)奈良機械製作所製)、メカノフュージョンシステム(ホソカワミクロン(株))などの剪断圧縮加工能力を有する装置が使用可能である。また、前記の粉砕装置を用いて運転条件を操作することによっても造粒することができる。球状に賦形された黒鉛は、一個の鱗片状黒鉛が丸められたもの、複数の鱗片状黒鉛が集合し造粒されてなるものの何れであってもよい。特に複数の鱗片状黒鉛が同心円状に造粒された形状を呈することが好ましい。   Examples of the above granulating apparatus include granulating machines such as GRANUREX (manufactured by Freund Corporation), New Glamachine (manufactured by Seishin Enterprise), Agromaster (manufactured by Hosokawa Micron Corporation), and a hybridization system (manufactured by ) Machines having shear compression processing capability such as Nara Machinery Co., Ltd., Mechano Micros (Nara Machinery Co., Ltd.), and Mechano Fusion System (Hosokawa Micron Co., Ltd.) can be used. Granulation can also be performed by operating the operating conditions using the above-mentioned pulverizer. The spherically shaped graphite may be any one obtained by rolling one flake graphite, or one obtained by aggregating and granulating a plurality of flake graphite. In particular, it is preferable that a plurality of flaky graphites are concentrically granulated.

[炭素材]
本発明の複合黒鉛粒子は、黒鉛の少なくとも表面部分に炭素材を有する。炭素材は、後述する複合黒鉛粒子の性状を与えるものであればいかなるものであってもよい。通常、炭素材は、上述の黒鉛粒子に樹脂材料を含む炭化可能材料を塗布、含浸および/または混合などした後、加熱による炭化処理を行うことによって得られる。本発明で言う炭化可能材料とは、加熱することによって炭化および/または黒鉛化され得る材料を指す。このような加熱は、一般には700℃以上であり、好ましくは800〜3,200℃である。従って、本発明で言う炭化処理とは、黒鉛化処理をも包含するものである。特に好ましくは2,000〜3,200℃である。
[Carbon material]
The composite graphite particles of the present invention have a carbon material on at least a surface portion of graphite. The carbon material may be any as long as it gives the properties of the composite graphite particles described below. Usually, the carbon material is obtained by applying, impregnating, and / or mixing a carbonizable material including a resin material to the above-described graphite particles, and then performing a carbonization treatment by heating. The carbonizable material referred to in the present invention refers to a material that can be carbonized and / or graphitized by heating. Such heating is generally at least 700 ° C, preferably at 800 to 3,200 ° C. Therefore, the carbonization treatment referred to in the present invention includes the graphitization treatment. Particularly preferably, it is 2,000 to 3,200 ° C.

また、本発明で言う黒鉛の少なくとも表面部分とは、黒鉛の外表面の全面あるいはその一部を指す。本発明の典型例でもあるが、例えば、造粒処理によって得られる黒鉛粒子が複数の(鱗片状)黒鉛からなる二次粒子である場合には、この二次粒子の外表面あるいはその一部を指す。このような二次粒子の場合、炭化可能材料が二次粒子の内部まで侵入して炭化されている場合がある。勿論、黒鉛単体の内部に炭素材が形成される場合もある。しかし、本発明の複合黒鉛粒子は、黒鉛の外表面が炭素材で被覆されているのが最適である。好適な被覆率は、50〜100%である。   Further, the term "at least the surface portion of graphite" as used in the present invention refers to the entire outer surface of graphite or a part thereof. Although it is a typical example of the present invention, for example, when the graphite particles obtained by the granulation treatment are secondary particles composed of a plurality of (scale-like) graphite, the outer surface of the secondary particles or a part thereof is Point. In the case of such secondary particles, the carbonizable material may penetrate into the interior of the secondary particles and be carbonized. Of course, the carbon material may be formed inside the graphite alone. However, in the composite graphite particles of the present invention, the outer surface of graphite is optimally coated with a carbon material. A preferred coverage is 50-100%.

また、本発明では、上述の炭化可能材料は、樹脂材料とタール類との混合物であり、タール類に対する樹脂材料の質量比が、樹脂材料/タール類=5/95〜100/0であるのが好ましい。さらに好ましくは30/70〜70/30である。樹脂材料の割合が5質量%以上であれば、形成される炭素材の黒鉛化(結晶化)が十分に進行するのと同時に初期充放電効率の向上効果が大きくなる。樹脂材料とタール類とを混合して用いることは、炭素材の黒鉛化度(結晶性)を本発明の効果が最大となるように調整することができるので望ましい。   In the present invention, the carbonizable material described above is a mixture of a resin material and tars, and the mass ratio of the resin material to the tars is such that the ratio of resin material / tars is 5/95 to 100/0. Is preferred. More preferably, it is 30/70 to 70/30. When the ratio of the resin material is 5% by mass or more, the graphitization (crystallization) of the formed carbon material sufficiently proceeds, and at the same time, the effect of improving the initial charge / discharge efficiency becomes large. It is desirable to use a mixture of a resin material and tars because the degree of graphitization (crystallinity) of the carbon material can be adjusted so that the effect of the present invention is maximized.

本発明で言うタール類とは、木材乾留時に生成するタール、石炭から得られるコールタール、石油から生産される重質油などの炭素材料前駆体を指し、これらを原料として重縮合させたものを含む。具体的には、石炭系ピッチ、バルクメソフェーズピッチ、石油系ピッチなどが例示される。これらはそれぞれ単独を3,000℃程度で熱処理した場合に黒鉛構造を生成するものである。光学的には、等方性でも異方性でもよい。   Tars referred to in the present invention refer to carbon materials precursors such as tar produced during wood carbonization, coal tar obtained from coal, and heavy oil produced from petroleum. Including. Specifically, coal pitch, bulk mesophase pitch, petroleum pitch and the like are exemplified. Each of these forms a graphite structure when heat-treated individually at about 3,000 ° C. Optically, it may be isotropic or anisotropic.

本発明で言う樹脂材料とは、樹脂の原料および樹脂の前駆体からなる群より選ばれる少なくとも1種であることが好ましい。この樹脂の前駆体には、反応中間体やオリゴマーあるいは重合中間体なども含む。樹脂の原料を例示すれば、モノマー類や重合開始剤などを含み、これら原料の混合物を加熱、攪拌および放置などすることによって樹脂が得られるものである。   The resin material in the present invention is preferably at least one selected from the group consisting of resin raw materials and resin precursors. The precursor of the resin includes a reaction intermediate, an oligomer, a polymerization intermediate, and the like. As an example of a resin raw material, a resin is obtained by heating, stirring and leaving a mixture of these raw materials, including a monomer and a polymerization initiator.

本発明では、樹脂材料として、熱硬化性樹脂の原料および熱硬化性樹脂の前駆体からなる群より選ばれる少なくとも1種を用いることが好ましい。熱硬化性樹脂類を高温で炭化した場合、得られる炭化物は、平均的には黒鉛相当の高い結晶性を有しており黒鉛部分も含まれることもあるが、炭素乱層構造を有する部分も含まれるので、本発明では炭素材と称し、芯材黒鉛と区別して呼ぶ。   In the present invention, it is preferable to use, as the resin material, at least one selected from the group consisting of a thermosetting resin raw material and a thermosetting resin precursor. When the thermosetting resin is carbonized at a high temperature, the resulting carbide has, on average, high crystallinity equivalent to graphite and may also include a graphite portion, but also a portion having a carbon turbulent layer structure. Therefore, in the present invention, it is referred to as a carbon material and is distinguished from core material graphite.

熱硬化性樹脂としては、熱処理によって残存する炭素量の多いものが望ましく、ユリア樹脂、マレイン酸樹脂、クマロン樹脂、キシレン樹脂やフェノール樹脂などが挙げられる。本発明では、樹脂材料として、フェノール樹脂、フェノール樹脂のモノマーの混合物およびフェノール樹脂の前駆体からなる群より選ばれる少なくとも1種を用いることがより好ましい。より具体的に例示すれば、フェノール樹脂それ自体(置換基を有してもよいフェノール類と、ホルムアルデヒドに代表されるアルデヒド類との高度縮合物)、フェノール類とアルデヒド類との初期縮合物(フェノール樹脂の前駆体)、およびフェノール類とアルデヒド類との混合物(モノマー混合物)が何れも使用できる。   As the thermosetting resin, a resin having a large amount of carbon remaining after heat treatment is desirable, and examples thereof include a urea resin, a maleic acid resin, a coumarone resin, a xylene resin, and a phenol resin. In the present invention, as the resin material, it is more preferable to use at least one selected from the group consisting of a phenol resin, a mixture of phenol resin monomers, and a phenol resin precursor. More specifically, a phenol resin itself (a highly condensed product of a phenol optionally having a substituent and an aldehyde represented by formaldehyde), an initial condensate of a phenol and an aldehyde ( Both phenolic resin precursors) and mixtures of phenols and aldehydes (monomer mixtures) can be used.

本発明の複合黒鉛粒子を構成する炭素材の結晶性は、黒鉛のX線回折の面間隔d002が0.337nm未満であるのに対して、0.343nm未満であることが好ましい。炭素材のd002が0.343nm未満であれば、放電容量がより向上し、炭素材と黒鉛の密着性も向上する。また、黒鉛と炭素材の結晶性の差は、黒鉛のd002に対する炭素材のd002の比が1.001以上から1.020未満の範囲にあることがより好ましい。1.001以上であれば、初期充放電効率がさらに向上し、1.020未満である方が、炭素材の密着性もさらに向上する。 The crystallinity of the carbon material constituting the composite graphite particles of the present invention is preferably less than 0.343 nm, while the plane distance d 002 of X-ray diffraction of graphite is less than 0.337 nm. If it is less than d 002 of the carbon material is 0.343 nm, the discharge capacity is improved, thereby improving adhesion to the carbon material and graphite. The difference in crystallinity between graphite and the carbon material is more preferably such that the ratio of d 002 of the carbon material to d 002 of the graphite is in the range of 1.001 or more to less than 1.020. If it is 1.001 or more, the initial charge / discharge efficiency is further improved, and if it is less than 1.020, the adhesion of the carbon material is further improved.

[複合黒鉛粒子]
本発明の複合黒鉛粒子は、X線回折の面間隔d002が0.337nm未満である黒鉛の少なくとも表面部分に、炭素材を有する複合黒鉛粒子であって、複合黒鉛粒子のアスペクト比が3以下で、複合黒鉛粒子の0.50〜20質量%が上記炭素材であり、複合黒鉛粒子のラマンスペクトルにおける1580cm-1のピーク強度(I1580)に対する1360cm-1のピーク強度(I1360)の比(I1580/I1360)が0.1以上から0.3未満であることを再度示し、より詳細に説明する。
[Composite graphite particles]
The composite graphite particle of the present invention is a composite graphite particle having a carbon material on at least a surface portion of graphite having a plane spacing d 002 of less than 0.337 nm in X-ray diffraction, and an aspect ratio of the composite graphite particle is 3 or less. in, from 0.50 to 20% by weight of the composite graphite particles are the carbon material, the ratio of the peak intensity of 1360 cm -1 to the peak intensity of 1580cm -1 (I 1580) in the Raman spectrum of the composite graphite particle (I 1360) The fact that (I 1580 / I 1360 ) is 0.1 or more and less than 0.3 is shown again, and will be described in more detail.

上記複合黒鉛粒子も、使用する黒鉛と同様にアスペクト比が3以下の球状に近い形状とすることが好ましい。アスペクト比が3を超えると、これを用いて負極を製造した場合に黒鉛が配向し、電池特性が劣化するおそれがあるからである。ただし、このアスペクト比は、複合黒鉛粒子全体の平均として3以下であるのが好ましいものであり、個々の複合黒鉛粒子全てのアスペクト比が3以下である必要はなく、3を超える粒子を一部に含んでいてもよい。本発明の複合黒鉛粒子は、前述の黒鉛を芯材とし、その少なくとも表面部分に黒鉛よりも結晶性が低い炭素材が存在している。複合黒鉛粒子の表面の結晶性をラマン分光法のR値で規定することができ、アルゴンレーザーを用いたラマン分光法により測定した1360cm-1ピーク強度(I1360)と1580cm-1ピーク強度(I1580)の比I1360/I1580(R値)が0.1以上0.3未満であることが必要である。R値が0.1未満あるいは0.3以上の場合には、何れも初期充放電効率が低下することがある。特に好ましいR値は0.1〜0.2である。 It is preferable that the composite graphite particles also have a nearly spherical shape with an aspect ratio of 3 or less, similarly to the graphite used. If the aspect ratio exceeds 3, graphite may be oriented when a negative electrode is manufactured using the same, and the battery characteristics may be deteriorated. However, this aspect ratio is preferably 3 or less as an average of the entire composite graphite particles, and the aspect ratio of all the individual composite graphite particles does not need to be 3 or less, and some of the particles exceeding 3 are partially used. May be included. The composite graphite particles of the present invention have the above-mentioned graphite as a core material, and a carbon material having lower crystallinity than graphite exists at least on the surface thereof. Composite the surface of the crystalline graphite particles can be defined by the R value of Raman spectroscopy, 1360 cm -1 peak intensity measured by Raman spectroscopy using an argon laser (I 1360) and 1580 cm -1 peak intensity (I the ratio I 1360 / I 1580 (R value of 1580)) is required to be 0.1 or more and less than 0.3. When the R value is less than 0.1 or 0.3 or more, the initial charge / discharge efficiency may decrease in any case. Particularly preferred R value is 0.1 to 0.2.

また、本発明における炭素材の割合は、複合黒鉛粒子に占める炭素材の割合が0.50〜20質量%の範囲に限定される。炭素材の割合が0.50質量%未満の場合は、活性な黒鉛エッヂ面を完全に被覆することが難しくなり、初期充放電効率が低下することがある。一方、20質量%を越える場合には、相対的に放電容量の低い炭素材の割合が多すぎて、複合黒鉛粒子の放電容量が低下する。また、炭素材を形成するための原料(熱硬化性樹脂類やタールピッチ類)の割合が多く、被覆工程やその後の熱処理工程において、粒子が融着しやすく、最終的に得られる複合黒鉛粒子の炭素材層の一部に割れや剥離を生じ、初期充放電効率の低下を生じることがある。特に3〜15質量%、さらには8〜12質量%であることが好ましい。なお、炭素材の含有量は複合黒鉛粒子全体の平均として上記範囲内にあればよい。個々の粒子全てが上記範囲内にある必要はなく、上記範囲以外の粒子を一部含んでいてもよい。   In the present invention, the ratio of the carbon material is limited to the range of 0.50 to 20% by mass of the carbon material in the composite graphite particles. When the proportion of the carbon material is less than 0.50% by mass, it is difficult to completely cover the active graphite edge surface, and the initial charge / discharge efficiency may decrease. On the other hand, when it exceeds 20% by mass, the proportion of the carbon material having a relatively low discharge capacity is too large, and the discharge capacity of the composite graphite particles is reduced. In addition, the proportion of the raw materials (thermosetting resins and tar pitches) for forming the carbon material is large, and the particles are easily fused in the coating step and the subsequent heat treatment step, and the composite graphite particles finally obtained are obtained. In some cases, cracking or peeling may occur in a portion of the carbon material layer, and the initial charge / discharge efficiency may decrease. In particular, it is preferably 3 to 15% by mass, more preferably 8 to 12% by mass. The content of the carbon material may be within the above range as an average of the entire composite graphite particles. Not all of the individual particles need to be within the above range, and some of the particles outside the above range may be included.

