JP2015008125A - Method for manufacturing composite graphite particles for lithium ion secondary battery negative electrode - Google Patents

Method for manufacturing composite graphite particles for lithium ion secondary battery negative electrode Download PDF

Info

Publication number
JP2015008125A
JP2015008125A JP2014087259A JP2014087259A JP2015008125A JP 2015008125 A JP2015008125 A JP 2015008125A JP 2014087259 A JP2014087259 A JP 2014087259A JP 2014087259 A JP2014087259 A JP 2014087259A JP 2015008125 A JP2015008125 A JP 2015008125A
Authority
JP
Japan
Prior art keywords
graphite particles
carbonaceous
negative electrode
carbonaceous precursor
solvent
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2014087259A
Other languages
Japanese (ja)
Other versions
JP6194276B2 (en
Inventor
正規 齋藤
Masanori Saito
正規 齋藤
▲高▼木 嘉則
嘉則 ▲高▼木
Yoshinori Takagi
哲夫 塩出
Tetsuo Shiode
哲夫 塩出
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Priority to JP2014087259A priority Critical patent/JP6194276B2/en
Publication of JP2015008125A publication Critical patent/JP2015008125A/en
Application granted granted Critical
Publication of JP6194276B2 publication Critical patent/JP6194276B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a method for manufacturing composite graphite particles as a negative electrode material for a lithium ion secondary battery by which a high discharge capacity, high initial charge and discharge efficiencies, an excellent high-temperature resistance, and a low resistance can be achieved.SOLUTION: A method for manufacturing composite graphite particles comprises: a first mixing step in which graphite particles (b) are obtained by mixing graphite particles (a) having cavities inside, a carbonaceous precursor (x), and a solvent to fill the cavities inside the graphite particles (a) with the liquid solution of the carbonaceous precursor (x) and the solvent; a second mixing step in which graphite particles (c) are obtained by mixing the graphite particles (b) and a carbonaceous precursor (y) to cause the carbonaceous precursor (y) to deposit on the surface of the graphite particles (b) subsequently to the first mixing step; and a baking step in which composite graphite particles (d) that are the graphite particles (a) inside and surfaces of which are coated with carbonaceous material are obtained by baking the graphite particles (c) obtained by the second mixing step under an inactive atmosphere at a temperature of 700-1400°C to change the carbonaceous precursor (x) and the carbonaceous precursor (y) into the carbonaceous material.

Description

本発明は、リチウムイオン二次電池用負極用複合黒鉛粒子の製造方法に関する。   The present invention relates to a method for producing composite graphite particles for a negative electrode for a lithium ion secondary battery.

近年、電子機器の高性能化はもちろん、ハイブリッド自動車や電気自動車の普及により、リチウムイオン二次電池の高性能化に対する要望がますます高まっている。
リチウムイオン二次電池の負極材料として、リチウムイオンを吸蔵・放出する能力を有し、かつ、リチウム金属の析出を防止し得る炭素材料を用いることが一般的である。炭素材料には、黒鉛結晶性構造から乱層構造などの多種多様な構造、組織または形態を有するものが知られており、おのおの充放電時の電極特性が大きく異なる。その中でも黒鉛は、特に充放電特性に優れ、高い放電容量と電位平坦性とを示すことが知られている(特許文献1)。
In recent years, demand for higher performance of lithium ion secondary batteries has been increasing due to the spread of hybrid vehicles and electric vehicles as well as higher performance of electronic devices.
As a negative electrode material for a lithium ion secondary battery, it is common to use a carbon material that has the ability to occlude and release lithium ions and can prevent the precipitation of lithium metal. Carbon materials having a wide variety of structures, structures, or forms such as a graphite crystalline structure to a turbulent layer structure are known, and the electrode characteristics during charging and discharging are greatly different. Among them, it is known that graphite is particularly excellent in charge / discharge characteristics and exhibits high discharge capacity and potential flatness (Patent Document 1).

黒鉛材料は、その黒鉛構造が発達するほど、つまり、高結晶であるほど、安定したリチウム層間化合物を形成しやすくなり、リチウムが炭素網面間に挿入されやすくなることで、高い放電容量を得られることが報告されている。一般的に、炭素負極材料の理論容量は、黒鉛とリチウムとの理想的な黒鉛層間化合物LiCが形成された場合を想定した、放電容量372mAh/gであるとされている。 As the graphite structure develops, that is, the higher the crystal structure is, the more easily a stable lithium intercalation compound is formed, and lithium is more easily inserted between the carbon network surfaces, thereby obtaining a high discharge capacity. Has been reported. In general, the theoretical capacity of the carbon anode material is assumed to be a discharge capacity of 372 mAh / g, assuming that an ideal graphite intercalation compound LiC 6 of graphite and lithium is formed.

その一方で、黒鉛を負極材料としたリチウムイオン二次電池での問題もある。例えば、黒鉛の結晶性が高くなるにつれ、初回の充電時に黒鉛表面で、電解液の分解などの、電池反応に関与しない副反応が起こりやすくなり、その後の充電−放電過程で電気量として取り出すことができない、不可逆容量と呼ばれる放電容量ロスの増加が挙げられる。
電解液の分解などの副反応は、主に反応活性が高い部分で生じる。そのため、分解生成物が表面に堆積、成長することで、反応活性が高い部分が少なくなるまで継続する。
このような不可逆容量の増加、すなわち、低い初期充放電効率は、二次電池中への正極材の追加により補償することができるが、余分な正極材の添加は、エネルギー密度の減少という新たな問題を生じるため、避けることが望ましい。
On the other hand, there is a problem with a lithium ion secondary battery using graphite as a negative electrode material. For example, as the crystallinity of graphite increases, side reactions that do not participate in battery reactions, such as decomposition of the electrolyte, are likely to occur on the graphite surface during the first charge, and the amount of electricity is taken out during the subsequent charge-discharge process. An increase in discharge capacity loss called irreversible capacity cannot be mentioned.
Side reactions such as the decomposition of the electrolytic solution mainly occur in the portion with high reaction activity. Therefore, it continues until the decomposition product accumulates on the surface and grows, and the part with high reaction activity decreases.
Such an increase in irreversible capacity, that is, a low initial charge / discharge efficiency can be compensated for by adding a positive electrode material to the secondary battery, but the addition of excess positive electrode material is a new energy density decrease. It is desirable to avoid it because it causes problems.

上記のように、黒鉛を負極材料として用いたリチウムイオン二次電池では、高い放電容量と低い不可逆容量とは相反する要求であるが、これを解決するものとして、高結晶性黒鉛材料(核)の表面を低結晶性材料で被覆して、多層構造とする方法も提案されている。   As described above, in a lithium ion secondary battery using graphite as a negative electrode material, a high discharge capacity and a low irreversible capacity are contradictory requirements, but as a solution to this, a highly crystalline graphite material (nucleus) There has also been proposed a method in which the surface is coated with a low crystalline material to form a multilayer structure.

具体的には、核となる高結晶性黒鉛材料の表面を、プロパン、ベンゼンなどの有機化合物の熱分解ガスを用いて、低結晶性炭素で被覆するもの(特許文献2)、核となる高結晶性黒鉛材料に、ピッチなどの炭素材料を液相で被覆または含浸した後、1000℃程度の温度で焼成して、表層に炭素質物を形成するもの(特許文献3)、黒鉛結晶性材料または生コークスなどの黒鉛前駆体を、酸化性雰囲気中気相または液相で300℃程度で酸化処理するもの(特許文献4)、これらを組み合わせたもの(特許文献5)などである。   Specifically, the surface of a highly crystalline graphite material that serves as a nucleus is coated with low crystalline carbon using a pyrolysis gas of an organic compound such as propane or benzene (Patent Document 2), A crystalline graphite material is coated or impregnated with a carbon material such as pitch in a liquid phase and then fired at a temperature of about 1000 ° C. to form a carbonaceous material on the surface layer (Patent Document 3), a graphite crystalline material or A graphite precursor such as raw coke is oxidized at a gas phase or a liquid phase in an oxidizing atmosphere at about 300 ° C. (Patent Document 4), or a combination thereof (Patent Document 5).

しかしながら、特許文献2に記載の方法および特許文献5に記載の方法は、工業的生産の観点からは製造工程が煩雑でコストが高いという問題があり、さらに特許文献2に記載の方法は、被覆厚みのコントロールが困難なため、安定して高い電極性能や粉体性能を発揮させることができないという問題がある。   However, the method described in Patent Document 2 and the method described in Patent Document 5 have a problem that the manufacturing process is complicated and expensive from the viewpoint of industrial production. Further, the method described in Patent Document 2 is a coating method. Since it is difficult to control the thickness, there is a problem that high electrode performance and powder performance cannot be exhibited stably.

特公昭62−23433号公報Japanese Examined Patent Publication No. 62-23433 特開平4−368778号公報JP-A-4-368778 特開平5−121066号公報Japanese Patent Laid-Open No. 5-121066 特開平10−326611号公報JP-A-10-326611 特開平10−214615号公報JP-A-10-214615

このような被覆従来技術の課題として、低い抵抗(ハイレート特性に優れる)と高温耐久性との両立が挙げられる。
つまり、被覆厚みを薄くすれば、低結晶材料による抵抗は小さくなるが、基材となる高結晶黒鉛材料の露出が多くなり、高温耐久性に不安が残る。反対に被覆厚みを厚くすれば、高温耐久性は優れるが、抵抗が高くなるおそれがある。このように低い抵抗と高温耐久性とは相反することが多い。
被覆により高い放電容量と低い不可逆容量とを達成できることについて述べられたものはあるが(特開平9−213328号公報)、低い抵抗と高温耐久性とについては言及されていない。
As a subject of such conventional coating techniques, there is a compatibility between low resistance (excellent in high rate characteristics) and high temperature durability.
That is, if the coating thickness is reduced, the resistance due to the low crystal material is reduced, but the exposure of the high crystal graphite material serving as the base material is increased, and there is concern about high temperature durability. On the contrary, if the coating thickness is increased, the high-temperature durability is excellent, but the resistance may be increased. Thus, low resistance and high temperature durability often conflict.
Although there has been stated that high discharge capacity and low irreversible capacity can be achieved by coating (JP-A-9-213328), there is no mention of low resistance and high-temperature durability.

上記のような状況に鑑みて、本発明は、リチウムイオン二次電池用負極材料として用いたときに、高い放電容量および高い初期充放電効率を達成することができ、さらに優れた高温耐久性および低抵抗をともに得られる複合黒鉛質粒子の製造方法を提供することを目的とする。   In view of the situation as described above, the present invention can achieve high discharge capacity and high initial charge / discharge efficiency when used as a negative electrode material for a lithium ion secondary battery. It aims at providing the manufacturing method of the composite graphite particle | grains which can obtain low resistance together.

本発明者は、リチウムイオン二次電池用負極材として、高い放電容量および初期充放電効率、さらに優れた高温耐久性および低抵抗がともに得られる複合黒鉛質粒子について、鋭意検討した。
その結果、原料として内部に空隙もしくは細孔を有する黒鉛粒子を用い、その表面を低結晶性材料で被覆するにあたり、最初に黒鉛粒子と炭素質前駆体と溶媒とを混合し、黒鉛粒子内に含浸させることにより、黒鉛粒子の内部を被覆し、さらに、炭素質前駆体を加えて黒鉛粒子の外部を被覆、焼成し、炭素質前駆体を炭素質物に変化させることにより、高い放電容量、初期充放電効率、優れた高温耐久性および低抵抗をともに得られる複合黒鉛質粒子が得られることを見出した。
これは最初の工程で、炭素質前駆体と溶媒とを混合した液相で黒鉛粒子の内部空隙を満たすことにより、炭素質前駆体中の低沸点成分および溶媒はその後の焼成工程で揮発するため、黒鉛粒子が持つ細孔構造を確保した被覆が行われ低抵抗を確保できる。また、次工程の固相での黒鉛粒子外部の被覆により、元来配向し易い黒鉛粒子の配向性を抑制出来るため高温耐久性が確保できると考えられる。また、この複合黒鉛粒子は、全工程を通じて、元の黒鉛構造を維持しつつ、低結晶性の炭素質前駆体により黒鉛粒子の内外とも被覆されているため、高い放電容量と初期充放電効率を発現すると考えられる。
すなわち、本発明は、以下の(1)〜(6)である。
As a negative electrode material for a lithium ion secondary battery, the present inventor has intensively studied composite graphite particles capable of obtaining both high discharge capacity and initial charge / discharge efficiency, and excellent high-temperature durability and low resistance.
As a result, when using graphite particles having voids or pores inside as a raw material and coating the surface with a low crystalline material, the graphite particles, the carbonaceous precursor, and the solvent are first mixed, By impregnating, the inside of the graphite particles is coated, and further, a carbonaceous precursor is added to coat and sinter the outside of the graphite particles, and the carbonaceous precursor is changed to a carbonaceous material, so that a high discharge capacity, initial It has been found that composite graphite particles can be obtained which can obtain both charge / discharge efficiency, excellent high-temperature durability and low resistance.
This is the first step. By filling the internal voids of the graphite particles with a liquid phase in which the carbonaceous precursor and solvent are mixed, the low boiling point components and solvent in the carbonaceous precursor are volatilized in the subsequent firing step. In addition, a coating that ensures the pore structure of the graphite particles is performed, and low resistance can be secured. In addition, it is considered that high temperature durability can be secured because the orientation of graphite particles that are originally easily oriented can be suppressed by the coating of the graphite particles outside in the solid phase in the next step. In addition, the composite graphite particles are covered with the low crystalline carbonaceous precursor both inside and outside the graphite particles while maintaining the original graphite structure throughout the entire process, so that high discharge capacity and initial charge / discharge efficiency are achieved. It is thought to develop.
That is, this invention is the following (1)-(6).

