JP6584975B2 - Carbon material for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and method for producing lithium ion secondary battery - Google Patents

Carbon material for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and method for producing lithium ion secondary battery Download PDF

Info

Publication number
JP6584975B2
JP6584975B2 JP2016019566A JP2016019566A JP6584975B2 JP 6584975 B2 JP6584975 B2 JP 6584975B2 JP 2016019566 A JP2016019566 A JP 2016019566A JP 2016019566 A JP2016019566 A JP 2016019566A JP 6584975 B2 JP6584975 B2 JP 6584975B2
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
lithium ion
ion secondary
carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2016019566A
Other languages
Japanese (ja)
Other versions
JP2016146343A (en
Inventor
▲高▼木 嘉則
嘉則 ▲高▼木
裕史 吉田
裕史 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JFE Chemical Corp
Original Assignee
JFE Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JFE Chemical Corp filed Critical JFE Chemical Corp
Publication of JP2016146343A publication Critical patent/JP2016146343A/en
Application granted granted Critical
Publication of JP6584975B2 publication Critical patent/JP6584975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

本発明は、リチウムイオン二次電池負極用炭素材料、リチウムイオン二次電池負極およびリチウムイオン二次電池の製造方法に関する。   The present invention relates to a carbon material for a negative electrode of a lithium ion secondary battery, a negative electrode of a lithium ion secondary battery, and a method for producing a lithium ion secondary battery.

近年、電子機器の小型化、高性能化に伴い、電池の高エネルギー密度化に対する要望がますます高まっている。なかでも、リチウムイオン二次電池は、エネルギー密度が高く、高電圧化が可能であることから注目されている。   In recent years, with the miniaturization and high performance of electronic devices, there is an increasing demand for higher energy density of batteries. Among these, lithium ion secondary batteries are attracting attention because of their high energy density and high voltage.

リチウムイオン二次電池負極用材料としては、リチウムイオンを吸蔵・放出し得る炭素材料を用いることが一般的である。炭素材料としては、黒鉛構造、乱層構造などの多種多様な構造、組織、形態のものが知られており、これら多種多様な構造、組織、形態に応じて、充放電時の作動電圧などの電極性能が大きく異なる。なかでも、高い放電容量と電位平坦性とを示す黒鉛が、現状多く使用されている。   As the material for the negative electrode of the lithium ion secondary battery, it is common to use a carbon material that can occlude and release lithium ions. A wide variety of structures, structures, and forms such as graphite structures and turbulent structures are known as carbon materials. Depending on these various structures, structures, and forms, the operating voltage during charging and discharging, etc. Electrode performance varies greatly. Among them, graphite that exhibits a high discharge capacity and potential flatness is currently used in many cases.

黒鉛材料は、結晶性黒鉛構造が発達するほどリチウムとの層間化合物を安定して形成しやすく、多量のリチウムが炭素網面の層間に挿入されるので、高い放電容量が得られることが報告されている。リチウムの挿入量により種々の層構造を形成し、それらが共存する領域では平坦でかつリチウム金属に近い高い電位を示す。このことから、組電池にした場合には、高出力を得ることが可能となり、一般的に炭素負極材料の理論容量(限界値)は、最終的に黒鉛とリチウムとの理想的な黒鉛層間化合物LiCが形成された場合の放電容量372mAh/gとされている。 It has been reported that graphite materials are more likely to stably form intercalation compounds with lithium as the crystalline graphite structure develops, and that a large amount of lithium is inserted between the layers of the carbon network, resulting in high discharge capacity. ing. Various layer structures are formed depending on the amount of lithium inserted, and in a region where they coexist, they are flat and have a high potential close to lithium metal. Therefore, when an assembled battery is used, it is possible to obtain a high output. Generally, the theoretical capacity (limit value) of a carbon anode material is an ideal graphite intercalation compound of graphite and lithium. The discharge capacity when LiC 6 is formed is 372 mAh / g.

一方、近年では、車載などの動力用やパワーツール用、さらには携帯機器でも高機能化による高出力化で、ハイレート特性が要求されてきている。これに対しては、リチウムを吸蔵・脱離する負極の改良に期待されているところが大きい。   On the other hand, in recent years, high-rate characteristics have been required for high power output due to high functionality for power sources such as in-vehicle use, power tools, and even portable devices. For this, there is a great expectation for improvement of the negative electrode for inserting and extracting lithium.

ハイレート特性がとくに要求されるハイブリッド車用のリチウムイオン二次電池負極材料としては、ハードカーボンがある。ハードカーボンとは、「難黒鉛化炭素」の意味で、上述した黒鉛材料にたいして炭素網面が発達していない材料である。そのため、黒鉛よりも炭素網面の層間や網面構造間の空孔が広いことで、ハイレートでのリチウム吸蔵・脱離に適している。   As a lithium ion secondary battery negative electrode material for a hybrid vehicle that particularly requires high rate characteristics, there is hard carbon. The hard carbon means “non-graphitizable carbon” and is a material in which the carbon network surface is not developed with respect to the above-described graphite material. Therefore, it is suitable for lithium occlusion / desorption at a high rate because the pores between the carbon network surfaces and between the network surface structures are wider than graphite.

ハードカーボンに対して、難黒鉛化性ではなく、本来は黒鉛化するものを1000℃前後の焼成温度で止めることで、ハードカーボンと同等のハイレート特性が期待される材料として、ソフトカーボンが近年注目されている。ソフトカーボンはハードカーボンと異なり、フェノール樹脂などの高価な難黒鉛化性の原料を用いる必要がなく、また本来黒鉛化するタールピッチ原料を酸化反応などで難黒鉛化処理する必要もないため、その製造コストの安価さも重要な点である。   In recent years, soft carbon has attracted attention as a material that is expected to have the same high-rate characteristics as hard carbon by stopping what is originally graphitized at a firing temperature of around 1000 ° C rather than non-graphitizable to hard carbon. Has been. Unlike hard carbon, soft carbon does not require the use of expensive non-graphitizing raw materials such as phenolic resins, and tar pitch raw materials that are inherently graphitized do not need to be graphitized by oxidation reaction, etc. The low manufacturing cost is also an important point.

このソフトカーボンについては、各種の材料、および製造方法が提案されている。
ソフトカーボンは、容量が300mAh/g以下と、黒鉛材料に対して著しく低い上、電極化したときの密度も1.2g/cm3以上に高められないことから、高いエネルギー密度を得られない問題がある。したがって、近年は黒鉛材料とソフトカーボンを配合した負極材料の開発が盛んに検討されている。
For this soft carbon, various materials and manufacturing methods have been proposed.
Soft carbon has a capacity of 300 mAh / g or less, which is significantly lower than that of the graphite material, and the density when formed into an electrode cannot be increased to 1.2 g / cm 3 or more. There is. Therefore, in recent years, development of a negative electrode material in which a graphite material and soft carbon are blended has been actively studied.

特許文献1では、請求項1で「2種類以上の炭素材を含むリチウム二次電池用負極材料で、少なくとも炭素材の一つは特定の高結晶性の黒鉛群から選ばれ、少なくとも他の一つは特定の低結晶性の炭素群から選ばれたものであり、高結晶性の黒鉛に低結晶性の炭素が融着している非水電解液二次電池。」が記載されている。しかし、最終物中に高結晶性の黒鉛に融着していない低結晶性の炭素が存在しているか否かについては記載がない。   In Patent Document 1, in claim 1, “a negative electrode material for a lithium secondary battery containing two or more kinds of carbon materials, at least one of the carbon materials is selected from a specific group of highly crystalline graphite, and at least one of the other carbon materials. One is selected from a specific low crystalline carbon group, and describes a non-aqueous electrolyte secondary battery in which low crystalline carbon is fused to high crystalline graphite. However, there is no description as to whether or not low-crystalline carbon that is not fused to high-crystalline graphite exists in the final product.

たとえば、特許文献2では、容量が大きく、かつサイクル特性と高率放電特性の両特性にも優れたリチウム二次電池を提供するため、天然黒鉛とソフトカーボンとの混合物からなる混合炭素負極について記載されている。しかし、特許文献1の負極材料は天然黒鉛とソフトカーボンとの混合物であり焼成されたものではなく、その特性は特定の正極と組み合わせた場合しか検討されていない。
また、特許文献3では、「黒鉛系炭素材料を、軟化点が150〜300℃のピッチの熱分解生成物を含む雰囲気下において熱処理する工程を経て得られるリチウム二次電池用負極材料。」が記載されている。
しかし、黒鉛系炭素材料と軟化点が300℃以下のピッチとを焼成して得られる炭素材料は、ピッチの軟化点が低いので得られる炭素材料の電池特性の改善は限られている。
For example, Patent Document 2 describes a mixed carbon negative electrode composed of a mixture of natural graphite and soft carbon in order to provide a lithium secondary battery having a large capacity and excellent both cycle characteristics and high rate discharge characteristics. Has been. However, the negative electrode material of Patent Document 1 is a mixture of natural graphite and soft carbon and is not fired, and its characteristics have been studied only when combined with a specific positive electrode.
Further, in Patent Document 3, “a negative electrode material for a lithium secondary battery obtained through a process of heat-treating a graphite-based carbon material in an atmosphere containing a pyrolysis product having a softening point of 150 to 300 ° C.”. Are listed.
However, a carbon material obtained by firing a graphite-based carbon material and a pitch having a softening point of 300 ° C. or lower has a limited improvement in battery characteristics of the carbon material obtained because the pitch softening point is low.