さらに、本発明の複合黒鉛粒子の好ましい物性値を挙げると、平均粒子径が5〜60μm、比表面積が0.5〜10m2/g、X線回折の測定値であるLcが40nm以上、d002が0.3370nm以下であることが好ましい。平均粒子径やアスペクト比が前述の値の範囲内であれば、放電容量や初期充放電効率が高く、かつ急速充放電特性やサイクル特性などの他の電池特性もより向上するからである。比表面積が10m2/g以下であれば、負極を形成する場合の負極合剤ペースト(負極材料とバインダー分散液との混合物)の粘度調整が容易であり、バインダーによる結着力も向上する。X線回折のLcおよびd002が前述の値内であれば、十分な放電容量が得られる。なお、Lcは黒鉛構造のc軸方向の結晶子の大きさLc(002)、Laは黒鉛構造のa軸方向の結晶子の大きさLa(110)である。 Further, preferred physical property values of the composite graphite particles of the present invention include an average particle size of 5 to 60 μm, a specific surface area of 0.5 to 10 m 2 / g, and a measured Lc value of X-ray diffraction of 40 nm or more, d 002 is preferably 0.3370 nm or less. If the average particle diameter and the aspect ratio are in the ranges described above, the discharge capacity and the initial charge / discharge efficiency are high, and other battery characteristics such as rapid charge / discharge characteristics and cycle characteristics are further improved. When the specific surface area is 10 m 2 / g or less, the viscosity of the negative electrode mixture paste (a mixture of the negative electrode material and the binder dispersion) when forming the negative electrode is easily adjusted, and the binding force of the binder is also improved. If Lc and d 002 in X-ray diffraction are within the above-mentioned values, a sufficient discharge capacity can be obtained. Lc is the crystallite size Lc (002) of the graphite structure in the c-axis direction, and La is the crystallite size La (110) of the graphite structure in the a-axis direction.

[複合黒鉛粒子の製造方法]
上述した本発明の複合黒鉛粒子についての製造方法を例示する。鱗片状黒鉛は前記のとおり、造粒操作などで、あらかじめ球状に賦形されたものを用いることが望ましい。この黒鉛粒子の外表面に熱硬化性樹脂類とタール類との混合物からなる炭化可能材料を被覆する場合には、炭化可能材料と黒鉛粒子とを混合機に投入し、炭化可能材料の軟化点以上の温度領域で強い剪断力を付与して混練する、あるいは、炭化可能材料を溶液または分散液として黒鉛粒子と混合した後溶媒または分散媒を乾燥除去する方法などが用いられる。特に熱硬化性樹脂類を低分子量体(樹脂の前駆体)あるいはモノマー混合体とし、黒鉛粒子への被覆と同時に加熱によって高分子量化することが望ましい。同様に、炭化可能材料にタール類を含む場合においても、被覆と同時にタール類の重縮合を進行させることが有効である。
[Production method of composite graphite particles]
An example of a method for producing the composite graphite particles of the present invention described above will be described. As described above, it is desirable to use flaky graphite that has been previously shaped into a sphere by a granulation operation or the like. When the outer surface of the graphite particles is coated with a carbonizable material comprising a mixture of a thermosetting resin and a tar, the carbonizable material and the graphite particles are charged into a mixer, and the softening point of the carbonizable material is reduced. Kneading by applying a strong shearing force in the above temperature range, or a method of mixing a carbonizable material as a solution or a dispersion with graphite particles and then drying and removing a solvent or a dispersion medium is used. In particular, it is desirable to use a thermosetting resin as a low molecular weight substance (precursor of the resin) or a monomer mixture and coat the graphite particles and increase the molecular weight by heating at the same time. Similarly, when the carbonizable material contains tars, it is effective to promote polycondensation of the tars simultaneously with coating.

本発明では炭化可能材料として必須な熱硬化性樹脂として、フェノール樹脂が好ましく、黒鉛粒子にフェノール樹脂を被覆する場合に、フェノール樹脂前駆体またはフェノール樹脂のモノマー含有体を用いることが好ましい。フェノール樹脂前駆体またはフェノール樹脂のモノマー含有体は、加熱による溶融または溶液化が容易であるほか、黒鉛粒子に均一に被覆することができる。また、被覆と同時に加熱することにより形成されるフェノール樹脂層が黒鉛粒子と強固に密着するという特徴を有する。   In the present invention, a phenol resin is preferable as a thermosetting resin essential as a carbonizable material. When graphite particles are coated with a phenol resin, it is preferable to use a phenol resin precursor or a phenol resin monomer-containing material. The phenolic resin precursor or the monomer-containing phenolic resin can be easily melted or turned into solution by heating, and can be uniformly coated on graphite particles. Further, it has a feature that a phenol resin layer formed by heating at the same time as coating is firmly adhered to graphite particles.

炭化可能材料は、複数種の組成のものを均質もしくは分散した状態で被覆することができる。炭化可能材料は、その組成を変えて、複数回被覆することもできる。例えば、黒鉛粒子に第1層として、フェノールとホルムアルデヒドとからなるフェノール樹脂を被覆した後、第2層としてジメチルフェノール(キシレノール)とホルムアルデヒドとからなるキシレノール樹脂を被覆したり、黒鉛粒子に第1層としてピッチを被覆したりした後、第2層としてフェノール樹脂を被覆することができる。   The carbonizable material can be coated with a plurality of compositions in a homogeneous or dispersed state. The carbonizable material can be coated multiple times, varying its composition. For example, a graphite layer is coated with a phenol resin composed of phenol and formaldehyde as a first layer, and then a second layer is coated with a xylenol resin composed of dimethylphenol (xylenol) and formaldehyde. And then a phenolic resin can be coated as the second layer.

炭化可能材料の被覆量は、最終的に複合黒鉛粒子に占める炭素材の割合が0.50〜20質量%となるように設定すればよい。黒鉛粒子に炭化可能材料を混合した後、あるいは混合処理と同時に樹脂材料を200〜300℃で加熱するのが好ましい。この加熱工程では樹脂材料の硬化と樹脂材料やタール類に含まれる軽揮発分の揮発が起こるので通常4時間以上の充分な時間をかけて昇温するのが好ましい。このような昇温時間を維持する方が、混合が完全になり、スムーズな硬化が進行するので、炭化可能材料と黒鉛粒子の密着性が増し、複合黒鉛粒子の充放電時における炭素材の剥離が防止でき、電池特性の向上に寄与する。   The coating amount of the carbonizable material may be set so that the ratio of the carbon material to the composite graphite particles is finally 0.50 to 20% by mass. It is preferable to heat the resin material at 200 to 300 ° C after mixing the carbonizable material with the graphite particles or simultaneously with the mixing process. In this heating step, the resin material is hardened and the light volatile components contained in the resin material and tars are volatilized. Therefore, it is preferable that the temperature is raised over a sufficient time, usually 4 hours or more. Maintaining such a heating time allows for complete mixing and smooth curing, so that the adhesion between the carbonizable material and the graphite particles is increased, and the carbon material is separated during the charging and discharging of the composite graphite particles. Can be prevented, which contributes to improvement of battery characteristics.

硬化工程の後、必要に応じて、解砕や篩処理などによって粒度調整を行い、焼成するのが好ましい。焼成は2,000〜3,200℃で行うことが好ましい。より好ましくは2,500〜3,200℃、さらには2,800〜3,200℃が好ましい。焼成処理はアチソン炉に代表される一般的な黒鉛化炉を用いることができる。非酸化性雰囲気下で行うことが望ましい。   After the curing step, if necessary, the particle size is preferably adjusted by crushing, sieving, or the like, followed by firing. The firing is preferably performed at 2,000 to 3,200 ° C. More preferably, 2,500 to 3,200 ° C, further preferably 2,800 to 3,200 ° C. For the firing treatment, a general graphitization furnace represented by an Acheson furnace can be used. It is desirable to carry out in a non-oxidizing atmosphere.

本発明では、上述の複合黒鉛粒子の何れかを含有する負極材も提供する。本発明の複合黒鉛粒子は、その特徴を活かして負極以外の用途、例えば、燃料電池セパレーター用の導電材料や耐火物用黒鉛などにも転用することができるが、特に上記したリチウムイオン二次電池の負極材として好適である。すなわち、本発明の負極材は、少なくとも上述の複合黒鉛粒子が含有されることを要件とする。従って、本発明の複合黒鉛粒子そのものも本発明の負極材である。   The present invention also provides a negative electrode material containing any of the composite graphite particles described above. The composite graphite particles of the present invention can be diverted to applications other than the negative electrode, such as conductive materials for fuel cell separators and graphite for refractories, taking advantage of their characteristics. It is suitable as a negative electrode material. That is, the negative electrode material of the present invention is required to contain at least the above composite graphite particles. Therefore, the composite graphite particles of the present invention themselves are also the negative electrode material of the present invention.

以下、本発明の複合黒鉛粒子を用いたリチウムイオン二次電池の負極材、リチウムイオン二次電池負極、さらにはリチウムイオン二次電池について説明する。[リチウムイオン二次電池用の負極材および負極]
本発明では、上述した何れかの本発明の複合黒鉛粒子を含有するリチウムイオン二次電池用の負極材も提供する。本発明の負極材としては、本発明の目的を損なわない範囲内で本発明の複合黒鉛粒子以外の負極材を含んでいてもよい。本発明の負極は、上述の本発明の負極材を固化および/または賦形して得られる。負極の形成は、通常の成形方法に準じて行うことができるが、複合黒鉛粒子の性能を充分に引き出し、かつ粉末に対する賦形性が高く、化学的、電気化学的に安定な負極を得ることができる方法であれば何ら制限されない。
Hereinafter, a negative electrode material of a lithium ion secondary battery, a negative electrode of a lithium ion secondary battery, and a lithium ion secondary battery using the composite graphite particles of the present invention will be described. [Negative electrode material and negative electrode for lithium ion secondary battery]
The present invention also provides a negative electrode material for a lithium ion secondary battery containing any of the composite graphite particles of the present invention described above. The negative electrode material of the present invention may include a negative electrode material other than the composite graphite particles of the present invention as long as the object of the present invention is not impaired. The negative electrode of the present invention is obtained by solidifying and / or shaping the above-described negative electrode material of the present invention. The formation of the negative electrode can be performed according to a normal molding method, but it is necessary to obtain a chemically and electrochemically stable negative electrode that sufficiently draws out the performance of the composite graphite particles and has a high shapeability for powder. There is no limitation as long as the method can be performed.

負極製造時には、複合黒鉛粒子に結合剤を加えた負極合剤を用いることができる。結合剤としては、電解質や電解液溶媒に対して化学的安定性、電気化学的安定性を有するものを用いるのが望ましい。例えば、ポリフッ化ビニリデン、ポリテトラフルオロエチレンなどのフッ素系樹脂、ポリエチレン、ポリビニルアルコール、スチレンブタジエンラバー、カルボキシメチルセルロースなどが用いられる。これらを併用することもできる。結合剤は、通常、負極合剤の全量中1〜20質量%程度の量で用いるのが好ましい。   When manufacturing the negative electrode, a negative electrode mixture obtained by adding a binder to composite graphite particles can be used. As the binder, it is desirable to use a binder having chemical stability and electrochemical stability with respect to the electrolyte and the electrolyte solution solvent. For example, fluorine resins such as polyvinylidene fluoride and polytetrafluoroethylene, polyethylene, polyvinyl alcohol, styrene butadiene rubber, carboxymethyl cellulose and the like are used. These can be used in combination. Usually, the binder is preferably used in an amount of about 1 to 20% by mass based on the whole amount of the negative electrode mixture.

負極合剤層は、具体的には、分級などによって適当な粒径に調整した複合黒鉛粒子を、結合剤と混合することによって負極合剤を調製し、この負極合剤を、通常、集電体の片面もしくは両面に塗布することで形成することができる。この際、通常の溶媒を用いることができ、負極合剤を溶媒中に分散させてペースト状とした後、集電体に塗布、乾燥すれば、負極合剤層が均一かつ強固に集電体に接着された負極を得ることができる。ペーストは、各種ミキサーで攪拌することにより調製することができる。   Specifically, the negative electrode mixture layer is prepared by mixing composite graphite particles, which have been adjusted to an appropriate particle size by classification or the like, with a binder to prepare a negative electrode mixture. It can be formed by applying to one or both sides of the body. At this time, a normal solvent can be used, and after dispersing the negative electrode mixture in the solvent to form a paste, and then applying and drying the current collector, the negative electrode mixture layer is uniformly and firmly formed. Can be obtained. The paste can be prepared by stirring with various mixers.

例えば、本発明の複合黒鉛粒子と、ポリテトラフルオロエチレンなどのフッ素系樹脂粉末を、イソプロピルアルコールなどの溶媒中で混合、混練した後、塗布して負極合剤層を形成することもできる。また、本発明の複合黒鉛粒子と、ポリフッ化ビニリデンなどのフッ素系樹脂粉末あるいはカルボキシメチルセルロースなどの水溶性粘結剤を、N−メチルピロリドン、ジメチルホルムアミドあるいは水、アルコールなどの溶媒と混合してスラリーとした後、塗布して負極合剤層を形成することもできる。   For example, the composite graphite particles of the present invention and a fluorine-based resin powder such as polytetrafluoroethylene may be mixed and kneaded in a solvent such as isopropyl alcohol, and then applied to form a negative electrode mixture layer. Further, the composite graphite particles of the present invention, a water-soluble binder such as fluorinated resin powder such as polyvinylidene fluoride or carboxymethyl cellulose, mixed with a solvent such as N-methylpyrrolidone, dimethylformamide or water, alcohol and slurry. After that, coating may be performed to form a negative electrode mixture layer.

本発明の複合黒鉛粒子と結合剤との混合物からなる負極合剤を集電体に塗布する際の塗布厚は10〜300μmとするのが適当である。負極合剤層を形成した後、プレス加圧などの圧着を行うと、負極合剤層と集電体との接着強度をさらに高めることができる。本発明のリチウムイオン二次電池において、負極に用いる集電体の形状としては、特に限定されないが、箔状、あるいはメッシュ、エキスパンドメタルなどの網状のものなどが用いられる。集電材としては、例えば、銅、ステンレス、ニッケルなどを挙げることができる。集電体の厚みは、箔状の場合、5〜20μm程度が好適である。   The thickness of the negative electrode mixture comprising the mixture of the composite graphite particles and the binder of the present invention when applied to the current collector is preferably 10 to 300 μm. After the formation of the negative electrode mixture layer, by performing pressure bonding such as press pressure, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased. In the lithium ion secondary battery of the present invention, the shape of the current collector used for the negative electrode is not particularly limited, but a foil shape or a mesh shape such as a mesh or expanded metal is used. Examples of the current collector include copper, stainless steel, and nickel. In the case of a foil, the thickness of the current collector is preferably about 5 to 20 μm.

本発明では、さらに上述の負極を用いたリチウムイオン二次電池が提供される。
[リチウムイオン二次電池]
リチウムイオン二次電池は、通常、負極材、正極材および非水系の電解質を主たる電池構成要素とする。正極材および負極材はそれぞれリチウムイオンの担持体となる。充電時にはリチウムイオンが負極中にドープされ、放電時には負極から脱ドープする電池機構である。本発明のリチウムイオン二次電池は、本発明の複合黒鉛粒子を含有する負極材を用いること以外は特に限定されない。他の構成要素については一般的なリチウムイオン二次電池の要素に準じる。
The present invention further provides a lithium ion secondary battery using the above-described negative electrode.
[Lithium ion secondary battery]
A lithium-ion secondary battery generally includes a negative electrode material, a positive electrode material, and a non-aqueous electrolyte as main battery components. Each of the positive electrode material and the negative electrode material is a lithium ion carrier. This is a battery mechanism in which lithium ions are doped into the negative electrode during charging, and dedoped from the negative electrode during discharging. The lithium ion secondary battery of the present invention is not particularly limited except that a negative electrode material containing the composite graphite particles of the present invention is used. The other components are the same as those of a general lithium ion secondary battery.