(1)内部に空隙を有する黒鉛粒子(a)と炭素質前駆体(x)と溶媒とを混合し、前記黒鉛粒子(a)の内部の空隙を前記炭素質前駆体(x)と前記溶媒との溶液で満たして、前記黒鉛粒子(a)の内部の空隙が前記溶液で満たされた黒鉛粒子(b)を得る第一混合工程と、
前記第一混合工程の後、続けて、前記黒鉛粒子(b)と、炭素質前駆体(y)とを混合し、前記黒鉛粒子(b)の表面に前記炭素質前駆体(y)を付着させて、前記黒鉛粒子(b)の表面に前記炭素質前駆体(y)が付着した黒鉛粒子(c)を得る第二混合工程と、
前記第二混合工程で得られた黒鉛粒子(c)を、不活性雰囲気下、700〜1400℃の温度で焼成し、前記炭素質前駆体(x)および前記炭素質前駆体(y)を炭素質物に変化させ、前記黒鉛粒子(a)の内部および表面が炭素質物で被覆された複合黒鉛粒子(d)を得る焼成工程と
を有することを特徴とするリチウムイオン二次電池負極用複合黒鉛粒子の製造方法。
(2)前記黒鉛粒子(a)が、複数の黒鉛粒子が集合して形成された造粒黒鉛粒子であることを特徴とする、上記(1)に記載のリチウムイオン二次電池負極用複合黒鉛粒子の製造方法。
(3)前記炭素質物の含有量が前記複合黒鉛粒子(d)の1〜20質量%であることを特徴とする、上記(1)または(2)に記載のリチウムイオン二次電池負極用複合黒鉛粒子の製造方法。
(4)前記第一混合工程において、前記炭素質前駆体(x)および前記溶媒による炭素質物の含有量が全炭素質物の含有量の5〜40質量%である、上記(1)〜(3)のいずれか1つに記載のリチウムイオン二次電池負極用複合黒鉛粒子の製造方法。
(5)前記第二混合工程において、前記炭素質前駆体(y)による炭素質物の含有量が全炭素質物の含有量の60〜95質量%である、上記(1)〜(4)のいずれか1つに記載のリチウムイオン二次電池負極用複合黒鉛粒子の製造方法。
(6)さらに、
前記黒鉛粒子(c)を、不活性雰囲気下、200℃以上、700℃未満の温度で仮焼する仮焼工程
を、前記第二混合工程の後、かつ前記焼成工程の前に有する、上記(1)〜(5)のいずれか1つに記載のリチウムイオン二次電池負極用複合黒鉛粒子の製造方法。
(1) The graphite particles (a) having voids therein, the carbonaceous precursor (x), and the solvent are mixed, and the voids inside the graphite particles (a) are mixed with the carbonaceous precursor (x) and the solvent. And a first mixing step of obtaining graphite particles (b) in which the voids inside the graphite particles (a) are filled with the solution,
After the first mixing step, the graphite particles (b) and the carbonaceous precursor (y) are mixed, and the carbonaceous precursor (y) is attached to the surface of the graphite particles (b). A second mixing step of obtaining graphite particles (c) having the carbonaceous precursor (y) attached to the surfaces of the graphite particles (b);
The graphite particles (c) obtained in the second mixing step are fired at a temperature of 700 to 1400 ° C. in an inert atmosphere to convert the carbonaceous precursor (x) and the carbonaceous precursor (y) to carbon. And a firing step for obtaining composite graphite particles (d) in which the inside and surface of the graphite particles (a) are coated with a carbonaceous material. Manufacturing method.
(2) The composite graphite for a negative electrode of a lithium ion secondary battery according to (1), wherein the graphite particles (a) are granulated graphite particles formed by aggregating a plurality of graphite particles. Particle production method.
(3) The composite for a negative electrode of a lithium ion secondary battery according to (1) or (2), wherein the content of the carbonaceous material is 1 to 20% by mass of the composite graphite particles (d). A method for producing graphite particles.
(4) Said (1)-(3) whose content of carbonaceous material by said carbonaceous precursor (x) and said solvent is 5-40 mass% of content of all the carbonaceous materials in said 1st mixing process. ) For producing composite graphite particles for negative electrodes of lithium ion secondary batteries.
(5) In the second mixing step, any of the above (1) to (4), wherein the carbonaceous material content of the carbonaceous precursor (y) is 60 to 95% by mass of the total carbonaceous material content. The manufacturing method of the composite graphite particle for lithium ion secondary battery negative electrodes as described in any one.
(6) Furthermore,
The calcining step of calcining the graphite particles (c) at a temperature of 200 ° C. or higher and lower than 700 ° C. in an inert atmosphere, after the second mixing step and before the baking step, The manufacturing method of the composite graphite particle for lithium ion secondary battery negative electrodes as described in any one of 1)-(5).

本発明によれば、容量、初回充放電効率およびサイクル特性とともに、ハイレート特性にも優れる(抵抗値の小さい)リチウムイオン二次電池用負極材料の製造方法を提供することができる。   ADVANTAGE OF THE INVENTION According to this invention, the manufacturing method of the negative electrode material for lithium ion secondary batteries which is excellent also in a high rate characteristic (small resistance value) can be provided with a capacity | capacitance, initial stage charge / discharge efficiency, and cycling characteristics.

実施例において充放電試験に用いるためのボタン型リチウムイオン二次電池の構造を示す模式断面図である。It is a schematic cross section which shows the structure of the button-type lithium ion secondary battery for using for a charging / discharging test in an Example.

以下に本発明を詳細に説明する。
まず、本発明の先行技術と対比した特徴を述べる。
本発明の特徴は、内部に空隙を有する黒鉛粒子の内部の空隙を、炭素質前駆体と溶媒との溶液で満たした後、続けて、前記溶液で内部の空隙を満たした黒鉛粒子の表面に、さらに炭素質前駆体を付着させる点にある。
このようにして得られた中間物質を焼成することにより、表面に孔を有する複合黒鉛粒子を得ることができ、複合黒鉛粒子の表面に孔があるため、電解質の出入りがしやすくなって、抵抗値が小さくなり、ハイレート特性も優れたものになると考えられる。黒鉛粒子の内部の空隙を、炭素質前駆体と溶媒との溶液で満たした後、乾燥させたり、焼成したりした場合には、表面に孔が生じないと考えられ、このような効果は得られない。
なお、複合黒鉛粒子の表面の孔は、中間物質を焼成する際に、黒鉛粒子表面の炭素質前駆体の被覆を突き破って、黒鉛粒子内部空隙から炭素質前駆体の揮発分や溶液が蒸発することにより形成されるものであると本発明者は予想しているが、これのみに限定されるものではない。
The present invention is described in detail below.
First, features in contrast to the prior art of the present invention will be described.
A feature of the present invention is that after filling the voids inside the graphite particles having voids inside with a solution of a carbonaceous precursor and a solvent, the surface of the graphite particles filling the voids inside with the above solution is continuously provided. Further, the carbonaceous precursor is attached.
By firing the intermediate material thus obtained, composite graphite particles having pores on the surface can be obtained, and the surface of the composite graphite particles has pores. It is considered that the value becomes smaller and the high rate characteristic becomes excellent. When the voids inside the graphite particles are filled with a solution of a carbonaceous precursor and a solvent and then dried or fired, it is considered that no pores are formed on the surface, and this effect is obtained. I can't.
The pores on the surface of the composite graphite particles break through the coating of the carbonaceous precursor on the surface of the graphite particles when the intermediate substance is fired, and the volatile matter and solution of the carbonaceous precursor evaporate from the voids inside the graphite particles. Although the present inventor expects that it is formed by this, it is not limited to this.

特開2004−63457号公報には、黒鉛性炭素質物と第一の有機化合物とを混合する第一次混合工程と、得られた第一の混合物を加熱処理して該第一の有機化合物を炭素化する第一焼成工程と、得られた複合炭素質物と第二の有機化合物とを混合する第二次混合工程と、得られた第二の混合物を加熱処理して該第二の有機化合物を炭素化する第二焼成工程とを有することを特徴とする電極用炭素材料の製造方法(先行発明1)が記載されている。本発明では、第一混合工程の後、続いて第二混合工程を行うのに対し、先行発明1では、第一次混合工程の後、第一焼成工程を行い、その後第二次混合工程を行う点が相違する。この相違により、引用発明1の炭素材料は粒子表面に適当量の孔が形成されないものと考えられる。その結果として、本発明の複合黒鉛粒子を負極材料として用いるリチウムイオン二次電池は、先行発明1の炭素材料を負極材料として用いるリチウムイオン二次電池に比べて、抵抗値およびハイレート特性が優れると考えられる。   Japanese Patent Application Laid-Open No. 2004-63457 discloses a primary mixing step of mixing a graphitic carbonaceous material and a first organic compound, and heat-treating the obtained first mixture to obtain the first organic compound. A first firing step for carbonization; a second mixing step for mixing the obtained composite carbonaceous material and the second organic compound; and a second mixture obtained by heat-treating the second organic compound. A method for producing a carbon material for electrodes (prior invention 1), characterized in that it comprises a second firing step for carbonizing the carbon. In the present invention, the second mixing step is subsequently performed after the first mixing step, whereas in the first invention, the first firing step is performed after the first mixing step, and then the second mixing step is performed. The point to do is different. Due to this difference, it is considered that the carbon material of Cited Invention 1 does not form an appropriate amount of pores on the particle surface. As a result, the lithium ion secondary battery using the composite graphite particles of the present invention as a negative electrode material is superior in resistance value and high rate characteristics as compared with the lithium ion secondary battery using the carbon material of the prior invention 1 as a negative electrode material. Conceivable.

特開2003−100293号公報には、乾性油またはその脂肪酸とフェノール樹脂とを含む組成物を炭素質粉体に付着させる付着工程と、該炭素質粉体を硬化する硬化工程と、該炭素質粉体を非酸化性雰囲気下で熱処理する焼成工程とを含み、前記付着工程と前記硬化工程とを1回以上20回以下繰り返した後、前記焼成工程を行うことを特徴とする炭素材料の製造方法(先行発明2)が記載されている。本発明では、第一混合工程の後、続いて第二混合工程を行い、その後焼成工程を行うのに対し、先行発明2では、付着工程の後、硬化工程を行い、さらに、付着工程および硬化工程を繰り返した後、焼成工程を行う点が相違する。この相違により、引用発明2の炭素材料は粒子表面に適当量の孔が形成されないものと考えられる。その結果として、本発明の複合黒鉛粒子を負極材料として用いるリチウムイオン二次電池は、先行発明2の炭素材料を負極材料として用いるリチウムイオン二次電池に比べて、抵抗値およびハイレート特性が優れると考えられる。   Japanese Patent Application Laid-Open No. 2003-1000029 discloses an attachment step of attaching a composition containing a drying oil or a fatty acid thereof and a phenol resin to a carbonaceous powder, a curing step of curing the carbonaceous powder, and the carbonaceous material. And a baking step of heat-treating the powder in a non-oxidizing atmosphere, wherein the adhesion step and the curing step are repeated at least once and not more than 20 times, and then the baking step is performed. A method (prior invention 2) is described. In the present invention, after the first mixing step, the second mixing step is subsequently performed, and then the firing step is performed, whereas in the prior invention 2, the curing step is performed after the adhesion step, and further the adhesion step and the curing step. The point which performs a baking process after repeating a process is different. Due to this difference, it is considered that the carbon material of Cited Invention 2 does not form an appropriate amount of pores on the particle surface. As a result, the lithium ion secondary battery using the composite graphite particles of the present invention as a negative electrode material is superior in resistance value and high rate characteristics as compared with the lithium ion secondary battery using the carbon material of the prior invention 2 as a negative electrode material. Conceivable.