特許文献4では、炭素材料原料(原料A)と炭素材(炭素材B)との混合物を焼成してなるリチウム二次電池用負極材料が記載される。段落[0022]、[0023]で、「炭素材Bが黒鉛系炭素材で、原料Aが等方性ピッチ、具体的には軟化点が、…更に好ましくは210℃以上であり、通常は340℃以下、・・・さらに好ましくは290℃以下である等方性ピッチを使用することができる。」と記載されている。用いる等方性ピッチの軟化点について290℃以下が更に好ましいとされ、実施例では軟化点が280℃の等方性ピッチのみが使われている。また、段落[0037]に、「大型のリチウム二次電池に使用する負極材料を製造する場合には、原料Aとして、等方性ピッチ、特に軟化点が150〜300℃の範囲にある等方性ピッチを使用し、原料Aと炭素材Bとの混合物を焼成する前に不融化する。」のが好ましい態様であると記載されている。不融化温度は150〜300℃(請求項5,6)と記載されている。   Patent Document 4 describes a negative electrode material for a lithium secondary battery obtained by firing a mixture of a carbon material raw material (raw material A) and a carbon material (carbon material B). In paragraphs [0022] and [0023], “the carbon material B is a graphite-based carbon material, the raw material A is an isotropic pitch, specifically, the softening point is more preferably 210 ° C. or higher, and usually 340 It is possible to use an isotropic pitch of not more than ° C., more preferably not more than 290 ° C. ”. The softening point of the isotropic pitch to be used is more preferably 290 ° C. or less, and in the examples, only the isotropic pitch having a softening point of 280 ° C. is used. In addition, in paragraph [0037], “when producing a negative electrode material for use in a large-sized lithium secondary battery, the raw material A has an isotropic pitch, particularly an isotropic whose softening point is in the range of 150 to 300 ° C. It is described that it is a preferable embodiment in which the pitch is used and the mixture of the raw material A and the carbon material B is infusible before firing. The infusibilization temperature is described as 150 to 300 ° C. (Claims 5 and 6).

特開平7−326343号公報JP 7-326343 A 特許第3776230号公報Japanese Patent No. 3776230 特開2000-243398号公報JP 2000-243398 A 特開2000-58051号公報JP 2000-58051 A

近年盛んに行われている、表面改質黒鉛材料とソフトカーボンの混合系負極材について、リチウム二次電池の負極に用いるとサイクル特性とハイレート特性に優れる負極用炭素材料が得られ、製造時の処理能力やコストを大幅に抑制する製造方法を本発明では提供する。   For the mixed negative electrode material of surface-modified graphite material and soft carbon, which has been actively used in recent years, a carbon material for negative electrode having excellent cycle characteristics and high rate characteristics can be obtained when used for the negative electrode of a lithium secondary battery. The present invention provides a manufacturing method that greatly reduces the processing capacity and cost.

上記の材料を得るためには、従来の方法では、適切な表面改質黒鉛とソフトカーボンとを選択し混合することが考えられる。しかしこの方法では、表面改質黒鉛を得るための表面改質工程と焼成工程、およびソフトカーボンの粒度調整含めた原料調整と焼成工程を経た後、得られた表面改質黒鉛とソフトカーボンを適当な比率で混合する必要がある。そのため複雑な工程と整合コストがかかる。また、この際混合するソフトカーボンの特性を発揮するために原料調整工程において粉砕により小粒径化すると粉体の嵩密度が低下し、焼成工程での処理効率が大幅に低下する問題があった。   In order to obtain the above materials, it is conceivable to select and mix appropriate surface-modified graphite and soft carbon in the conventional method. However, in this method, the surface-modified graphite and the soft carbon obtained after the surface-modifying step and the firing step for obtaining the surface-modified graphite and the raw material adjustment and the firing step including the particle size adjustment of the soft carbon are appropriately used. It is necessary to mix at a proper ratio. Therefore, complicated processes and matching costs are required. In addition, in order to exert the characteristics of the soft carbon to be mixed at this time, there is a problem that when the particle size is reduced by pulverization in the raw material adjustment step, the bulk density of the powder is lowered, and the processing efficiency in the firing step is greatly lowered. .

そこで、本発明は、サイクル特性とハイレート特性に優れた表面改質黒鉛粉とソフトカーボンとの混合炭素粉を、コスト面でも優れた簡便な工程で得られるリチウムイオン二次電池負極用炭素材料の製造方法、得られた炭素材料を用いたリチウムイオン二次電池負極およびリチウムイオン二次電池の製造方法を提供することを課題とする。   Therefore, the present invention provides a carbon material for a negative electrode of a lithium ion secondary battery, which is obtained by a simple process excellent in cost from a mixed carbon powder of surface-modified graphite powder and soft carbon excellent in cycle characteristics and high rate characteristics. It is an object of the present invention to provide a manufacturing method, a negative electrode for a lithium ion secondary battery using the obtained carbon material, and a method for manufacturing a lithium ion secondary battery.

本発明者らは、上記課題を解決すべく鋭意検討を行った結果、黒鉛材料粉100質量部に対して、軟化点が300℃超、400℃以下であり、D50粒子径が10μm未満のピッチを0.1〜20質量部を混合して、700〜1500℃の温度範囲で焼成する製造方法を発明した。この製造方法によれば、前記ソフトカーボン粒子と、前記黒鉛材料粉の表面が炭素被覆された炭素被覆黒鉛材料粉との混合粉が得られる。高軟化点ピッチの焼成で発生する揮発分や熱分解ガスが黒鉛材料の表面で吸着・析出する一方、高軟化点ピッチは、軟化点が高いがゆえに溶融せずソフトカーボンの粒子として一部残存するため、リチウムイオン二次電池負極用として、サイクル特性とハイレート特性に優れた表面改質黒鉛粉とソフトカーボンとの混合炭素粉を、コスト面でも優れた簡便な工程で得られることを知得し、本発明を完成した。 As a result of intensive studies to solve the above-mentioned problems, the inventors of the present invention have a softening point of over 300 ° C. and 400 ° C. or less and a D 50 particle size of less than 10 μm with respect to 100 parts by mass of the graphite material powder. The manufacturing method which mixes 0.1-20 mass parts of pitches, and bakes in the temperature range of 700-1500 degreeC was invented. According to this manufacturing method, a mixed powder of the soft carbon particles and the carbon-coated graphite material powder whose surface is coated with carbon is obtained. While the volatile matter and pyrolysis gas generated by firing at a high softening point pitch are adsorbed and precipitated on the surface of the graphite material, the high softening point pitch does not melt because of its high softening point and remains as soft carbon particles. Therefore, it can be known that a mixed carbon powder of surface modified graphite powder and soft carbon with excellent cycle characteristics and high rate characteristics can be obtained in a simple process with excellent cost, for use as a negative electrode for lithium ion secondary batteries. The present invention has been completed.

すなわち、本発明は、以下の(1)〜(3)を提供する。
(1)黒鉛材料粉100質量部に対して、軟化点が300℃超400℃以下で、D50粒子径が10μm未満のピッチを0.1〜20質量部、ミキサーで混合して、混合粉を得る混合工程と、
前記混合工程で得られた混合粉を不活性雰囲気下、700〜1500℃の温度範囲で焼成して、前記ピッチが焼成して得られたソフトカーボン粒子と、前記黒鉛材料粉の表面が炭素被覆された炭素被覆黒鉛材料粉との混合粉を得る焼成工程からなることを特徴とするリチウムイオン二次電池負極用炭素材料の製造方法。
(2)上記(1)に記載の製造方法で得られるリチウムイオン二次電池負極用炭素材料と結合剤とを混合し、集電体に塗布し負極を製造する工程を有するリチウムイオン二次電池負極の製造方法。
(3)上記(2)に記載の負極、正極、電解質及びセパレータを組み合わせて配置するリチウムイオン二次電池の製造方法。
That is, the present invention provides the following (1) to (3).
(1) For 100 parts by mass of graphite material powder, 0.1 to 20 parts by mass of a pitch having a softening point of more than 300 ° C. and not more than 400 ° C. and a D 50 particle diameter of less than 10 μm is mixed with a mixer, and mixed powder A mixing step to obtain,
The mixed powder obtained in the mixing step is fired in a temperature range of 700 to 1500 ° C. in an inert atmosphere, and the pitch of the soft carbon particles obtained by firing and the surface of the graphite material powder is coated with carbon. A method for producing a carbon material for a negative electrode of a lithium ion secondary battery, comprising a firing step of obtaining a mixed powder with the carbon-coated graphite material powder thus prepared.
(2) A lithium ion secondary battery comprising a step of mixing a carbon material for a negative electrode of a lithium ion secondary battery obtained by the production method described in (1) above and a binder, and applying the mixture to a current collector to produce a negative electrode. Manufacturing method of negative electrode.
(3) A method for producing a lithium ion secondary battery in which the negative electrode, the positive electrode, the electrolyte, and the separator according to (2) are disposed in combination.

本発明によれば、サイクル特性とハイレート特性に優れた表面改質黒鉛粉とソフトカーボン粒子との混合炭素粉を、コスト面でも優れた簡便な工程で得られるリチウムイオン二次電池負極用炭素材料の製造方法、リチウムイオン二次電池負極ならびにリチウムイオン二次電池の製造方法を提供することができる。   According to the present invention, a carbon material for a negative electrode of a lithium ion secondary battery, which is obtained by a simple process excellent in cost from a mixed carbon powder of surface-modified graphite powder and soft carbon particles excellent in cycle characteristics and high rate characteristics The manufacturing method of this, the lithium ion secondary battery negative electrode, and the manufacturing method of a lithium ion secondary battery can be provided.

図1は、評価用のコイン型二次電池を示す断面図である。FIG. 1 is a cross-sectional view showing a coin-type secondary battery for evaluation. 図2は、実施例1で得られた粉体表面のSEM(走査型電子顕微鏡)写真である。FIG. 2 is an SEM (scanning electron microscope) photograph of the powder surface obtained in Example 1. 図3は、実施例1で得られた粉体断面のSEM(走査型電子顕微鏡)写真である。FIG. 3 is a SEM (scanning electron microscope) photograph of the powder cross section obtained in Example 1.

以下、本発明のリチウムイオン二次電池負極用炭素材料の製造方法、リチウムイオン二次電池負極用炭素材料、リチウムイオン二次電池負極およびリチウムイオン二次電池の製造方法について詳細に説明する。   Hereinafter, the manufacturing method of the carbon material for lithium ion secondary battery negative electrodes of this invention, the carbon material for lithium ion secondary battery negative electrodes, the lithium ion secondary battery negative electrode, and the manufacturing method of a lithium ion secondary battery are demonstrated in detail.