(正極材)
本発明のリチウムイオン二次電池に使用される正極材(正極活物質)としては、リチウム化合物が用いられるが、充分量のリチウムをドープ/脱ドープできるものを選択するのが好ましい。例えば、リチウム含有遷移金属酸化物、遷移金属カルコゲン化物、バナジウム酸化物およびそのLi化合物などのリチウム含有化合物、一般式MxMo68-y(式中Xは0≦X≦4、Yは0≦Y≦1の範囲の数値であり、Mは遷移金属などの金属を表す)で表されるシェブレル相化合物、活性炭、活性炭素繊維などである。バナジウム酸化物はV25、V613、V24、V38で示されるものなどである。
(Positive electrode material)
As the positive electrode material (positive electrode active material) used in the lithium ion secondary battery of the present invention, a lithium compound is used, and it is preferable to select a material capable of doping / dedoping a sufficient amount of lithium. For example, lithium-containing compounds such as lithium-containing transition metal oxides, transition metal chalcogenides, vanadium oxides and Li compounds thereof, and a general formula M x Mo 6 S 8-y (where X is 0 ≦ X ≦ 4 and Y is A numerical value in the range of 0 ≦ Y ≦ 1 and M represents a metal such as a transition metal), activated carbon, activated carbon fiber and the like. Vanadium oxides include those represented by V 2 O 5 , V 6 O 13 , V 2 O 4 , and V 3 O 8 .

リチウム含有遷移金属酸化物は、リチウムと遷移金属との複合酸化物であり、リチウムと2種類以上の遷移金属を固溶したものであってもよい。複合酸化物は単独で使用しても、2種類以上を組み合わせて使用してもよい。リチウム含有遷移金属酸化物は、具体的には、LiM(1)1-xM(2)x2(式中Xは0≦X≦1の範囲の数値であり、M(1)、M(2)は少なくとも一種の遷移金属元素からなる。)あるいはLiM(1)1-yM(2)y4(式中Xは0≦Y≦1の範囲の数値であり、M(1)、M(2)は少なくとも一種の遷移金属元素からなる。)で示される。 The lithium-containing transition metal oxide is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. The composite oxide may be used alone or in combination of two or more. The lithium-containing transition metal oxide is specifically LiM (1) 1-x M (2) x O 2 (where X is a numerical value in the range of 0 ≦ X ≦ 1, M (1), M (1) (2) consists of at least one transition metal element) or LiM (1) 1-y M (2) y O 4 (where X is a numerical value in the range of 0 ≦ Y ≦ 1, and M (1) , M (2) comprises at least one transition metal element.)

上記式中、M(1)、M(2)で示される遷移金属元素は、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、Al、In、Snなどであり、好ましいのはCo、Fe、Mn、Ti、Cr、V、Alなどである。また、リチウム含有遷移金属酸化物は、例えば、Li、遷移金属の酸化物または塩類を出発原料とし、これら出発原料を所望の金属酸化物の組成に応じて混合し、酸素存在雰囲気下600℃〜1,000℃の温度範囲で焼成することにより得ることができる。なお、出発原料は酸化物および塩類に限定されず、水酸化物などであってもよい。   In the above formula, the transition metal elements represented by M (1) and M (2) are Co, Ni, Mn, Cr, Ti, V, Fe, Zn, Al, In, Sn, etc., and preferred is Co. , Fe, Mn, Ti, Cr, V, Al and the like. The lithium-containing transition metal oxide is, for example, Li or an oxide or a salt of a transition metal as a starting material, and these starting materials are mixed according to a desired composition of the metal oxide. It can be obtained by firing in a temperature range of 1,000 ° C. The starting materials are not limited to oxides and salts, but may be hydroxides and the like.

本発明のリチウムイオン二次電池においては、正極活物質は上記リチウム化合物を単独で使用しても2種類以上併用してもよい。また、正極材の中に、炭酸リチウムなどの炭酸アルカリ塩を添加することもできる。   In the lithium ion secondary battery of the present invention, the positive electrode active material may use the above lithium compound alone or in combination of two or more thereof. Further, an alkali carbonate such as lithium carbonate can be added to the positive electrode material.

(正極)
正極は、例えば、上記リチウム化合物と結合剤および電極に導電性を付与するための導電剤よりなる正極合剤を集電体の片面もしくは両面に塗布することで正極合剤層を形成することにより得られる。結合剤としては、負極で例示したものが何れも使用可能である。導電剤としては、黒鉛やカーボンブラックなどの炭素材料が用いられる。
(Positive electrode)
Positive electrode, for example, by forming a positive electrode mixture layer by applying a positive electrode mixture of the lithium compound and a binder and a conductive agent for imparting conductivity to the electrode on one or both surfaces of the current collector can get. As the binder, any of those exemplified for the negative electrode can be used. As the conductive agent, a carbon material such as graphite or carbon black is used.

正極も、負極と同様に、正極合剤を溶剤中に分散させることでペースト状にし、このペースト状の正極合剤を集電体に塗布および乾燥することによって正極合剤層を形成してもよく、正極合剤層を形成した後、さらにプレス加圧などの圧着を行ってもよい。これにより正極合剤層が均一かつ強固に集電体に接着される。集電体の形状は特に限定されず、箱状、あるいはメッシュ、エキスパンドメタルなどの網状などのものが用いられる。例えば、集電体としては、アルミニウム箔、ステンレス箔、ニッケル箔などを挙げることができる。その厚さとしては、10〜40μmのものが好適である。   Similarly to the negative electrode, the positive electrode may be formed into a paste by dispersing the positive electrode mixture in a solvent, and the paste-shaped positive electrode mixture may be applied to a current collector and dried to form a positive electrode mixture layer. After forming the positive electrode mixture layer, pressure bonding such as pressing may be further performed. Thereby, the positive electrode mixture layer is uniformly and firmly adhered to the current collector. The shape of the current collector is not particularly limited, and may be a box, a mesh, or a mesh such as expanded metal. For example, examples of the current collector include an aluminum foil, a stainless steel foil, and a nickel foil. The thickness is preferably from 10 to 40 μm.

(非水電解質)
本発明のリチウムイオン二次電池に用いられる非水電解質としては、通常の非水電解液に使用される電解質塩であり、LiPF6、LiBF4、LiAsF6、LiClO4、LiB(C65)、LiCl、LiBr、LiCF3SO3、LiCH3SO3、LiN(CF3SO22、LiC(CF3SO23、LiN(CF3CH2OSO22、LiN(CF3CF3OSO22、LiN(HCF2CF2CH2OSO22、LiN((CF32CHOSO22、LiB{C63(CF324、LiAlCl4、LiSiF6などのリチウム塩が挙げられる。特に、LiPF6、LiBF4が酸化安定性の点から好ましい。
(Non-aqueous electrolyte)
The non-aqueous electrolyte used in the lithium ion secondary battery of the present invention, an electrolyte salt used in the conventional non-aqueous electrolyte, LiPF 6, LiBF 4, LiAsF 6, LiClO 4, LiB (C 6 H 5 ), LiCl, LiBr, LiCF 3 SO 3, LiCH 3 SO 3, LiN (CF 3 SO 2) 2, LiC (CF 3 SO 2) 3, LiN (CF 3 CH 2 OSO 2) 2, LiN (CF 3 CF 3 OSO 2 ) 2 , LiN (HCF 2 CF 2 CH 2 OSO 2 ) 2 , LiN ((CF 3 ) 2 CHOSO 2 ) 2 , LiB {C 6 H 3 (CF 3 ) 24 , LiAlCl 4 , LiSiF 6 And the like. Particularly, LiPF 6 and LiBF 4 are preferable from the viewpoint of oxidation stability.

電解液中の電解質塩濃度は、0.1〜5モル/リットルであるのが好ましく、0.5〜3.0モル/リットルであるのがより好ましい。非水電解質は、液状の非水電解質としてもよいし、固体電解質あるいはゲル電解質などの高分子電解質としてもよい。前者の場合、非水電解質電池は、いわゆるリチウムイオン電池として構成され、後者の場合、非水電解質電池は、高分子固体電解質、高分子ゲル電解質電池などの高分子電解質電池として構成される。   The electrolyte salt concentration in the electrolytic solution is preferably from 0.1 to 5 mol / l, more preferably from 0.5 to 3.0 mol / l. The non-aqueous electrolyte may be a liquid non-aqueous electrolyte or a polymer electrolyte such as a solid electrolyte or a gel electrolyte. In the former case, the non-aqueous electrolyte battery is configured as a so-called lithium ion battery, and in the latter case, the non-aqueous electrolyte battery is configured as a polymer electrolyte battery such as a polymer solid electrolyte or a polymer gel electrolyte battery.

液状の非水電解質液とする場合には、溶媒として、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどのカーボネート、1,1−または1,2−ジメトキシエタン、1,2−ジエトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、γ−ブチロラクトン、1,3−ジオキソフラン、4−メチル−1,3−ジオキソラン、アニソール、ジエチルエーテルなどのエーテル、スルホラン、メチルスルホランなどのチオエーテル、アセトニトリル、クロロニトリル、プロピオニトリルなどのニトリル、ホウ酸トリメチル、ケイ酸テトラメチル、ニトロメタン、ジメチルホルムアミド、N−メチルピロリドン、酢酸エチル、トリメチルオルトホルメート、ニトロベンゼン、塩化ベンゾイル、臭化ベンゾイル、テトラヒドロチオフェン、ジメチルスルホキシド、3−メチル−2−オキサゾリドン、エチレングリコール、サルファイト、ジメチルサルファイトなどの非プロトン性有機溶媒を用いることができる。   When a liquid non-aqueous electrolyte solution, as a solvent, ethylene carbonate, propylene carbonate, dimethyl carbonate, carbonates such as diethyl carbonate, 1,1- or 1,2-dimethoxyethane, 1,2-diethoxyethane, Ethers such as tetrahydrofuran, 2-methyltetrahydrofuran, γ-butyrolactone, 1,3-dioxofuran, 4-methyl-1,3-dioxolan, anisole and diethyl ether; thioethers such as sulfolane and methylsulfolane; acetonitrile, chloronitrile and propio Nitriles such as nitriles, trimethyl borate, tetramethyl silicate, nitromethane, dimethylformamide, N-methylpyrrolidone, ethyl acetate, trimethyl orthoformate, nitrobenzene, benzochloride Le, benzoyl bromide, tetrahydrothiophene, dimethyl sulfoxide, 3-methyl-2-oxazolidone, ethylene glycol, may be used an aprotic organic solvent such as sulfite, dimethyl sulfite.

非水電解質を高分子固体電解質、高分子ゲル電解質などの高分子電解質とする場合には、マトリクスとして可塑剤(非水電解液)でゲル化された高分子を用いる。マトリクスを構成する高分子としては、ポリエチレンオキサイドやその架橋体などのエーテル系高分子、ポリメタクリレート系高分子化合物、ポリアクリレートなどのアクリレート系高分子化合物、ポリビニリデンフルオライド(PVDF)やビニリデンフルオライド−ヘキサフルオロプロピレン共重合体などのフッ素系高分子化合物が特に好ましい。   When the non-aqueous electrolyte is a polymer electrolyte such as a polymer solid electrolyte and a polymer gel electrolyte, a polymer gelled with a plasticizer (non-aqueous electrolyte) is used as a matrix. Examples of the polymer constituting the matrix include ether polymers such as polyethylene oxide and crosslinked products thereof, acrylate polymer compounds such as polymethacrylate polymer compounds and polyacrylates, polyvinylidene fluoride (PVDF), and vinylidene fluoride. -A fluorine-based polymer compound such as a hexafluoropropylene copolymer is particularly preferred.

前記高分子固体電解質または高分子ゲル電解質には可塑剤が配合されるが、可塑剤としては、前記の電解質塩や非水溶媒が使用可能である。高分子ゲル電解質の場合、可塑剤である非水電解液中の電解質塩濃度は、0.1〜5モル/リットルが好ましく、0.5〜2.0モル/リットルがより好ましい。   The polymer solid electrolyte or polymer gel electrolyte contains a plasticizer. As the plasticizer, the above-mentioned electrolyte salts and non-aqueous solvents can be used. In the case of the polymer gel electrolyte, the concentration of the electrolyte salt in the non-aqueous electrolyte as a plasticizer is preferably from 0.1 to 5 mol / l, more preferably from 0.5 to 2.0 mol / l.

固体電解質の作製方法は特に制限されないが、例えば、マトリックスを形成する高分子化合物、リチウム塩および非水溶媒(可塑剤)を混合し、加熱して高分子化合物を溶融する方法、有機溶剤に高分子化合物、リチウム塩および非水溶媒(可塑剤)を溶解させた後、有機溶剤を蒸発させる方法、および高分子電解質の原料となる重合性モノマー、リチウム塩および非水溶媒(可塑剤)を混合し、混合物に紫外線、電子線または分子線などを照射してポリマーを形成させる方法などを挙げることができる。また、前記固体電解質中の非水溶媒(可塑剤)の添加率は、10〜90質量%が好ましく、30〜80質量%がより好ましい。10質量%未満であると、導電率が低くなり、90質量%を超えると機械的強度が弱くなり成膜しにくくなる。   The method for producing the solid electrolyte is not particularly limited. For example, a method of mixing a polymer forming a matrix, a lithium salt and a non-aqueous solvent (plasticizer) and heating to melt the polymer, A method of dissolving a molecular compound, a lithium salt and a non-aqueous solvent (plasticizer) and then evaporating an organic solvent, and mixing a polymerizable monomer, a lithium salt and a non-aqueous solvent (plasticizer) as a raw material of a polymer electrolyte Then, a method of irradiating the mixture with ultraviolet rays, an electron beam, a molecular beam, or the like to form a polymer can be used. Further, the addition rate of the non-aqueous solvent (plasticizer) in the solid electrolyte is preferably from 10 to 90% by mass, and more preferably from 30 to 80% by mass. If it is less than 10% by mass, the electrical conductivity will be low, and if it exceeds 90% by mass, the mechanical strength will be weak and the film will not be easily formed.

(セパレーター)
本発明のリチウムイオン二次電池においては、セパレーターを使用することができる。セパレーターの材質は特に限定されないが、例えば、織布、不織布、合成樹脂製微多孔質膜などなどが例示される。特に、合成樹脂製微多孔膜が好適であるが、その中でもポリオレフィン系微多孔質膜が、厚さ、膜強度、膜抵抗などの点から好適である。具体的には、ポリエチレンおよびポリプロピレン製微多孔質膜、またはこれらを複合した微多孔質膜などである。
(separator)
In the lithium ion secondary battery of the present invention, a separator can be used. The material of the separator is not particularly limited, and examples thereof include a woven fabric, a nonwoven fabric, and a synthetic resin microporous membrane. In particular, a synthetic resin microporous membrane is preferable, and among them, a polyolefin-based microporous membrane is preferable in terms of thickness, film strength, film resistance, and the like. Specifically, it is a microporous membrane made of polyethylene or polypropylene, or a microporous membrane obtained by combining these.