(1)原料の選択
本発明の原料に用いられる黒鉛粒子(原料黒鉛粒子)としては、内部に空隙を有する黒鉛粒子(「黒鉛粒子(a)」ともいう。)であれば特に限定しないが、麟片状の天然黒鉛粒子または人造黒鉛粒子を造粒したものは、粒子内部の空隙が多く好ましい。
これらの黒鉛粒子は嵩密度が低く、0.4〜0.7g/cm程度が一般的である。
(1) Selection of raw material The graphite particles (raw material graphite particles) used for the raw material of the present invention are not particularly limited as long as they are graphite particles having voids inside (also referred to as “graphite particles (a)”). Those obtained by granulating flake-shaped natural graphite particles or artificial graphite particles have many voids inside the particles and are preferable.
These graphite particles have a low bulk density and are generally about 0.4 to 0.7 g / cm 3 .

黒鉛粒子(a)の平均的な結晶性は、X線広角回折法における炭素網面層の面間隔(d002)および結晶子のC軸方向の大きさ(Lc)から判定することができる。すなわち、CuKα線をX線源、高純度シリコンを標準物質に使用して、複合黒鉛質粒子に対し(002)面の回折ピークを測定し、そのピーク位置およびその半値幅より、それぞれd002およびLcを算出する。算出方法は学振法に従うものであり、具体的な方法はJIS R 7651:2007 「炭素材料の格子定数及び結晶子の大きさ測定方法」に記載されている。   The average crystallinity of the graphite particles (a) can be determined from the interplanar spacing (d002) of the carbon network layer and the size of the crystallite in the C-axis direction (Lc) in the X-ray wide angle diffraction method. That is, using a CuKα ray as an X-ray source and high-purity silicon as a standard substance, a diffraction peak on the (002) plane was measured for the composite graphite particles, and d002 and Lc were determined from the peak position and its half width, respectively. Is calculated. The calculation method conforms to the Gakushin method, and a specific method is described in JIS R 7651: 2007 “Method for measuring the lattice constant and crystallite size of a carbon material”.

黒鉛粒子(a)のd002およびLcは、リチウムのドープ量をより大きくし、より高い放電容量を発現させる観点から、d002≦0.3365nm、Lc≧40nmが好ましく、d002≦0.3362nm、Lc≧50nmがより好ましい。   D002 and Lc of the graphite particles (a) are preferably d002 ≦ 0.3365 nm and Lc ≧ 40 nm, and d002 ≦ 0.3362 nm, Lc ≧ 40 nm from the viewpoint of increasing the doping amount of lithium and expressing a higher discharge capacity. 50 nm is more preferable.

黒鉛粒子(a)の平均粒子径は、リチウムイオン二次電池用負極の厚みにもよるが、好ましくは5〜100μmであり、より好ましくは5〜30μmである。
なお、黒鉛粒子(a)の平均粒子径は、レーザー回折式粒度分布計の累積度数が体積百分率で50%となる粒子径(D50)である。
The average particle diameter of the graphite particles (a) is preferably 5 to 100 μm, more preferably 5 to 30 μm, although it depends on the thickness of the negative electrode for a lithium ion secondary battery.
The average particle size of the graphite particles (a) is a particle size (D50) at which the cumulative frequency of the laser diffraction particle size distribution meter is 50% by volume.

また、黒鉛粒子(a)の比表面積は、特に限定されないが、得られる複合黒鉛粒子の比表面積が小さすぎないように、4m/g以上が好ましい。また比表面積が大きすぎると、電極密度の低下および電池特性における初期充放電効率、高温耐久性の低下などを招くため、20m/g以下が好ましく、15〜5m/gがさらに好ましい。
なお、比表面積は、窒素吸着BET比表面積である。
The specific surface area of the graphite particles (a) is not particularly limited, but is preferably 4 m 2 / g or more so that the specific surface area of the obtained composite graphite particles is not too small. On the other hand, if the specific surface area is too large, the electrode density is lowered, the initial charge / discharge efficiency in battery characteristics and the high temperature durability are lowered, and the like is preferably 20 m 2 / g or less, more preferably 15 to 5 m 2 / g.
The specific surface area is a nitrogen adsorption BET specific surface area.

炭素質前駆体(x)としては、固定炭素を含むものであれば特に限定しないが、コールタールピッチや石炭系重質油、熱処理ピッチなどの重質油が好ましい。   The carbonaceous precursor (x) is not particularly limited as long as it contains fixed carbon, but heavy oils such as coal tar pitch, coal-based heavy oil, and heat-treated pitch are preferable.

溶媒としては、使用する炭素質前駆体(x)の少なくとも一部を溶解するものであれば特に限定しない。溶媒を用いることにより、炭素質前駆体(x)を黒鉛粒子(a)内部に浸透しやすくし、かつ均一に塗布できるようにする。   The solvent is not particularly limited as long as it dissolves at least a part of the carbonaceous precursor (x) to be used. By using a solvent, the carbonaceous precursor (x) can easily penetrate into the graphite particles (a) and can be applied uniformly.

炭素質前駆体(x)と溶媒との溶液は、炭素質前駆体(x)と溶媒との混合物であって、炭素質前駆体(x)の溶媒可溶成分の少なくとも一部が溶媒に溶解したものである。炭素質前駆体(x)またはその溶媒可溶成分の全部が溶媒に溶解していなくてもよい。   The solution of the carbonaceous precursor (x) and the solvent is a mixture of the carbonaceous precursor (x) and the solvent, and at least a part of the solvent-soluble component of the carbonaceous precursor (x) is dissolved in the solvent. It is a thing. The carbonaceous precursor (x) or all of its solvent-soluble components may not be dissolved in the solvent.

また、炭素質前駆体(x)および溶媒は、あらかじめ混合して炭素質前駆体(x)と溶媒との溶液としてから、黒鉛粒子(a)と混合してもよい。   The carbonaceous precursor (x) and the solvent may be mixed in advance to form a solution of the carbonaceous precursor (x) and the solvent, and then mixed with the graphite particles (a).

炭素質前駆体(y)としては、固定炭素を含むものであれば特に限定しないが、コールタールピッチや石炭系重質油、熱処理ピッチなどの重質油が好ましく、炭素質前駆体(x)と同一であってもよいし、異なっていてもよい。また、炭素質前駆体(y)は、固相であってもよいし、固相でなくてもよく、溶融物であってもよい。なお、炭素質前駆体(y)は溶媒を含まない。   The carbonaceous precursor (y) is not particularly limited as long as it contains fixed carbon, but heavy oils such as coal tar pitch, coal-based heavy oil, and heat-treated pitch are preferred, and the carbonaceous precursor (x) May be the same or different. In addition, the carbonaceous precursor (y) may be a solid phase, may not be a solid phase, and may be a melt. The carbonaceous precursor (y) does not contain a solvent.

(2)混合比
本発明においては、通常、黒鉛粒子(a)と炭素質前駆体(x)と溶媒とを混合し、さらに炭素質前駆体(y)を加えた後、仮焼きまたは炭化焼成することで、最終的に黒鉛粒子内外が炭素質物で被覆された複合黒鉛粒子(d)を得るが、内外の炭素質前駆体由来の被覆膜を必要最小限に抑えることで、リチウムイオン二次電池用負極材料としたときの電池特性を最適化することができる。つまり、複合黒鉛粒子中の炭素質物の含有量(含有率、質量%)は、好ましくは1〜20質量%、より好ましくは1〜18質量%、さらに好ましくは2〜7質量%である。
(2) Mixing ratio In the present invention, usually, the graphite particles (a), the carbonaceous precursor (x), and the solvent are mixed, and after further adding the carbonaceous precursor (y), calcining or carbonization firing. As a result, composite graphite particles (d) in which the inside and outside of the graphite particles are coated with a carbonaceous material are finally obtained, but by reducing the coating film derived from the inside and outside carbonaceous precursors to the necessary minimum, lithium ion secondary particles can be obtained. Battery characteristics when used as a negative electrode material for a secondary battery can be optimized. That is, the content (content ratio, mass%) of the carbonaceous material in the composite graphite particles is preferably 1 to 20 mass%, more preferably 1 to 18 mass%, and further preferably 2 to 7 mass%.

炭素質物の含有量は、使用する炭素質物前駆体および溶媒の質量と、それぞれの残炭率とから計算でき、残炭率は、有機物の種類および混合割合により決定される。予め、JIS M 8812:2004 「石炭類及びコークス類−工業分析方法」により定められた試験法により、炭素質前駆体および溶媒の残炭率を測定し、式1により、炭素質物の含有量が好ましい範囲に入るように調整する。   The content of the carbonaceous material can be calculated from the mass of the carbonaceous material precursor and the solvent to be used and the remaining carbon ratio, and the residual carbon ratio is determined by the type and mixing ratio of the organic material. The residual carbon ratio of the carbonaceous precursor and the solvent is measured in advance by a test method defined by JIS M 8812: 2004 “Coal and cokes—industrial analysis method”. Adjust to be within the preferred range.

Figure 2015008125
Figure 2015008125

式1中、A、BおよびCは、それぞれ、以下のものである。
A=第一混合工程で使用する炭素質前駆体の残炭率×第一混合工程で使用する炭素質前駆体の質量
B=第一混合工程で使用する溶媒の残炭率×第一混合工程で使用する溶媒の質量
C=第二混合工程で使用する炭素質前駆体の残炭率×第二混合工程で使用する炭素質前駆体の質量
In Formula 1, A, B, and C are respectively the following.
A = carbon residue of carbonaceous precursor used in the first mixing step × mass of carbonaceous precursor used in the first mixing step = residual carbon rate of solvent used in the first mixing step × first mixing step Mass of solvent used in C = carbon residue ratio of carbonaceous precursor used in the second mixing step × mass of carbonaceous precursor used in the second mixing step

また、使用する溶媒量については、黒鉛粒子(a)100質量部に対して、好ましくは6〜80質量部、より好ましくは12〜48質量部となるように溶媒を加える。この範囲内であると、炭素質前駆体(x)と溶媒との溶液で黒鉛粒子(a)の内部空隙を十分に満たすことができ、しかも炭素質前駆体(y)を黒鉛粒子(b)の外部に十分な被覆膜を形成することができる。
本発明において、かかる溶媒が少なすぎると、第一混合工程において黒鉛粒子(a)の内部の空隙を、炭素質前駆体(x)と溶媒との溶液で満たすことができず、黒鉛粒子内部の被覆が達成されない。一方、溶媒が多すぎる場合には第二混合工程において、残留する溶媒に有機物が溶解し、黒鉛粒子外部の被覆を行うことができない。
Moreover, about the solvent amount to be used, it adds 6-80 mass parts with respect to 100 mass parts of graphite particles (a), More preferably, a solvent is added so that it may become 12-48 mass parts. Within this range, the internal voids of the graphite particles (a) can be sufficiently filled with the solution of the carbonaceous precursor (x) and the solvent, and the carbonaceous precursor (y) is converted into the graphite particles (b). A sufficient coating film can be formed on the outside.
In the present invention, if the amount of the solvent is too small, the voids inside the graphite particles (a) cannot be filled with the solution of the carbonaceous precursor (x) and the solvent in the first mixing step, Coating is not achieved. On the other hand, when the amount of the solvent is too large, in the second mixing step, the organic substance is dissolved in the remaining solvent, and the outside of the graphite particles cannot be coated.

本発明において、炭素質前駆体(x)および溶媒による炭素質物の含有量、すなわち、炭素質前駆体(x)と溶媒との溶液による炭素質物の含有量は、特に限定されないが、上記式(1)で計算される全炭素質物の含有量の5〜40質量%が好ましく、10〜40質量%がより好ましく、10〜30質量%がさらに好ましい。また、本発明において、炭素質前駆体(y)による炭素質物の含有量は、特に限定されないが、上記式(1)で計算される全炭素質物の含有量の60〜95質量%が好ましく、60〜90質量%がより好ましく、70〜90質量%がさらに好ましい。この範囲内であると、フルセルによる抵抗値がより低くなる。   In the present invention, the content of the carbonaceous material by the carbonaceous precursor (x) and the solvent, that is, the content of the carbonaceous material by the solution of the carbonaceous precursor (x) and the solvent is not particularly limited. 5-40 mass% of content of the total carbonaceous material calculated by 1) is preferable, 10-40 mass% is more preferable, and 10-30 mass% is further more preferable. In the present invention, the content of the carbonaceous material by the carbonaceous precursor (y) is not particularly limited, but is preferably 60 to 95% by mass of the content of all carbonaceous materials calculated by the above formula (1). 60-90 mass% is more preferable, and 70-90 mass% is further more preferable. Within this range, the resistance value due to the full cell becomes lower.