[リチウムイオン二次電池負極用炭素材料の製造方法]
本発明のリチウムイオン二次電池負極用炭素材料の製造方法(以下、単に「本発明の製造方法」ともいう。)は、黒鉛材料粉100質量部に対して、軟化点が300℃超、400℃以下であり、D50粒子径が10μm未満のピッチを0.1〜20質量部を混合して、混合粉を得る混合工程と、前記混合工程で得られた混合粉を不活性雰囲気下、700〜1500℃の温度範囲で焼成して、前記ピッチが焼成して得られたソフトカーボン粒子と、前記黒鉛材料粉の表面が炭素被覆された炭素被覆黒鉛材料粉との混合粉を得る焼成工程とを有する。
以下、各工程について説明する。
[Method for producing carbon material for negative electrode of lithium ion secondary battery]
The method for producing a carbon material for a negative electrode of a lithium ion secondary battery according to the present invention (hereinafter also simply referred to as “the production method of the present invention”) has a softening point of more than 300 ° C. and 400 with respect to 100 parts by mass of graphite material powder. The mixing step of mixing 0.1 to 20 parts by mass of a pitch of less than 10 μm with a D 50 particle size of less than 10 μm to obtain a mixed powder, and the mixed powder obtained in the mixing step under an inert atmosphere, A firing step of obtaining a mixed powder of soft carbon particles obtained by firing in the temperature range of 700 to 1500 ° C. and obtained by firing the pitch, and carbon-coated graphite material powder having the surface of the graphite material powder coated with carbon. And have.
Hereinafter, each step will be described.

<混合工程>
(ピッチ)
本発明に用いる原料のピッチは、軟化点が300℃超、400℃以下でありD50粒子径が10μm未満の高軟化点ピッチである。
高軟化点ピッチは、予めタールおよび/またはタールピッチの粒子径をD50の粒子径が10μm未満であるように調整して加熱処理して、ピッチの軟化点を300℃超、400℃以下に高める加熱処理をしてもよい。また、ピッチの軟化点を300℃超、400℃以下に高める加熱処理をした後にD50の粒子径が10μm未満であるように調整してもよいし、加熱処理しながら粒径を調整することもできる。もちろんすでに製造されたピッチから選択してもよい。
<Mixing process>
(pitch)
The pitch of the raw material used in the present invention is a high softening point pitch having a softening point of more than 300 ° C. and 400 ° C. or less and a D 50 particle diameter of less than 10 μm.
High softening point pitch, a particle size in advance tar and / or tar pitch and heat treatment was adjusted so that the particle size D 50 of less than 10 [mu] m, the softening point of the pitch 300 ° C. greater than the 400 ° C. or less You may heat-process to raise. In addition, after heat treatment for increasing the softening point of the pitch to above 300 ° C. and below 400 ° C., the particle size of D 50 may be adjusted to be less than 10 μm, or the particle size may be adjusted while performing the heat treatment. You can also. Of course, you may choose from pitches that have already been manufactured.

《加熱処理》
タールおよび/またはタールピッチを加熱処理すると、タール、タールピッチの成分である芳香族炭化水素化合物が重縮合反応により高分子化し、ピッチマトリックス中に、球状の形態をしたメソカーボン小球体が析出してくる。さらに加熱処理を進めると、このメソカーボン小球体は大きく成長、合体して球状の形態を維持できず、異形となって高軟化点ピッチが生成する。なお、高軟化点ピッチ生成工程中で、加熱処理を複数回に分割して行ってもよい。
得られる高軟化点ピッチは特定範囲の高軟化点ピッチの割合が50質量%以上である。例えば軟化点250℃以上の高軟化点ピッチが50質量%以上である場合に、軟化点250℃以上の高軟化点ピッチという。
<Heat treatment>
When tar and / or tar pitch are heat-treated, the aromatic hydrocarbon compound that is a component of tar and tar pitch is polymerized by polycondensation reaction, and spherical mesocarbon spherules are precipitated in the pitch matrix. Come. When the heat treatment is further advanced, the mesocarbon spherules grow and coalesce and cannot maintain a spherical shape, and are deformed to generate a high softening point pitch. In addition, you may divide and heat-process in multiple times in the high softening point pitch production | generation process.
In the obtained high softening point pitch, the ratio of the high softening point pitch in a specific range is 50% by mass or more. For example, when the high softening point pitch at a softening point of 250 ° C. or higher is 50% by mass or higher, the pitch is called a high softening point pitch at a softening point of 250 ° C. or higher.

(タール、タールピッチ)
タール、タールピッチとしては、石炭系、石油系等のタール、タールピッチが用いられる。タールおよびタールピッチは、それぞれ、1種類を単独で、または2種類以上を組み合わせて用いることができる。
(Tar, tar pitch)
As tars and tar pitches, coal-based and petroleum-based tars and tar pitches are used. Each of tar and tar pitch can be used alone or in combination of two or more.

(加熱処理雰囲気)
加熱処理の際の雰囲気(加熱処理雰囲気)は、特に限定されず、非酸化性雰囲気(不活性雰囲気および還元性雰囲気を含む。)または酸化性雰囲気のいずれであってもよいが、不活性雰囲気が好ましい。不活性雰囲気は、特に限定されず、例えば、窒素ガス、アルゴンガス等の不活性ガスによる不活性雰囲気を利用することができる。非酸化性雰囲気または若干の酸化性雰囲気であってもよい。
(Heat treatment atmosphere)
The atmosphere during the heat treatment (heat treatment atmosphere) is not particularly limited, and may be either a non-oxidizing atmosphere (including an inert atmosphere and a reducing atmosphere) or an oxidizing atmosphere, but an inert atmosphere. Is preferred. The inert atmosphere is not particularly limited, and for example, an inert atmosphere with an inert gas such as nitrogen gas or argon gas can be used. It may be a non-oxidizing atmosphere or some oxidizing atmosphere.

(加熱処理圧力)
加熱処理の際の圧力(加熱処理圧力)は、特に限定されず、減圧、常圧または加圧のいずれでもよいが、芳香族炭化水素化合物の重縮合反応が促進され、その結果として高軟化点ピッチの生成速度が向上するため、加圧条件で加熱処理を行うことが好ましい。
(Heat treatment pressure)
The pressure during the heat treatment (heat treatment pressure) is not particularly limited and may be any of reduced pressure, normal pressure or increased pressure, but the polycondensation reaction of the aromatic hydrocarbon compound is promoted, and as a result, the high softening point. In order to improve the production speed of the pitch, it is preferable to perform the heat treatment under pressure conditions.

(加熱処理温度)
加熱処理の際の温度(加熱処理温度)は、ピッチからメソフェーズの生成が開始してから、炭素化が進行して300℃超400℃以下の軟化点を有するまでの範囲内であればとくに限定されないが、好ましくは200℃以上であり、より好ましくは250〜500℃であり、さらに好ましくは280〜450℃である。加熱処理の温度が250℃以上であると、芳香族炭化水素化合物の重縮合反応が進行し、メソフェーズの生成に長時間を要しないため、現実的である。また、加熱温度が500℃以下であると、炭素化が進行してバルク化が開始する前のため、工業的には、生成するピッチの軟化点を制御することが可能となる。加熱温度が250℃以上500℃以下ではメソフェーズの生成速度とその生成の制御のし易さとのバランスが優れ、280℃以上450℃以下ではそのバランスがより優れ、300℃以上400℃未満ではさらに優れる。
(Heat treatment temperature)
The temperature during the heat treatment (heat treatment temperature) is particularly limited as long as it is within the range from the start of the production of mesophase from the pitch until the carbonization proceeds to a softening point of more than 300 ° C and less than 400 ° C. However, it is preferably 200 ° C. or higher, more preferably 250 to 500 ° C., and further preferably 280 to 450 ° C. When the temperature of the heat treatment is 250 ° C. or higher, the polycondensation reaction of the aromatic hydrocarbon compound proceeds, and it takes a long time to generate the mesophase, which is realistic. In addition, when the heating temperature is 500 ° C. or less, since the carbonization is advanced and the bulking is started, it is possible to control the softening point of the pitch to be produced industrially. When the heating temperature is 250 ° C. or more and 500 ° C. or less, the balance between the production rate of mesophase and the ease of control of the production is excellent, and when 280 ° C. or more and 450 ° C. or less, the balance is more excellent, and when 300 ° C. or more and less than 400 ° C., it is even better. .

(加熱処理時間)
加熱処理の際の時間(加熱処理時間)は、高軟化点ピッチが生成されるまでであり、特に限定されない。なお、高軟化点ピッチ生成工程中で、加熱処理を複数回に分割して行う場合は、加熱処理時間は分割した加熱処理のそれぞれの処理時間の合計である。
得られるピッチは、300℃超の軟化点を有する。本発明は300℃超の軟化点を有する高軟化点ピッチを用いるので、低軟化点ピッチに対して原料保管中の経時変化が少なく、長期に安定した品質で保管できる利点もある。軟化点は好ましくは320℃超〜400℃以下、更に好ましくは340℃超〜400℃以下である。軟化点の測定は示唆熱分析を用いて昇温工程で測定する。
原料ピッチの軟化点が300℃以下で低いと、黒鉛材料と混合−焼成した際に溶融するため、粒子どうしが融着するため、好ましい粒径とするのに焼成後の粉砕が必要となる。また溶融によって混合した黒鉛材料の表面を過度に覆うことにもなる。これらの要因で、電池の初回効率や水系バインダでのハイレート特性が劣る結果となる。
(Heat treatment time)
The time for the heat treatment (heat treatment time) is until a high softening point pitch is generated, and is not particularly limited. In the case where the heat treatment is performed in a plurality of times during the high softening point pitch generation step, the heat treatment time is the sum of the respective treatment times of the divided heat treatments.
The resulting pitch has a softening point greater than 300 ° C. Since the present invention uses a high softening point pitch having a softening point of more than 300 ° C., there is an advantage that it can be stored with a stable quality for a long period of time with respect to the low softening point pitch with little change over time during raw material storage. The softening point is preferably more than 320 ° C to 400 ° C or less, more preferably more than 340 ° C to 400 ° C or less. The softening point is measured in the heating step using suggested thermal analysis.
When the softening point of the raw material pitch is low at 300 ° C. or lower, it melts when mixed and fired with the graphite material, so that the particles are fused together, and pulverization after firing is necessary to obtain a preferable particle size. Moreover, the surface of the graphite material mixed by melting will be excessively covered. These factors result in inferior initial efficiency of the battery and high rate characteristics in the aqueous binder.

(粉砕処理)
上記で得られた高軟化点ピッチは、電池のハイレート特性を発揮させるためD50粒子径が10μm未満に粉砕する。粉砕処理の方法は特に限定されず、例えば、高速粉砕および/またはせん断粉砕を行って粉砕することができる。粉砕処理後、必要に応じて、軽い解砕や篩などによる分級処理を行ってもよい。粉砕後の粒子径(粉砕平均粒径)は、D50粒子径が8μm未満が好ましく、0.1〜6μmがより好ましく更には1〜4μmが好ましい。本発明において、平均粒子径はレーザー回折式粒度分布計の累積度数が体積分布率で50%となる粒子径(D50)である。
(Crushing process)
The high softening point pitch obtained above is pulverized so that the D 50 particle diameter is less than 10 μm in order to exhibit the high rate characteristics of the battery. The method of the pulverization treatment is not particularly limited, and for example, high-speed pulverization and / or shear pulverization can be performed for pulverization. After the pulverization treatment, if necessary, classification may be performed by light pulverization or sieving. Particle size after pulverization (pulverized average particle diameter), D 50 particle size of preferably less than 8μm, 0.1~6μm more and more preferably 1~4μm is preferred. In the present invention, the average particle size is a particle size (D 50 ) at which the cumulative frequency of the laser diffraction particle size distribution meter is 50% in terms of volume distribution.

(黒鉛材料粉)
本発明に用いる黒鉛材料粉は、特に限定されない。その一部または全部が黒鉛質で形成されているもの、例えば天然黒鉛や、タール、ピッチ類を最終的に1500℃以上で熱処理してなる人造黒鉛が挙げられる。具体的には、易黒鉛化性炭素材料とよばれる石油系、石炭系のタールピッチ類を熱処理して重縮合させたメソフェーズ焼成体、コークス類を1500℃以上、望ましくは2800〜3300℃で黒鉛化処理して得ることができる。球状または楕円体状の平均粒径1〜50μm、比表面積1〜20m/g、好ましくは平均アスペクト比5以下、平均粒径5〜30μmの範囲である天然黒鉛粒子、または人造黒鉛粒子が例示できる。
市販品の球状または楕円体状に加工された天然黒鉛粒子または人造黒鉛粒子を用いることもできる。球状または楕円体状以外の形状の黒鉛粒子、例えば鱗片状の黒鉛粒子の場合は、鱗片状黒鉛を、機械的外力で造粒球状化して球状黒鉛粒子としてもよい。球状または楕円体状に加工する方法は、例えば、接着剤や樹脂などの造粒助剤の共存下で複数の鱗片状黒鉛を混合する方法、複数の鱗片状の黒鉛に接着剤を用いずに機械的外力を加える方法、両者の併用などが挙げられる。しかし、造粒助剤を用いずに機械的外力を加えて球状に造粒する方法が最も好ましい。機械的外力とは、機械的に粉砕および造粒することであり、鱗片状黒鉛を造粒して球状化することができる。鱗片状黒鉛の粉砕装置としては、例えば、加圧ニーダー、二本ロールなどの混練機、回転ボールミル、カウンタジェットミル(ホソカワミクロン(株)製)、カレントジェット(日清エンジニアリング(株)製)などの粉砕装置が使用可能である。
(Graphite material powder)
The graphite material powder used in the present invention is not particularly limited. A part or all of which is made of graphite, for example, natural graphite, and artificial graphite obtained by finally heat-treating tar and pitch at 1500 ° C. or higher. Specifically, mesophase fired bodies obtained by heat-condensing petroleum-based and coal-based tar pitches called carbonitizable carbon materials and subjected to polycondensation, and cokes are graphite at 1500 ° C. or higher, preferably 2800-3300 ° C. It can be obtained by the chemical treatment. Examples include spherical or ellipsoidal average particle size of 1 to 50 μm, specific surface area of 1 to 20 m 2 / g, preferably average aspect ratio of 5 or less, and average particle size of 5 to 30 μm. it can.
Commercially available natural graphite particles or artificial graphite particles processed into spherical or ellipsoidal shapes can also be used. In the case of graphite particles having a shape other than spherical or ellipsoidal shape, for example, flaky graphite particles, the flaky graphite may be granulated and spheroidized by mechanical external force to obtain spherical graphite particles. The method of processing into a spherical or ellipsoidal shape is, for example, a method of mixing a plurality of scaly graphites in the presence of a granulating aid such as an adhesive or a resin, without using an adhesive for a plurality of scaly graphites. The method of applying mechanical external force, the combined use of both, etc. are mentioned. However, the most preferable method is to apply a mechanical external force to granulate into a spherical shape without using a granulating aid. The mechanical external force is mechanically pulverizing and granulating, and scaly graphite can be granulated and spheroidized. Examples of the flaky graphite crusher include a pressure kneader, a kneader such as a two-roll mill, a rotating ball mill, a counter jet mill (manufactured by Hosokawa Micron Corporation), a current jet (manufactured by Nisshin Engineering Co., Ltd.), and the like. A grinding device can be used.

本発明に用いる黒鉛粒子のX線回折の測定値であるLcは40nm以上、Laは40nm以上が好ましい。ここで、Lcは黒鉛構造のc軸方向の結晶子の大きさLc(002)、Laはa軸方向の結晶子の大きさLa(110)である。d002が0.337nm以下、アルゴンレーザーを用いたラマン分光法により測定した1360cm−1ピーク強度(I1360)と1580cm−1ピーク強度(I1580)の比I1360/I1580(R値)が0.06〜0.30、および1580cm−1バンドの半値幅が10〜60であるのが好ましい。 Lc, which is a measured value of X-ray diffraction of the graphite particles used in the present invention, is preferably 40 nm or more, and La is preferably 40 nm or more. Here, Lc is the crystallite size Lc (002) in the c-axis direction of the graphite structure, and La is the crystallite size La (110) in the a-axis direction. d002 is 0.337nm or less, the ratio I1360 / I1580 (R value) of 1360 cm -1 peak intensity measured by Raman spectroscopy using an argon laser (I1360) and 1580 cm -1 peak intensity (I1580) is from 0.06 to 0 It is preferable that the half widths of the .30 and 1580 cm −1 bands are 10 to 60.

〈混合工程〉
混合工程は、黒鉛材料粉100質量部に対して、軟化点が300℃超400℃以下で、D50粒子径が10μm未満のピッチを0.1〜20質量部混合して、混合粉を得る工程である。
上記で得られた粉砕後の高軟化点ピッチと黒鉛材料の混合粉を焼成するに際し、乾粉を任意の方式のミキサー、例えばナウターミキサー、ヘンシェルミキサーや、摩砕器、擂潰器などで粒子を過度に破壊・変形させない条件で混合させる。
粉砕後の高軟化点ピッチと黒鉛材料の混合比は、高軟化点ピッチの軟化点にもよるため一概には決まらないが、残存するソフトカーボン粒子の量を鑑みると黒鉛材料100質量部に対して、高軟化点ピッチ0.1質量部以上は混合しないと本発明が目的とする効果は得られない。また黒鉛材料100質量部に対して、高軟化点ピッチ20質量部超添加すると、黒鉛材料が過度に被覆されてハイレート特性が損なわれる他、残存するソフトカーボンの量も過度となって容量が低下し、またリチウムイオン負極電極としたときのプレス圧縮性が低下する。黒鉛材料100質量部に対する、高軟化点ピッチの混合比は0.1〜20質量部、好ましくは3〜20質量部、より好ましくは4〜15質量部である。
<Mixing process>
Mixing process, with respect to the graphite material powder 100 parts by weight, with a softening point of 300 ° C. Ultra 400 ° C. or less, and D 50 particle size of the pitch of less than 10μm was mixed 0.1-20 parts by weight, to obtain a mixed powder It is a process.
When firing the mixed powder of the high softening point pitch and the graphite material obtained above after pulverization, the dry powder is granulated with any type of mixer such as a Nauter mixer, a Henschel mixer, a grinder, a grinder, etc. Is mixed under conditions that do not cause excessive destruction or deformation.
The mixing ratio between the high softening point pitch after pulverization and the graphite material is not unconditionally determined because it depends on the softening point of the high softening point pitch, but considering the amount of remaining soft carbon particles, If the high softening point pitch of 0.1 parts by mass or more is not mixed, the intended effect of the present invention cannot be obtained. Moreover, if the high softening point pitch exceeds 20 parts by mass with respect to 100 parts by mass of the graphite material, the graphite material is excessively coated to impair the high rate characteristics, and the amount of remaining soft carbon also becomes excessive and the capacity is reduced. In addition, the press compressibility when the lithium ion negative electrode is formed decreases. The mixing ratio of the high softening point pitch with respect to 100 parts by mass of the graphite material is 0.1 to 20 parts by mass, preferably 3 to 20 parts by mass, and more preferably 4 to 15 parts by mass.

〈焼成工程〉
焼成工程は、高軟化点ピッチ揮発分調整工程で得られた高軟化点ピッチを不活性雰囲気中、700〜1500℃で焼成処理して、リチウムイオン二次電池負極用炭素材料(「本発明の炭素材料」という場合がある。)を得る工程である。好ましくは900℃超〜1400℃、より好ましくは、1000℃超〜1300℃が更に好ましい。
本発明の製造方法では、焼成工程の前に焼成工程より低温で加熱処理する不融化工程を行わない。本発明の製造方法では不融化工程を行うと、後に比較例で説明するように、得られるリチウムイオン二次電池負極用炭素材料を用いた負極を有する電池特性が低下することがわかっている。
<Baking process>
In the firing step, the high softening point pitch obtained in the high softening point pitch volatile content adjusting step is fired at 700 to 1500 ° C. in an inert atmosphere to obtain a carbon material for a lithium ion secondary battery negative electrode (“of the present invention”). This is a step of obtaining a “carbon material”. Preferably more than 900 degreeC-1400 degreeC, More preferably, more than 1000 degreeC-1300 degreeC is still more preferable.
In the production method of the present invention, the infusibilization step of heat treatment at a lower temperature than the baking step is not performed before the baking step. In the production method of the present invention, it is known that when the infusibilization step is performed, battery characteristics having a negative electrode using the obtained carbon material for a negative electrode of a lithium ion secondary battery are deteriorated, as will be described later in a comparative example.

《焼成処理》
本発明の製造方法では、焼成処理は700〜1500℃で行われ、黒鉛化処理のように2000〜3000℃程度の高温で処理する必要がないため、高温加熱炉が不要である。また、ピッチを予め高軟化点としているため、焼成処理をする前に、700℃未満、例えば300〜600℃、で予備的な加熱処理(不融化処理)は行わない方が好ましい。
<Baking treatment>
In the production method of the present invention, the baking treatment is performed at 700 to 1500 ° C., and it is not necessary to perform the treatment at a high temperature of about 2000 to 3000 ° C. unlike the graphitization treatment, so that a high temperature heating furnace is unnecessary. In addition, since the pitch is set to a high softening point in advance, it is preferable not to perform preliminary heat treatment (infusibilization treatment) at a temperature lower than 700 ° C., for example, 300 to 600 ° C., before the firing treatment.

(焼成処理雰囲気)
焼成処理の際の雰囲気(焼成処理雰囲気)は不活性雰囲気である。不活性雰囲気は、特に限定されず、例えば、窒素ガス、アルゴンガス等の不活性ガスによる不活性雰囲気を利用することができる。
(Baking treatment atmosphere)
The atmosphere during the baking treatment (firing treatment atmosphere) is an inert atmosphere. The inert atmosphere is not particularly limited, and for example, an inert atmosphere with an inert gas such as nitrogen gas or argon gas can be used.

(焼成処理温度)
焼成処理の際の温度(焼成処理温度)は700〜1500℃である。焼成処理温度が700℃未満では炭素化が遅く、場合によっては十分に炭素化することができない。また、焼成処理温度が1500℃超では水系バインダを用いた場合のハイレート特性を低下させるおそれがある。
(Baking temperature)
The temperature during the firing treatment (firing treatment temperature) is 700 to 1500 ° C. When the firing temperature is lower than 700 ° C., the carbonization is slow, and in some cases, the carbonization cannot be sufficiently performed. In addition, when the firing temperature is higher than 1500 ° C., the high-rate characteristics may be deteriorated when an aqueous binder is used.

(焼成処理時間)
焼成処理の際の時間(焼成処理時間)は、高軟化点ピッチが炭化されるまでであり、特に限定されない。
(Baking time)
The time during the firing treatment (firing treatment time) is until the high softening point pitch is carbonized, and is not particularly limited.

[リチウムイオン二次電池負極用炭素材料]
本発明のリチウムイオン二次電池負極用炭素材料(以下、単に「本発明の炭素材料」ともいう。)は、上述の本発明の製造方法により得られる特定のソフトカーボン粒子と、前記黒鉛材料粉の表面が炭素被覆された炭素被覆黒鉛材料粉との混合粉である。
本発明の炭素材料は、非酸化性雰囲気下、2000〜3000℃での加熱処理(黒鉛化処理)を施すことなく、リチウムイオン二次電池負極用炭素材料として使用することができる。焼成後の混合紛が、特定のソフトカーボン粒子と、前記黒鉛材料粉の表面が炭素被覆された炭素被覆黒鉛材料粉との混合粉であることは、焼成後の炭素材料粉を電子顕微鏡(SEM)で観察するとソフトカーボン粒子と表面炭素被覆された黒鉛材料粉が観察できることでわかる。
[Carbon material for negative electrode of lithium ion secondary battery]
The carbon material for a negative electrode of a lithium ion secondary battery of the present invention (hereinafter also simply referred to as “the carbon material of the present invention”) includes specific soft carbon particles obtained by the above-described production method of the present invention, and the graphite material powder. This is a mixed powder with a carbon-coated graphite material powder coated with carbon on its surface.
The carbon material of the present invention can be used as a carbon material for a negative electrode of a lithium ion secondary battery without performing a heat treatment (graphitization treatment) at 2000 to 3000 ° C. in a non-oxidizing atmosphere. The mixed powder after firing is a mixed powder of specific soft carbon particles and carbon-coated graphite material powder whose surface of the graphite material powder is carbon-coated. ) Can be seen by observing soft carbon particles and graphite material powder coated with surface carbon.

(負極材料の平均粒径)
本発明の炭素材料の平均粒径は、特に限定されるものではないが、嵩密度が高く、電極とした際により高い充填密度が得られ、かつ電極の厚みは通常100μm以下で使用されるという理由から、2〜30μmが好ましく、ハイレート特性が要求されるリチウムイオン二次電池ではとくに3〜20μmがより好ましい。なお、本発明の炭素材料の平均粒径は、レーザー回折式粒度分布計の累積度数が体積百分率で50%となる粒子径(D50)である。
(Average particle size of negative electrode material)
The average particle diameter of the carbon material of the present invention is not particularly limited, but the bulk density is high, a higher packing density can be obtained when the electrode is used, and the electrode thickness is usually 100 μm or less. For the reason, 2 to 30 μm is preferable, and 3 to 20 μm is more preferable particularly in a lithium ion secondary battery that requires high rate characteristics. In addition, the average particle diameter of the carbon material of the present invention is a particle diameter (D 50 ) at which the cumulative frequency of the laser diffraction particle size distribution meter is 50% by volume.

(負極材料の比表面積)
本発明の炭素材料の比表面積は、特に限定されるものではないが、大きすぎるとリチウムイオン二次電池の安全性の低下を生じることがあるため、20m/g以下が好ましく、0.3〜10.0m/gがより好ましく、より優れたハイレート特性を発揮するため、2.0〜5.0m/gがさらに好ましい。ここで、負極材料の比表面積は、窒素ガス吸着BET比表面積である。
(Specific surface area of negative electrode material)
The specific surface area of the carbon material of the present invention is not particularly limited, but if it is too large, the safety of the lithium ion secondary battery may be lowered, and therefore it is preferably 20 m 2 / g or less, 0.3 ~10.0m more preferably 2 / g, in order to exhibit more excellent high-rate characteristics, more preferably 2.0~5.0m 2 / g. Here, the specific surface area of the negative electrode material is a nitrogen gas adsorption BET specific surface area.

[リチウムイオン二次電池]
本発明の炭素材料を用いたリチウムイオン二次電池(以下、「本発明のリチウムイオン二次電池」ともいう)について説明する。また、本発明の炭素材料を用いたリチウムイオン二次電池負極についても説明する。
リチウムイオン二次電池は、通常、負極、正極および非水電解液を主たる電池構成要素とし、正・負極はそれぞれリチウムイオンを吸蔵可能な層状やクラスター状の物質からなり、充放電過程におけるリチウムイオンの出入は層間で行われる。充電時にはリチウムイオンが負極中にドープされ、放電時には負極から脱ドープする電池機構である。
本発明のリチウムイオン二次電池は、本発明の炭素材料を用いること以外は特に限定されず、他の電池構成要素については一般的なリチウムイオン二次電池の要素に準ずる。
[Lithium ion secondary battery]
A lithium ion secondary battery using the carbon material of the present invention (hereinafter also referred to as “lithium ion secondary battery of the present invention”) will be described. Moreover, the lithium ion secondary battery negative electrode using the carbon material of this invention is also demonstrated.
Lithium ion secondary batteries usually have a negative electrode, a positive electrode, and a non-aqueous electrolyte as the main battery components, and the positive and negative electrodes are each composed of a layered or clustered material capable of occluding lithium ions. The entry and exit are performed between the layers. This is a battery mechanism in which lithium ions are doped into the negative electrode during charging and are dedoped from the negative electrode during discharging.
The lithium ion secondary battery of the present invention is not particularly limited except that the carbon material of the present invention is used, and other battery components conform to the elements of a general lithium ion secondary battery.

(負極)
負極を作製する際は、上述した本発明の炭素材料、または、本発明の炭素材料を含む混合負極材料にバインダ(結合剤)を加えた負極合剤を用いる。バインダとしては、水系バインダまたは非水系(有機溶剤系)バインダのいずれも用いることができるが、負極製造時の環境負荷が低いことから、水系バインダを用いることが好ましい。水系バインダは水溶性高分子を用いたバインダであり、例えば、スチレン−ブタジエン共重合体(SBR)、ポリビニルアルコール(PVA)、カルボキシメチルセルロース(CMC)、ポリアクリル酸(PAA)等が挙げられる。これらの水系バインダは1種類を単独で、または2種類以上を組み合わせて用いることができる。非水系(有機溶剤系)バインダは水に不溶で有機溶剤(例えば、ジメチルホルムアミド)に溶解する高分子を用いたバインダであり、例えば、ポリフッ化ビニリデン(PVdF)、ポリテトラフルオロエチレン(PTFE)、ポリエチレン(PE)等が挙げられる。これらの非水系バインダは1種類を単独で、または2種類以上を組み合わせて用いることができる。バインダは、通常、負極合剤の全量中1〜20質量%程度の量で用いるのが好ましい。
(Negative electrode)
When producing a negative electrode, the negative electrode mixture which added the binder (binder) to the carbon material of this invention mentioned above or the mixed negative electrode material containing the carbon material of this invention is used. As the binder, either a water-based binder or a non-aqueous (organic solvent-based) binder can be used, but it is preferable to use a water-based binder because the environmental load during the production of the negative electrode is low. The water-based binder is a binder using a water-soluble polymer, and examples thereof include styrene-butadiene copolymer (SBR), polyvinyl alcohol (PVA), carboxymethyl cellulose (CMC), and polyacrylic acid (PAA). These aqueous binders can be used alone or in combination of two or more. Non-aqueous (organic solvent) binder is a binder using a polymer that is insoluble in water and dissolved in an organic solvent (for example, dimethylformamide). For example, polyvinylidene fluoride (PVdF), polytetrafluoroethylene (PTFE), Examples include polyethylene (PE). These non-aqueous binders can be used alone or in combination of two or more. In general, the binder is preferably used in an amount of about 1 to 20% by mass in the total amount of the negative electrode mixture.

負極の作製には、負極作製用の通常の溶媒を用いることができる。負極合剤を溶媒中に分散させ、ペースト状にした後、集電体に塗布、乾燥すれば、負極合剤層が均一かつ強固に集電体に接着される。より具体的には、例えば、本発明の炭素材料の粒子と、バインダとを、水、アルコールなどの溶媒と混合してスラリーとした後、ニーダーやミキサーなどで混練してペーストを調製する。このペーストを集電材の片面または両面に塗布し、乾燥すれば、負極合剤層が均一に接着した負極が得られる。   A normal solvent for preparing a negative electrode can be used for preparing the negative electrode. When the negative electrode mixture is dispersed in a solvent and made into a paste, and then applied to the current collector and dried, the negative electrode mixture layer is uniformly and firmly adhered to the current collector. More specifically, for example, the particles of the carbon material of the present invention and a binder are mixed with a solvent such as water or alcohol to form a slurry, and then kneaded with a kneader or a mixer to prepare a paste. If this paste is applied to one or both sides of the current collector and dried, a negative electrode in which the negative electrode mixture layer is uniformly bonded can be obtained.

負極合剤層を形成した後、プレス加圧等の圧着を行うと、負極合剤層と集電体との接着強度をさらに高めることができる。負極に用いる集電体の形状としては、特に限定されず、例えば、箔状のもの、または、メッシュ、エキスパンドメタル等の網状のもの等が用いられる。集電体の材質としては、例えば、銅、ステンレス、ニッケル等が挙げられる。集電体の厚さは、例えば、箔状の場合、5〜20μm程度が好適である。   After the negative electrode mixture layer is formed, the adhesive strength between the negative electrode mixture layer and the current collector can be further increased by pressure bonding such as pressurization. The shape of the current collector used for the negative electrode is not particularly limited, and for example, a foil-like one or a net-like one such as a mesh or an expanded metal is used. Examples of the material for the current collector include copper, stainless steel, and nickel. For example, in the case of a foil, the thickness of the current collector is preferably about 5 to 20 μm.

(正極)
正極の材料(正極活物質)はリチウムと遷移金属との複合酸化物であり、こればリチウムと2種類以上の遷移金属を固溶したものであってもよい。リチウム含有遷移金属酸化物は、具体的には、LiM(1)1−pM(2)(式中Pは0≦p≦1の範囲の数値であり、M(1)、M(2)は少なくとも一種の遷移金属元素からなる)、または、LiM(1)2−qM(2)(式中qは0≦q≦1の範囲の数値であり、M(1)、M(2)は少なくとも一種の遷移金属元素からなる)で示される。ここでMで示される遷移金属元素としては、Co、Ni、Mn、Cr、Ti、V、Fe、Zn、In、Snなどが挙げられ、Co、Ni、Fe、Mn、Ti、Crが好ましい。
このようなリチウム含有遷移金属酸化物は、例えば、Li、遷移金属の酸化物または塩類を出発原料とし、これら出発原料を組成に応じて混合し、酸素雰囲気下600〜1300℃の温度範囲で焼成することにより得ることができる。なお、出発原料は酸化物または塩類に限定されず、水酸化物などからも合成可能である。
(Positive electrode)
The positive electrode material (positive electrode active material) is a composite oxide of lithium and a transition metal, and may be a solid solution of lithium and two or more transition metals. Specifically, the lithium-containing transition metal oxide is LiM (1) 1-p M (2) p O 2 (wherein P is a numerical value in the range of 0 ≦ p ≦ 1, M (1), M (2) is composed of at least one transition metal element), or LiM (1) 2-q M (2) q O 4 (wherein q is a numerical value in the range of 0 ≦ q ≦ 1, M (1 ), M (2) is composed of at least one transition metal element). Examples of the transition metal element represented by M include Co, Ni, Mn, Cr, Ti, V, Fe, Zn, In, and Sn, and Co, Ni, Fe, Mn, Ti, and Cr are preferable.
Such a lithium-containing transition metal oxide includes, for example, Li, a transition metal oxide or salt as a starting material, these starting materials are mixed according to the composition, and fired in an oxygen atmosphere at a temperature range of 600 to 1300 ° C. Can be obtained. Note that the starting materials are not limited to oxides or salts, and can be synthesized from hydroxides or the like.

このような正極材料を用いて正極を形成する方法としては、例えば、正極材料、結合剤および導電剤からなるペースト状の正極合剤塗料を集電体の片面または両面に塗布することで正極合剤層を形成する。結合剤としては、負極で例示したものを使用できる。導電剤としては、例えば、微粒の炭素材料、繊維状の炭素材料、黒鉛、カーボンブラックを使用できる。集電体の形状は特に限定されず、負極と同様の形状のものが用いられる。集電体の材質としては、通常、アルミニウム、ニッケル、ステンレスなどを使用することができる。
上述した負極および正極を形成するに際しては、従来公知の導電剤や結着剤などの各種添加剤を適宜使用することができる。
As a method of forming a positive electrode using such a positive electrode material, for example, a paste-like positive electrode mixture paint comprising a positive electrode material, a binder and a conductive agent is applied to one or both sides of a current collector. An agent layer is formed. As the binder, those exemplified for the negative electrode can be used. As the conductive agent, for example, a fine carbon material, a fibrous carbon material, graphite, or carbon black can be used. The shape of the current collector is not particularly limited, and the same shape as the negative electrode is used. As the material for the current collector, aluminum, nickel, stainless steel and the like can be usually used.
In forming the above-described negative electrode and positive electrode, various conventionally known additives such as a conductive agent and a binder can be appropriately used.

(電解質)
電解質としては、LiPF、LiBFなどのリチウム塩を電解質塩として含む通常の非水電解質が用いられる。この非水溶媒としては、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、ジエチルカーボネートなどの非プロトン性有機溶媒が使用できる。
(Electrolytes)
As the electrolyte, a normal nonaqueous electrolyte containing a lithium salt such as LiPF 6 or LiBF 4 as the electrolyte salt is used. As this non-aqueous solvent, an aprotic organic solvent such as ethylene carbonate, propylene carbonate, dimethyl carbonate, and diethyl carbonate can be used.

(セパレータ、セルケース、その他部材)
本発明のリチウムイオン二次電池においては、通常、ポリプロピレン、ポリエチレンの微多孔膜またはそれらを層構造としたもの、或いは不織布などのセパレータを使用する。また本発明のリチウムイオン二次電池のセル構造は任意であり、その形状、形態について特に限定されるものではなく、例えば、円筒型、角型、コイン型から任意に選択することができる。
(Separator, cell case, other members)
In the lithium ion secondary battery of the present invention, a polypropylene or polyethylene microporous film or a layered structure thereof, or a separator such as a nonwoven fabric is usually used. Moreover, the cell structure of the lithium ion secondary battery of this invention is arbitrary, and it does not specifically limit about the shape and form, For example, it can select arbitrarily from a cylindrical shape, a square shape, and a coin shape.

以下に、実施例を挙げて本発明を具体的に説明する。ただし、本発明はこれらに限定されるものではない。   Hereinafter, the present invention will be specifically described with reference to examples. However, the present invention is not limited to these.

[実施例1]
〈リチウムイオン二次電池負極用炭素材料の製造〉
(高軟化点ピッチ製造工程)
20リットルのオートクレーブに、タールを入れ、300℃で約2.5時間加熱処理して高軟化点ピッチを製造した。加熱処理の温度および時間、および得られた高軟化点ピッチの軟化点を、表1の高軟化点ピッチ製造工程の欄に示す。
(高軟化点ピッチ粉砕工程)
得られた高軟化点ピッチをジェットミルを用いて、平均粒径4μmに粉砕を行った。高軟化点ピッチの揮発分含有量を平均粒径と合せ、表1に示す。
(混合工程)
平均粒径15μmの球状化天然黒鉛(表中で球状天黒と記載する)100質量部と、上記で得られた4μmの高軟化点ピッチ10質量部を、ナウターミキサーを用いて10m/sの線速で15分間の混合処理を行った。
(焼成工程)
上記混合工程で得られた、球状化天然黒鉛と高軟化点ピッチの混合粉を、不活性雰囲気(N)中、温度1200℃、時間1hrの条件で焼成を行い、リチウムイオン二次電池負極用炭素材料となる炭素材料を得た。得られた表面改質黒鉛粉とソフトカーボンとの混合炭素粉の平均粒径、ならびに焼成の雰囲気、温度および時間等の製造条件を表1に示す。得られた炭素材料の表面と断面のSEM像を図2、図3に示す。図から、得られた炭素材料(粉体)中には炭素被覆黒鉛材料粉10およびソフトカーボン粒子12が存在することがわかる。
[Example 1]
<Manufacture of carbon material for lithium ion secondary battery negative electrode>
(High softening point pitch manufacturing process)
Tar was placed in a 20 liter autoclave and heat treated at 300 ° C. for about 2.5 hours to produce a high softening point pitch. The temperature and time of the heat treatment and the softening point of the obtained high softening point pitch are shown in the column of the high softening point pitch manufacturing step in Table 1.
(High softening point pitch crushing process)
The obtained high softening point pitch was pulverized to a mean particle size of 4 μm using a jet mill. Table 1 shows the volatile content of the high softening point pitch together with the average particle diameter.
(Mixing process)
100 parts by mass of spheroidized natural graphite having an average particle diameter of 15 μm (denoted as spherical sky black in the table) and 10 parts by mass of the 4 μm high softening point pitch obtained above are 10 m / s using a Nauta mixer. For 15 minutes.
(Baking process)
The mixed powder of spheroidized natural graphite and high softening point pitch obtained in the above mixing step is fired in an inert atmosphere (N 2 ) under conditions of a temperature of 1200 ° C. and a time of 1 hr, and a lithium ion secondary battery negative electrode A carbon material to be used as a carbon material was obtained. Table 1 shows the average particle diameter of the obtained mixed carbon powder of the surface-modified graphite powder and the soft carbon, and the production conditions such as the firing atmosphere, temperature and time. 2 and 3 show SEM images of the surface and cross section of the obtained carbon material. From the figure, it can be seen that carbon-coated graphite material powder 10 and soft carbon particles 12 exist in the obtained carbon material (powder).

〈評価電池の作製〉
製造したリチウムイオン二次電池負極用炭素材料98質量部と、カルボキシメチルセルロースアンモニウム1質量部(固形分で)と、カルボキシ変性スチレンブタジエンゴム1質量部とを混合し、水を溶媒として、プラネタリーミキサーを用いて攪拌混合して、負極合剤ペーストを得た。得られた負極合剤ペーストを15μm厚みの銅箔上に塗布し、110℃の温度下にて真空乾燥し、負極合剤層を形成した。形成した負極合剤層をロールプレスによって加圧し、さらに直径15.5mmの円形状に打ち抜き、銅箔からなる集電体に密着した負極合剤層を有する負極を作製した。
<Production of evaluation battery>
A planetary mixer using 98 parts by mass of the produced carbon material for the negative electrode of a lithium ion secondary battery, 1 part by mass of carboxymethylcellulose ammonium (in solid content) and 1 part by mass of carboxy-modified styrene butadiene rubber, and water as a solvent. The mixture was stirred and mixed to obtain a negative electrode mixture paste. The obtained negative electrode mixture paste was applied on a copper foil having a thickness of 15 μm and vacuum-dried at a temperature of 110 ° C. to form a negative electrode mixture layer. The formed negative electrode mixture layer was pressed by a roll press, punched into a circular shape having a diameter of 15.5 mm, and a negative electrode having a negative electrode mixture layer adhered to a current collector made of copper foil was produced.

次いで、評価電池として図1に示すコイン型リチウムイオン二次電池を作製した。評価電池は、その内部に外装缶3の内面から順に、集電体7a、円筒状の正極4、電解液が含浸されたセパレータ5、負極2および集電体7bが積層された電池系である。前記評価電池は、セパレータ5を集電体7bと、集電体7aに密着した正極(対極)4との間に挟んで積層した後、集電体7bを外装カップ1内に、正極4を外装缶3内に収容して、外装カップ1と外装缶3とを合わせ、さらに、外装カップ1と外装缶3との周縁部に絶縁ガスケット6を介在させ、両周縁部をかしめて密閉して作製した。なお、電解液は、エチレンカーボネート(33体積%)とメチルエチルカーボネート(67体積%)とを混合して得られた混合溶媒に、LiPFを1mol/Lとなる濃度で溶解させた非水電解質である。また、セパレータおよび負極電極は、あらかじめ非水電解液に浸して、非水電解液を含浸させた。 Next, a coin-type lithium ion secondary battery shown in FIG. 1 was prepared as an evaluation battery. The evaluation battery is a battery system in which a current collector 7a, a cylindrical positive electrode 4, a separator 5 impregnated with an electrolyte, a negative electrode 2, and a current collector 7b are stacked in that order from the inner surface of the outer can 3. . In the evaluation battery, the separator 5 is sandwiched and stacked between the current collector 7b and the positive electrode (counter electrode) 4 closely attached to the current collector 7a, and then the current collector 7b is placed in the exterior cup 1 and the positive electrode 4 is placed. It is accommodated in the outer can 3, the outer cup 1 and the outer can 3 are combined, and further, an insulating gasket 6 is interposed between the outer peripheral portion of the outer cup 1 and the outer can 3, and both peripheral portions are caulked and sealed. Produced. The electrolyte was a nonaqueous electrolyte in which LiPF 6 was dissolved at a concentration of 1 mol / L in a mixed solvent obtained by mixing ethylene carbonate (33% by volume) and methyl ethyl carbonate (67% by volume). It is. Moreover, the separator and the negative electrode were immersed in a non-aqueous electrolyte in advance and impregnated with the non-aqueous electrolyte.

〈電池特性の評価〉
作製した評価電池について、25℃で以下の充放電試験を行なった。なお、本試験では、リチウムイオンを負極材料中にドープ(吸蔵)する過程を「充電」、負極材料から脱ドープ(離脱)する過程を「放電」としている。
<Evaluation of battery characteristics>
About the produced evaluation battery, the following charging / discharging tests were done at 25 degreeC. In this test, the process of doping (occluding) lithium ions into the negative electrode material is referred to as “charging”, and the process of dedoping (detaching) from the negative electrode material is referred to as “discharge”.

(放電容量)
回路電圧が1mVに達するまで1.2mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた。その間の通電量から充電容量(単位:mAh/g)を求めた。その後、10分間休止した。
次に、1.2mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量(単位:mAh/g)を求めた。これを第1サイクルとした。
求めた第1サイクルの放電容量を表2に示す。
(Discharge capacity)
After constant current charging of 1.2 mA until the circuit voltage reached 1 mV, switching to constant voltage charging was continued until the current value reached 20 μA. The charging capacity (unit: mAh / g) was determined from the energization amount during that time. Then, it rested for 10 minutes.
Next, constant current discharge was performed at a current value of 1.2 mA until the circuit voltage reached 1.5 V, and the discharge capacity (unit: mAh / g) was determined from the amount of electricity supplied during this period. This was the first cycle.
Table 2 shows the obtained discharge capacity of the first cycle.

(初回充放電効率)
上記充放電試験の結果から、次式により、初回充放電効率(単位:%)を求めた。
初回充放電効率=(第1サイクルの放電容量/第1サイクルの充電容量)×100
求めた初回充放電効率を表2に示す。
(First-time charge / discharge efficiency)
From the results of the charge / discharge test, the initial charge / discharge efficiency (unit:%) was determined by the following formula.
Initial charge / discharge efficiency = (discharge capacity of first cycle / charge capacity of first cycle) × 100
Table 2 shows the obtained initial charge / discharge efficiency.

(サイクル特性)
新しい未使用の評価電池を用意し、サイクル特性を評価した。
回路電圧が0mVに達するまで6.0mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた後、120分間休止した。
次に、6.0mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行った。50回充放電を繰返し、得られた放電容量から次の式によってサイクル特性(単位:%)を求めた。
サイクル特性=(第50サイクルの放電容量/第1サイクルの放電容量)×100
求めたサイクル特性を表2に示す。
(Cycle characteristics)
A new unused evaluation battery was prepared and the cycle characteristics were evaluated.
After 6.0 mA constant current charging was performed until the circuit voltage reached 0 mV, switching to constant voltage charging was continued until the current value reached 20 μA, and then rested for 120 minutes.
Next, constant current discharge was performed at a current value of 6.0 mA until the circuit voltage reached 1.5V. The charge / discharge was repeated 50 times, and the cycle characteristics (unit:%) were determined from the obtained discharge capacity by the following formula.
Cycle characteristics = (discharge capacity of 50th cycle / discharge capacity of 1st cycle) × 100
Table 2 shows the obtained cycle characteristics.

(ハイレート放電特性(急速放電特性))
新しい未使用の評価電池を用意し、ハイレート放電特性を評価した。
第1サイクルに続いて、回路電圧が1mVに達するまで1.2mAの定電流充電を行った後、定電圧充電に切替え、電流値が20μAになるまで充電を続けた。その後、10分間休止した。
次に、18.0mAの電流値で、回路電圧が1.5Vに達するまで定電流放電を行い、この間の通電量から放電容量(単位:mAh/g)を求めた。求めた放電容量から、次の式によって、ハイレート放電特性(単位:%)を求めた。
ハイレート放電特性=(18.0mAの放電容量/第1サイクル1.2mAの放電容量)×100
求めたハイレート放電特性を表2に示す。
なお、本明細書において、このようにして求められた急速放電特性を「3C/0.2Cの放電率」という場合がある。
(High rate discharge characteristics (rapid discharge characteristics))
A new unused evaluation battery was prepared and the high rate discharge characteristics were evaluated.
Following the first cycle, constant current charging of 1.2 mA was performed until the circuit voltage reached 1 mV, then switching to constant voltage charging was continued until the current value reached 20 μA. Then, it rested for 10 minutes.
Next, constant current discharge was performed at a current value of 18.0 mA until the circuit voltage reached 1.5 V, and the discharge capacity (unit: mAh / g) was determined from the amount of current supplied. From the obtained discharge capacity, the high-rate discharge characteristics (unit:%) were obtained by the following formula.
High-rate discharge characteristic = (18.0 mA discharge capacity / first cycle 1.2 mA discharge capacity) × 100
Table 2 shows the obtained high-rate discharge characteristics.
In the present specification, the rapid discharge characteristics thus obtained may be referred to as “3C / 0.2C discharge rate”.

(ハイレート充電特性(急速充電特性))
新しい未使用の評価電池を用意し、ハイレート充電特性を評価した。
第1サイクルに続いて、回路電圧が1mVに達するまで6.0mAの定電流充電を行った後、10分間休止した。この間の通電量から充電容量(単位:mAh/g)を求めた。求めた充電容量から、次の式によって、ハイレート充電特性(単位:%)を求めた。
ハイレート充電特性=(6.0mAの充電容量/第1サイクル1.2mAの充電容量)×100
求めたハイレート充電特性を表2に示す。
なお、本明細書において、このようにして求められた急速充電特性を「1C/0.2Cの充電率」という場合がある。
(High rate charging characteristics (rapid charging characteristics))
A new unused evaluation battery was prepared and the high rate charging characteristics were evaluated.
Following the first cycle, a constant current charge of 6.0 mA was performed until the circuit voltage reached 1 mV, and then rested for 10 minutes. The charging capacity (unit: mAh / g) was determined from the energization amount during this period. From the obtained charge capacity, the high rate charge characteristic (unit:%) was obtained by the following equation.
High-rate charge characteristic = (6.0 mA charge capacity / first cycle 1.2 mA charge capacity) × 100
Table 2 shows the obtained high rate charging characteristics.
In the present specification, the quick charge characteristics thus obtained may be referred to as “1C / 0.2C charge rate”.

[実施例2〜9、比較例1〜6]
実施例2〜9、および比較例1〜6について、実施例1と同様にして製造および評価を行った。各実施例、比較例の製造条件や中間工程の物性等を表1に、得られた表面改質黒鉛粉とソフトカーボンとの混合炭素粉を用いて、実施例1と同様にして製造および評価を行った。結果を表2に示す。
なお、黒鉛材料粉としては、実施例1と同じ球状天然黒鉛を用い、実施例6の人造黒鉛は、コールタールピッチを原料として3000℃、3時間、アルゴン雰囲気中で焼成して得られた人造黒鉛を用いた。
[Examples 2-9, Comparative Examples 1-6]
Examples 2 to 9 and Comparative Examples 1 to 6 were produced and evaluated in the same manner as in Example 1. Production and evaluation in the same manner as in Example 1 using the mixed carbon powder of the surface-modified graphite powder and soft carbon obtained in Table 1 for the manufacturing conditions of each example and comparative example, the physical properties of intermediate steps, etc. Went. The results are shown in Table 2.
In addition, as the graphite material powder, the same spherical natural graphite as in Example 1 was used, and the artificial graphite of Example 6 was manufactured by firing coal tar pitch as a raw material at 3000 ° C. for 3 hours in an argon atmosphere. Graphite was used.

(実施例、比較例の評価)
1)比較例1は、用いるピッチの軟化点が実施例の300℃超より低く250℃である以外は実施例と同様の原材料を同様の焼成条件で製造したものであるが、ピッチの軟化点が低いので得られる電池特性のハイレート特性が実施例より劣っていた。一方で原料ピッチの軟化点が400℃を超える場合の比較例2は、得られる電池特性の初期充放電効率、サイクル特性に劣り、ハイレート充電特性も低かった。本発明の一つの特徴は、原料ピッチの軟化点が300℃超400℃以下の高軟化点ピッチを用いることである。
2)比較例3は焼成温度が高すぎるのでサイクル特性に劣り、ハイレート充電特性も低かった。比較例4は、高軟化点ピッチの量が多すぎるので製造される負極用炭素材料は圧縮特性に劣り得られる電池特性が劣る。比較例5は高軟化点ピッチの粒径が大きくハイレート充電特性に劣る。
3)本発明は、黒鉛材料粉と高軟化点ピッチを混合して特定の温度範囲で焼成する結果、ソフトカーボン粒子と表面が被覆された炭素被覆黒鉛材料粉とが存在する負極用黒鉛粉が得られることが本発明の別の特徴であることが実施例、比較例の結果からわかる。
(Evaluation of Examples and Comparative Examples)
1) In Comparative Example 1, the same raw material as in the example was manufactured under the same firing conditions except that the softening point of the pitch used was lower than 300 ° C. of the example and 250 ° C., but the softening point of the pitch was Therefore, the high rate characteristics of the obtained battery characteristics were inferior to those of the examples. On the other hand, Comparative Example 2 in which the softening point of the raw material pitch exceeded 400 ° C. was inferior in the initial charge / discharge efficiency and cycle characteristics of the obtained battery characteristics, and the high rate charge characteristics were also low. One feature of the present invention is that a high softening point pitch having a softening point of the raw material pitch of more than 300 ° C. and 400 ° C. or less is used.
2) In Comparative Example 3, the firing temperature was too high, so the cycle characteristics were inferior, and the high rate charge characteristics were also low. In Comparative Example 4, since the amount of the high softening point pitch is too large, the carbon material for negative electrode produced is inferior in battery characteristics that can be inferior in compression characteristics. In Comparative Example 5, the particle size of the high softening point pitch is large and the high rate charging characteristics are inferior.
3) According to the present invention, as a result of mixing graphite material powder and high softening point pitch and firing in a specific temperature range, graphite powder for negative electrode in which soft carbon particles and carbon-coated graphite material powder coated on the surface are present is obtained. It can be seen from the results of the examples and comparative examples that this is another feature of the present invention.

1 外装カップ
2 負極
3 外装缶
4 正極
5 セパレータ
6 絶縁ガスケット
7a 集電体
7b 集電体
10 炭素被覆黒鉛材料粉
12 ソフトカーボン粒子
DESCRIPTION OF SYMBOLS 1 Exterior cup 2 Negative electrode 3 Exterior can 4 Positive electrode 5 Separator 6 Insulating gasket 7a Current collector 7b Current collector 10 Carbon covering graphite material powder 12 Soft carbon particle

Claims (3)

黒鉛材料粉100質量部に対して、化点が300℃超400℃以下で、D50粒子径が10μm未満のピッチを0.1〜20質量部、ミキサーで混合して、混合粉を得る混合工程と、
前記混合工程で得られた混合粉を不活性雰囲気下、700〜1500℃の温度範囲で焼成して、前記ピッチが焼成して得られたソフトカーボン粒子と、前記黒鉛材料粉の表面が炭素被覆された炭素被覆黒鉛材料粉との混合粉を得る焼成工程からなることを特徴とするリチウムイオン二次電池負極用炭素材料の製造方法。
Against the graphite material powder 100 parts by weight, with softening point of 300 ° C. Ultra 400 ° C. or less, 0.1 to 20 parts by mass of pitch of less than D 50 particle size of 10 [mu] m, and mixed in a mixer to obtain a mixed powder A mixing step;
The mixed powder obtained in the mixing step is fired in a temperature range of 700 to 1500 ° C. in an inert atmosphere, and the pitch of the soft carbon particles obtained by firing and the surface of the graphite material powder is coated with carbon. A method for producing a carbon material for a negative electrode of a lithium ion secondary battery, comprising a firing step of obtaining a mixed powder with the carbon-coated graphite material powder thus prepared.
請求項1に記載の製造方法で得られるリチウムイオン二次電池負極用炭素材料と結合剤とを混合し、集電体に塗布し負極を製造する工程を有するリチウムイオン二次電池負極の製造方法。   A method for producing a negative electrode for a lithium ion secondary battery comprising a step of mixing a carbon material for a negative electrode for a lithium ion secondary battery obtained by the production method according to claim 1 and a binder and applying the mixture to a current collector to produce the negative electrode . 請求項2に記載の負極、正極、電解質およびセパレータを組み合わせて配置するリチウムイオン二次電池の製造方法。   The manufacturing method of the lithium ion secondary battery arrange | positioned combining the negative electrode of Claim 2, a positive electrode, electrolyte, and a separator.
JP2016019566A 2015-02-04 2016-02-04 Carbon material for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and method for producing lithium ion secondary battery Active JP6584975B2 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2015020304 2015-02-04
JP2015020304 2015-02-04

Publications (2)

Publication Number Publication Date
JP2016146343A JP2016146343A (en) 2016-08-12
JP6584975B2 true JP6584975B2 (en) 2019-10-02

Family

ID=56686101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016019566A Active JP6584975B2 (en) 2015-02-04 2016-02-04 Carbon material for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and method for producing lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP6584975B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110518204A (en) * 2019-08-06 2019-11-29 内蒙古凯金新能源科技有限公司 Modified soft carbon negative electrode material in surface and preparation method thereof, lithium ion battery
JP7416077B2 (en) * 2019-09-26 2024-01-17 株式会社レゾナック Negative electrode material for lithium ion secondary batteries and its manufacturing method, negative electrode for lithium ion secondary batteries, and lithium ion secondary batteries
CN114628646A (en) * 2020-12-11 2022-06-14 天津市贝特瑞新能源科技有限公司 Composite negative electrode material, preparation method thereof and lithium ion battery
CN113097479B (en) * 2021-03-30 2023-04-07 吴耀帮 Preparation method of quick-charging type lithium ion battery negative electrode powder and application of quick-charging type lithium ion battery negative electrode powder in lithium ion battery

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000100432A (en) * 1998-09-24 2000-04-07 Osaka Gas Co Ltd Negative electrode material for lithium secondary battery and lithium secondary battery
JP2000348720A (en) * 1999-06-03 2000-12-15 Nippon Carbon Co Ltd Graphite carbon material for lithium ion secondary battery negative electrode material including thereon graphite having graphitization higher than that of inside graphite, and manufacture thereof
JP2002373656A (en) * 2001-06-18 2002-12-26 Nippon Carbon Co Ltd Negative electrode material for lithium ion secondary battery and the lithium ion secondary battery
JP2003176115A (en) * 2001-12-12 2003-06-24 Adchemco Corp Method of manufacturing graphite powder, graphite powder and lithium ion secondary battery
JP2003272630A (en) * 2002-03-19 2003-09-26 Denso Corp Manufacturing method of negative electrode active material
JP4215633B2 (en) * 2002-12-19 2009-01-28 Jfeケミカル株式会社 Method for producing composite graphite particles

Also Published As

Publication number Publication date
JP2016146343A (en) 2016-08-12

Similar Documents

Publication Publication Date Title
JP5473886B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5831579B2 (en) Carbon-coated graphite negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP3957692B2 (en) Composite graphite particles for negative electrode material of lithium ion secondary battery, negative electrode and lithium ion secondary battery
TWI469921B (en) Composite graphite material and manufacturing method thereof, anode material for lithium ion secondary battery, anode for lithium ion secondary battery, and lithium ion secondary battery
JP4040606B2 (en) Negative electrode material for lithium ion secondary battery and production method thereof, and negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2008277231A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2004210634A (en) COMPOSITE GRAPHITE PARTICLE, ITS PRODUCTION METHOD, Li ION SECONDARY BATTERY CATHODE MATERIAL, Li ION SECONDARY BATTERY CATHODE AND Li ION SECONDARY BATTERY
JP2009295465A (en) Positive electrode active material for lithium secondary battery and manufacturing method
WO2013088712A1 (en) Method for producing amorphous carbon particles, amorphous carbon particles, negative electrode material for lithium ion secondary batteries, and lithium ion secondary battery
JP6285350B2 (en) Method for producing carbonaceous coated graphite particles and method for producing negative electrode material for lithium ion secondary battery
JP6584975B2 (en) Carbon material for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and method for producing lithium ion secondary battery
JP4933092B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5394721B2 (en) Lithium ion secondary battery, negative electrode material and negative electrode therefor
JP4672958B2 (en) Graphite particles, lithium ion secondary battery, negative electrode material therefor and negative electrode
JP2004253379A (en) Negative electrode material and negative electrode for lithium-ion secondary battery, and lithium-ion secondary battery
JP6957127B1 (en) Carbon material for negative electrode of lithium ion secondary battery and its manufacturing method, and negative electrode and lithium ion secondary battery using it
JP4542352B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP4050072B2 (en) Method for producing graphitic particles and negative electrode material for lithium ion secondary battery
JP4707570B2 (en) Method for producing fine graphite particles
JP2004299944A (en) Graphite particle, its producing method, lithium ion secondary battery and negative electrode material for it
JP2016058350A (en) Carbon material for lithium ion secondary battery negative electrode, manufacturing method thereof, lithium ion secondary battery negative electrode, and lithium ion secondary battery
JP6924917B1 (en) Carbon material for negative electrode of lithium ion secondary battery and its manufacturing method, and negative electrode and lithium ion secondary battery using it
JP5001977B2 (en) Graphite particles, lithium ion secondary battery and negative electrode material thereof
JP2007076929A (en) Manufacturing method for graphitized powder of mesocarbon microspheres

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20180206

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20190130

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20190305

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20190402

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20190402

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20190903

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20190904

R150 Certificate of patent or registration of utility model

Ref document number: 6584975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150