また、セパレーターを使用せずにゲル電解質を用いることもできる。ゲル電解質を用いた二次電池は、前記複合黒鉛粒子を含有する負極材と、正極材およびゲル電解質を、例えば、負極材、ゲル電解質、正極材の順で積層し、電池の外装材内に収容することで構成される。さらに負極材と正極材の外側にゲル電解質を配するようにしてもよい。   Also, a gel electrolyte can be used without using a separator. A secondary battery using a gel electrolyte, a negative electrode material containing the composite graphite particles, a positive electrode material and a gel electrolyte, for example, a negative electrode material, a gel electrolyte, laminated in the order of the positive electrode material, in the exterior material of the battery It is composed by containing. Further, a gel electrolyte may be provided outside the negative electrode material and the positive electrode material.

(リチウムイオン二次電池)
ゲル電解質二次電池は、前記黒鉛質粒子を含有する負極と、正極およびゲル電解質を、例えば、負極、ゲル電解質、正極の順で積層し、電池の外装材内に収容することで構成される。さらには、負極と正極の外側にゲル電解質を配するようにしてもよい。本発明の負極材料を負極に用いるゲル電解質二次電池では、ゲル電解質にプロピレンカーボネートが含有された場合でも、第1サイクルにおける不可逆な容量が小さく抑えられる。
(Lithium ion secondary battery)
The gel electrolyte secondary battery is configured by stacking a negative electrode containing the graphite particles, a positive electrode, and a gel electrolyte in the order of, for example, a negative electrode, a gel electrolyte, and a positive electrode, and housing the stacked negative electrode in a battery exterior material. . Further, a gel electrolyte may be provided outside the negative electrode and the positive electrode. In the gel electrolyte secondary battery using the negative electrode material of the present invention for the negative electrode, even when the gel electrolyte contains propylene carbonate, the irreversible capacity in the first cycle can be suppressed to a small value.

さらに、本発明のリチウムイオン二次電池の構造は特に限定されず、その形状、形態について特に限定されるものではなく、用途、搭載機器、要求される充放電容量などに応じて、円筒型、角型、コイン型、ボタン型などの中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものであることが好ましい。高分子固体電解質電池や高分子ゲル電解質電池の場合には、ラミネートフィルムに封入した構造とすることもできる。   Further, the structure of the lithium ion secondary battery of the present invention is not particularly limited, its shape and form are not particularly limited, and depending on the application, mounted equipment, required charge / discharge capacity, etc., a cylindrical type, It can be arbitrarily selected from a square type, a coin type, a button type and the like. In order to obtain a sealed non-aqueous electrolyte battery with higher safety, it is preferable to provide a means for interrupting the current by detecting an increase in battery internal pressure when an abnormality such as overcharging occurs. In the case of a polymer solid electrolyte battery or a polymer gel electrolyte battery, the structure may be such that the battery is sealed in a laminate film.

高分子ゲル電解質を用いたリチウムイオン二次電池は、本発明の負極材料を用いてなる負極と、正極およびゲル電解質から構成される。例えば、負極、ゲル電解質、正極の順に積層し、電池外装材内に収容することで作製される。なお、これに加えて、さらに、負極と正極の外側にゲル電解質を配するようにしてもよい。本発明の負極材料を用いる高分子ゲル電解質電池においては、ゲル電解質にプロピレンカーボネートを含有させることもできる。   A lithium ion secondary battery using a polymer gel electrolyte is composed of a negative electrode using the negative electrode material of the present invention, a positive electrode, and a gel electrolyte. For example, it is manufactured by stacking a negative electrode, a gel electrolyte, and a positive electrode in this order, and housing the battery in a battery exterior material. In addition to this, a gel electrolyte may be further provided outside the negative electrode and the positive electrode. In the polymer gel electrolyte battery using the negative electrode material of the present invention, propylene carbonate can be contained in the gel electrolyte.

さらに、本発明のリチウムイオン二次電池の構造は任意であり、その形状、形態について特に限定されるものではなく、円筒型、角型、コイン型、ボタン型などの中から任意に選択することができる。より安全性の高い密閉型非水電解液電池を得るためには、過充電などの異常時に電池内圧上昇を感知して電流を遮断させる手段を備えたものであることが好ましい。ゲル電解質を用いた電池の場合には、ラミネートフィルムに封入した構造とすることもできる。   Further, the structure of the lithium ion secondary battery of the present invention is arbitrary, and its shape and form are not particularly limited, and may be arbitrarily selected from a cylindrical type, a square type, a coin type, a button type and the like. Can be. In order to obtain a sealed non-aqueous electrolyte battery with higher safety, it is preferable to provide a means for interrupting the current by detecting an increase in battery internal pressure when an abnormality such as overcharging occurs. In the case of a battery using a gel electrolyte, a structure in which the battery is sealed in a laminate film may be used.

次に実施例および比較例を挙げて本発明をさらに具体的に説明するが、本発明はこれら実施例に限定されるものではない。なお、文中「%」とあるのは特に断りのない限り質量基準である。   Next, the present invention will be described more specifically with reference to examples and comparative examples, but the present invention is not limited to these examples. In the following description, “%” is based on mass unless otherwise specified.

<黒鉛>
本発明の複合黒鉛粒子の芯材を構成する黒鉛として、下記表1に示す物性を有する造粒化黒鉛Aを以下の実施例1〜5および比較例に、造粒化黒鉛Bを実施例6に用いた。造粒化黒鉛Aは、平均粒径30μmの鱗片状天然黒鉛を、ホソカワミクロン(株)製カウンタジェットミル200AFGを用い、空気圧力300kPaで1時間、機内で循環させることによって造粒したものである。得られた造粒化黒鉛のうち、粒子径が5μm以下で造粒が不十分な微粉を除去した。また、75μm篩い下になるように粗粉を除去した。下記表1に示すように各々の実施例および比較例に用いた造粒化黒鉛は、造粒により高い結晶性を保持していながら、一般的な鱗片状黒鉛に比べ低い比表面積を持つ。
<Graphite>
As the graphite constituting the core material of the composite graphite particles of the present invention, granulated graphite A having the physical properties shown in Table 1 below were used in Examples 1 to 5 and Comparative Examples below, and granulated graphite B was used in Example 6 Used for The granulated graphite A is obtained by granulating flaky natural graphite having an average particle diameter of 30 μm by using a counter jet mill 200AFG manufactured by Hosokawa Micron Corporation at an air pressure of 300 kPa for 1 hour in the machine. Of the granulated graphite thus obtained, fine powder having a particle diameter of 5 μm or less and insufficient granulation was removed. Further, coarse powder was removed so as to be below a 75 μm sieve. As shown in Table 1 below, the granulated graphite used in each of the examples and comparative examples has a lower specific surface area than general flaky graphite while maintaining high crystallinity by granulation.

Figure 2004210634
Figure 2004210634

上記表1における各種物性は以下のようにして測定した。
・比表面積(m2/g):窒素ガス吸着によるBET比表面積を求めた。
・平均粒径(μm):レーザー回折式粒度分布計により測定した粒度分布の累積度数が、体積百分率で50%となる粒子径とした。
・アスペクト比:黒鉛粒子の300倍の走査型電子顕微鏡をイメージアナライザー(東洋紡績(株)製)を用いて画像処理し、任意の50個の黒鉛粒子のアスペクト比(長軸方向の長さとそれに直交する短軸方向の長さの比)の平均値とした。
・Lc(nm)、La(nm)およびd002(nm):X線としてCuKα線を用い、高純度シリコンを標準物質とするX線回折法{学振法(日本学術振興会第117委員会が定めた測定法)に従うものであり、具体的には、「炭素繊維」(大谷杉郎著、第733〜742頁(1986年)、近代編集社)に記載された方法}によって測定された値とした。
・R値:日本分光(株)製NR−1800により波長514.5nmのアルゴンレーザー光を用いたラマンスペクトルにおいて1570〜1630cm-1の領域に存在するピークの波長をIGとし、1350〜1370cm-1の領域に存在するピークの強度をIDとするときのID/IG比とした。
・半値幅:上記ラマンスペクトルにおいて1570〜1630cm-1の領域に存在するピークの1/2の高さにおけるラマンバンドのバンド幅から算出した。
Various physical properties in Table 1 above were measured as follows.
Specific surface area (m 2 / g): The BET specific surface area by nitrogen gas adsorption was determined.
Average particle size (μm): The particle size at which the cumulative frequency of the particle size distribution measured by a laser diffraction type particle size distribution meter becomes 50% by volume percentage.
-Aspect ratio: Image processing of a scanning electron microscope 300 times larger than that of graphite particles using an image analyzer (manufactured by Toyobo Co., Ltd.), and the aspect ratio of any 50 graphite particles (length in the major axis direction and (The ratio of the lengths in the orthogonal short axis direction).
Lc (nm), La (nm), and d 002 (nm): X-ray diffraction method using CuKα ray as X-ray and high-purity silicon as standard material (JSPS 117th Committee) Specifically, it was measured by the method} described in “Carbon Fiber” (Sugio Otani, pp. 733-742 (1986), Kindaikisha). Value.
· R values: the wavelength of the peaks present in the region of 1570~1630Cm -1 and I G in the Raman spectrum using argon laser beam having a wavelength of 514.5nm by JASCO Corp. NR-1800, 1350~1370cm - When the intensity of the peak existing in the region 1 was defined as ID , the ratio was defined as ID / IG ratio.
-Width at half maximum: Calculated from the Raman band width at half the height of the peak existing in the region of 1570 to 1630 cm -1 in the Raman spectrum.

実施例1
フェノール樹脂(残炭率40%)25gを、エチレングリコール500gとヘキサメチレンテトラミン2.5gとの混合物に添加して溶解した溶液に、造粒化黒鉛(黒鉛粒子)(平均粒径20μm、アスペクト比2.0)90gを加え、分散状態で攪拌した。次に減圧下において150℃で溶剤を留去し、樹脂と混合された黒鉛粒子を得た。この樹脂混合黒鉛粒子を空気中で270℃まで5時間かけて昇温し、さらに270℃で2時間保持し、加熱した。これを75μm篩い下になるように解砕した。次に窒素雰囲気中で1,000℃で前炭化処理を行い、さらに3,000℃で炭化を行うことによって、10%の炭素材の含有量をもつ本発明の複合黒鉛粒子を得た。
Example 1
A solution obtained by adding and dissolving 25 g of a phenol resin (residual carbon ratio: 40%) to a mixture of 500 g of ethylene glycol and 2.5 g of hexamethylenetetramine was added to granulated graphite (graphite particles) (average particle size: 20 μm, aspect ratio). 2.0) 90 g was added and stirred in a dispersed state. Next, the solvent was distilled off at 150 ° C. under reduced pressure to obtain graphite particles mixed with the resin. The resin-mixed graphite particles were heated in air to 270 ° C. over 5 hours, and were further kept at 270 ° C. for 2 hours and heated. This was crushed to be below a 75 μm sieve. Next, a pre-carbonization treatment was performed at 1,000 ° C. in a nitrogen atmosphere, and further carbonization was performed at 3,000 ° C. to obtain composite graphite particles of the present invention having a carbon material content of 10%.

なお、実施例1の炭素材の結晶性を見積もるために、実施例1に黒鉛粒子を加えず、実施例1と同じ熱履歴を付与して炭素材を調製した。X線回折で測定したd002は0.3366nm、Lc38nmであり、芯材として用いた黒鉛粒子のd002、Lc(表1)よりも若干結晶性が低いことが確認された。また、炭化可能材料の残炭率は、JIS K 2425の固定炭素法に準拠し、800℃に加熱し、実質的に全量が炭素化されたときの残分をいい、百分率で表したものである。 In order to estimate the crystallinity of the carbon material of Example 1, a carbon material was prepared by adding the same heat history as in Example 1 without adding graphite particles to Example 1. The d 002 measured by X-ray diffraction was 0.3366 nm and Lc 38 nm, and it was confirmed that the graphite particles used as the core material had slightly lower crystallinity than d 002 and Lc (Table 1). In addition, the residual carbon ratio of the carbonizable material refers to the residue when heated to 800 ° C. and substantially the entire amount is carbonized in accordance with the fixed carbon method of JIS K 2425, expressed as a percentage. is there.

実施例2
フェノールモノマー39gと37%ホルマリン66gとヘキサメチレンテトラミン4gとからなる溶液に、黒鉛粒子(平均粒径20μm、アスペクト比2.0)110gを加え、分散状態で攪拌した。90℃に加熱してモノマーを重合させて黒鉛粒子をフェノール樹脂と混合させ、ろ過して樹脂混合黒鉛粒子を取り出した。この混合黒鉛粒子は樹脂分として20%(残炭率で10%)を有していた。この混合黒鉛粒子を空気中で270℃まで5時間かけて昇温し、さらに270℃で2時間保持し、加熱した。これを75μm篩い下になるように解砕した。窒素雰囲気中で1,000℃で前炭化処理を行い、さらに3,000℃で炭化を行うことによって、10%の炭素材の含有量をもつ本発明の複合黒鉛粒子を得た。
Example 2
110 g of graphite particles (average particle diameter: 20 μm, aspect ratio: 2.0) were added to a solution composed of 39 g of phenol monomer, 66 g of 37% formalin, and 4 g of hexamethylenetetramine, and stirred in a dispersed state. The mixture was heated to 90 ° C. to polymerize the monomer, and the graphite particles were mixed with the phenol resin. The mixture was filtered to obtain resin-mixed graphite particles. The mixed graphite particles had a resin content of 20% (residual carbon ratio: 10%). The temperature of the mixed graphite particles was raised to 270 ° C. in air over 5 hours, and the temperature was further maintained at 270 ° C. for 2 hours and heated. This was crushed to be below a 75 μm sieve. The pre-carbonization treatment was performed at 1,000 ° C. in a nitrogen atmosphere, and the carbonization was further performed at 3,000 ° C. to obtain composite graphite particles of the present invention having a carbon material content of 10%.

実施例3
石炭系ピッチ(軟化点105℃、残炭率60%)6.7gとフェノール樹脂(残炭率40%)15gとを、タール軽油500gとヘキサメチレンテトラミン1.5gとの混合物に添加した溶液に、黒鉛粒子(平均粒径20μm、アスペクト比2.0)90gを加えて分散状態で攪拌した。次に減圧下において150℃で溶剤のタール軽油を留去し、ピッチ/樹脂混合黒鉛粒子を得た。この混合黒鉛粒子を空気中で270℃まで5時間かけて昇温し、さらに270℃で2時間保持し、加熱した。これを75μm篩い下になるように解砕した。次に窒素雰囲気中で1,000℃で前炭化処理を行い、さらに3,000℃で炭化を行うことによって、10%の炭素材の含有量をもつ本発明の複合黒鉛粒子を得た。
Example 3
To a solution obtained by adding 6.7 g of coal-based pitch (softening point 105 ° C., residual carbon ratio 60%) and 15 g of a phenol resin (residual carbon ratio 40%) to a mixture of tar gas oil 500 g and hexamethylenetetramine 1.5 g. Then, 90 g of graphite particles (average particle size: 20 μm, aspect ratio: 2.0) were added and stirred in a dispersed state. Next, the tar gas oil as a solvent was distilled off at 150 ° C. under reduced pressure to obtain pitch / resin mixed graphite particles. The temperature of the mixed graphite particles was raised to 270 ° C. in air over 5 hours, and the temperature was further maintained at 270 ° C. for 2 hours and heated. This was crushed to be below a 75 μm sieve. Next, a pre-carbonization treatment was performed at 1,000 ° C. in a nitrogen atmosphere, and further carbonization was performed at 3,000 ° C. to obtain composite graphite particles of the present invention having a carbon material content of 10%.