(3)製造方法
本発明にかかる複合黒鉛粒子を得るための製造方法について以下に説明する。
本発明の複合黒鉛粒子の製造方法は主に次の工程から成る。
(A)黒鉛粒子と炭素質前駆体(x)と溶媒とを混合し、混合物を得る工程(第一混合工程)。
(B)前記混合物に炭素質前駆体(y)を加え、混合し中間物質を得る工程(第二混合工程)。
(C)前記中間物質を不活性ガス雰囲気下で700〜1400℃、好ましくは900〜1400℃で加熱し、炭素化物質を得る工程(焼成工程)。所望により、焼成工程を行う前に、不活性雰囲気化において200℃以上700℃未満、好ましくは200〜500℃で仮焼する工程(仮焼工程)を行ってもよい。
なお、本発明において、仮焼工程および焼成工程を併せて、または焼成工程を単独で、炭素化工程という場合がある。
(3) Manufacturing method The manufacturing method for obtaining the composite graphite particle concerning this invention is demonstrated below.
The method for producing composite graphite particles of the present invention mainly comprises the following steps.
(A) A step of mixing a graphite particle, a carbonaceous precursor (x), and a solvent to obtain a mixture (first mixing step).
(B) A step of adding the carbonaceous precursor (y) to the mixture and mixing to obtain an intermediate material (second mixing step).
(C) A step of heating the intermediate substance at 700 to 1400 ° C., preferably 900 to 1400 ° C. in an inert gas atmosphere to obtain a carbonized substance (firing step). If desired, a step of calcining at a temperature of 200 ° C. or higher and lower than 700 ° C., preferably 200 to 500 ° C. in an inert atmosphere (calcination step) may be performed before the firing step.
In the present invention, the calcination step and the firing step may be combined or the firing step may be referred to as a carbonization step.

(A)第一混合工程
第一混合工程は、内部に空隙を有する黒鉛粒子(「黒鉛粒子(a)」ともいう。)と炭素質前駆体(x)と溶媒とを混合し、前記黒鉛粒子(a)の内部の空隙を前記炭素質前駆体(x)と前記溶媒との溶液で満たして、前記黒鉛粒子(a)の内部の空隙が前記溶液で満たされた黒鉛粒子(「黒鉛粒子(b)」ともいう。)を得る工程である。
本発明における第一混合工程では、黒鉛粒子(a)と炭素質前駆体(x)と溶媒とを混合する。炭素質前駆体(x)および溶媒は、黒鉛粒子(a)と混合する前にあらかじめ混合して、炭素質前駆体(x)と溶媒との溶液としていてもよい。第一混合工程では、室温もしくは混合槽を加熱しても良い。混合槽を加熱する場合、溶媒の粘度を低下させることができ、黒鉛粒子(a)の内部への炭素質前駆体(x)と溶媒との溶液の含浸効率を高めることができる。さらに、黒鉛粒子(a)と炭素質前駆体(x)と溶媒との混合時に混合槽内を減圧状態にすることでも、黒鉛粒子(a)の内部への炭素質前駆体(x)と溶媒との溶液の含浸効率を高めることができる。
混合装置としては、バタフライミキサーのような1枚のブレードで撹拌を行う装置、ニーダー形式のような2本のブレードによるブレード相互間及および混合槽でのせん断力により混合を行う装置、ナウタミキサー形式のような斜めに取り付けられたスクリュー軸が自転することによって原料を掻き上げながら撹拌・混合すると共にスクリュー軸自体が公転することによって、槽内全体を強力に混合する装置などを用いることができる。
(A) First mixing step In the first mixing step, graphite particles having voids therein (also referred to as “graphite particles (a)”), a carbonaceous precursor (x), and a solvent are mixed, and the graphite particles are mixed. The inside voids of (a) are filled with a solution of the carbonaceous precursor (x) and the solvent, and the inside of the graphite particles (a) is filled with the solution of graphite particles (“graphite particles ( b) "is also a step of obtaining.
In the first mixing step in the present invention, the graphite particles (a), the carbonaceous precursor (x), and the solvent are mixed. The carbonaceous precursor (x) and the solvent may be mixed in advance before mixing with the graphite particles (a) to form a solution of the carbonaceous precursor (x) and the solvent. In the first mixing step, the room temperature or the mixing tank may be heated. When the mixing tank is heated, the viscosity of the solvent can be reduced, and the impregnation efficiency of the solution of the carbonaceous precursor (x) and the solvent into the graphite particles (a) can be increased. Furthermore, the carbonaceous precursor (x) and the solvent into the graphite particles (a) can be obtained by reducing the pressure in the mixing tank when mixing the graphite particles (a), the carbonaceous precursor (x) and the solvent. The impregnation efficiency of the solution can be increased.
As a mixing device, a device that stirs with a single blade such as a butterfly mixer, a device that performs mixing by means of a shear force in the mixing tank and between two blades such as a kneader type, a Nauta mixer type An apparatus that vigorously mixes the entire interior of the tank can be used by stirring and mixing the raw materials while stirring the screw shaft attached obliquely as described above and rotating the screw shaft itself.

(B)第二混合工程
第二混合工程は、前記第一混合工程の後、続けて、前記黒鉛粒子(b)と、炭素質前駆体(y)とを混合し、前記黒鉛粒子(b)の表面に前記炭素質前駆体(y)を付着させて、前記黒鉛粒子(b)の表面に前記炭素質前駆体(y)が付着した黒鉛粒子(「黒鉛粒子(c)」ともいう。)を得る工程である。
本工程で「続けて」とは、第一混合工程と第二混合工程との間に、加熱、硬化、乾燥等の異なる工程が入らないことをいい、第一と第二の混合工程が短時間のうちに連続して行わねばならないことを規定するものではない。第一の混合工程によって得られた黒鉛粒子中の空隙内の有機溶液がそのまま存在していて顕著な変化が起こらない間に第二の混合工程が行われるのが好ましい。
第一混合工程で得られた混合物(黒鉛粒子(b))は、黒鉛粒子(a)内部に炭素質前駆体(x)の溶媒可溶成分の少なくとも一部が溶媒に溶解した溶液を保持している。混合物に固体の炭素質前駆体(y)を添加し、混合することで、黒鉛粒子(b)外部へ炭素質前駆体(y)を付着させる。炭素質前駆体(y)は溶融させて、付着させてもよい。混合装置にはナウタミキサー形式などの粉体混合装置を用いることができる。好ましくは、ニーダー形式やメカノフュージョンシステムなどのせん断力をかけることのできる混合装置を用いる。
(B) Second mixing step The second mixing step is continued after the first mixing step, and the graphite particles (b) and the carbonaceous precursor (y) are mixed, and the graphite particles (b). The carbonaceous precursor (y) is adhered to the surface of the graphite particles, and the graphite particles (b) are adhered to the surface of the graphite particles (b) (also referred to as “graphite particles (c)”). It is the process of obtaining.
“Continue” in this step means that different steps such as heating, curing, and drying do not occur between the first mixing step and the second mixing step, and the first and second mixing steps are short. It does not prescribe that it must be done continuously in time. It is preferable that the second mixing step is performed while the organic solution in the voids in the graphite particles obtained by the first mixing step exists as it is and no significant change occurs.
The mixture (graphite particles (b)) obtained in the first mixing step holds a solution in which at least a part of the solvent-soluble component of the carbonaceous precursor (x) is dissolved in the solvent inside the graphite particles (a). ing. A solid carbonaceous precursor (y) is added to the mixture and mixed to adhere the carbonaceous precursor (y) to the outside of the graphite particles (b). The carbonaceous precursor (y) may be melted and attached. A powder mixing device such as a Nauta mixer type can be used as the mixing device. Preferably, a mixing device capable of applying a shearing force such as a kneader type or a mechano-fusion system is used.

(C)炭素化工程
炭素化工程は、黒鉛粒子(c)を、不活性雰囲気下、700〜1400℃の温度で焼成し、炭素質前駆体(x)および炭素質前駆体(y)を炭素質物に変化させ、黒鉛粒子(a)の内部および表面が炭素質物で被覆された複合黒鉛粒子(「複合黒鉛粒子(d)」ともいう。)を得る焼成工程と、所望により、第二混合工程の後、かつ焼成工程の前に、黒鉛粒子(c)を、不活性雰囲気下、200℃以上、700℃未満の温度で仮焼する仮焼工程とを含む工程である。
第一混合工程および第二混合工程を通じて得られた中間物質(黒鉛粒子(c))は、本工程において、窒素ガス、アルゴンガスなどの不活性ガス雰囲気下で加熱される。加熱処理により、中間物質の熱化学反応が進行し、残留する揮発分が除去される。
焼成工程においては、熱処理温度が重要である。つまり、有機物の揮発分を除去し、固定炭素による被膜を形成するため700℃以上の熱処理を施す。700〜1400℃の温度範囲であり、好ましくは900〜1400℃の範囲である。なお、本工程に用いる装置は回分式でも連続式でもどちらでもよい。
仮焼工程において、200℃以上700℃未満、好ましくは200〜500℃で熱処理することにより、揮発成分や溶媒を飛ばして炭素質前駆体の被覆に適当量の孔を生じさせ、焼成工程において焼き縮みを減少させ、より均一に焼成することができ、得られる複合黒鉛粒子(d)の内部および外部をより適切に炭素質物で被覆することができる。
(C) Carbonization step In the carbonization step, the graphite particles (c) are calcined at a temperature of 700 to 1400 ° C in an inert atmosphere to convert the carbonaceous precursor (x) and the carbonaceous precursor (y) to carbon. A firing step of obtaining composite graphite particles (also referred to as “composite graphite particles (d)”) in which the inside and surface of the graphite particles (a) are coated with a carbonaceous material, and a second mixing step if desired. And before the firing step, a calcining step of calcining the graphite particles (c) at a temperature of 200 ° C. or higher and lower than 700 ° C. in an inert atmosphere.
In this step, the intermediate substance (graphite particles (c)) obtained through the first mixing step and the second mixing step is heated in an inert gas atmosphere such as nitrogen gas or argon gas. By the heat treatment, the thermochemical reaction of the intermediate substance proceeds, and the remaining volatile components are removed.
In the firing step, the heat treatment temperature is important. That is, heat treatment at 700 ° C. or higher is performed in order to remove the volatile matter of the organic matter and form a film of fixed carbon. It is the temperature range of 700-1400 degreeC, Preferably it is the range of 900-1400 degreeC. In addition, the apparatus used for this process may be either a batch type or a continuous type.
In the calcination step, a heat treatment is performed at 200 ° C. or more and less than 700 ° C., preferably 200 to 500 ° C., so that a volatile component and a solvent are skipped to generate an appropriate amount of holes in the coating of the carbonaceous precursor. Shrinkage can be reduced and firing can be performed more uniformly, and the resulting composite graphite particles (d) can be more appropriately coated with a carbonaceous material inside and outside.

(4)複合黒鉛粒子
上記工程によって得られた複合黒鉛粒子は、平均粒子径が、好ましくは1〜100μmであり、より好ましくは5〜30μmである。なお、複合黒鉛粒子の平均粒子径は、レーザー回折式粒度分布計の累積度数が体積百分率で50%となる粒子径(D50)である。
(4) Composite graphite particles The composite graphite particles obtained by the above process preferably have an average particle size of 1 to 100 µm, more preferably 5 to 30 µm. The average particle diameter of the composite graphite particles is a particle diameter (D50) at which the cumulative frequency of the laser diffraction particle size distribution meter is 50% by volume.

また、得られる複合黒鉛粒子の比表面積は、特に限定されないが、比表面積が小さすぎないことが好ましく、3m/g以上がより好ましい。なお、複合黒鉛粒子の比表面積は、窒素吸着BET比表面積である。 The specific surface area of the obtained composite graphite particles is not particularly limited, but the specific surface area is preferably not too small, and more preferably 3 m 2 / g or more. The specific surface area of the composite graphite particles is a nitrogen adsorption BET specific surface area.

(5)リチウムイオン二次電池用負極
上記の複合黒鉛粒子を従来公知の方法により、リチウムイオン二次電池用負極(以下「本発明の負極電極」ともいう。)として用いることができる。本発明を用いた負極電極の作製方法としては、具体的には、例えば、上記本発明の複合黒鉛粒子とバインダとを混合することによって負極合剤を調製し、この負極合剤を、集電体の片面または両面に塗布することで負極合剤層を形成する方法が挙げられる。負極合剤には、本発明の複合黒鉛粒子(複合黒鉛粒子(d))以外の活物質や、導電剤、増粘剤等を添加してもかまわない。
上記バインダは、特に限定されず、従来公知の負極合剤用バインダを用いることができるが、電解質に対して化学的安定性および電気化学的安定性を有するものを用いることが好ましい。バインダとしては、具体的には、例えば、ポリエチレン、ポリビニルアルコール、スチレンブタジエンゴム、カルボキシメチルセルロース等を単独で、または2種類以上を組み合わせて用いることができる。また、上記バインダの負極合剤中の含有量は、特に限定されないが、負極合剤の全量中、1〜20質量%とすることが好ましい。この含有量であると、負極材料の性能を妨げることなく、安定な電極を形成することができる。
本発明の負極電極の作製方法では、上記負極合剤を負極作製用の従来公知の分散媒中に分散させてペースト状にした後、集電体にドクターブレードを用いて塗布し、乾燥してもよい。上記負極合剤を上記分散媒でペースト状にして負極合剤ペーストとして用いることによって、負極合剤層がより均一かつ強固に集電体に接着されるため、好ましい。具体的には、例えば、上記負極合剤と、スチレンブタジエンゴム等の水分散粘結剤と、カルボキシメチルセルロース等の水溶性粘結剤と、水および/またはアルコール等の分散媒とを混合してスラリーとした後、ニーダー、ミキサー等を用いて混練し、負極合剤ペーストを調製することができる。この負極合剤ペーストを、集電材の片面または両面に塗布し、乾燥すれば、負極合剤層が集電材により均一に接着した負極を得ることができる。
(5) Negative electrode for lithium ion secondary battery The above composite graphite particles can be used as a negative electrode for lithium ion secondary battery (hereinafter also referred to as “negative electrode of the present invention”) by a conventionally known method. As a method for producing a negative electrode using the present invention, specifically, for example, a negative electrode mixture is prepared by mixing the composite graphite particles of the present invention and a binder, and this negative electrode mixture is collected into a current collector. The method of forming a negative mix layer by apply | coating to the single side | surface or both surfaces of a body is mentioned. An active material other than the composite graphite particles of the present invention (composite graphite particles (d)), a conductive agent, a thickener and the like may be added to the negative electrode mixture.
The binder is not particularly limited, and a conventionally known binder for negative electrode mixture can be used, but one having chemical stability and electrochemical stability with respect to the electrolyte is preferably used. Specifically, as the binder, for example, polyethylene, polyvinyl alcohol, styrene butadiene rubber, carboxymethyl cellulose and the like can be used alone or in combination of two or more. The content of the binder in the negative electrode mixture is not particularly limited, but is preferably 1 to 20% by mass in the total amount of the negative electrode mixture. With this content, a stable electrode can be formed without hindering the performance of the negative electrode material.
In the method for producing a negative electrode of the present invention, the negative electrode mixture is dispersed in a conventionally known dispersion medium for producing a negative electrode to form a paste, and then applied to a current collector using a doctor blade and dried. Also good. It is preferable that the negative electrode mixture is pasted with the dispersion medium and used as the negative electrode mixture paste, because the negative electrode mixture layer is more uniformly and firmly adhered to the current collector. Specifically, for example, the above negative electrode mixture, a water dispersion binder such as styrene butadiene rubber, a water soluble binder such as carboxymethylcellulose, and a dispersion medium such as water and / or alcohol are mixed. After making into a slurry, it can knead | mix using a kneader, a mixer, etc., and a negative mix paste can be prepared. If this negative electrode mixture paste is applied to one or both sides of the current collector and dried, a negative electrode in which the negative electrode mixture layer is uniformly bonded to the current collector can be obtained.

(6)リチウムイオン二次電池
本発明のリチウムイオン二次電池の構成としては、上記のようにして得られた負極と、公知の任意の正極と、負極と正極の間に介在し電解液を保持する公知任意のセパレータ、例えば、ポリエチレン、ポリプロピレンなどを用いることができる。電解液としては公知任意の電解液、例えば、エチレンカーボネート、プロピレンカーボネートなどの比プロトン性有機溶媒にLiClO、LiBFなどの電解質を所定濃度溶解させた非水電解液、を用いることができる。
(6) Lithium ion secondary battery As the configuration of the lithium ion secondary battery of the present invention, the negative electrode obtained as described above, any known positive electrode, and an electrolyte solution interposed between the negative electrode and the positive electrode are used. Any known separator to be held, such as polyethylene or polypropylene, can be used. As the electrolytic solution, any known electrolytic solution, for example, a non-aqueous electrolytic solution in which an electrolyte such as LiClO 4 or LiBF 4 is dissolved at a predetermined concentration in a specific protic organic solvent such as ethylene carbonate or propylene carbonate can be used.

次に実施例により、本発明をさらに詳細に説明するが、本発明はこれらの例により何ら限定されるものではない。   EXAMPLES Next, although an Example demonstrates this invention further in detail, this invention is not limited at all by these examples.

[実施例1]
1.複合黒鉛粒子の製造
(1)第一混合工程
内容積1Lのニーダー装置に複数のリン片状天然黒鉛を造粒して製造した球状化天然黒鉛粒子(内部に空隙あり)(平均粒径12μm、比表面積7.0m/g)を500g投入し、炭素質前駆体として、石炭系ピッチ(軟化点105℃、残炭率60質量%)を5g加え、さらに溶媒(メチルナフタレンとキノリンが主成分、残炭率≒0質量%)を180g加え、常圧、室温で60分撹拌した。
(2)第二混合工程
第一混合工程の後、上記と同様のニーダー装置内で同様の石炭系ピッチ(軟化点105℃、残炭率60質量%)を40g加え、60分間撹拌し、中間物質を得た。
(3)炭素化工程
得られた中間物質を、N雰囲気下で500℃、3時間保持し仮焼を行った。仮焼の後、Nガス雰囲気下で1100℃、3時間処理し、焼成を行って、複合黒鉛粒子(527g)を得た。
2.複合黒鉛粒子の分析
(1)平均粒径
得られた複合黒鉛粒子の平均粒径を、レーザー回折式粒度分布計(型式LMS−300,セイシン企業製)により測定した。結果を表1の「平均粒径」の欄に示す。
(2)比表面積
得られた複合黒鉛粒子の比表面積を、高精度ガス/蒸気吸着量測定装置(型式 BELSORP−MAX、日本ベル製)により測定した。結果を表1の「比表面積」の欄に示す。
(3)炭素質物の含有量
使用した炭素質物および溶媒の質量および残炭率と、得られた複合黒鉛粒子の質量とから、上記式1により、炭素質物の含有量を計算した。結果を表1の「炭素質物の含有量」の欄に示す。
3.電極性能評価
(1)負極の作製
製造した複合黒鉛粒子と、固形分で、1質量%のカルボキシメチルセルロースアンモニウムと、1質量%のカルボキシ変性スチレンブタジエンゴムとを混合し、分散媒として水を用い、ハイブリットミキサーにより混合および攪拌をして、負極合剤ペーストを製造した。このペーストを15μm厚みの銅箔上に塗布し、110℃の温度下にて真空乾燥させ、負極電極を作製した。
(2)ハーフセルによる電池評価
2.1)ボタン型のリチウムイオン二次電池の製造
ボタン型のリチウムイオン二次電池(図1参照)を製造した。以下、図1を参照しながら説明する。電解液が含浸されたセパレータ5を、集電体7bに密着した作用電極2と、集電材7aに密着した対極4との間に挟んで積層した。その後、作用電極2を外装カップ1内に、対極4を外装缶3内に収容して、外装カップ1と外装缶3とを合わせ、さらに、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉した。これより、外装缶3の内面から順に、ニッケルネットからなる集電体7a、リチウム箔よりなる円筒状の対極(正極)4、電解液が含浸されたセパレータ5、負極合剤からなる円盤状の作用電極(負極)2及び銅箔からなる集電体7bが積層されたボタン型二次電池を製造した。このボタン型二次電池は、作製した負極からなる作用電極2と、リチウム金属箔とからなる対極4とから構成される電池である。
2.2)放電容量および初期充放電効率の測定
製造したボタン型二次電池を用いて、以下のようにして、放電容量および初期充放電効率を測定した。
回路電圧が0mVに達するまで0.9mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続け、その間の通電量から、充電容量を求めた。その後、120分間休止した。次に、0.9mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量を求めた。
(式2)により、初期充放電効率を計算した。
初期充放電効率(%)=(放電容量/充電容量)×100 ・・・(式2)
ハーフセルによる放電容量および初期充放電効率を、それぞれ、表1の該当欄に示す。
(3)フルセルによる電池評価
3.1)ボタン型リチウムイオン二次電池の製造
LiCoO、導電材およびバインダー(93wt%:4wt%:3wt%)からなる正極を用いた点を除き、上記(2)の2.1)と同様にして、ボタン型リチウムイオン二次電池を製造した。
3.2)抵抗値の測定
製造したボタン型二次電池をSOC50%にまで充電し、0℃において0.5Cで0.1秒間放電させた時の電圧変化から、(式3)により抵抗値を求めた。
抵抗値=−(放電後の電圧 − 放電前の電圧)/電流値 ・・・(式3)
3.3)容量維持率の測定
上記(2)の2.2)と同様にして、放電容量を求めた。
60℃において、1Cの3Vから4.2Vまでの充放電を50サイクル繰り返し、50サイクル目の放電容量を求めた。
放電容量および50サイクル目の放電容量から、(式4)により容量維持率を求めた。
容量維持率(50サイクル)=(放電容量/50サイクル目の放電容量)×100 ・・・(式4)
フルセルによる抵抗値および容量維持率(50サイクル)を、それぞれ、表1の該当欄に示す。
[Example 1]
1. Production of composite graphite particles (1) First mixing step Spherical natural graphite particles produced by granulating a plurality of flake-like natural graphite in a 1 L internal volume kneader device (with voids inside) (average particle size 12 μm, 500 g of a specific surface area of 7.0 m 2 / g) is added, 5 g of coal-based pitch (softening point 105 ° C., residual carbon ratio 60% by mass) is added as a carbonaceous precursor, and a solvent (methylnaphthalene and quinoline are main components). 180 g of residual carbon ratio = 0 mass%) was added, and the mixture was stirred at normal pressure and room temperature for 60 minutes.
(2) Second mixing step After the first mixing step, 40 g of the same coal-based pitch (softening point 105 ° C., residual carbon ratio 60 mass%) is added in the same kneader apparatus as described above, and the mixture is stirred for 60 minutes. Obtained material.
(3) Carbonization process The obtained intermediate substance was calcined by holding at 500 ° C. for 3 hours under N 2 atmosphere. After calcination, it was treated at 1100 ° C. for 3 hours in an N 2 gas atmosphere, and baked to obtain composite graphite particles (527 g).
2. Analysis of Composite Graphite Particles (1) Average Particle Size The average particle size of the obtained composite graphite particles was measured with a laser diffraction particle size distribution meter (model LMS-300, manufactured by Seishin Enterprise). The results are shown in the “average particle size” column of Table 1.
(2) Specific surface area The specific surface area of the obtained composite graphite particles was measured with a high-precision gas / vapor adsorption amount measuring apparatus (model BELSORP-MAX, manufactured by Nippon Bell). The results are shown in the “specific surface area” column of Table 1.
(3) Content of carbonaceous material The content of carbonaceous material was calculated from the mass of the carbonaceous material and solvent used, the residual carbon ratio, and the mass of the obtained composite graphite particles according to the above equation 1. The results are shown in the column “Content of carbonaceous material” in Table 1.
3. Electrode performance evaluation (1) Preparation of negative electrode 1% by mass of carboxymethylcellulose ammonium and 1% by mass of carboxy-modified styrene butadiene rubber were mixed with the manufactured composite graphite particles and solid content, and water was used as a dispersion medium. The negative electrode mixture paste was manufactured by mixing and stirring with a hybrid mixer. This paste was applied onto a 15 μm thick copper foil and vacuum dried at a temperature of 110 ° C. to produce a negative electrode.
(2) Battery Evaluation by Half Cell 2.1) Manufacture of Button Type Lithium Ion Secondary Battery A button type lithium ion secondary battery (see FIG. 1) was manufactured. Hereinafter, a description will be given with reference to FIG. The separator 5 impregnated with the electrolytic solution was sandwiched between the working electrode 2 in close contact with the current collector 7b and the counter electrode 4 in close contact with the current collector 7a. Thereafter, the working electrode 2 is accommodated in the exterior cup 1, the counter electrode 4 is accommodated in the exterior can 3, the exterior cup 1 and the exterior can 3 are combined, and further, the peripheral portions of the exterior cup 1 and the exterior can 3 are insulated. Gasket 6 was interposed, and both peripheral portions were caulked and sealed. Thus, in order from the inner surface of the outer can 3, a current collector 7 a made of nickel net, a cylindrical counter electrode (positive electrode) 4 made of lithium foil, a separator 5 impregnated with an electrolytic solution, and a disk-like made of a negative electrode mixture A button-type secondary battery in which a working electrode (negative electrode) 2 and a current collector 7b made of copper foil were laminated was manufactured. This button type secondary battery is a battery composed of a working electrode 2 made of a produced negative electrode and a counter electrode 4 made of a lithium metal foil.
2.2) Measurement of discharge capacity and initial charge / discharge efficiency Using the manufactured button-type secondary battery, the discharge capacity and the initial charge / discharge efficiency were measured as follows.
After constant current charging of 0.9 mA until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA, and the charging capacity was determined from the amount of current applied during that time. Then, it rested for 120 minutes. Next, constant current discharge was performed at a current value of 0.9 mA until the circuit voltage reached 1.5 V, and the discharge capacity was obtained from the energization amount during this period.
The initial charge / discharge efficiency was calculated from (Equation 2).
Initial charge / discharge efficiency (%) = (discharge capacity / charge capacity) × 100 (Equation 2)
The discharge capacity by the half cell and the initial charge / discharge efficiency are shown in the corresponding columns of Table 1, respectively.
(3) Battery evaluation by full cell 3.1) Manufacture of button-type lithium ion secondary battery The above (2) except that a positive electrode made of LiCoO 2 , a conductive material and a binder (93 wt%: 4 wt%: 3 wt%) was used. ) To produce a button-type lithium ion secondary battery.
3.2) Measurement of resistance value From the change in voltage when the manufactured button-type secondary battery was charged to 50% SOC and discharged at 0 ° C for 0.5 second at 0.5 C, the resistance value was calculated according to (Equation 3). Asked.
Resistance value = − (Voltage after discharge−Voltage before discharge) / Current value (Equation 3)
3.3) Measurement of capacity retention rate The discharge capacity was determined in the same manner as in (2) 2.2).
At 60 ° C., charging / discharging from 3V to 4.2V of 1C was repeated 50 cycles, and the discharge capacity at the 50th cycle was determined.
From the discharge capacity and the discharge capacity at the 50th cycle, the capacity retention rate was determined by (Equation 4).
Capacity retention ratio (50 cycles) = (discharge capacity / 50th cycle discharge capacity) × 100 (Equation 4)
The resistance value and capacity retention rate (50 cycles) by the full cell are shown in the corresponding columns of Table 1, respectively.