実施例4
フェノールモノマー20gと37%ホルマリン33gとヘキサメチレンテトラミン2gと石炭系メソフェーズピッチ微紛(平均粒径4μm、軟化点350℃、残炭率80%)7.5gとを混合してなる溶液に黒鉛粒子(平均粒径20μm、アスペクト比2.0)110gを加え、分散状態で攪拌した。90℃で上記成分を重合させて黒鉛粒子と混合した。次いで、ろ過して混合黒鉛粒子を取り出した。この黒鉛粒子はピッチ複合樹脂と混合されていた(ピッチ複合樹脂分として18%、残炭率で10%)。この樹脂混合黒鉛粒子を空気中で270℃まで5時間かけて昇温し、さらに270℃で2時間保持し、加熱した。これを75μm篩い下になるように解砕した。次に窒素雰囲気中で1,000℃で前炭化処理を行い、さらに3,000℃で炭化を行うことによって、10%の炭素材の含有量をもつ本発明の複合黒鉛粒子を得た。
Example 4
Graphite particles in a solution obtained by mixing 20 g of phenol monomer, 33 g of 37% formalin, 2 g of hexamethylenetetramine, and 7.5 g of coal-based mesophase pitch fine powder (average particle size: 4 μm, softening point: 350 ° C., remaining carbon ratio: 80%) 110 g (average particle size: 20 μm, aspect ratio: 2.0) was added, and the mixture was stirred in a dispersed state. The above components were polymerized at 90 ° C. and mixed with graphite particles. Then, the mixed graphite particles were taken out by filtration. The graphite particles were mixed with the pitch composite resin (18% as a pitch composite resin component and 10% as a residual carbon ratio). The resin-mixed graphite particles were heated in air to 270 ° C. over 5 hours, and were further kept at 270 ° C. for 2 hours and heated. This was crushed to be below a 75 μm sieve. Next, a pre-carbonization treatment was performed at 1,000 ° C. in a nitrogen atmosphere, and further carbonization was performed at 3,000 ° C. to obtain composite graphite particles of the present invention having a carbon material content of 10%.

実施例5
実施例2において複合黒鉛粒子の炭素材の含有量が5%となるようにフェノールモノマーを配合し、3,000℃の炭化に代えて1,300℃の炭化を行い、それ以外は、実施例2と同様にして複合黒鉛粒子を製造し、5%の炭素材の含有量を持つ複合黒鉛粒子を得た。
Example 5
A phenol monomer was blended in Example 2 so that the carbon material content of the composite graphite particles was 5%, and carbonization was performed at 1,300 ° C instead of carbonization at 3,000 ° C. In the same manner as in Example 2, composite graphite particles were produced, and composite graphite particles having a carbon material content of 5% were obtained.

実施例6
実施例1において、黒鉛粒子として、鱗片状の天然黒鉛に機械的外力を付与し造粒した造粒化黒鉛Bを用いた以外は実施例1と同様にして複合黒鉛粒子を製造し、10%の炭素材の含有量を持つ複合黒鉛粒子を得た。
Example 6
In Example 1, composite graphite particles were produced in the same manner as in Example 1 except that granulated graphite B obtained by applying a mechanical external force to granulated graphite B was used as the graphite particles. The composite graphite particles having the content of the carbon material were obtained.

比較例1
フェノール樹脂(残炭率40%)1gをエチレングリコール500gとヘキサメチレンテトラミン0.1gとの混合物に添加し、該溶液に黒鉛粒子(平均粒径20μm、アスペクト比2.0)100gを加え、分散状態で攪拌した。減圧下で150℃で溶剤を留去し、樹脂混合黒鉛粒子を得た。この混合黒鉛粒子を空気中で270℃まで5時間かけて昇温し、さらに270℃で2時間保持し、加熱した。これを75μm篩い下になるように解砕した。窒素雰囲気中で1,000℃で前炭化処理を行い、さらに3,000℃で炭化を行うことによって、0.40%の炭素材の含有量をもつ比較例の複合黒鉛粒子を得た。
Comparative Example 1
1 g of a phenol resin (residual carbon ratio: 40%) is added to a mixture of 500 g of ethylene glycol and 0.1 g of hexamethylenetetramine, and 100 g of graphite particles (average particle size: 20 μm, aspect ratio: 2.0) are added to the solution, and dispersed. It was stirred in the state. The solvent was distilled off at 150 ° C. under reduced pressure to obtain resin-mixed graphite particles. The temperature of the mixed graphite particles was raised to 270 ° C. in air over 5 hours, and the temperature was further maintained at 270 ° C. for 2 hours and heated. This was crushed to be below a 75 μm sieve. Pre-carbonization treatment was performed at 1,000 ° C. in a nitrogen atmosphere, and further carbonization was performed at 3,000 ° C. to obtain composite graphite particles of a comparative example having a carbon material content of 0.40%.

比較例2
フェノール樹脂(残炭率40%)60gを、タール軽油500gとヘキサメチレンテトラミン6gとの混合物からなる溶液に、黒鉛粒子(平均粒径20μm、アスペクト比2.0)100gを加え、分散状態で攪拌した。減圧下で150℃で溶剤を留去し、樹脂混合黒鉛粒子を得た。この混合黒鉛粒子を空気中で270℃まで5時間かけて昇温し、さらに270℃で2時間保持し、加熱した。これを75μm篩い下になるように解砕した。窒素雰囲気中で1,000℃で前炭化処理を行い、さらに3,000℃で炭化を行うことによって、24%の炭素材の含有量をもつ比較例の複合黒鉛粒子を得た。
Comparative Example 2
100 g of graphite particles (average particle size: 20 μm, aspect ratio: 2.0) were added to a solution composed of a mixture of 60 g of a phenol resin (residual carbon ratio: 40%), 500 g of tar gas oil and 6 g of hexamethylenetetramine, and stirred in a dispersed state. did. The solvent was distilled off at 150 ° C. under reduced pressure to obtain resin-mixed graphite particles. The temperature of the mixed graphite particles was raised to 270 ° C. in air over 5 hours, and the temperature was further maintained at 270 ° C. for 2 hours and heated. This was crushed to be below a 75 μm sieve. Pre-carbonization treatment was performed at 1,000 ° C. in a nitrogen atmosphere, and further carbonization was performed at 3,000 ° C., to obtain composite graphite particles of a comparative example having a carbon material content of 24%.

比較例3
フェノール樹脂(残炭率40%)0.6gと石炭系ピッチ(軟化点105℃、残炭率60%)0.4gとタール軽油500gとヘキサメチレンテトラミン0.1gとを混合してなる溶液に、黒鉛粒子(平均粒径20μm、アスペクト比2.0)100gを加え、分散状態で攪拌した。次に減圧下において150℃で溶剤のタール軽油を留去し、混合黒鉛粒子を得た。この樹脂混合黒鉛粒子を空気中で270℃まで5時間かけて昇温し、さらに270℃で2時間保持し、加熱した。これを75μm篩い下になるように解砕した。次に窒素雰囲気中で1,000℃で前炭化処理を行い、さらに3,000℃で炭化を行うことによって、0.48%の炭素材の含有量をもつ比較例の複合黒鉛粒子を得た。
Comparative Example 3
A solution obtained by mixing 0.6 g of phenol resin (residual carbon ratio: 40%), 0.4 g of coal-based pitch (softening point: 105 ° C., residual carbon ratio: 60%), 500 g of tar gas oil, and 0.1 g of hexamethylenetetramine Then, 100 g of graphite particles (average particle size: 20 μm, aspect ratio: 2.0) were added and stirred in a dispersed state. Next, the tar gas oil as a solvent was distilled off at 150 ° C. under reduced pressure to obtain mixed graphite particles. The resin-mixed graphite particles were heated in air to 270 ° C. over 5 hours, and were further kept at 270 ° C. for 2 hours and heated. This was crushed to be below a 75 μm sieve. Next, a pre-carbonization treatment was performed at 1,000 ° C. in a nitrogen atmosphere, and carbonization was further performed at 3,000 ° C. to obtain a composite graphite particle of a comparative example having a carbon material content of 0.48%. .

比較例4
フェノール樹脂(残炭率40%)30gと石炭系ピッチ(軟化点105℃、残炭率60%)20gとタール軽油500gとヘキサメチレンテトラミン6gとからなる溶液に黒鉛粒子(平均粒径20μm、アスペクト比2.0)76gを加え、分散状態で攪拌した。次に減圧下において150℃で溶剤のタール軽油を留去し、樹脂混合黒鉛粒子を得た。この樹脂混合黒鉛粒子を空気中で270℃まで5時間かけて昇温し、さらに270℃で2時間保持し、加熱した。これを75μm篩い下になるように解砕した。次に窒素雰囲気中で1,000℃で前炭化処理を行い、さらに3,000℃で炭化を行うことによって、24%の炭素材の含有量をもつ比較例の複合黒鉛粒子を得た。
Comparative Example 4
Graphite particles (average particle diameter: 20 μm, aspect ratio: 30 g of phenolic resin (residual carbon ratio: 40%), 20 g of coal-based pitch (softening point: 105 ° C., residual carbon ratio: 60%), 500 g of tar gas oil, and 6 g of hexamethylenetetramine The mixture was stirred in a dispersed state. Next, tar gas oil as a solvent was distilled off at 150 ° C. under reduced pressure to obtain resin-mixed graphite particles. The resin-mixed graphite particles were heated in air to 270 ° C. over 5 hours, and were further kept at 270 ° C. for 2 hours and heated. This was crushed to be below a 75 μm sieve. Next, a pre-carbonization treatment was performed at 1,000 ° C. in a nitrogen atmosphere, and further a carbonization was performed at 3,000 ° C., thereby obtaining composite graphite particles of a comparative example having a carbon material content of 24%.

比較例5
実施例1において、炭化可能材料を用いず、その他は実施例1と同様の前炭化処理と炭化のみを施して比較例の黒鉛粒子を得た。
Comparative Example 5
In Example 1, graphite particles of a comparative example were obtained by performing only the same pre-carbonization treatment and carbonization as in Example 1 without using a carbonizable material.

比較例6
石炭系ピッチ(軟化点105℃、残炭率60%)16.7gをタール軽油500gに溶解し、溶液に黒鉛粒子(平均粒径20μm、アスペクト比2.0)90gを加えて分散状態で攪拌した。次に減圧下において150℃で溶剤のタール軽油を留去し、ピッチ混合黒鉛を得た。この混合黒鉛粒子を窒素雰囲気中で1,000℃で前炭化処理を行い、75μm篩い下になるように解砕した。さらに3,000℃で炭化を行うことによって、10%の炭素材の含有量をもつ従来技術に相当する比較例の複合黒鉛粒子を得た。
Comparative Example 6
16.7 g of coal-based pitch (softening point: 105 ° C., residual carbon ratio: 60%) is dissolved in 500 g of tar gas oil, and 90 g of graphite particles (average particle size: 20 μm, aspect ratio: 2.0) are added to the solution and stirred in a dispersed state. did. Next, the tar gas oil as a solvent was distilled off at 150 ° C. under reduced pressure to obtain pitch-mixed graphite. The mixed graphite particles were subjected to a pre-carbonization treatment at 1,000 ° C. in a nitrogen atmosphere and pulverized so as to be under a 75 μm sieve. Further, by performing carbonization at 3,000 ° C., composite graphite particles of a comparative example corresponding to the prior art having a carbon material content of 10% were obtained.

評価例1
前記実施例および比較例の複合黒鉛粒子または黒鉛粒子を用いて、図1に示すような構成の評価用のボタン型二次電池を以下に示すように作製して評価した。しかし、実電池は、本発明の概念に基づき、公知の方法に準じて作製することができる。評価用電池においては、作用極を負極、対極を正極と表現した。
Evaluation example 1
Using the composite graphite particles or the graphite particles of the above Examples and Comparative Examples, button-type secondary batteries for evaluation having the configuration shown in FIG. 1 were prepared and evaluated as described below. However, an actual battery can be manufactured according to a known method based on the concept of the present invention. In the battery for evaluation, the working electrode was expressed as a negative electrode, and the counter electrode was expressed as a positive electrode.

<負極合剤ペーストの調製>
複合黒鉛粒子98%に対して、結合剤としてスチレンブタジエンラバーを1%、カルボキシメチルセルロースを1%の割合で水に加えてスラリーとし負極合剤ペーストを調製した。このペーストは各実施例および比較例のそれぞれの複合黒鉛粒子を用いて行なった(なお、比較例5のものは複合黒鉛粒子ではない)。
<Preparation of negative electrode mixture paste>
For 98% of the composite graphite particles, 1% of styrene-butadiene rubber and 1% of carboxymethylcellulose were added to water at a ratio of 1% to water as a binder to prepare a negative electrode mixture paste. This paste was used using the composite graphite particles of each of the examples and comparative examples (note that the paste of Comparative Example 5 was not a composite graphite particle).

<負極の製造>
上記の各負極合剤ペーストを銅箔(集電材)上に均一な厚さで塗布し、さらに真空中で90℃に加熱して溶剤を揮発させて乾燥した。次に、この銅箔上に塗布された負極合剤をローラープレスによって加圧し、さらに銅箔と一緒に直径15.5mmの円形状に打ち抜くことで、銅箔からなる集電体7b(厚み16μm)に密着した負極合剤層(厚み50μm)からなる負極2を製造した。
<Production of negative electrode>
Each of the above negative electrode mixture pastes was applied on a copper foil (current collector) in a uniform thickness, and further heated to 90 ° C. in a vacuum to evaporate the solvent and dried. Next, the negative electrode mixture applied on the copper foil was pressed by a roller press, and further punched out together with the copper foil into a circular shape having a diameter of 15.5 mm, whereby a current collector 7b made of copper foil (having a thickness of 16 μm ) To produce a negative electrode 2 composed of a negative electrode mixture layer (50 μm thick) adhered to the negative electrode mixture layer.

<正極の製造>
リチウム金属箔を、ニッケルネットに押付け、直径15.5mmの円柱状に打ち抜いて、ニッケルネットからなる集電体7aと、集電体に密着したリチウム金属箔(厚み0.5μm)からなる正極4を製造した。
<Manufacture of positive electrode>
The lithium metal foil is pressed against a nickel net and punched out into a cylindrical shape having a diameter of 15.5 mm, and a current collector 7a made of a nickel net and a positive electrode 4 made of a lithium metal foil (thickness 0.5 μm) adhered to the current collector. Was manufactured.

<電解質>
エチレンカーボネート33mol%およびエチルメチルカーボネート67mol%の割合の混合溶媒に、LiPF6を1mol/dm3となる濃度で溶解させ、非水電解液を調製した。得られた非水電解液をポリプロピレン多孔質体(厚み20μm)に含浸させ、電解液が含浸されたセパレーター5を製造した。
<Electrolyte>
LiPF 6 was dissolved in a mixed solvent of ethylene carbonate 33 mol% and ethyl methyl carbonate 67 mol% at a concentration of 1 mol / dm 3 to prepare a non-aqueous electrolyte. The obtained non-aqueous electrolyte was impregnated into a porous polypropylene body (thickness: 20 μm) to produce a separator 5 impregnated with the electrolyte.