[実施例2]
1.複合黒鉛粒子の製造
(1)第一混合工程
内容積1Lのニーダー装置に複数のリン片状黒鉛を造粒して製造した球状化天然黒鉛粒子(内部に空隙あり)(平均粒径12μm、比表面積7.0m/g)を500g投入し、有機物として、石炭系ピッチ(軟化点105℃、残炭率60質量%)を5g加え、さらに溶媒(メチルナフタレンとキノリンが主成分、残炭率≒0質量%)を180g加え、減圧下(≦9.93Torr)で、110℃、60分撹拌した。
(2)第二混合工程
第一混合工程の後、上記と同様のニーダー装置内で同様の石炭系ピッチ(軟化点105℃、残炭率60質量%)を40g加え、110℃で60分間撹拌し、中間物質を得た。
(3)炭素化工程
得られた中間物質を実施例1と同様に処理し、複合黒鉛粒子(527g)を得た。
2.複合黒鉛粒子の分析
実施例1と同様に、得られた複合黒鉛粒子の平均粒径および比表面積を測定し、炭素質物の含有量を計算した。炭素質物の含有量、平均粒径および比表面積を、それぞれ、表1の該当欄に示す。
3.電極性能評価
(1)負極の作製
実施例1と同様に負極電極を作製した。
(2)ハーフセルによる電池評価
実施例1と同様にして、放電容量および初期充放電効率を測定した。結果を表1の該当欄に示す。
(3)フルセルによる電池評価
実施例1と同様にして、抵抗値および容量維持率(50サイクル)を測定した。結果を表1の該当欄に示す。
[Example 2]
1. Production of composite graphite particles (1) First mixing step Spherical natural graphite particles produced by granulating a plurality of flake graphite in a 1 L internal volume kneader (with internal voids) (average particle size 12 μm, ratio 500 g of surface area 7.0 m 2 / g) is added, 5 g of coal-based pitch (softening point 105 ° C., residual carbon ratio 60% by mass) is added as an organic substance, and a solvent (methylnaphthalene and quinoline are main components, residual carbon ratio 180 g was added, and the mixture was stirred at 110 ° C. for 60 minutes under reduced pressure (≦ 9.93 Torr).
(2) Second mixing step After the first mixing step, 40 g of the same coal-based pitch (softening point 105 ° C., residual carbon ratio 60% by mass) is added in the same kneader apparatus as above, and the mixture is stirred at 110 ° C. for 60 minutes. Intermediate material was obtained.
(3) Carbonization process The obtained intermediate substance was processed like Example 1, and the composite graphite particle (527g) was obtained.
2. Analysis of Composite Graphite Particles As in Example 1, the average particle diameter and specific surface area of the obtained composite graphite particles were measured, and the content of carbonaceous material was calculated. The carbonaceous material content, average particle size, and specific surface area are shown in the corresponding columns of Table 1, respectively.
3. Electrode performance evaluation (1) Production of negative electrode A negative electrode was produced in the same manner as in Example 1.
(2) Battery evaluation by half cell In the same manner as in Example 1, the discharge capacity and the initial charge / discharge efficiency were measured. The results are shown in the corresponding column of Table 1.
(3) Battery evaluation by full cell In the same manner as in Example 1, the resistance value and the capacity retention ratio (50 cycles) were measured. The results are shown in the corresponding column of Table 1.

[実施例3]
1.複合黒鉛粒子の製造
(1)第一混合工程
内容積1Lのニーダー装置に複数のリン片状黒鉛を造粒して製造した球状化天然黒鉛粒子(内部に空隙あり)(平均粒径12μm、比表面積7.0m/g)を500g投入し、有機物として、石炭系ピッチ(軟化点105℃、残炭率60質量%)を5g加え、さらに溶媒(メチルナフタレンとキノリンが主成分、残炭率≒0質量%)を180g加え、減圧下(≦9.93Torr)で、110℃、60分撹拌した。
(2)第二混合工程
第一混合工程の後、上記と同様のニーダー装置内で同様の石炭系ピッチ(軟化点105℃、残炭率60質量%)を10g加え、110℃で60分間撹拌し、中間物質を得た。
(3)炭素化工程
得られた中間物質を実施例1と同様に処理し、複合黒鉛粒子(509g)を得た。
2.複合黒鉛粒子の分析
実施例1と同様に、得られた複合黒鉛粒子の平均粒径および比表面積を測定し、炭素質物の含有量を計算した。炭素質物の含有量、平均粒径および比表面積を、それぞれ、表1の該当欄に示す。
3.電極性能評価
(1)負極の作製
実施例1と同様に負極電極を作製した。
(2)ハーフセルによる電池評価
実施例1と同様にして、放電容量および初期充放電効率を測定した。結果を表1の該当欄に示す。
(3)フルセルによる電池評価
実施例1と同様にして、抵抗値および容量維持率(50サイクル)を測定した。結果を表1の該当欄に示す。
[Example 3]
1. Production of composite graphite particles (1) Spherical natural graphite particles produced by granulating a plurality of flake graphite in a 1 L kneader apparatus having an internal volume of 1 L (with internal voids) (average particle size 12 μm, ratio 500 g of surface area 7.0 m 2 / g) is added, 5 g of coal-based pitch (softening point 105 ° C., residual carbon ratio 60% by mass) is added as an organic substance, and a solvent (methylnaphthalene and quinoline are main components, residual carbon ratio 180 g was added, and the mixture was stirred at 110 ° C. for 60 minutes under reduced pressure (≦ 9.93 Torr).
(2) Second mixing step After the first mixing step, 10 g of the same coal-based pitch (softening point 105 ° C., residual carbon ratio 60% by mass) is added in the same kneader apparatus as above, and the mixture is stirred at 110 ° C. for 60 minutes. Intermediate material was obtained.
(3) Carbonization process The obtained intermediate substance was processed like Example 1, and the composite graphite particle (509g) was obtained.
2. Analysis of Composite Graphite Particles As in Example 1, the average particle diameter and specific surface area of the obtained composite graphite particles were measured, and the content of carbonaceous material was calculated. The carbonaceous material content, average particle size, and specific surface area are shown in the corresponding columns of Table 1, respectively.
3. Electrode performance evaluation (1) Production of negative electrode A negative electrode was produced in the same manner as in Example 1.
(2) Battery evaluation by half cell In the same manner as in Example 1, the discharge capacity and the initial charge / discharge efficiency were measured. The results are shown in the corresponding column of Table 1.
(3) Battery evaluation by full cell In the same manner as in Example 1, the resistance value and the capacity retention ratio (50 cycles) were measured. The results are shown in the corresponding column of Table 1.

[実施例4]
1.複合黒鉛粒子の製造
(1)第一混合工程
内容積1Lのニーダー装置に天然黒鉛粒子(平均粒径12μm、比表面積7.0m/g)を500g投入し、有機物として、石炭系ピッチ(軟化点105℃、残炭率60質量%)を5g加え、さらに溶媒(メチルナフタレンとキノリンが主成分、残炭率≒0質量%)を180g加え、減圧下(≦9.93Torr)で、110℃、60分撹拌した。
(2)第二混合工程
第一混合工程の後、上記と同様のニーダー装置内で同様の石炭系ピッチ(軟化点105℃、残炭率60質量%)を55g加え、110℃で60分間撹拌し、中間物質を得た。
(3)炭素化工程
得られた中間物質を実施例1と同様に処理し、複合黒鉛粒子(536g)を得た。
2.複合黒鉛粒子の分析
実施例1と同様に、得られた複合黒鉛粒子の平均粒径および比表面積を測定し、炭素質物の含有量を計算した。炭素質物の含有量、平均粒径および比表面積を、それぞれ、表1の該当欄に示す。
3.電極性能評価
(1)負極の作製
実施例1と同様に負極電極を作製した。
(2)ハーフセルによる電池評価
実施例1と同様にして、放電容量および初期充放電効率を測定した。結果を表1の該当欄に示す。
(3)フルセルによる電池評価
実施例1と同様にして、抵抗値および容量維持率(50サイクル)を測定した。結果を表1の該当欄に示す。
[Example 4]
1. Manufacture of composite graphite particles (1) First mixing step 500 g of natural graphite particles (average particle size 12 μm, specific surface area 7.0 m 2 / g) are put into a 1 L internal volume kneader, and coal-based pitch (softening) is used as organic matter. 5 g of a point 105 ° C. and a residual carbon ratio of 60% by mass) are added, and 180 g of a solvent (methylnaphthalene and quinoline are main components, residual carbon ratio≈0% by mass) are added, and 110 ° C. under reduced pressure (≦ 9.93 Torr). For 60 minutes.
(2) Second mixing step After the first mixing step, 55 g of the same coal-based pitch (softening point 105 ° C., residual carbon ratio 60 mass%) is added in the same kneader apparatus as above, and the mixture is stirred at 110 ° C. for 60 minutes. Intermediate material was obtained.
(3) Carbonization process The obtained intermediate substance was processed like Example 1, and the composite graphite particle (536g) was obtained.
2. Analysis of Composite Graphite Particles As in Example 1, the average particle diameter and specific surface area of the obtained composite graphite particles were measured, and the content of carbonaceous material was calculated. The carbonaceous material content, average particle size, and specific surface area are shown in the corresponding columns of Table 1, respectively.
3. Electrode performance evaluation (1) Production of negative electrode A negative electrode was produced in the same manner as in Example 1.
(2) Battery evaluation by half cell In the same manner as in Example 1, the discharge capacity and the initial charge / discharge efficiency were measured. The results are shown in the corresponding column of Table 1.
(3) Battery evaluation by full cell In the same manner as in Example 1, the resistance value and the capacity retention ratio (50 cycles) were measured. The results are shown in the corresponding column of Table 1.

[実施例5]
1.複合黒鉛粒子の製造
(1)第一混合工程
内容積1Lのニーダー装置に天然黒鉛粒子(平均粒径12μm、比表面積4.3m/g)を500g投入し、有機物として、石炭系ピッチ(軟化点105℃、残炭率60質量%)を10g加え、さらに溶媒(メチルナフタレンとキノリンが主成分、残炭率≒0質量%)を180g加え、減圧下(≦9.93Torr)で、110℃、60分撹拌した。
(2)第二混合工程
第一混合工程の後、上記と同様のニーダー装置内で同様の石炭系ピッチ(軟化点105℃、残炭率60質量%)を5g加え、110℃で60分間撹拌し、中間物質を得た。
(3)炭素化工程
得られた中間物質を実施例1と同様に処理し、複合黒鉛粒子(536g)を得た。
2.複合黒鉛粒子の分析
実施例1と同様に、得られた複合黒鉛粒子の平均粒径および比表面積を測定し、炭素質物の含有量を計算した。炭素質物の含有量、平均粒径および比表面積を、それぞれ、表1の該当欄に示す。
3.電極性能評価
(1)負極の作製
実施例1と同様に負極電極を作製した。
(2)ハーフセルによる電池評価
実施例1と同様にして、放電容量および初期充放電効率を測定した。結果を表1の該当欄に示す。
(3)フルセルによる電池評価
実施例1と同様にして、抵抗値および容量維持率(50サイクル)を測定した。結果を表1の該当欄に示す。
[Example 5]
1. Manufacture of composite graphite particles (1) First mixing step 500 g of natural graphite particles (average particle size 12 μm, specific surface area 4.3 m 2 / g) are introduced into a 1 L internal volume kneader, and coal-based pitch (softening) is used as an organic substance. 10 g of a point 105 ° C. and a residual carbon ratio of 60% by mass) are added, and 180 g of a solvent (methylnaphthalene and quinoline are main components, residual carbon ratio≈0% by mass) are added, and 110 ° C. under reduced pressure (≦ 9.93 Torr). For 60 minutes.
(2) Second mixing step After the first mixing step, 5 g of the same coal-based pitch (softening point 105 ° C., residual carbon ratio 60 mass%) is added in the same kneader apparatus as described above, and the mixture is stirred at 110 ° C. for 60 minutes. Intermediate material was obtained.
(3) Carbonization process The obtained intermediate substance was processed like Example 1, and the composite graphite particle (536g) was obtained.
2. Analysis of Composite Graphite Particles As in Example 1, the average particle diameter and specific surface area of the obtained composite graphite particles were measured, and the content of carbonaceous material was calculated. The carbonaceous material content, average particle size, and specific surface area are shown in the corresponding columns of Table 1, respectively.
3. Electrode performance evaluation (1) Production of negative electrode A negative electrode was produced in the same manner as in Example 1.
(2) Battery evaluation by half cell In the same manner as in Example 1, the discharge capacity and the initial charge / discharge efficiency were measured. The results are shown in the corresponding column of Table 1.
(3) Battery evaluation by full cell In the same manner as in Example 1, the resistance value and the capacity retention ratio (50 cycles) were measured. The results are shown in the corresponding column of Table 1.

[比較例1]
1.複合黒鉛粒子の製造
(1)混合工程
内容積1Lのニーダー装置に複数のリン片状黒鉛を造粒して製造した球状化天然黒鉛粒子(内部に空隙あり)(平均粒径12μm、比表面積7.0m/g)を500g投入し、有機物として、石炭系ピッチ(軟化点105℃、残炭率60質量%)を45g加え、さらに溶媒(メチルナフタレンとキノリンが主成分、残炭率≒0質量%)を180g加え、減圧下(≦9.93Torr)で、110℃、60分撹拌し、中間物質を得た。
(2)炭素化工程
得られた中間物質を実施例1と同様に処理し、複合黒鉛粒子(527g)を得た。
2.複合黒鉛粒子の分析
実施例1と同様に、得られた複合黒鉛粒子の平均粒径および比表面積を測定し、炭素質物の含有量を計算した。炭素質物の含有量、平均粒径および比表面積を、それぞれ、表1の該当欄に示す。
3.電極性能評価
(1)負極の作製
実施例1と同様にして、負極電極を作製した。
(2)ハーフセルによる電池評価
実施例1と同様にして、放電容量および初期充放電効率を測定した。結果を表1の該当欄に示す。
(3)フルセルによる電池評価
実施例1と同様にして、抵抗値および容量維持率(50サイクル)を測定した。結果を表1の該当欄に示す。
[Comparative Example 1]
1. Production of composite graphite particles (1) Mixing step Spherical natural graphite particles produced by granulating a plurality of flake graphite in a 1 L internal volume kneader (with voids inside) (average particle size 12 μm, specific surface area 7 0.0 g 2 / g) is added, 45 g of coal-based pitch (softening point 105 ° C., residual carbon ratio 60% by mass) is added as an organic substance, and a solvent (methylnaphthalene and quinoline are main components, residual carbon ratio≈0 180 g (mass%) was added, and the mixture was stirred at 110 ° C. for 60 minutes under reduced pressure (≦ 9.93 Torr) to obtain an intermediate substance.
(2) Carbonization process The obtained intermediate substance was processed like Example 1, and the composite graphite particle (527g) was obtained.
2. Analysis of Composite Graphite Particles As in Example 1, the average particle diameter and specific surface area of the obtained composite graphite particles were measured, and the content of carbonaceous material was calculated. The carbonaceous material content, average particle size, and specific surface area are shown in the corresponding columns of Table 1, respectively.
3. Electrode performance evaluation (1) Production of negative electrode A negative electrode was produced in the same manner as in Example 1.
(2) Battery evaluation by half cell In the same manner as in Example 1, the discharge capacity and the initial charge / discharge efficiency were measured. The results are shown in the corresponding column of Table 1.
(3) Battery evaluation by full cell In the same manner as in Example 1, the resistance value and the capacity retention ratio (50 cycles) were measured. The results are shown in the corresponding column of Table 1.

[比較例2]
1.複合黒鉛粒子の製造
(1)混合工程
循環型メカノフュージョンシステムAMSを用いて、複数のリン片状黒鉛を造粒して製造した球状化天然黒鉛粒子(内部に空隙あり)(平均粒径12μm、比表面積7.0m/g)に、石炭系ピッチ(軟化点105℃、残炭率60質量%)45gを加え、複合化させて、複合炭素材料前駆体を得た。
(2)炭素化工程
得られた複合炭素材料前駆体を実施例1と同様に処理し、複合黒鉛粒子(527g)を得た。
2.複合黒鉛粒子の分析
実施例1と同様に、得られた複合黒鉛粒子の平均粒径および比表面積を測定し、炭素質物の含有量を計算した。炭素質物の含有量、平均粒径および比表面積を、それぞれ、表1の該当欄に示す。
3.電極性能評価
(1)負極の作製
実施例1と同様に負極電極を作製した。
(2)ハーフセルによる電池評価
実施例1と同様にして、放電容量および初期充放電効率を測定した。結果を表1の該当欄に示す。
(3)フルセルによる電池評価
実施例1と同様にして、抵抗値および容量維持率(50サイクル)を測定した。結果を表1の該当欄に示す。
[Comparative Example 2]
1. Production of Composite Graphite Particles (1) Mixing Step Spherical natural graphite particles produced by granulating a plurality of flake graphite using an AMS circulation type mechanofusion system (with internal voids) (average particle size 12 μm, 45 g of a coal-based pitch (softening point 105 ° C., residual carbon ratio 60 mass%) was added to a specific surface area of 7.0 m 2 / g) to form a composite carbon material precursor.
(2) Carbonization step The obtained composite carbon material precursor was treated in the same manner as in Example 1 to obtain composite graphite particles (527 g).
2. Analysis of Composite Graphite Particles As in Example 1, the average particle diameter and specific surface area of the obtained composite graphite particles were measured, and the content of carbonaceous material was calculated. The carbonaceous material content, average particle size, and specific surface area are shown in the corresponding columns of Table 1, respectively.
3. Electrode performance evaluation (1) Production of negative electrode A negative electrode was produced in the same manner as in Example 1.
(2) Battery evaluation by half cell In the same manner as in Example 1, the discharge capacity and the initial charge / discharge efficiency were measured. The results are shown in the corresponding column of Table 1.
(3) Battery evaluation by full cell In the same manner as in Example 1, the resistance value and the capacity retention ratio (50 cycles) were measured. The results are shown in the corresponding column of Table 1.

[比較例3]
1.複合黒鉛粒子の製造
(1)第一の混合工程
内容積1Lのニーダー装置に複数のリン片状黒鉛を造粒して製造した球状化天然黒鉛粒子(内部に空隙あり)(平均粒径12μm、比表面積7m/g)を500g投入し、炭素質前駆体として、石炭系ピッチ(軟化点105℃、残炭率60質量%)を5g加え、さらに溶媒(メチルナフタレンとキノリンが主成分、残炭率≒0質量%)を180g加え、圧下(≦9.93Torr)で、110℃、60分撹拌した。
(2)乾燥工程
第一の混合工程で得られた処理物を200℃で乾燥した。
(3)第二の混合工程
乾燥工程の後、上記と同様のニーダー装置内で同様の石炭系ピッチ(軟化点105℃、残炭率60質量%)を40g加え、110℃で60分間撹拌し、中間物質を得た。
(4)炭素化工程
得られた中間物質を実施例1と同様に処理し、複合黒鉛粒子(527g)を得た。
2.複合黒鉛粒子の分析
実施例1と同様に、得られた複合黒鉛粒子の平均粒径および比表面積を測定し、炭素質物の含有量を計算した。炭素質物の含有量、平均粒径および比表面積を、それぞれ、表1の該当欄に示す。
3.電極性能評価
(1)負極の作製
実施例1と同様にして、負極電極を作製した。
(2)ハーフセルによる電池評価
実施例1と同様にして、放電容量および初期充放電効率を測定した。結果を表1の該当欄に示す。
(3)フルセルによる電池評価
実施例1と同様にして、抵抗値および容量維持率(50サイクル)を測定した。結果を表1の該当欄に示す。
[Comparative Example 3]
1. Production of composite graphite particles (1) Spherical natural graphite particles produced by granulating a plurality of flake graphite in a 1 L kneader apparatus having an internal volume of 1 L (with internal voids) (average particle size of 12 μm, 500 g of a specific surface area of 7 m 2 / g) is added, 5 g of coal-based pitch (softening point 105 ° C., residual carbon ratio 60% by mass) is added as a carbonaceous precursor, and a solvent (methylnaphthalene and quinoline are the main components and the residual 180 g of charcoal ratio≈0% by mass) was added, and the mixture was stirred at 110 ° C. for 60 minutes under reduction (≦ 9.93 Torr).
(2) Drying process The processed material obtained at the 1st mixing process was dried at 200 degreeC.
(3) Second mixing step After the drying step, 40 g of the same coal-based pitch (softening point 105 ° C., residual carbon ratio 60% by mass) is added in the same kneader apparatus as described above, and the mixture is stirred at 110 ° C. for 60 minutes. An intermediate was obtained.
(4) Carbonization process The obtained intermediate substance was processed like Example 1, and the composite graphite particle (527g) was obtained.
2. Analysis of Composite Graphite Particles As in Example 1, the average particle diameter and specific surface area of the obtained composite graphite particles were measured, and the content of carbonaceous material was calculated. The carbonaceous material content, average particle size, and specific surface area are shown in the corresponding columns of Table 1, respectively.
3. Electrode performance evaluation (1) Production of negative electrode A negative electrode was produced in the same manner as in Example 1.
(2) Battery evaluation by half cell In the same manner as in Example 1, the discharge capacity and the initial charge / discharge efficiency were measured. The results are shown in the corresponding column of Table 1.
(3) Battery evaluation by full cell In the same manner as in Example 1, the resistance value and the capacity retention ratio (50 cycles) were measured. The results are shown in the corresponding column of Table 1.