<評価用電池の製造>
評価電池として図1の構造を有するボタン型二次電池を作製した。まず、集電体7bに密着した負極(作用電極)2と集電体7aに密着した正極(対極)4との間に、電解質溶液を含浸させたセパレーター5を挟んで積層する。その後、負極集電体7b側が外装カップ1内に、正極集電体7a側が外装缶3内に収容されるように、外装カップ1と外装缶3とを合わせる。その際、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。以上のようにして作製された評価電池について、25℃の温度下で下記のような充放電試験を行った。
<Production of battery for evaluation>
A button secondary battery having the structure shown in FIG. 1 was produced as an evaluation battery. First, a separator 5 impregnated with an electrolyte solution is laminated between a negative electrode (working electrode) 2 closely attached to the current collector 7b and a positive electrode (counter electrode) 4 closely adhered to the current collector 7a. Thereafter, the outer cup 1 and the outer can 3 are combined so that the negative electrode current collector 7b is accommodated in the outer cup 1 and the positive electrode current collector 7a is accommodated in the outer can 3. At that time, an insulating gasket 6 was interposed between the outer edges of the outer cup 1 and the outer can 3, and both outer edges were caulked to seal. The following charge / discharge test was performed on the evaluation battery manufactured as described above at a temperature of 25 ° C.

<充放電試験>
0.9mAの電流値で回路電圧が0mVに達するまで定電流充電を行う。次に、回路電圧が0mVに達した時点で定電圧充電に切り替え、さらに電流値が20μAになるまで充電を続け、その間の通電量から充電容量を求めた。その後、120分間休止した。次に0.9mAの電流値で、回路電圧が2.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。これを第1サイクルとした。次式から初期充放電効率を計算した。
<Charging / discharging test>
Constant current charging is performed at a current value of 0.9 mA until the circuit voltage reaches 0 mV. Next, when the circuit voltage reached 0 mV, the mode was switched to constant voltage charging, charging was continued until the current value reached 20 μA, and the charging capacity was determined from the amount of current during that time. Thereafter, the operation was stopped for 120 minutes. Next, constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 2.5 V, and the discharge capacity was determined from the amount of current supplied during this time. This was the first cycle. The initial charge / discharge efficiency was calculated from the following equation.

Figure 2004210634
なお、この試験では、リチウムイオンを複合黒鉛粒子中にドープする過程を充電、複合黒鉛粒子から脱ドープする過程を放電とした。
Figure 2004210634
In this test, the process of doping lithium ions into the composite graphite particles was defined as charging, and the process of undoping lithium ions from the composite graphite particles was defined as discharging.

次いで、第2サイクルとして、第1サイクルと同様にして充電した後、20mAの電流値で、回路電圧が2.5Vに達するまで定電流放電を行い、この間の通電量から第2サイクルの放電容量を求めた。このとき第1サイクルにおける放電容量と第2サイクルにおける放電容量から、次式に従って急速放電効率を評価した。

Figure 2004210634
Next, as a second cycle, after charging in the same manner as in the first cycle, constant current discharge is performed at a current value of 20 mA until the circuit voltage reaches 2.5 V, and the discharge capacity in the second cycle is determined based on the amount of current during this time. I asked. At this time, the rapid discharge efficiency was evaluated from the discharge capacity in the first cycle and the discharge capacity in the second cycle according to the following equation.
Figure 2004210634

また、これらの評価試験とは別に6mAの電流値で回路電圧が0mVに達するまで定電流充電を行う。次に、回路電圧が0mVに達した時点で定電圧充電に切り替え、さらに電流値が20μAになるまで充電を続ける。その後、120分間休止した。次に6mAの電流値で、回路電圧が2.5Vに達するまで定電流放電を行った。この充放電を20サイクル繰り返し、第20サイクルの放電容量を求めた。1サイクル目と20サイクル目における放電容量を求め、次式からサイクル特性を計算した。

Figure 2004210634
In addition to these evaluation tests, constant current charging is performed at a current value of 6 mA until the circuit voltage reaches 0 mV. Next, when the circuit voltage reaches 0 mV, switching to constant voltage charging is performed, and charging is continued until the current value reaches 20 μA. Thereafter, the operation was stopped for 120 minutes. Next, constant current discharge was performed at a current value of 6 mA until the circuit voltage reached 2.5 V. This charge / discharge was repeated for 20 cycles, and the discharge capacity in the 20th cycle was determined. The discharge capacity at the 1st cycle and the 20th cycle was obtained, and the cycle characteristics were calculated from the following equation.
Figure 2004210634

表2に実施例および比較例の複合黒鉛粒子または黒鉛粒子の特性およびこれらを負極材として用いた評価用電池の電池特性を示す。
本発明の実施例1〜6においては、黒鉛粒子に適度なR値に設定された炭素材を有している。炭素材を有しない比較例5に比べてわずかに放電容量が低下するものの、高い放電容量を維持し、初期充放電効率、急速放電効率、サイクル特性にも優れていることがわかる。特に、樹脂材料として、フェノール樹脂のモノマーを原料に用いた実施例2、4では急速放電効率、サイクル特性が優れている。
Table 2 shows the characteristics of the composite graphite particles or the graphite particles of the examples and the comparative examples, and the battery characteristics of the battery for evaluation using these as a negative electrode material.
In Examples 1 to 6 of the present invention, the graphite particles have a carbon material set to an appropriate R value. It can be seen that although the discharge capacity is slightly reduced as compared with Comparative Example 5 having no carbon material, a high discharge capacity is maintained, and the initial charge / discharge efficiency, rapid discharge efficiency, and cycle characteristics are excellent. In particular, in Examples 2 and 4 in which a phenolic resin monomer was used as a resin material, rapid discharge efficiency and cycle characteristics were excellent.

一方、炭素材を有しない比較例5や、炭素材の含有量が本発明の範囲より少ない比較例1、3では初期充放電効率、急速放電効率、サイクル特性が著しく低い。逆に炭素材の含有量が本発明の範囲よりも多い比較例2、4では、混合時に融着した複合黒鉛粒子の解砕に由来して、炭素材が剥がれ、初期充放電効率などの改善効果に乏しい。また、放電容量の低下が顕著である。炭素材の剥離は比表面積の増加からも確認できる。   On the other hand, in Comparative Example 5 having no carbon material and Comparative Examples 1 and 3 in which the content of the carbon material is less than the range of the present invention, the initial charge / discharge efficiency, rapid discharge efficiency, and cycle characteristics are remarkably low. Conversely, in Comparative Examples 2 and 4 in which the content of the carbon material was larger than the range of the present invention, the carbon material was peeled off due to the crushing of the composite graphite particles fused during mixing, and the initial charge / discharge efficiency and the like were improved. Poor effect. Further, the discharge capacity is significantly reduced. Peeling of the carbon material can also be confirmed from an increase in the specific surface area.

炭素材に樹脂材料を用いない従来技術に相当する比較例6の場合には、炭素材の結晶性が高くなりすぎてR値が低下し、初期充放電効率が低いものとなる。   In the case of Comparative Example 6, which corresponds to the prior art in which no resin material is used for the carbon material, the crystallinity of the carbon material becomes too high, the R value decreases, and the initial charge / discharge efficiency decreases.

Figure 2004210634
Figure 2004210634

Figure 2004210634
Figure 2004210634

Figure 2004210634
Figure 2004210634

上記表2−1〜3における各種特性の測定は以下のようにして行なった。
・炭素材の割合(%):炭素材の原料単体に複合黒鉛粒子と同一の熱履歴を付与して、炭素材単体の炭化物を調製し、原料の残炭率を求めた。該残炭率から換算して複合黒鉛粒子に占める炭素材の割合を算出した。
・被覆率:複合黒鉛粒子を研磨して断面を得て、偏光顕微鏡を用いて1,000倍で粒子表面を観察した。任意の粒子の10個について最外層に存在する内部黒鉛とは異なる異質な炭素物質の露出部を目視で計測し、複合黒鉛粒子の輪郭の長さに対する炭素材被覆部の長さの比の平均値を求めた。
・比表面積(m2/g):前記表1と同じ。
・平均粒径:前記表1と同じ。
・R値:前記表1と同じ。
・d002:前記表1と同じ。
・アスペクト比:前記表1と同じ。
The measurements of the various characteristics in Tables 2-1 to 3 were performed as follows.
-Ratio of carbon material (%): The same thermal history as that of the composite graphite particles was imparted to the raw material of the carbon material to prepare a carbide of the carbon material alone, and the residual carbon ratio of the raw material was determined. The ratio of the carbon material in the composite graphite particles was calculated by conversion from the residual carbon ratio.
-Coverage: A composite graphite particle was polished to obtain a cross section, and the particle surface was observed at 1,000 times using a polarizing microscope. The exposed portion of a foreign carbon material different from the inner graphite present in the outermost layer is visually measured for 10 of the arbitrary particles, and the average of the ratio of the length of the carbon material coating portion to the contour length of the composite graphite particle is measured. The value was determined.
Specific surface area (m 2 / g): same as in Table 1 above.
Average particle diameter: the same as in Table 1 above.
R value: the same as in Table 1 above.
D002 : Same as in Table 1 above.
-Aspect ratio: Same as Table 1 above.

評価例2(プレス圧依存性)
実施例1、3、4および比較例3、4、5の複合黒鉛粒子または黒鉛粒子を用いて前記の通りに黒鉛電極を作製し、その際の電極密度のプレス圧力依存性を調べたところ、図2に示す結果が得られた。図2に示される通り、炭素材の含有量が少ない比較例3、および炭化可能材料を用いない比較例5に示した複合黒鉛粒子または黒鉛粒子は、完全な球状をしているわけではないが、機械的に鱗片状黒鉛を丸く造粒している。しかし、負極を作製する工程でのプレス圧力に対して急激に電極密度が上昇した。このことは、数mにわたって電極をプレス成型する場合、僅かの圧力変動によって、密度が不均一になりやすいことを示している。これに対して、実施例3および4で得られた適量の樹脂/ピッチからなる炭化可能材料を用いた複合黒鉛粒子は、何れの場合にも密度のプレス圧力依存性が少なくなり、一定の電極密度を制御しやすい材料であることがわかる。また、炭素材の含有量の多い比較例4はプレス圧力依存性が低いものの、前記評価例1に示すように電池特性が満足できない。
Evaluation example 2 (press pressure dependency)
A graphite electrode was prepared as described above using the composite graphite particles or graphite particles of Examples 1, 3, and 4 and Comparative Examples 3, 4, and 5, and the press pressure dependence of the electrode density was examined. The result shown in FIG. 2 was obtained. As shown in FIG. 2, the composite graphite particles or the graphite particles shown in Comparative Example 3 in which the content of the carbon material is low and Comparative Example 5 in which no carbonizable material is used are not completely spherical. The flake graphite is mechanically granulated into a round shape. However, the electrode density increased rapidly with respect to the pressing pressure in the process of manufacturing the negative electrode. This indicates that when the electrode is press-molded over several meters, the density tends to be non-uniform due to slight pressure fluctuation. On the other hand, the composite graphite particles using the carbonizable material composed of an appropriate amount of resin / pitch obtained in Examples 3 and 4 have reduced press pressure dependence of the density in any case, and have a constant electrode. It is understood that the material is easy to control the density. Further, Comparative Example 4, which has a large carbon material content, has low press pressure dependency, but cannot satisfy the battery characteristics as shown in Evaluation Example 1 described above.

本発明によれば、リチウムイオン二次電池用の負極材として高負荷特性および高サイクル特性を有し、さらに高放電容量で、低不可逆容量の黒鉛粒子を提供することができる。また、本発明によれば、被覆材として樹脂とピッチとの混合物を用いることによって、高い放電容量とレート特性(急速放電効率)を維持しながら、本質的に高密度な電極を得ることができるうえに、電極製造時におけるプレス圧力の依存性が少なく、均一な密度を有する電極を容易に製造することができる。   According to the present invention, graphite particles having high load characteristics and high cycle characteristics as a negative electrode material for a lithium ion secondary battery, and having a high discharge capacity and a low irreversible capacity can be provided. Further, according to the present invention, by using a mixture of a resin and a pitch as a covering material, an essentially high-density electrode can be obtained while maintaining high discharge capacity and rate characteristics (rapid discharge efficiency). In addition, it is possible to easily produce an electrode having a uniform density with little dependency on the pressing pressure at the time of producing the electrode.

また、本発明の方法によれば、複合構造の炭素材が、生産性良く、低コストで製造することができる。しかもこの方法によれば、従来製造できなかった、リチウムイオン二次電池の負極材として好適な複合黒鉛粒子が製造できる。これを負極材に用いたリチウムイオン二次電池は、従来、二律背反して達成が困難であった高い初期充放電効率と大きい放電容量の両性能を高度に達成できる。さらに優れた急速放電特性とサイクル特性を有する。よって、本発明の複合黒鉛粒子により、電池エネルギーの高密度化に対する近年の要望も満足できる。さらに、本発明の負極材およびリチウム二次電池を搭載する機器は、小型化および高性能化が可能となり、広く社会に貢献できる。   Further, according to the method of the present invention, a carbon material having a composite structure can be produced with good productivity and at low cost. Moreover, according to this method, composite graphite particles suitable as a negative electrode material of a lithium ion secondary battery, which could not be produced conventionally, can be produced. A lithium ion secondary battery using this as a negative electrode material can highly achieve both high initial charge / discharge efficiency and large discharge capacity, which have been difficult to achieve conventionally. Furthermore, it has excellent rapid discharge characteristics and cycle characteristics. Therefore, the composite graphite particles of the present invention can satisfy the recent demand for higher density of battery energy. Further, the device on which the negative electrode material and the lithium secondary battery of the present invention are mounted can be reduced in size and improved in performance, and can widely contribute to society.

評価用のボタン型二次電池の断面を説明する図。FIG. 4 illustrates a cross section of a button secondary battery for evaluation. 電極密度−プレス圧力相関図。The electrode density-press pressure correlation diagram.

符号の説明Explanation of reference numerals

1:外装カップ
2:負極(作用電極)
3:外装缶
4:正極(対極)
5:セパレーター
6:絶縁ガスケット
7a:集電体
7b:集電体
1: External cup 2: Negative electrode (working electrode)
3: Outer can 4: Positive electrode (counter electrode)
5: separator 6: insulating gasket 7a: current collector 7b: current collector

Claims (28)

鱗片状黒鉛を機械的外力で造粒球状化した球状黒鉛粒子が、炭化後に複合黒鉛粒子の0.50〜20質量%となる、樹脂単独または樹脂とピッチとの混合物を加熱炭化してなる炭素材によって被覆されていることを特徴とする複合黒鉛粒子。   Spheroidal graphite particles obtained by granulating flaky graphite by mechanical external force become 0.50 to 20% by mass of the composite graphite particles after carbonization, and are obtained by heating and carbonizing a resin alone or a mixture of a resin and a pitch. Composite graphite particles characterized by being coated with a material. 樹脂が、フェノール樹脂またはフェノール樹脂の前駆体またはフェノール樹脂のモノマー混合物である請求項1に記載の複合黒鉛粒子。   The composite graphite particles according to claim 1, wherein the resin is a phenol resin, a precursor of the phenol resin, or a monomer mixture of the phenol resin. ピッチが、石油系または石炭系ピッチである請求項1に記載の複合黒鉛粒子。   The composite graphite particles according to claim 1, wherein the pitch is a petroleum-based or coal-based pitch. 樹脂とピッチとの混合割合が、樹脂/ピッチ=5/95〜100/0(質量比)である請求項1に記載の複合黒鉛粒子。   The composite graphite particles according to claim 1, wherein the mixing ratio of the resin and the pitch is such that the resin / pitch is 5/95 to 100/0 (mass ratio). 造粒球状化した球状黒鉛粒子が、平均粒径が5〜60μm、アスペクト比が3以下、比表面積が0.5〜10m2/gおよびX線回折の測定値であるLcが40nm以上、Laが40nm以上、d002が0.337nm以下、アルゴンレーザーを用いたラマン分光法により測定した1360cm-1ピーク強度(I1360)と1580cm-1ピーク強度(I1580)の比I1360/I1580(R値)が0.06〜0.30、および1580cm-1バンドの半値幅が10〜60である高結晶性の人造または天然黒鉛からなる請求項1に記載の複合黒鉛粒子。 The granulated spheroidal graphite particles have an average particle diameter of 5 to 60 μm, an aspect ratio of 3 or less, a specific surface area of 0.5 to 10 m 2 / g, and a measured Lc value of X-ray diffraction of 40 nm or more, La Is 40 nm or more and d 002 is 0.337 nm or less, and the ratio I 1360 / I 1580 (I 1360 ) of 1360 cm −1 peak intensity (I 1360 ) and 1580 cm −1 peak intensity (I 1580 ) measured by Raman spectroscopy using an argon laser. The composite graphite particle according to claim 1, comprising a highly crystalline artificial or natural graphite having an R value of 0.06 to 0.30 and a half width of 1580 cm- 1 band of 10 to 60. 炭素材が、アルゴンレーザーを用いたラマン分光法により測定した1360cm-1ピーク強度(I1360)と1580cm-1ピーク強度(I1580)の比I1360/I1580(R値)が0.05〜0.40である請求項1に記載の複合黒鉛粒子。 When the carbon material has a ratio I 1360 / I 1580 (R value) of 1360 cm −1 peak intensity (I 1360 ) and 1580 cm −1 peak intensity (I 1580 ) measured by Raman spectroscopy using an argon laser of 0.05 to 50%. The composite graphite particle according to claim 1, wherein the particle diameter is 0.40. 鱗片状黒鉛を機械的外力で造粒球状化した球状黒鉛粒子を、樹脂単独または樹脂とピッチとの混合物で被覆し、該被覆粒子を熱処理して被覆層を炭化することを特徴とする請求項1〜6の何れか1項に記載の複合黒鉛粒子の製造方法。   The spheroidal graphite is granulated and spheroidized by mechanical external force, and the spherical graphite particles are coated with a resin alone or a mixture of a resin and a pitch, and the coated particles are heat-treated to carbonize the coating layer. The method for producing composite graphite particles according to any one of 1 to 6. 球状黒鉛粒子を、樹脂単独または樹脂とピッチとの混合物で被覆した後、空気中または不活性雰囲気下において200〜300℃で熱処理後、2,000〜3,200℃で焼成する請求項7に記載の複合黒鉛粒子の製造方法。   The method according to claim 7, wherein the spherical graphite particles are coated with a resin alone or a mixture of a resin and a pitch, then heat-treated at 200 to 300 ° C in the air or in an inert atmosphere, and then calcined at 2,000 to 3,200 ° C. A method for producing the composite graphite particles according to the above. 請求項1〜6の何れか1項に記載の複合黒鉛粒子からなることを特徴とするリチウムイオン二次電池負極材。   A negative electrode material for a lithium ion secondary battery, comprising the composite graphite particles according to claim 1. 請求項1〜6の何れか1項に記載の複合黒鉛粒子が、負極材として使用されていることを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery, wherein the composite graphite particles according to any one of claims 1 to 6 are used as a negative electrode material. 黒鉛に、樹脂材料を含有する炭化可能材料を混合し、得られた混合物を2,000℃〜3,200℃で炭化する複合黒鉛粒子の製造方法において、炭化後に、複合黒鉛粒子の0.50〜20質量%が炭化可能材料を加熱炭化してなる炭素材になるように炭化可能材料を混合することを特徴とする複合黒鉛粒子の製造方法。   In a method for producing composite graphite particles, in which a carbonizable material containing a resin material is mixed with graphite and the resulting mixture is carbonized at 2,000 to 3,200 ° C., after carbonization, 0.50 of the composite graphite particles is produced. A method for producing composite graphite particles, wherein a carbonizable material is mixed so that about 20% by mass of the carbonizable material is carbonized by heating and carbonizing the carbonizable material. 炭化可能材料が、樹脂材料とタール類との混合物であり、かつ樹脂材料/タール類=5/95〜100/0(質量比)である請求項11に記載の複合黒鉛粒子の製造方法。   The method for producing composite graphite particles according to claim 11, wherein the carbonizable material is a mixture of a resin material and tars, and the ratio of resin material / tars is 5/95 to 100/0 (mass ratio). 樹脂材料が、樹脂の原料および樹脂の前駆体からなる群より選ばれる少なくとも1種である請求項11または12に記載の複合黒鉛粒子の製造方法。   The method for producing composite graphite particles according to claim 11 or 12, wherein the resin material is at least one selected from the group consisting of resin raw materials and resin precursors. 樹脂材料が、熱硬化性樹脂の原料および熱硬化性樹脂の前駆体からなる群より選ばれる少なくとも1種である請求項11または12に記載の複合黒鉛粒子の製造方法。   The method for producing composite graphite particles according to claim 11 or 12, wherein the resin material is at least one selected from the group consisting of a thermosetting resin raw material and a thermosetting resin precursor. 熱硬化性樹脂が、フェノール樹脂である請求項14に記載の複合黒鉛粒子の製造方法。   The method for producing composite graphite particles according to claim 14, wherein the thermosetting resin is a phenol resin. 黒鉛が、鱗片状黒鉛を造粒したものである請求項11〜15の何れか1項に記載の複合黒鉛粒子の製造方法。   The method for producing composite graphite particles according to any one of claims 11 to 15, wherein the graphite is obtained by granulating flaky graphite. 前記黒鉛に、樹脂材料を含有する炭化可能材料を混合し、得られた混合物を炭化するに先だって該混合物を200〜300℃で加熱した後炭化する請求項11〜16の何れか1項に記載の複合黒鉛粒子の製造方法。   17. The graphite according to claim 11, wherein a carbonizable material containing a resin material is mixed with the graphite, and the mixture is heated at 200 to 300 ° C. and carbonized before carbonizing the obtained mixture. Of producing composite graphite particles. 黒鉛の少なくとも表面部分に炭化後に複合黒鉛粒子の0.50〜20質量%となる、樹脂材料を含有する炭化可能材料を加熱炭化してなる炭素材を有することを特徴とする複合黒鉛粒子。   Composite graphite particles comprising a carbon material obtained by heating and carbonizing a carbonizable material containing a resin material in an amount of 0.50 to 20% by mass of the composite graphite particles after carbonization on at least a surface portion of the graphite. X線回折の面間隔d002が0.337nm未満である黒鉛の少なくとも表面部分に、炭素材を有する複合黒鉛粒子であって、複合黒鉛粒子のアスペクト比が3以下で、複合黒鉛粒子のラマンスペクトルにおける1580cm-1のピーク強度(I1580)に対する1360cm-1のピーク強度(I1360)の比(I1580)/(I1360)が0.1以上から0.3未満である請求項18に記載の複合黒鉛粒子。 A Raman spectrum of a composite graphite particle having a carbon material on at least a surface portion of graphite having a plane spacing d 002 of less than 0.337 nm in X-ray diffraction, wherein the composite graphite particle has an aspect ratio of 3 or less. The ratio (I 1580 ) / (I 1360 ) of the peak intensity (I 1360 ) at 1360 cm −1 to the peak intensity (I 1580 ) at 1580 cm −1 is 0.1 or more and less than 0.3 at 20. Composite graphite particles. 炭素材のX線回折の面間隔d002が、0.343nm未満で、かつ黒鉛の面間隔d002に対する比が1.001以上から1.02未満である請求項19に記載の複合黒鉛粒子。 20. The composite graphite particles according to claim 19, wherein the plane distance d 002 of the carbon material in X-ray diffraction is less than 0.343 nm, and the ratio of the plane distance d 002 of the graphite to the plane distance d 002 is from 1.001 or more to less than 1.02. 炭化可能材料が、樹脂材料とタール類との混合物であり、かつ樹脂材料/タール類=5/95〜100/0(質量比)である請求項18〜20の何れか1項に記載の複合黒鉛粒子。   The composite according to any one of claims 18 to 20, wherein the carbonizable material is a mixture of a resin material and tars, and the ratio of resin material / tars is 5/95 to 100/0 (mass ratio). Graphite particles. 樹脂材料が、樹脂の原料および樹脂の前駆体からなる群より選ばれる少なくとも1種である請求項18〜21の何れか1項に記載の複合黒鉛粒子。   The composite graphite particles according to any one of claims 18 to 21, wherein the resin material is at least one selected from the group consisting of a resin raw material and a resin precursor. 樹脂材料が、熱硬化性樹脂の原料および熱硬化性樹脂の前駆体からなる群より選ばれる少なくとも1種である請求項18〜21の何れか1項に記載の複合黒鉛粒子。   The composite graphite particles according to any one of claims 18 to 21, wherein the resin material is at least one selected from the group consisting of a raw material of a thermosetting resin and a precursor of the thermosetting resin. 熱硬化性樹脂が、フェノール樹脂である請求項23に記載の複合黒鉛粒子。   The composite graphite particles according to claim 23, wherein the thermosetting resin is a phenol resin. 黒鉛が、鱗片状黒鉛を造粒したものである請求項18〜24の何れか1項に記載の複合黒鉛粒子。   The composite graphite particles according to any one of claims 18 to 24, wherein the graphite is obtained by granulating flaky graphite. 請求項18〜25の何れか1項に記載の複合黒鉛粒子を含むことを特徴とするリチウムイオン二次電池負極材。   A negative electrode material for a lithium ion secondary battery, comprising the composite graphite particles according to any one of claims 18 to 25. 請求項26に記載のリチウムイオン二次電池負極材を用いたことを特徴とする負極。   A negative electrode comprising the negative electrode material for a lithium ion secondary battery according to claim 26. 請求項27に記載の負極を用いたことを特徴とするリチウムイオン二次電池。   A lithium ion secondary battery comprising the negative electrode according to claim 27.
JP2003423522A 2002-12-19 2003-12-19 Method for producing composite graphite particles Expired - Lifetime JP4215633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2003423522A JP4215633B2 (en) 2002-12-19 2003-12-19 Method for producing composite graphite particles

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2002368514 2002-12-19
JP2003423522A JP4215633B2 (en) 2002-12-19 2003-12-19 Method for producing composite graphite particles

Publications (2)

Publication Number Publication Date
JP2004210634A true JP2004210634A (en) 2004-07-29
JP4215633B2 JP4215633B2 (en) 2009-01-28

Family

ID=32828809

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2003423522A Expired - Lifetime JP4215633B2 (en) 2002-12-19 2003-12-19 Method for producing composite graphite particles

Country Status (1)

Country Link
JP (1) JP4215633B2 (en)

Cited By (33)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019397A (en) * 2003-06-05 2005-01-20 Showa Denko Kk Carbon material for battery electrode, its manufacturing method, and use
WO2005043653A1 (en) * 2003-10-31 2005-05-12 Showa Denko K.K. Carbon material for battery electrode and production method and use thereof
WO2007000982A1 (en) * 2005-06-27 2007-01-04 Mitsubishi Chemical Corporation Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
WO2007072858A1 (en) * 2005-12-21 2007-06-28 Showa Denko K. K. Composite graphite particles and lithium rechargeable battery using the same
WO2008093724A1 (en) * 2007-01-31 2008-08-07 Sumitomo Metal Industries, Ltd. Carbon material and process for producing the carbon material
JP2008239391A (en) * 2007-03-27 2008-10-09 Sumitomo Bakelite Co Ltd Carbon material, method for manufacturing the same, negative electrode material for secondary cell and nonaqueous electrolyte secondary cell
KR100868135B1 (en) 2007-04-16 2008-11-10 엘에스엠트론 주식회사 Anode active material for secondary battery and method for preparing thereof and secondary battery containing the same for anode
JP2009533835A (en) * 2007-05-29 2009-09-17 エルエス エムトロン リミテッド Anode material for secondary battery and secondary battery using the same
WO2010100764A1 (en) * 2009-03-02 2010-09-10 Showa Denko K.K. Composite graphite particles and lithium secondary battery using the same
JP2011084429A (en) * 2009-10-15 2011-04-28 Osaka Gas Co Ltd Carbon material, and method for producing carbon material and graphite material
JP2011173770A (en) * 2010-02-25 2011-09-08 Hitachi Chem Co Ltd Graphite particle, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
KR101068621B1 (en) 2008-06-09 2011-09-28 주식회사 엘지화학 Secondary battery improving over-discharge property
WO2011125577A1 (en) * 2010-03-31 2011-10-13 住友金属工業株式会社 Modified natural graphite particle and method for producing same
JP2012059708A (en) * 2003-06-05 2012-03-22 Showa Denko Kk Lithium secondary battery
JP2012109175A (en) * 2010-11-19 2012-06-07 Honda Motor Co Ltd Anode material for lithium-ion secondary battery and method for producing the same
WO2012077653A1 (en) * 2010-12-08 2012-06-14 日本コークス工業株式会社 Negative electrode material for lithium ion secondary batteries, and method for producing same
JP2012221951A (en) * 2011-04-01 2012-11-12 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, method for manufacturing the same, negative electrode for lithium secondary battery, and lithium secondary battery
EP2695857A1 (en) * 2011-04-08 2014-02-12 Chuo Denki Kogyo Co., Ltd. Modified natural graphite particles
CN103647083A (en) * 2013-11-15 2014-03-19 成都兴能新材料有限公司 Preparation method of composite graphitic carbon cathode material
WO2014057690A1 (en) 2012-10-12 2014-04-17 昭和電工株式会社 Composite carbon particle and lithium-ion secondary cell using same
US8728518B2 (en) 2004-08-27 2014-05-20 Cspc Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd Butylphthalide self-emulsifying drug delivery system, its preparation and method and application
JP2014114197A (en) * 2012-12-12 2014-06-26 Nippon Coke & Engineering Co Ltd Method for producing spheroidized graphite particle
CN104103807A (en) * 2013-04-12 2014-10-15 华为技术有限公司 Silicon-carbon composite anode material, preparation method thereof and lithium ion battery
JP2015008125A (en) * 2013-05-28 2015-01-15 Jfeケミカル株式会社 Method for manufacturing composite graphite particles for lithium ion secondary battery negative electrode
JP2015053291A (en) * 2014-12-01 2015-03-19 三菱化学株式会社 Method for manufacturing graphite material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2015207412A (en) * 2014-04-18 2015-11-19 Jfeケミカル株式会社 Manufacturing method of composite graphite particle for lithium ion secondary battery negative electrode
JP2016146343A (en) * 2015-02-04 2016-08-12 Jfeケミカル株式会社 Carbon material for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode and method of manufacturing lithium ion secondary battery
WO2016136524A1 (en) * 2015-02-24 2016-09-01 昭和電工株式会社 Carbon material, method for manufacturing same, and use thereof
JP2017505517A (en) * 2014-01-24 2017-02-16 エキョンペトロケミカル シーオー., エルティーディー.Aekyungpetrochemical Co., Ltd. Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
CN111699580A (en) * 2018-02-09 2020-09-22 积水化学工业株式会社 Carbon material, electrode for electricity storage device, and nonaqueous electrolyte secondary battery
WO2021095719A1 (en) * 2019-11-11 2021-05-20 昭和電工株式会社 Composite material, manufacturing method therefor, negative electrode material for lithium ion secondary battery, and the like
WO2023008646A1 (en) * 2021-07-29 2023-02-02 주식회사 엘피엔 Novel granulated spherical graphite, secondary battery comprising same as anode active material, and method for preparing granulated spherical graphite
JP2023523088A (en) * 2020-06-03 2023-06-01 ウン チョン、ヨン Method for producing novel granulated spherical graphite

Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302595A (en) * 1994-05-09 1995-11-14 Asahi Organic Chem Ind Co Ltd Manufacture of carbon particle and negative electrode containing this carbon particle
JPH10116605A (en) * 1996-10-11 1998-05-06 Tokai Carbon Co Ltd Lithium secondary battery negative electrode material and its manufacture
JPH10158005A (en) * 1996-08-08 1998-06-16 Hitachi Chem Co Ltd Graphite particle, its production, graphite paste using the same, negative electrode of lithium secondary cell and lithium secondary cell
JPH1154123A (en) * 1997-05-30 1999-02-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH11329436A (en) * 1998-04-02 1999-11-30 Samsung Display Devices Co Ltd Negative electrode active material for lithium ion battery and its manufacture and lithium ion battery
JPH11354122A (en) * 1998-05-21 1999-12-24 Samsung Display Devices Co Ltd Lithium secondary battery negative electrode active material and lithium secondary battery
JP2000340232A (en) * 1998-11-27 2000-12-08 Mitsubishi Chemicals Corp Carbon material for electrode and nonaqueous secondary battery using the same
JP2002083601A (en) * 2000-09-06 2002-03-22 Toshiba Corp Positive electrode and nonaqueous electrolyte secondary battery
JP2002289190A (en) * 2001-03-26 2002-10-04 Sec Corp Lithium secondary battery, carbon negative electrode material for it, and manufacturing method thereof
JP2004031038A (en) * 2002-06-25 2004-01-29 Nippon Carbon Co Ltd Negative electrode material for high-performance lithium ion secondary battery using natural graphite, its manufacturing method and lithium ion secondary battery using it
JP2004063321A (en) * 2002-07-30 2004-02-26 Jfe Chemical Corp Composite graphitic particle, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2004179015A (en) * 2002-11-28 2004-06-24 Nippon Carbon Co Ltd Anode material for lithium-ion secondary battery, its manufacturing method and battery using this

Patent Citations (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302595A (en) * 1994-05-09 1995-11-14 Asahi Organic Chem Ind Co Ltd Manufacture of carbon particle and negative electrode containing this carbon particle
JPH10158005A (en) * 1996-08-08 1998-06-16 Hitachi Chem Co Ltd Graphite particle, its production, graphite paste using the same, negative electrode of lithium secondary cell and lithium secondary cell
JPH10116605A (en) * 1996-10-11 1998-05-06 Tokai Carbon Co Ltd Lithium secondary battery negative electrode material and its manufacture
JPH1154123A (en) * 1997-05-30 1999-02-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JPH11329436A (en) * 1998-04-02 1999-11-30 Samsung Display Devices Co Ltd Negative electrode active material for lithium ion battery and its manufacture and lithium ion battery
JPH11354122A (en) * 1998-05-21 1999-12-24 Samsung Display Devices Co Ltd Lithium secondary battery negative electrode active material and lithium secondary battery
JP2000340232A (en) * 1998-11-27 2000-12-08 Mitsubishi Chemicals Corp Carbon material for electrode and nonaqueous secondary battery using the same
JP2002083601A (en) * 2000-09-06 2002-03-22 Toshiba Corp Positive electrode and nonaqueous electrolyte secondary battery
JP2002289190A (en) * 2001-03-26 2002-10-04 Sec Corp Lithium secondary battery, carbon negative electrode material for it, and manufacturing method thereof
JP2004031038A (en) * 2002-06-25 2004-01-29 Nippon Carbon Co Ltd Negative electrode material for high-performance lithium ion secondary battery using natural graphite, its manufacturing method and lithium ion secondary battery using it
JP2004063321A (en) * 2002-07-30 2004-02-26 Jfe Chemical Corp Composite graphitic particle, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2004179015A (en) * 2002-11-28 2004-06-24 Nippon Carbon Co Ltd Anode material for lithium-ion secondary battery, its manufacturing method and battery using this

Cited By (61)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005019397A (en) * 2003-06-05 2005-01-20 Showa Denko Kk Carbon material for battery electrode, its manufacturing method, and use
JP2012059708A (en) * 2003-06-05 2012-03-22 Showa Denko Kk Lithium secondary battery
WO2005043653A1 (en) * 2003-10-31 2005-05-12 Showa Denko K.K. Carbon material for battery electrode and production method and use thereof
JP2005158718A (en) * 2003-10-31 2005-06-16 Showa Denko Kk Carbon material for battery electrode, and manufacturing method and use thereof
JP2012164681A (en) * 2003-10-31 2012-08-30 Showa Denko Kk Evaluation method of carbon material for battery electrodes
CN100464448C (en) * 2003-10-31 2009-02-25 昭和电工株式会社 Carbon material for battery electrode and production method and use thereof
US8728518B2 (en) 2004-08-27 2014-05-20 Cspc Zhongqi Pharmaceutical Technology (Shijiazhuang) Co., Ltd Butylphthalide self-emulsifying drug delivery system, its preparation and method and application
US7897283B2 (en) 2005-06-27 2011-03-01 Mitsubishi Chemical Corporation Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing IT, cathode and non-aqueous secondary battery
WO2007000982A1 (en) * 2005-06-27 2007-01-04 Mitsubishi Chemical Corporation Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing it, cathode and non-aqueous secondary battery
EP1967493A4 (en) * 2005-12-21 2012-02-22 Showa Denko Kk Composite graphite particles and lithium rechargeable battery using the same
JP5225690B2 (en) * 2005-12-21 2013-07-03 昭和電工株式会社 Composite graphite particles and lithium secondary battery using the same
WO2007072858A1 (en) * 2005-12-21 2007-06-28 Showa Denko K. K. Composite graphite particles and lithium rechargeable battery using the same
US8999580B2 (en) 2005-12-21 2015-04-07 Show A Denko K.K. Composite graphite particles and lithium rechargeable battery using the same
WO2008093724A1 (en) * 2007-01-31 2008-08-07 Sumitomo Metal Industries, Ltd. Carbon material and process for producing the carbon material
JP4840449B2 (en) * 2007-01-31 2011-12-21 中央電気工業株式会社 Carbon material and manufacturing method thereof
JP2012046419A (en) * 2007-01-31 2012-03-08 Chuo Denki Kogyo Co Ltd Method for producing carbon material
US8394530B2 (en) 2007-01-31 2013-03-12 Chuo Denki Kogyo Co., Ltd. Carbon material and a process for its manufacture
JPWO2008093724A1 (en) * 2007-01-31 2010-05-20 住友金属工業株式会社 Carbon material and manufacturing method thereof
JP2008239391A (en) * 2007-03-27 2008-10-09 Sumitomo Bakelite Co Ltd Carbon material, method for manufacturing the same, negative electrode material for secondary cell and nonaqueous electrolyte secondary cell
KR100868135B1 (en) 2007-04-16 2008-11-10 엘에스엠트론 주식회사 Anode active material for secondary battery and method for preparing thereof and secondary battery containing the same for anode
JP2009533835A (en) * 2007-05-29 2009-09-17 エルエス エムトロン リミテッド Anode material for secondary battery and secondary battery using the same
KR101068621B1 (en) 2008-06-09 2011-09-28 주식회사 엘지화학 Secondary battery improving over-discharge property
US20120196193A1 (en) * 2009-03-02 2012-08-02 Ls Mtron Ltd. Composite graphite particles and lithium secondary battery using the same
JP2012519124A (en) * 2009-03-02 2012-08-23 昭和電工株式会社 Composite graphite particles and lithium secondary battery using the same
WO2010100764A1 (en) * 2009-03-02 2010-09-10 Showa Denko K.K. Composite graphite particles and lithium secondary battery using the same
JP2011084429A (en) * 2009-10-15 2011-04-28 Osaka Gas Co Ltd Carbon material, and method for producing carbon material and graphite material
JP2011173770A (en) * 2010-02-25 2011-09-08 Hitachi Chem Co Ltd Graphite particle, negative electrode for lithium ion secondary battery using the same, and lithium ion secondary battery
WO2011125577A1 (en) * 2010-03-31 2011-10-13 住友金属工業株式会社 Modified natural graphite particle and method for producing same
KR101421860B1 (en) * 2010-03-31 2014-07-22 신닛테츠스미킨 카부시키카이샤 Modified natural graphite particle and method for producing same
JP5492980B2 (en) * 2010-03-31 2014-05-14 新日鐵住金株式会社 Modified natural graphite particles and method for producing the same
JP2012109175A (en) * 2010-11-19 2012-06-07 Honda Motor Co Ltd Anode material for lithium-ion secondary battery and method for producing the same
US9312532B2 (en) 2010-12-08 2016-04-12 Nippon Coke & Engineering Co., Ltd. Negative electrode material for lithium ion secondary batteries, and method for producing same
JP5898628B2 (en) * 2010-12-08 2016-04-06 日本コークス工業株式会社 Negative electrode material for lithium ion secondary battery and method for producing the same
WO2012077653A1 (en) * 2010-12-08 2012-06-14 日本コークス工業株式会社 Negative electrode material for lithium ion secondary batteries, and method for producing same
JP2012221951A (en) * 2011-04-01 2012-11-12 Hitachi Chem Co Ltd Negative electrode material for lithium secondary battery, method for manufacturing the same, negative electrode for lithium secondary battery, and lithium secondary battery
EP2695857A1 (en) * 2011-04-08 2014-02-12 Chuo Denki Kogyo Co., Ltd. Modified natural graphite particles
JPWO2012137770A1 (en) * 2011-04-08 2014-07-28 中央電気工業株式会社 Modified natural graphite particles
EP2695857A4 (en) * 2011-04-08 2014-09-17 Chuo Denki Kogyo Co Ltd Modified natural graphite particles
US9614218B2 (en) 2012-10-12 2017-04-04 Showa Denko K.K. Composite carbon particle and lithium-ion secondary cell using same
WO2014057690A1 (en) 2012-10-12 2014-04-17 昭和電工株式会社 Composite carbon particle and lithium-ion secondary cell using same
KR101635491B1 (en) 2012-10-12 2016-07-01 쇼와 덴코 가부시키가이샤 Composite carbon particle and lithium-ion secondary cell using same
KR20150043384A (en) 2012-10-12 2015-04-22 쇼와 덴코 가부시키가이샤 Composite carbon particle and lithium-ion secondary cell using same
JP2014114197A (en) * 2012-12-12 2014-06-26 Nippon Coke & Engineering Co Ltd Method for producing spheroidized graphite particle
CN104103807A (en) * 2013-04-12 2014-10-15 华为技术有限公司 Silicon-carbon composite anode material, preparation method thereof and lithium ion battery
JP2015008125A (en) * 2013-05-28 2015-01-15 Jfeケミカル株式会社 Method for manufacturing composite graphite particles for lithium ion secondary battery negative electrode
CN103647083A (en) * 2013-11-15 2014-03-19 成都兴能新材料有限公司 Preparation method of composite graphitic carbon cathode material
JP2017505517A (en) * 2014-01-24 2017-02-16 エキョンペトロケミカル シーオー., エルティーディー.Aekyungpetrochemical Co., Ltd. Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2015207412A (en) * 2014-04-18 2015-11-19 Jfeケミカル株式会社 Manufacturing method of composite graphite particle for lithium ion secondary battery negative electrode
JP2015053291A (en) * 2014-12-01 2015-03-19 三菱化学株式会社 Method for manufacturing graphite material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016146343A (en) * 2015-02-04 2016-08-12 Jfeケミカル株式会社 Carbon material for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode and method of manufacturing lithium ion secondary battery
CN107207258B (en) * 2015-02-24 2019-09-27 昭和电工株式会社 Carbon material, its manufacturing method and application thereof
CN107207258A (en) * 2015-02-24 2017-09-26 昭和电工株式会社 Carbon material, its manufacture method and application thereof
JPWO2016136524A1 (en) * 2015-02-24 2017-11-30 昭和電工株式会社 Carbon material, its production method and its use
WO2016136524A1 (en) * 2015-02-24 2016-09-01 昭和電工株式会社 Carbon material, method for manufacturing same, and use thereof
US10508038B2 (en) 2015-02-24 2019-12-17 Showa Denko K.K. Carbon material, method for manufacturing same, and use thereof
CN111699580A (en) * 2018-02-09 2020-09-22 积水化学工业株式会社 Carbon material, electrode for electricity storage device, and nonaqueous electrolyte secondary battery
WO2021095719A1 (en) * 2019-11-11 2021-05-20 昭和電工株式会社 Composite material, manufacturing method therefor, negative electrode material for lithium ion secondary battery, and the like
JP2023523088A (en) * 2020-06-03 2023-06-01 ウン チョン、ヨン Method for producing novel granulated spherical graphite
JP7315800B2 (en) 2020-06-03 2023-07-26 ウン チョン、ヨン Method for producing novel granulated spherical graphite
US11746019B2 (en) 2020-06-03 2023-09-05 Young Woon JEONG Method for producing conglomeration graphite
WO2023008646A1 (en) * 2021-07-29 2023-02-02 주식회사 엘피엔 Novel granulated spherical graphite, secondary battery comprising same as anode active material, and method for preparing granulated spherical graphite

Also Published As

Publication number Publication date
JP4215633B2 (en) 2009-01-28

Similar Documents

Publication Publication Date Title
JP4215633B2 (en) Method for producing composite graphite particles
KR100704096B1 (en) Composite graphite particles and production method therefor, and cathode material of lithium ion secondary battery and lithium ion secondary battery using this
KR101661050B1 (en) Composite graphite material, method for producing same, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JP5473886B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6240586B2 (en) Graphite particles for negative electrode material of lithium ion secondary battery, negative electrode of lithium ion secondary battery and lithium ion secondary battery
JP4040381B2 (en) Composite graphite particles, method for producing the same, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
KR100702980B1 (en) Composite particle and negative electrode material using the same, negative electrode and lithium ion secondary battery
JP4996830B2 (en) Metal-graphitic particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5671110B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018092916A (en) Carbonous coated graphite particles for lithium ion secondary battery negative electrode material, method for manufacturing the same, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4839180B2 (en) Carbon powder and manufacturing method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6278870B2 (en) Method for producing carbonaceous coated graphite particles, and method for producing negative electrode for lithium ion secondary battery containing the same
KR20040007548A (en) Mesophase spherular graphitized substance, anode material, anode, and lithium ion secondary battery using same
JP4171259B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JP4707570B2 (en) Method for producing fine graphite particles
JP7189109B2 (en) Method for producing carbonaceous-coated graphite particles
JP6322525B2 (en) Method for producing carbon-coated graphite particles
JP6085259B2 (en) Method for producing carbon-coated graphite particles for lithium ion secondary battery negative electrode, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP5865273B2 (en) Method for producing graphite material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20050214

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080110

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080430

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080626

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080729

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20080929

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20081028

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20081104

R150 Certificate of patent or registration of utility model

Ref document number: 4215633

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111114

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121114

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131114

Year of fee payment: 5

EXPY Cancellation because of completion of term