[比較例4]
1.黒鉛粒子の準備
複数のリン片状黒鉛を造粒して製造した球状化天然黒鉛粒子(内部に空隙あり)(平均粒径12μm、比表面積(7m/g)を準備した。
2.電極性能評価
(1)負極の作製
複合黒鉛粒子に代えて、準備した球状化天然黒鉛粒子を用いた点を除いて、実施例1と同様にして、負極電極を作製した。
(2)ハーフセルによる電池評価
実施例1と同様にして、放電容量および初期充放電効率を測定した。結果を表1の該当欄に示す。
(3)フルセルによる電池評価
実施例1と同様にして、抵抗値および容量維持率(50サイクル)を測定した。結果を表1の該当欄に示す。
[Comparative Example 4]
1. Preparation of Graphite Particles Spherical natural graphite particles produced by granulating a plurality of flake graphite (with voids inside) (average particle size 12 μm, specific surface area (7 m 2 / g)) were prepared.
2. Electrode Performance Evaluation (1) Production of Negative Electrode A negative electrode was produced in the same manner as in Example 1 except that the prepared spherical natural graphite particles were used instead of the composite graphite particles.
(2) Battery evaluation by half cell In the same manner as in Example 1, the discharge capacity and the initial charge / discharge efficiency were measured. The results are shown in the corresponding column of Table 1.
(3) Battery evaluation by full cell In the same manner as in Example 1, the resistance value and the capacity retention ratio (50 cycles) were measured. The results are shown in the corresponding column of Table 1.

Figure 2015008125
Figure 2015008125

1 外装カップ
2 作用電極(負極)
3 外装缶
4 対極(正極)
5 セパレータ
6 絶縁ガスケット
7a、7b集電体
1 exterior cup 2 working electrode (negative electrode)
3 Exterior can 4 Counter electrode (positive electrode)
5 Separator 6 Insulating gasket 7a, 7b Current collector

Claims (6)

内部に空隙を有する黒鉛粒子(a)と炭素質前駆体(x)と溶媒とを混合し、前記黒鉛粒子(a)の内部の空隙を前記炭素質前駆体(x)と前記溶媒との溶液で満たして、前記黒鉛粒子(a)の内部の空隙が前記溶液で満たされた黒鉛粒子(b)を得る第一混合工程と、
前記第一混合工程の後、続けて、前記黒鉛粒子(b)と、炭素質前駆体(y)とを混合し、前記黒鉛粒子(b)の表面に前記炭素質前駆体(y)を付着させて、前記黒鉛粒子(b)の表面に前記炭素質前駆体(y)が付着した黒鉛粒子(c)を得る第二混合工程と、
前記第二混合工程で得られた黒鉛粒子(c)を、不活性雰囲気下、700〜1400℃の温度で焼成し、前記炭素質前駆体(x)および前記炭素質前駆体(y)を炭素質物に変化させ、前記黒鉛粒子(a)の内部および表面が炭素質物で被覆された複合黒鉛粒子(d)を得る焼成工程と
を有することを特徴とするリチウムイオン二次電池負極用複合黒鉛粒子の製造方法。
The graphite particles (a) having voids therein, the carbonaceous precursor (x), and a solvent are mixed, and the voids inside the graphite particles (a) are mixed into a solution of the carbonaceous precursor (x) and the solvent. A first mixing step of obtaining graphite particles (b) filled with the solution, wherein the voids inside the graphite particles (a) are filled with the solution;
After the first mixing step, the graphite particles (b) and the carbonaceous precursor (y) are mixed, and the carbonaceous precursor (y) is attached to the surface of the graphite particles (b). A second mixing step of obtaining graphite particles (c) having the carbonaceous precursor (y) attached to the surfaces of the graphite particles (b);
The graphite particles (c) obtained in the second mixing step are fired at a temperature of 700 to 1400 ° C. in an inert atmosphere to convert the carbonaceous precursor (x) and the carbonaceous precursor (y) to carbon. And a firing step for obtaining composite graphite particles (d) in which the inside and surface of the graphite particles (a) are coated with a carbonaceous material. Manufacturing method.
前記黒鉛粒子(a)が、複数の黒鉛粒子が集合して形成された造粒黒鉛粒子であることを特徴とする、請求項1に記載のリチウムイオン二次電池負極用複合黒鉛粒子の製造方法。   The method for producing composite graphite particles for a lithium ion secondary battery negative electrode according to claim 1, wherein the graphite particles (a) are granulated graphite particles formed by aggregating a plurality of graphite particles. . 前記炭素質物の含有量が前記複合黒鉛粒子(d)の1〜20質量%であることを特徴とする、請求項1または2に記載のリチウムイオン二次電池負極用複合黒鉛粒子の製造方法。   The method for producing composite graphite particles for a lithium ion secondary battery negative electrode according to claim 1 or 2, wherein the content of the carbonaceous material is 1 to 20% by mass of the composite graphite particles (d). 前記第一混合工程において、前記炭素質前駆体(x)および前記溶媒による炭素質物の含有量が全炭素質物の含有量の5〜40質量%である、請求項1〜3のいずれか1項に記載のリチウムイオン二次電池負極用複合黒鉛粒子の製造方法。   In said 1st mixing process, content of the carbonaceous material by the said carbonaceous precursor (x) and the said solvent is 5-40 mass% of content of all the carbonaceous materials, The any one of Claims 1-3 The manufacturing method of the composite graphite particle | grains for lithium ion secondary battery negative electrodes of description. 前記第二混合工程において、前記炭素質前駆体(y)による炭素質物の含有量が全炭素質物の含有量の60〜95質量%である、請求項1〜4のいずれか1項に記載のリチウムイオン二次電池負極用複合黒鉛粒子の製造方法。   The said 2nd mixing process WHEREIN: Content of the carbonaceous material by the said carbonaceous precursor (y) is 60-95 mass% of content of all the carbonaceous materials, The any one of Claims 1-4. A method for producing composite graphite particles for a negative electrode of a lithium ion secondary battery. さらに、
前記黒鉛粒子(c)を、不活性雰囲気下、200℃以上、700℃未満の温度で仮焼する仮焼工程
を、前記第二混合工程の後、かつ前記焼成工程の前に有する、請求項1〜5のいずれか1項に記載のリチウムイオン二次電池負極用複合黒鉛粒子の製造方法。
further,
The calcining step of calcining the graphite particles (c) at a temperature of 200 ° C or higher and lower than 700 ° C under an inert atmosphere is provided after the second mixing step and before the baking step. The manufacturing method of the composite graphite particle for lithium ion secondary battery negative electrodes of any one of 1-5.
JP2014087259A 2013-05-28 2014-04-21 Method for producing composite graphite particles for negative electrode of lithium ion secondary battery Expired - Fee Related JP6194276B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2014087259A JP6194276B2 (en) 2013-05-28 2014-04-21 Method for producing composite graphite particles for negative electrode of lithium ion secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2013112100 2013-05-28
JP2013112100 2013-05-28
JP2014087259A JP6194276B2 (en) 2013-05-28 2014-04-21 Method for producing composite graphite particles for negative electrode of lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2015008125A true JP2015008125A (en) 2015-01-15
JP6194276B2 JP6194276B2 (en) 2017-09-06

Family

ID=52338260

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2014087259A Expired - Fee Related JP6194276B2 (en) 2013-05-28 2014-04-21 Method for producing composite graphite particles for negative electrode of lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6194276B2 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766964A (en) * 2015-04-24 2015-07-08 田东 Method for using natural graphite fine powder as negative pole material by doping treatment
CN114300685A (en) * 2021-12-31 2022-04-08 中创新航科技股份有限公司 Cathode material, preparation method and electrochemical device comprising cathode material

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302595A (en) * 1994-05-09 1995-11-14 Asahi Organic Chem Ind Co Ltd Manufacture of carbon particle and negative electrode containing this carbon particle
JP2003100293A (en) * 2001-09-25 2003-04-04 Showa Denko Kk Carbon material and manufacturing method and usage thereof
JP2004210634A (en) * 2002-12-19 2004-07-29 Jfe Chemical Corp COMPOSITE GRAPHITE PARTICLE, ITS PRODUCTION METHOD, Li ION SECONDARY BATTERY CATHODE MATERIAL, Li ION SECONDARY BATTERY CATHODE AND Li ION SECONDARY BATTERY
JP2008305722A (en) * 2007-06-08 2008-12-18 Tokai Carbon Co Ltd Negative electrode for lithium ion secondary battery material and its manufacturing method
JP2013152879A (en) * 2012-01-26 2013-08-08 Hitachi Ltd Negative electrode active material, lithium ion secondary battery negative electrode, lithium ion secondary battery and manufacturing method therefor

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07302595A (en) * 1994-05-09 1995-11-14 Asahi Organic Chem Ind Co Ltd Manufacture of carbon particle and negative electrode containing this carbon particle
JP2003100293A (en) * 2001-09-25 2003-04-04 Showa Denko Kk Carbon material and manufacturing method and usage thereof
JP2004210634A (en) * 2002-12-19 2004-07-29 Jfe Chemical Corp COMPOSITE GRAPHITE PARTICLE, ITS PRODUCTION METHOD, Li ION SECONDARY BATTERY CATHODE MATERIAL, Li ION SECONDARY BATTERY CATHODE AND Li ION SECONDARY BATTERY
JP2008305722A (en) * 2007-06-08 2008-12-18 Tokai Carbon Co Ltd Negative electrode for lithium ion secondary battery material and its manufacturing method
JP2013152879A (en) * 2012-01-26 2013-08-08 Hitachi Ltd Negative electrode active material, lithium ion secondary battery negative electrode, lithium ion secondary battery and manufacturing method therefor

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104766964A (en) * 2015-04-24 2015-07-08 田东 Method for using natural graphite fine powder as negative pole material by doping treatment
CN114300685A (en) * 2021-12-31 2022-04-08 中创新航科技股份有限公司 Cathode material, preparation method and electrochemical device comprising cathode material
CN114300685B (en) * 2021-12-31 2024-03-12 中创新航科技股份有限公司 Negative electrode material, method of preparing the same, and electrochemical device including the same

Also Published As

Publication number Publication date
JP6194276B2 (en) 2017-09-06

Similar Documents

Publication Publication Date Title
Li et al. A high‐performance sodium‐ion hybrid capacitor constructed by metal–organic framework–derived anode and cathode materials
JP3541913B2 (en) Non-aqueous electrolyte secondary battery
KR102612804B1 (en) X/Hard Carbon Composite Material and Method for Making X/Hard Carbon Composite Material
JP3258246B2 (en) Densified carbon for electrochemical cells
US8038977B2 (en) Carbon powder suitable as a negative electrode material for nonaqueous secondary batteries
JP5986035B2 (en) Lithium ion secondary battery negative electrode material and method for producing the same, lithium ion secondary battery negative electrode and lithium ion secondary battery
KR100722071B1 (en) Cathode material for lithium secondary battery, process for manufacturing the same, and secondary battery using the same
WO2012086826A1 (en) Anode material for lithium ion rechargeable battery, anode for lithium ion rechargeable battery, and lithium ion rechargeable battery
JP2014232728A (en) Negative electrode active material for lithium secondary battery, process of manufacturing the same, and lithium secondary battery containing the same
KR101105877B1 (en) Anode active material for lithium secondary batteries and Method of preparing for the same and Lithium secondary batteries using the same
CN107078286B (en) Negative electrode composition for electricity storage device, negative electrode comprising same, electricity storage device, and method for producing negative electrode for electricity storage device
JPH09326253A (en) Negative electrode for secondary battery and nonaqueous electrolyte secondary battery
JP2002348109A (en) Anode material for lithium secondary battery, method for producing the same and secondary battery using the same
Huang et al. Excellent electrochemical performance of LiFe 0.4 Mn 0.6 PO 4 microspheres produced using a double carbon coating process
Kim et al. Surface-modified PVdF-derived hierarchical mesoporous carbon matrix for high sulfur loading cathode in lithium–sulfur batteries
JP2017054815A (en) Carbon material for lithium ion secondary battery negative electrode, manufacturing method thereof, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP6957127B1 (en) Carbon material for negative electrode of lithium ion secondary battery and its manufacturing method, and negative electrode and lithium ion secondary battery using it
JPH10294111A (en) Graphite carbon material coated with graphite for lithium secondary battery negative electrode material and its manufacture
KR101417588B1 (en) Anode active material with high electrical conductivity and method for preparing the same
JP4021652B2 (en) Positive electrode plate for lithium ion secondary battery, method for producing the same, and lithium ion secondary battery using the positive electrode plate
JP6584975B2 (en) Carbon material for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and method for producing lithium ion secondary battery
JP2004134658A (en) Chargeable and dischargeable electrochemical element
JP2004234977A (en) Positive electrode material for lithium secondary battery, manufacturing method of same, and lithium secondary battery using same
JP6194276B2 (en) Method for producing composite graphite particles for negative electrode of lithium ion secondary battery
JPH1140158A (en) Carbon material for negative electrode of lithium ion secondary battery, and lithium ion secondary battery using the carbon material for negative electrode

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20160818

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20170719

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20170808

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20170814

R150 Certificate of patent or registration of utility model

Ref document number: 6194276

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees