JP2008277232A - Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery - Google Patents

Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery Download PDF

Info

Publication number
JP2008277232A
JP2008277232A JP2007154975A JP2007154975A JP2008277232A JP 2008277232 A JP2008277232 A JP 2008277232A JP 2007154975 A JP2007154975 A JP 2007154975A JP 2007154975 A JP2007154975 A JP 2007154975A JP 2008277232 A JP2008277232 A JP 2008277232A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium secondary
secondary battery
particles
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2007154975A
Other languages
Japanese (ja)
Inventor
Akihiro Oda
明博 織田
Koichi Takei
康一 武井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2007154975A priority Critical patent/JP2008277232A/en
Publication of JP2008277232A publication Critical patent/JP2008277232A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a negative electrode material for a lithium secondary battery having a larger initial charge discharge capacity and more excellent charge discharge cycle characteristics compared with a conventional lithium secondary battery; to provide a negative electrode for the lithium secondary battery using the material, and the lithium secondary battery. <P>SOLUTION: The negative electrode material for the lithium ion secondary battery is formed by arranging carbonaceous material particles which are substances of at least one kind selected from graphite and carbon black on surfaces of composite particles including graphite particles, Si fine particles, and amorphous carbon (A), and covering the carbonaceous material particles with amorphous carbon (B). <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウム二次電池用負極材料、当該材料を用いたリチウム二次電池用負極及び当該負極を用いたリチウム二次電池に関する。   The present invention relates to a negative electrode material for a lithium secondary battery, a negative electrode for a lithium secondary battery using the material, and a lithium secondary battery using the negative electrode.

電子機器の小型化、薄型化、軽量化が進む中で、電子機器の電源用の電池として、また電子機器のバックアップ用電池として、高エネルギー密度で充電でき、高効率で放電できるリチウム二次電池が注目を集めている。また、リチウム二次電池は、環境に与える影響が少なく、安全性も高いリチウムを用いているため、電気自動車の動力源として、さらに分散型の電力貯蔵用電池としての開発も行われている。   Lithium secondary batteries that can be charged with high energy density and discharged with high energy density as power source batteries for electronic devices and as backup batteries for electronic devices as electronic devices become smaller, thinner, and lighter Has attracted attention. In addition, since lithium secondary batteries use lithium that has little impact on the environment and high safety, they are being developed as power sources for electric vehicles and further as distributed power storage batteries.

従来の典型的なリチウム二次電池は、負極活物質として炭素材を用い、電池の充電時にリチウムをイオン状態で炭素材中に挿入(インターカレーション)し、放電時にはリチウムをイオンとして放出(デインターカレーション)する‘‘ロッキングチェアー型’’を採用している。しかし、この電池構成では、炭素材に対するリチウムイオンの挿入量を高めるのが困難であり、二次電池としての充放電容量を高めることができない。例えば、黒鉛を用いると、充電による組成はLiCとなり、この理論充放電容量は372Ah/kgである。これは、リチウム金属の理論充放電容量3860Ah/kg(リチウムベース)の1/10以下と低い。 A conventional typical lithium secondary battery uses a carbon material as a negative electrode active material, lithium is inserted into the carbon material in an ionic state (intercalation) when the battery is charged, and lithium is released as an ion during discharge. "Rocking chair type" that intercalates) is adopted. However, in this battery configuration, it is difficult to increase the amount of lithium ions inserted into the carbon material, and the charge / discharge capacity as a secondary battery cannot be increased. For example, when graphite is used, the composition by charging is LiC 6 and the theoretical charge / discharge capacity is 372 Ah / kg. This is as low as 1/10 or less of the lithium metal theoretical charge / discharge capacity of 3860 Ah / kg (lithium base).

一方、電池を装着する電子機器側からは、充放電容量をより一層向上させたリチウム二次電池用負極材が要求されている。従来の高容量負極材としては、アルミニウム、鉛等のリチウムと金属間化合物を形成可能な元素が挙げられるが、単独又は導電性粒子と混合して負極材に用いるとサイクル劣化が速く、実質的には負極材として適用できない。   On the other hand, a negative electrode material for a lithium secondary battery having a further improved charge / discharge capacity is required from the electronic device side to which the battery is mounted. Examples of conventional high-capacity negative electrode materials include elements capable of forming an intermetallic compound with lithium, such as aluminum and lead. However, when used as a negative electrode material alone or mixed with conductive particles, cycle deterioration is rapid and substantial. Cannot be applied as a negative electrode material.

リチウムと化合物を形成可能な元素を含む粒子と炭素質物質からなる負極材をリチウム二次電池に使用する提案は種々あるが(例えば、特許文献1〜3参照)、融点の低いSn(融点232℃)、Pb(融点327℃)、Zn(融点419℃)、Al(融点660℃)等をリチウムと化合物を形成可能な元素として使用可能としているため、800℃以上で炭素化処理した場合、溶融による凝集、粗大化などが生じ、製品の性能を予想外に低下させる恐れがある。   There are various proposals for using a negative electrode material composed of particles containing an element capable of forming a compound with lithium and a carbonaceous material for a lithium secondary battery (see, for example, Patent Documents 1 to 3), but Sn having a low melting point (melting point 232). ), Pb (melting point 327 ° C.), Zn (melting point 419 ° C.), Al (melting point 660 ° C.) and the like can be used as an element capable of forming a compound with lithium. When carbonized at 800 ° C. or higher, Aggregation and coarsening may occur due to melting, and the performance of the product may be unexpectedly reduced.

また、熱膨張率の高いSn(22.0ppm/K、at25℃)、Al(23.1ppm/K、at25℃)、Mg(24.8ppm/K、at25℃)、Pb(28.9ppm/K、at25℃)等の元素も使用可能としているため、炭素化熱処理、冷却の過程で炭素との密着性が維持できなくなり、粒子形状を保持できなくなる恐れもあり、製品の性能低下を招く。   Further, Sn (22.0 ppm / K, at 25 ° C.), Al (23.1 ppm / K, at 25 ° C.), Mg (24.8 ppm / K, at 25 ° C.), Pb (28.9 ppm / K) having a high thermal expansion coefficient. , At 25 ° C.) and the like can be used, so that the adhesion with carbon cannot be maintained in the process of carbonization heat treatment and cooling, and the particle shape may not be maintained, resulting in a decrease in product performance.

また、Siをベースとした多くの金属間化合物の開発も精力的に進められている(例えば、特許文献4〜7参照)。しかしながら、これらの化合物は充放電容量が大きいものの、初期不可逆容量が大きく、また、充放電サイクル特性に乏しいという課題があり、未だ実用化に至っていない。
特開平05−286763号公報 特開平06−279112号公報 特開平10−003920号公報 特開2004−045986号公報 特開2001−243946号公報 特開2001−297757号公報 特開2004−277371号公報
In addition, development of many intermetallic compounds based on Si has been energetically advanced (see, for example, Patent Documents 4 to 7). However, although these compounds have a large charge / discharge capacity, there are problems that the initial irreversible capacity is large and the charge / discharge cycle characteristics are poor, and they have not yet been put into practical use.
Japanese Patent Laid-Open No. 05-286863 Japanese Patent Laid-Open No. 06-279112 JP-A-10-003920 JP 2004-045986 A JP 2001-243946 A JP 2001-297757 A JP 2004-277371 A

本発明は、前述した従来のSi系負極材料が有する問題を解消し得るリチウム二次電池用負極材料、その製造方法及びそれを用いたリチウム二次電池用負極、リチウム二次電池を提供することを目的とする。   The present invention provides a negative electrode material for a lithium secondary battery, a method for producing the same, a negative electrode for a lithium secondary battery using the same, and a lithium secondary battery that can solve the problems of the conventional Si-based negative electrode materials described above. With the goal.

本発明は下記(1)〜(12)に記載の事項をその特徴とするものである。   The present invention is characterized by the following items (1) to (12).

(1)黒鉛粒子、Si微粒子及び非晶質炭素(A)を含む複合粒子の表面に、黒鉛又はカーボンブラックから選ばれる少なくとも一種以上を含む炭素質物質粒子が配置されるとともに、該炭素質物質粒子が非晶質炭素(B)によって被覆されていることを特徴とするリチウム二次電池用負極材料。   (1) Carbonaceous material particles containing at least one or more selected from graphite or carbon black are disposed on the surface of composite particles containing graphite particles, Si fine particles, and amorphous carbon (A), and the carbonaceous material A negative electrode material for a lithium secondary battery, wherein the particles are coated with amorphous carbon (B).

(2)前記炭素質物質粒子の平均粒径(D50)が0.01〜5μmであることを特徴とする上記(1)に記載のリチウム二次電池用負極材料。   (2) The negative electrode material for a lithium secondary battery as described in (1) above, wherein the carbonaceous material particles have an average particle diameter (D50) of 0.01 to 5 μm.

(3)前記黒鉛粒子の平均粒径(D50)が0.5〜5μmであり、前記Si微粒子の平均粒子径(D50)が0.05〜1μmである上記(1)または(2)に記載のリチウム二次電池用負極材料。   (3) The average particle diameter (D50) of the graphite particles is 0.5 to 5 μm, and the average particle diameter (D50) of the Si fine particles is 0.05 to 1 μm, as described in (1) or (2) above. Negative electrode material for lithium secondary battery.

(4)BET比表面積が2〜20m/gである上記(1)〜(3)のいずれかに記載のリチウム二次電池用負極材料。 (4) The negative electrode material for a lithium secondary battery according to any one of (1) to (3), wherein the BET specific surface area is 2 to 20 m 2 / g.

(5)平均粒径(D50)が5〜40μmである上記(1)〜(4)のいずれかに記載のリチウム二次電池用負極材料。   (5) The negative electrode material for a lithium secondary battery according to any one of (1) to (4), wherein the average particle size (D50) is 5 to 40 μm.

(6)(I)Si微粒子と、黒鉛粒子と、熱処理によって非晶質炭素(A)となる前駆体と、を混合する工程、(II)前記工程(I)により得られた混合物を熱処理して、前記Si微粒子と前記黒鉛粒子と前記非晶質炭素(A)とを含む複合材料を作製する工程、(III)前記複合材料と、黒鉛及びカーボンブラックから選ばれる少なくとも一種以上を含む炭素質物質粒子と、熱処理によって非晶質炭素(B)となる前駆体と、を混合する工程、並びに(IV)前記工程(III)により得られた混合物を熱処理する工程、を有するリチウム二次電池用負極材料の製造方法。   (6) (I) a step of mixing Si fine particles, graphite particles, and a precursor that becomes amorphous carbon (A) by heat treatment; (II) heat-treating the mixture obtained in the step (I); A step of producing a composite material containing the Si fine particles, the graphite particles, and the amorphous carbon (A), and (III) a carbonaceous material containing at least one selected from the composite material, graphite, and carbon black. For lithium secondary battery, comprising: a step of mixing material particles and a precursor that becomes amorphous carbon (B) by heat treatment; and (IV) a step of heat-treating the mixture obtained in the step (III). Manufacturing method of negative electrode material.

(7)前記工程(II)における熱処理の温度が、700〜1500℃の範囲である上記(6)に記載のリチウム二次電池用負極材料の製造方法。   (7) The manufacturing method of the negative electrode material for lithium secondary batteries as described in said (6) whose temperature of the heat processing in the said process (II) is the range of 700-1500 degreeC.

(8)前記工程(IV)における熱処理の温度が、700〜2000℃の範囲である記(6)または(7)に記載のリチウム二次電池用負極材料の製造方法。 (8) the temperature of the heat treatment in the step (IV) The production method of the negative electrode material for a lithium secondary battery according to SL above the range of 700-2000 ° C. (6) or (7).

(9)前記炭素質物質粒子の平均粒径(D50)が0.01〜5μmであることを特徴とする上記(6)〜(8)のいずれかに記載のリチウム二次電池用負極材料の製造方法。   (9) The negative electrode material for a lithium secondary battery according to any one of (6) to (8), wherein an average particle diameter (D50) of the carbonaceous material particles is 0.01 to 5 μm. Production method.

(10)前記黒鉛粒子の平均粒径(D50)が0.5〜5μmであり、前記Si微粒子の平均粒子径(D50)が0.05〜1μmである上記(6)〜(9)のいずれかに記載のリチウム二次電池用負極材料の製造方法。   (10) Any of (6) to (9) above, wherein the graphite particles have an average particle diameter (D50) of 0.5 to 5 μm and the Si fine particles have an average particle diameter (D50) of 0.05 to 1 μm. A method for producing a negative electrode material for a lithium secondary battery according to claim 1.

(11)上記(1)〜(5)のいずれかに記載のリチウム二次電池用負極材料もしくは上記(6)〜(10)のいずれかに記載のリチウム二次電池用負極材料の製造方法により得られるリチウム二次電池用負極材料及び結着剤を含む混合物と、集電体とを一体化してなるリチウム二次電池用負極。   (11) By the method for producing a negative electrode material for a lithium secondary battery according to any one of (1) to (5) or a negative electrode material for a lithium secondary battery according to any one of (6) to (10) above A negative electrode for a lithium secondary battery obtained by integrating a mixture containing the obtained negative electrode material for a lithium secondary battery and a binder and a current collector.

(12)上記(11)に記載のリチウム二次電池用負極を備えてなるリチウム二次電池。   (12) A lithium secondary battery comprising the negative electrode for a lithium secondary battery according to (11) above.

本発明によれば、従来のリチウム二次電池と比較して、初期充放電容量が大きく、かつ充放電サイクル特性に優れたリチウム二次電池を製造することが可能なリチウム二次電池用負極材料を得ることができる。   According to the present invention, a negative electrode material for a lithium secondary battery capable of producing a lithium secondary battery having a large initial charge / discharge capacity and excellent charge / discharge cycle characteristics as compared with a conventional lithium secondary battery. Can be obtained.

以下、発明を実施するための最良の形態について説明する。   The best mode for carrying out the invention will be described below.

(リチウム二次電池用負極材料)
本発明のリチウム二次電池用負極材料は、リチウム二次電池の負極の活物質として用いられるものであり、黒鉛粒子、Si微粒子及び非晶質炭素(A)を含む複合粒子の表面に炭素質物質粒子が分散して配置されるとともに、当該炭素質物質粒子が非晶質炭素(B)によって被覆されてなることをその特徴とするものである。このように、複合粒子の表面に炭素質物質粒子が分散して配置されることで、負極活物質(負極材料)粒子の表面構造が形態制御され、その表面に凹凸を成すことができる。
(Anode material for lithium secondary battery)
The negative electrode material for a lithium secondary battery of the present invention is used as an active material for a negative electrode of a lithium secondary battery, and has a carbonaceous material on the surface of composite particles containing graphite particles, Si fine particles, and amorphous carbon (A). The material particles are dispersed and arranged, and the carbonaceous material particles are covered with amorphous carbon (B). Thus, by disperse | distributing and arrange | positioning carbonaceous substance particle | grains on the surface of a composite particle, the surface structure of negative electrode active material (negative electrode material) particle | grains is form-controlled, and the surface can be uneven | corrugated.

また、Si微粒子やSi微粒子を含有する負極活物質は、リチウムの吸蔵・放出時に体積変化を伴うために電極が膨張し、一部の活物質粒子の電気化学的接触が失われる。このことは、二次電池として重要な特性である「充放電サイクル特性」の低下の要因となる。活物質粒子表面に凹凸が多く存在することで、活物質粒子同士の接触点が増加し、電極が膨張した際の活物質粒子の利用率が向上することとなり、電池の寿命が延びることになる。また、活物質粒子表面に凹凸が多く存在することで、リチウム二次電池用負極として使用した時に電極に空隙が多く含まれることとなり、上記の体積変化を緩和することができ、二次電池の充放電サイクル特性を改善できる。また、本発明のリチウム二次電池用負極材料は、負極活物質の表面積当たりの電流密度を低下させることができ、負極表面での電気化学反応をゆるやかに且つ、均一に進行させることが可能となる。   Further, since the Si fine particles and the negative electrode active material containing Si fine particles are accompanied by a volume change at the time of occlusion / release of lithium, the electrode expands, and the electrochemical contact of some of the active material particles is lost. This causes a decrease in “charge / discharge cycle characteristics” which is an important characteristic of the secondary battery. Since there are many irregularities on the surface of the active material particles, the number of contact points between the active material particles increases, and the utilization rate of the active material particles when the electrodes expand is improved, thereby extending the life of the battery. . In addition, since there are many irregularities on the surface of the active material particles, the electrode contains a lot of voids when used as a negative electrode for a lithium secondary battery, and the above volume change can be alleviated. Charge / discharge cycle characteristics can be improved. In addition, the negative electrode material for a lithium secondary battery of the present invention can reduce the current density per surface area of the negative electrode active material, and allows the electrochemical reaction on the negative electrode surface to proceed slowly and uniformly. Become.

本発明で用いられる上記炭素質物質粒子としては、黒鉛やカーボンブラックなどのような電子伝導性の高い炭素質物質から選ばれる1種以上を含むものであることが好ましい。さらに、黒鉛及びカーボンブラックの他に、カーボンナノチューブやカーボンファイバーを含んでいてもよい。上記黒鉛としては、メソフェーズ小球体の黒鉛化物を含め、人造黒鉛及び天然黒鉛を使用することができ、単独で又は二種以上組み合わせて使用してもよい。また、上記黒鉛の結晶構造は特に限定されないが、例えば、面間隔d(002)が、0.3354〜0.34nmであることが好ましく、0.3354〜0.337nmであるあることがさらに好ましい。また、上記黒鉛の形態は特に制限されず、不定形状、平板状(又は扁平状)、薄片状、粉粒状等が挙げられる。また、上記カーボンブラックとしては、アセチレンブラック、ケッチェンブラック、サーマルブラック、ファーネスブラック等が挙げられる。   The carbonaceous material particles used in the present invention preferably contain one or more selected from carbonaceous materials having high electron conductivity such as graphite and carbon black. Furthermore, in addition to graphite and carbon black, carbon nanotubes and carbon fibers may be included. As the graphite, artificial graphite and natural graphite can be used including graphitized mesophase spherules, and they may be used alone or in combination of two or more. The crystal structure of the graphite is not particularly limited. For example, the interplanar spacing d (002) is preferably 0.3354 to 0.34 nm, and more preferably 0.3354 to 0.337 nm. . Moreover, the form of the graphite is not particularly limited, and examples thereof include an indefinite shape, a flat plate shape (or flat shape), a flake shape, and a powder particle shape. Examples of the carbon black include acetylene black, ketjen black, thermal black, and furnace black.

また、上記炭素質物質粒子の平均粒子径(D50)は0.01〜5μmであることが好ましい。5μmより大きくなると、負極材料の表面に均一に分散することが困難となる。Si微粒子と炭素質物質粒子の重量比は例えば10/90〜90/10が好ましく、30/70〜80/20がより好ましい。   Moreover, it is preferable that the average particle diameter (D50) of the said carbonaceous substance particle is 0.01-5 micrometers. When it is larger than 5 μm, it is difficult to uniformly disperse the negative electrode material. For example, the weight ratio between the Si fine particles and the carbonaceous material particles is preferably 10/90 to 90/10, and more preferably 30/70 to 80/20.

上記複合粒子に含まれる上記黒鉛粒子としては、上記炭素質物質粒子として複合粒子の表面に配置されうる上記黒鉛と同様の人造黒鉛及び天然黒鉛を使用することができ、単独で又は二種以上組み合わせて使用することもできる。また、上記黒鉛粒子の平均粒子径(D)50は、0.5〜5μmであることが好ましい。   As the graphite particles contained in the composite particles, artificial graphite and natural graphite similar to the graphite that can be disposed on the surface of the composite particles as the carbonaceous material particles can be used, either alone or in combination of two or more. Can also be used. Moreover, it is preferable that the average particle diameter (D) 50 of the said graphite particle is 0.5-5 micrometers.

上記Si微粒子は、小粒径の微細な粒子であるほど好ましく、平均粒子径(D50)が0.05〜1μmであることがより好ましい。小粒径のSi微粒子を用いることで、負極からの活物質粒子の脱落が起こりにくくなり、負極の長寿命化が可能となる。具体的には、当初から小粒径の微細Si微粒子を負極に用いることにより、充放電時におけるSi微粒子の更なる微粉化を抑制し、充放電サイクル特性を改善している。また、本発明で用いるSi微粒子の調製法は、特に制限はないが、製造コストの観点より、比較的安価に入手可能な大粒子のSiを粉砕して作製することが好ましい。粉砕手法としては、例えば、乾式粉砕法及び湿式粉砕法等を採用することができる。なお、微細Si粒子を粉砕により作製する場合には、粉砕装置に起因する不純物がSi微粒子に混入すると、サイクル、充放電効率等の負極材特性が劣化するため、粉砕容器、ビーズ、ボール等の材質は充放電反応への影響の少ない材質、例えば、アルミナ、部分安定化ジルコニア等を選択する必要がある。   The Si fine particles are preferably fine particles having a small particle diameter, and the average particle diameter (D50) is more preferably 0.05 to 1 μm. By using small-sized Si fine particles, it is difficult for the active material particles to fall off the negative electrode, and the life of the negative electrode can be extended. Specifically, by using fine Si fine particles having a small particle diameter for the negative electrode from the beginning, further fine pulverization of the Si fine particles during charge / discharge is suppressed, and charge / discharge cycle characteristics are improved. The method for preparing the Si fine particles used in the present invention is not particularly limited, but from the viewpoint of production cost, it is preferable to pulverize and prepare large Si particles that are available at a relatively low cost. As the pulverization method, for example, a dry pulverization method and a wet pulverization method can be employed. In addition, when producing fine Si particles by pulverization, if impurities due to the pulverizer are mixed into the Si fine particles, the negative electrode material characteristics such as cycle and charge / discharge efficiency deteriorate, and therefore, such as pulverization containers, beads, balls, etc. As the material, it is necessary to select a material having little influence on the charge / discharge reaction, for example, alumina, partially stabilized zirconia and the like.

上記複合粒子に含まれる非晶質炭素(A)および上記複合粒子の表面に配置された上記炭素質物質粒子を被覆する非晶質炭素(B)は、同じであっても異なっていてもよく、例えば、石炭系ピッチ材料、石油系ピッチ材料、合成ピッチ材料等のピッチ系材料やタール系材料、熱可塑性樹脂、熱硬化性樹脂、ビニル系樹脂、セルロース系樹脂、フェノール系樹脂等の樹脂系材料などの非晶質炭素前躯体を700〜2000℃で熱処理、炭素化することで得ることができる。特に、ピッチ系材料やタール系材料は、湿式粉砕法でSi微粒子を作製する場合に使用される溶媒(トルエン、キシレン、メシチレン、メチルナフタレン、クレオソート油等)に溶解するので、本発明の負極材料を構成する各成分との均一な混合が可能となり、好ましい。なお、非晶質炭素は、比較的高い電子伝導性を有する上記炭素質物質よりも結晶性の低い炭素質物質である。   The amorphous carbon (A) contained in the composite particles and the amorphous carbon (B) covering the carbonaceous material particles arranged on the surface of the composite particles may be the same or different. , For example, pitch-based materials such as coal-based pitch materials, petroleum-based pitch materials, synthetic pitch materials, tar-based materials, thermoplastic resins, thermosetting resins, vinyl-based resins, cellulose-based resins, phenol-based resins, etc. It can be obtained by heat-treating and carbonizing an amorphous carbon precursor such as a material at 700 to 2000 ° C. In particular, pitch-based materials and tar-based materials are dissolved in a solvent (toluene, xylene, mesitylene, methylnaphthalene, creosote oil, etc.) used when producing Si fine particles by a wet pulverization method. Uniform mixing with each component constituting the material is possible, which is preferable. Amorphous carbon is a carbonaceous material having lower crystallinity than the above-mentioned carbonaceous material having relatively high electron conductivity.

本発明の負極材料の製造方法としては、特に制限はないが、例えば、(I)Si微粒子と、黒鉛粒子と、熱処理によって非晶質炭素(A)となる前駆体と、を混合する工程、(II)上記工程(I)により得られた混合物を熱処理して、Si微粒子と黒鉛粒子と非晶質炭素(A)とを含む複合材料を作製する工程、(III)複合材料と、炭素質物質粒子と、熱処理によって非晶質炭素(B)となる前駆体と、を混合する工程、並びに(IV)上記工程(III)により得られた混合物を熱処理する工程、を有する。   The method for producing the negative electrode material of the present invention is not particularly limited. For example, (I) a step of mixing Si fine particles, graphite particles, and a precursor that becomes amorphous carbon (A) by heat treatment, (II) a step of heat-treating the mixture obtained in the step (I) to produce a composite material containing Si fine particles, graphite particles, and amorphous carbon (A), (III) the composite material, and a carbonaceous material And (IV) a step of heat-treating the mixture obtained by the step (III).

より詳細には、上記工程(I)において、非晶質炭素(A)の前駆体を適当な溶媒に溶解し、これにSi微粒子と黒鉛粒子を加えて機械的に混合した後、溶媒を除去し、次に、上記工程(II)のとおり熱処理することにより、非晶質炭素(A)の前駆体を炭化させ、Si微粒子、黒鉛粒子、及び非晶質炭素(A)を含む複合材料を得ることが出来る。このように、非晶質炭素(A)の前駆体から複合粒子を作製することによって、Si微粒子の表面を非晶質炭素(A)の前駆体で覆うことができ、Si微粒子表面の酸化を抑制することができるという利点があるとともに、非晶質炭素(A)の前駆体をSi微粒子と黒鉛粒子を結着・複合化させるバインダーとして機能させることができる。   More specifically, in step (I) above, the precursor of amorphous carbon (A) is dissolved in an appropriate solvent, and Si fine particles and graphite particles are added to this and mechanically mixed, and then the solvent is removed. Next, the amorphous carbon (A) precursor is carbonized by heat treatment as in the above step (II), and a composite material containing Si fine particles, graphite particles, and amorphous carbon (A) is obtained. Can be obtained. Thus, by producing composite particles from the precursor of amorphous carbon (A), the surface of the Si fine particles can be covered with the precursor of amorphous carbon (A), and the surface of the Si fine particles can be oxidized. In addition to the advantage that it can be suppressed, the precursor of amorphous carbon (A) can function as a binder that binds and combines Si fine particles and graphite particles.

また、上記工程(II)において作製した混合物を熱処理する際の温度は、非晶質炭素(A)の前駆体を炭素化できる温度であればよく、特に限定されないが、700〜1500℃であることが好ましく、より好ましくは800〜1400℃、特に好ましくは900〜1300℃である。熱処理温度が700℃未満であると、非晶質炭素(A)を生成する前駆体の炭素化が不十分となり、得られる負極材の充放電効率、サイクル特性が悪化する傾向にある。一方、熱処理温度が1500℃よりも高くなると、Si微粒子と黒鉛粒子の反応によって電気化学的に不活性な炭化珪素(SiC)が生成し、充放電容量が大きく低下する傾向にある。また、上記熱処理を行う際の雰囲気は真空雰囲気または不活性ガス雰囲気で行うことが、Si微粒子の酸化を防止し不可逆容量の増大を抑制するという観点から好ましい。   Moreover, the temperature at the time of heat-processing the mixture produced in the said process (II) should just be the temperature which can carbonize the precursor of amorphous carbon (A), Although it does not specifically limit, It is 700-1500 degreeC. It is preferably 800 to 1400 ° C, particularly preferably 900 to 1300 ° C. When the heat treatment temperature is less than 700 ° C., the carbonization of the precursor that generates amorphous carbon (A) becomes insufficient, and the charge / discharge efficiency and cycle characteristics of the obtained negative electrode material tend to deteriorate. On the other hand, when the heat treatment temperature is higher than 1500 ° C., electrochemically inactive silicon carbide (SiC) is generated by the reaction between the Si fine particles and the graphite particles, and the charge / discharge capacity tends to be greatly reduced. Moreover, it is preferable that the atmosphere at the time of performing the heat treatment is a vacuum atmosphere or an inert gas atmosphere from the viewpoint of preventing oxidation of Si fine particles and suppressing an increase in irreversible capacity.

また、上記複合粒子中、Si微粒子と非晶質炭素(A)の重量比は、通常99/1〜10/90であり、好ましくは90/10〜20/80程度の範囲から選択でき、Si微粒子の割合が大きくなるにつれて充放電容量が大きくなる。   In the composite particles, the weight ratio between the Si fine particles and the amorphous carbon (A) is usually 99/1 to 10/90, and preferably can be selected from the range of about 90/10 to 20/80. As the proportion of fine particles increases, the charge / discharge capacity increases.

また、上記複合粒子中、黒鉛粒子と非晶質炭素(A)の重量比は、90/10〜30/70であることが好ましく、80/20〜40/60であることがより好ましく、70/30〜40/60であることがさらには好ましい。黒鉛粒子が多いほど複合粒子の電子伝導性が向上し、充放電サイクル特性が向上する傾向がある。しかし、非晶質炭素(A)が少なすぎると、複合粒子のバインダーとしての機能が不足し、複合化することが困難となる。   In the composite particles, the weight ratio of the graphite particles to the amorphous carbon (A) is preferably 90/10 to 30/70, more preferably 80/20 to 40/60, 70 More preferably, it is / 30-40 / 60. As the number of graphite particles increases, the electronic conductivity of the composite particles improves and the charge / discharge cycle characteristics tend to improve. However, if the amount of amorphous carbon (A) is too small, the function of the composite particles as a binder is insufficient, and it is difficult to make composite.

また、上記工程(III)においては、例えば、非晶質炭素(B)の前駆体を適当な溶媒に溶解し、これにSi微粒子、黒鉛粒子及び非晶質炭素(A)を含む複合粒子と、炭素質物質粒子とを加えて機械的に混合した後、溶媒を除去し、さらに工程(IV)のとおり熱処理することにより、上記複合粒子の表面に炭素質物質粒子が分散して配置され、なおかつ当該炭素質物質粒子が非晶質炭素(B)により覆われた、表面に凹凸を有する本発明の負極材料を得ることができる。   In the step (III), for example, a precursor of amorphous carbon (B) is dissolved in a suitable solvent, and composite particles containing Si fine particles, graphite particles, and amorphous carbon (A) are dissolved therein. Then, after adding the carbonaceous material particles and mixing mechanically, the solvent is removed, and further, the carbonaceous material particles are dispersed and arranged on the surface of the composite particles by performing a heat treatment as in step (IV), In addition, the negative electrode material of the present invention can be obtained in which the carbonaceous material particles are covered with amorphous carbon (B) and have irregularities on the surface.

また、上記工程(III)において作製した混合物を熱処理する際の温度は、非晶質炭素(B)の前駆体を炭素化できる温度であればよく、特に限定されないが、700〜2000℃であることが好ましく、より好ましくは900〜1500℃、特に好ましくは1000〜1300℃である。この熱処理温度が700℃未満であると、非晶質炭素(B)を生成する前駆体の炭素化が不十分となり、得られる負極材の充放電効率、サイクル特性が悪化する傾向にある。一方、熱処理温度が2000℃よりも高くなると、充放電容量が低下する傾向にある。また、上記熱処理を行う際の雰囲気は真空雰囲気または不活性ガス雰囲気で行うことが、Si微粒子、炭素質物質粒子の酸化を防止し不可逆容量の増大を抑制するという観点から好ましい。   Moreover, the temperature at the time of heat-processing the mixture produced in the said process (III) should just be the temperature which can carbonize the precursor of amorphous carbon (B), Although it does not specifically limit, It is 700-2000 degreeC. It is preferably 900 to 1500 ° C, more preferably 1000 to 1300 ° C. When the heat treatment temperature is less than 700 ° C., the precursor for producing amorphous carbon (B) is insufficiently carbonized, and the resulting negative electrode material tends to deteriorate in charge / discharge efficiency and cycle characteristics. On the other hand, when the heat treatment temperature is higher than 2000 ° C., the charge / discharge capacity tends to decrease. Further, it is preferable to perform the heat treatment in a vacuum atmosphere or an inert gas atmosphere from the viewpoint of preventing the oxidation of the Si fine particles and the carbonaceous material particles and suppressing an increase in irreversible capacity.

また、本発明の負極材料中、Si微粒子と非晶質炭素(B)の重量比は、10/90〜90/10であることが好ましい。また、Si微粒子と炭素質物質粒子の重量比は、1/99〜90/10であることが好ましい。炭素質物質粒子が少なすぎると負極材料表面の凹凸が少なくなるため好ましくない。   In the negative electrode material of the present invention, the weight ratio of Si fine particles to amorphous carbon (B) is preferably 10/90 to 90/10. The weight ratio between the Si fine particles and the carbonaceous material particles is preferably 1/99 to 90/10. If the amount of carbonaceous material particles is too small, unevenness on the surface of the negative electrode material is reduced, which is not preferable.

本発明の負極材料は、そのBET比表面積が、2〜20m/gであることが好ましい。BET比表面積が20m/gを超えると、初回の充電時において電解液の分解が多くなるために好ましくない。また、本発明の負極材料の平均粒子径(D50)は、5〜40μmであることが好ましい。平均粒子径が5μm未満又は40μmを超えると、電極作製工程で取り扱い性が悪くなり好ましくない。 The negative electrode material of the present invention preferably has a BET specific surface area of 2 to 20 m 2 / g. When the BET specific surface area exceeds 20 m 2 / g, decomposition of the electrolytic solution increases during the first charge, which is not preferable. Moreover, it is preferable that the average particle diameter (D50) of the negative electrode material of this invention is 5-40 micrometers. When the average particle diameter is less than 5 μm or exceeds 40 μm, the handleability is deteriorated in the electrode production process, which is not preferable.

(リチウム二次電池用負極)
本発明のリチウム二次電池用負極は、例えば、本発明のリチウム二次電池用負極材料、結着剤および必要に応じて添加される各種添加剤等を溶媒などとともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等により混練し、ペースト状の負極材スラリーを調製し、これを例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法など公知の方法により集電体に塗布、乾燥し、必要に応じて、ロールプレス等の成形法により圧縮成形することで形成することができる。また、ペースト状の負極材スラリーをシート状、ペレット状等に成形し、これをロールプレス等の成形法により集電体と一体化することで形成することもできる。
(Anode for lithium secondary battery)
The negative electrode for a lithium secondary battery according to the present invention includes, for example, a negative electrode material for a lithium secondary battery according to the present invention, a binder, and various additives added as necessary together with a solvent, a stirrer, a ball mill, a super sand mill, etc. Kneaded by a pressure kneader or the like to prepare a paste-like negative electrode material slurry, which is, for example, a metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure It can be formed by applying and drying on a current collector by a known method such as a coating method or a screen printing method, and if necessary, compression molding by a molding method such as a roll press. Alternatively, the paste-like negative electrode material slurry can be formed into a sheet shape, a pellet shape, or the like, and then integrated with the current collector by a forming method such as a roll press.

上記結着剤としては、例えば、ポリプロピレン、ポリエチレン等の熱可塑性樹脂、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート、ブチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ素ゴム等の含フッ素樹脂、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリフォスファゼン、ポリアクリロニトリルなどが使用できる。また、水系バインダーであるセルロース系やスチレンブタジエンゴムの水分散体等を用いることもできる。   Examples of the binder include thermoplastic resins such as polypropylene and polyethylene, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) acrylate, butyl ( Including ethylenically unsaturated carboxylic acid esters such as (meth) acrylate, ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid and maleic acid, polytetrafluoroethylene, polyvinylidene fluoride and fluororubber Fluorine resin, polyethylene oxide, polyepichlorohydrin, polyphosphazene, polyacrylonitrile and the like can be used. In addition, an aqueous dispersion of a cellulose-based or styrene-butadiene rubber that is an aqueous binder can also be used.

上記結着剤の使用量は、本発明の負極材料の粒度によって左右されるが、接着強度の点から使用量は多い方が好ましく、具体的には、本発明の負極材料100重量部に対して3〜25重量部であることが好ましく、5〜20重量部であることがより好ましい。   The amount of the binder used depends on the particle size of the negative electrode material of the present invention, but the amount used is preferably larger from the viewpoint of adhesive strength. Specifically, the amount of the binder is 100 parts by weight of the negative electrode material of the present invention. The amount is preferably 3 to 25 parts by weight, and more preferably 5 to 20 parts by weight.

上記溶媒としては、通常、結着剤を溶解又は分散可能な溶媒が使用され、例えば、N−メチル−2−ピロリドン、N,N−ジメチルホルムアミド等の有機溶媒を例示することができる。また、上記溶媒の使用量は、ペースト状となる限り特に制限されず、例えば、本発明の負極材料100重量部に対して、通常、60〜150重量部程度、好ましくは60〜100重量部程度である。   As the solvent, a solvent capable of dissolving or dispersing the binder is usually used, and examples thereof include organic solvents such as N-methyl-2-pyrrolidone and N, N-dimethylformamide. Moreover, the usage-amount of the said solvent is not restrict | limited especially as long as it becomes paste form, For example, normally about 60-150 weight part with respect to 100 weight part of negative electrode materials of this invention, Preferably it is about 60-100 weight part. It is.

また、電極としての導電性を向上させるために、上記添加剤として、導電補助剤を混合してもよい。導電補助剤としては、例えば、天然黒鉛、人造黒鉛、カーボンブラック(例えば、アセチレンブラック、サーマルブラック、ファーネスブラック)、グラファイトあるいは導電性を示す酸化物や窒化物等が挙げられ、これらは単独で又は2種以上組み合わせて使用できる。導電補助剤の使用量は、本発明の負極材料と導電補助剤の総量に対して1〜10重量%程度が好ましく、1〜5重量%程度がより好ましい。   Moreover, in order to improve the electroconductivity as an electrode, you may mix a conductive support agent as said additive. Examples of the conductive auxiliary agent include natural graphite, artificial graphite, carbon black (for example, acetylene black, thermal black, furnace black), graphite, conductive oxide, nitride, and the like. Two or more types can be used in combination. About 1 to 10 weight% is preferable with respect to the total amount of the negative electrode material of this invention, and a conductive support agent, and, as for the usage-amount of a conductive support agent, about 1 to 5 weight% is more preferable.

さらに、上記添加剤として、スラリー粘度を調節するための増粘剤を混合してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼインなどを挙げることができる。   Furthermore, you may mix the thickener for adjusting a slurry viscosity as said additive. Examples of the thickener include carboxymethyl cellulose, methyl cellulose, hydroxymethyl cellulose, ethyl cellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, and casein.

上記集電体の材質については、特に限定されず、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等、公知のものを用いることができる。また、多孔性材料、たとえばポーラスメタル(発泡メタル)やカーボンペーパーなどを使用することもできる。   The material of the current collector is not particularly limited, and known materials such as aluminum, copper, nickel, titanium, stainless steel, and the like can be used. A porous material such as porous metal (foamed metal) or carbon paper can also be used.

上記負極材ペーストの集電体への塗布量は、特に制限はないが、5〜15mg/cm程度が好ましく、7〜13mg/cm程度がより好ましい。 The coating amount of the current collector of the negative electrode material paste is not particularly limited, preferably about 5 to 15 mg / cm 2, about 7~13mg / cm 2 is more preferable.

(リチウム二次電池)
本発明のリチウム二次電池は、例えば、本発明のリチウム二次電池用負極とリチウムを吸蔵・放出可能な正極とをセパレータを介して対向して配置し、電解液を注入することにより得ることができる。また、この他にも、通常当該分野において使用されるガスケット、封口板、ケースなどをさらに備えていてもよい。
(Lithium secondary battery)
The lithium secondary battery of the present invention is obtained, for example, by placing the negative electrode for a lithium secondary battery of the present invention and the positive electrode capable of occluding / releasing lithium through a separator and injecting an electrolyte. Can do. In addition, a gasket, a sealing plate, a case, and the like that are usually used in the field may be further provided.

上記正極は、負極と同様にして、集電体表面上に正極活物質や導電剤等を含む正極材料層を形成することで得ることができる。この場合の集電体には、アルミニウム、チタン、ステンレス鋼等の金属や合金を箔状、穴開け箔状、メッシュ状等にしたものを用いることができる。   The positive electrode can be obtained by forming a positive electrode material layer containing a positive electrode active material, a conductive agent and the like on the current collector surface in the same manner as the negative electrode. As the current collector in this case, a metal or alloy such as aluminum, titanium, stainless steel or the like made into a foil shape, a perforated foil shape, a mesh shape, or the like can be used.

上記正極活物質としては、特に制限はなく、例えば、LiNiO、LiCoO、LiMn、LiMnO、LiCo0.33Ni0.33Mn0.33等のリチウム複合酸化物やCr、Cr、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS,ポリアニリン、ポリピロール等の導電性ポリマー、多孔質炭素等などを単独或いは混合して使用することができる。 As the positive electrode active material is not particularly limited, for example, LiNiO 2, LiCoO 2, LiMn 2 O 4, LiMnO 2, LiCo 0.33 Ni 0.33 Mn 0.33 O 2 and lithium composite oxides and Cr 3 O 8 , Cr 2 O 5 , V 2 O 5 , V 6 O 13 , VO 2 , MnO 2 , TiO 2 , MoV 2 O 8 , TiS 2 , V 2 S 5 , VS 2 , MoS 2 , MoS 3 , Conductive polymers such as polyaniline and polypyrrole, porous carbon and the like can be used alone or in combination.

上記導電剤としては、例えば、天然黒鉛、人造黒鉛、カーボンブラック、アセチレンブラックなどを例示できる。   Examples of the conductive agent include natural graphite, artificial graphite, carbon black, and acetylene black.

上記電解液としては、例えば、LiClO、LiPF、LiAsF、LiBF、LiClF、LiSbF、LiAlO、LiAlCl、LiN(CFSO、LiN(CSO、LiC(CFSO、LiCl、LiI、LiSOCF等の溶媒和しにくいアニオンを生成するリチウム塩(電解質)を、例えば、カーボネート類、ラクトン類、鎖状エーテル類、環状エーテル類、スルホラン類、スルホキシド類、ニトリル類、アミド類、ポリオキシアルキレングリコール類等の非水系溶媒に溶解した、いわゆる有機電解液を使用することができ、この場合、非水系リチウム二次電池を製造することができる。また、電解質濃度は、電解液1Lに対して電解質0.3〜5モルであることが好ましく、0.5〜3モルであることがより好ましく、0.8〜1.5モルであることが特に好ましい。 Examples of the electrolytic solution include LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiClF 4 , LiSbF 6 , LiAlO 4 , LiAlCl 4 , LiN (CF 3 SO 2 ) 2 , LiN (C 2 F 5 SO 2 ). 2 , LiC (CF 3 SO 2 ) 3 , LiCl, LiI, LiSO 3 CF 3 and other lithium salts (electrolytes) that produce anions that are difficult to solvate, such as carbonates, lactones, chain ethers, cyclic So-called organic electrolytes dissolved in non-aqueous solvents such as ethers, sulfolanes, sulfoxides, nitriles, amides, polyoxyalkylene glycols can be used. In this case, a non-aqueous lithium secondary battery is used. Can be manufactured. The electrolyte concentration is preferably 0.3 to 5 mol of electrolyte, more preferably 0.5 to 3 mol, and more preferably 0.8 to 1.5 mol with respect to 1 L of the electrolyte solution. Particularly preferred.

電解液に用いる上記溶媒として、具体的には、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジエチルカーボネート、ビニレンカーボネート、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、ジメチルスルホキシド、3−メチル−1,3−オキサゾリジン−2―オン、γ−ブチロラクトン、ジエチルカーボネート、ジメトキシエタン、ジメチルカーボネート、メチルプロピルカーボネート、メチルエチルカーボネート、ブチルエチルカーボネート、ジプロビルカーボネート、1,2−ジメトキシエタン、ジメチルエーテル、ジエチルエーテル、テトラヒドロフラン、2−メチルテトラヒドロフラン、4−メチルジオキソラン、1,3−ジオキソラン、アセトニトリル、プロピオニトリル、ベンゾニトリル、N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミド、ジエチレングリコール、酢酸メチル、酢酸エチル等を用いることができ、これら溶媒は、単独でも2種以上を混合したものであってもよい。   Specific examples of the solvent used in the electrolytic solution include ethylene carbonate, propylene carbonate, butylene carbonate, diethyl carbonate, vinylene carbonate, cyclopentanone, sulfolane, 3-methylsulfolane, 2,4-dimethylsulfolane, dimethyl sulfoxide, 3 -Methyl-1,3-oxazolidine-2-one, γ-butyrolactone, diethyl carbonate, dimethoxyethane, dimethyl carbonate, methylpropyl carbonate, methylethyl carbonate, butylethyl carbonate, diprovir carbonate, 1,2-dimethoxyethane, dimethyl ether , Diethyl ether, tetrahydrofuran, 2-methyltetrahydrofuran, 4-methyldioxolane, 1,3-dioxolane, acetonitrile, pro Onitrile, benzonitrile, N, N-dimethylformamide, N, N-dimethylacetamide, diethylene glycol, methyl acetate, ethyl acetate and the like can be used, and these solvents may be used alone or in combination of two or more. Good.

上記セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、多孔質フィルム又はそれらを組み合わせたものを使用することができる。なお、作製するリチウム二次電池の正極と負極が使用中も直接接触しない構造にした場合は、セパレータを使用しなくとも良い。   As said separator, the nonwoven fabric, cloth, porous film which combined polyolefin, such as polyethylene and a polypropylene, a porous film, or those combined can be used, for example. In addition, when it is set as the structure where the positive electrode and negative electrode of a lithium secondary battery to produce do not contact directly during use, it is not necessary to use a separator.

本発明のリチウム二次電池の構造は、特に限定されないが、通常、正極及び負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群とし、これら極板群を外装体中に封入した構造とするのが一般的である。また、本発明のリチウム二次電池は、ペーパー型、ボタン型、コイン型、積層型、角型、円筒型など任意の形態とすることができる。   The structure of the lithium secondary battery of the present invention is not particularly limited. Usually, a positive electrode and a negative electrode, and a separator provided as necessary, are wound into a flat spiral shape to form a wound electrode plate group. Are generally laminated to form a laminated electrode plate group, and the electrode plate group is enclosed in an exterior body. Moreover, the lithium secondary battery of the present invention can be in any form such as a paper type, a button type, a coin type, a stacked type, a square type, and a cylindrical type.

本発明のリチウム二次電池は、充放電容量が大きく、なおかつ充放電サイクル特性に優れるため、分散型、可搬性電池として、電子機器、電気機器、自動車、電力貯蔵などの電源や補助電源として好適である。   Since the lithium secondary battery of the present invention has a large charge / discharge capacity and excellent charge / discharge cycle characteristics, it is suitable as a power source and auxiliary power source for electronic devices, electrical devices, automobiles, power storage, etc. It is.

以下、実施例及び比較例により本発明を具体的に説明するが、本発明はこれらの実施例に限定されるものではない。   EXAMPLES Hereinafter, although an Example and a comparative example demonstrate this invention concretely, this invention is not limited to these Examples.

(実施例1)
<負極材料および負極の作製>
(生コークスの作製)
石炭系コールタールを、オートクレーブを用いて10kg・G、500℃で10時間熱処理し、生コークスを作製した。
Example 1
<Production of negative electrode material and negative electrode>
(Production of raw coke)
The coal-based coal tar was heat-treated at 10 kg · G and 500 ° C. for 10 hours using an autoclave to produce raw coke.

(黒鉛粒子の作製)
生コークスを自由粉砕機(奈良機械製作所社製「SJM―3」)にて粉砕した後、窒素雰囲気中、900℃で1時間焼成処理した。その後、ジェットミル(日清エンジニアリング社製「CJ−10」)を用いて粉砕し、次いで窒素雰囲気中、3000℃で焼成することによって平均粒子径(D50)が1.4μmの黒鉛粒子を得た。
(Preparation of graphite particles)
The raw coke was pulverized with a free crusher (“SJM-3” manufactured by Nara Machinery Co., Ltd.) and then baked at 900 ° C. for 1 hour in a nitrogen atmosphere. Then, it grind | pulverized using the jet mill (Nisshin Engineering Co., Ltd. "CJ-10"), and then it baked at 3000 degreeC in nitrogen atmosphere, and obtained the graphite particle whose average particle diameter (D50) is 1.4 micrometers. .

(Si微粒子の作製)
平均粒子径が20μmのSi材料(東洋金属株式会社製、高純度金属珪素粉)3kg、Siの分散材として酸化エチレン付加脂肪族アミン(花王株式会社製「ホモゲノールL1820」)1.5kg及びメチルナフタレン12kgを、直径が0.3mmのジルコニア製ビーズと共に、窒素ガスで置換したビーズミルに投入し、3時間湿式粉砕し、平均粒子径(D50)が0.2μmのSi微粒子を20重量%含むメチルナフタレンを作製した。なお、Si微粒子の平均粒子径の測定は、Si微粒子を含むメチルナフタレンに超音波を1分間照射してSi微粒子を分散させた後、粒度分析計マイクロトラック(日機装株式会社製「HRA」)を用いて行った。
(Preparation of Si fine particles)
3 kg of Si material (Toyo Kinzoku Co., Ltd., high-purity metal silicon powder) having an average particle size of 20 μm, 1.5 kg of ethylene oxide-added aliphatic amine (“Homogenol L1820” manufactured by Kao Corporation) as a Si dispersing agent, and methylnaphthalene Methylnaphthalene containing 12 kg of zirconia beads having a diameter of 0.3 mm and bead mill substituted with nitrogen gas, wet milled for 3 hours, and containing 20 wt% Si fine particles having an average particle diameter (D50) of 0.2 μm Was made. The average particle size of the Si fine particles was measured by irradiating methyl naphthalene containing Si fine particles with ultrasonic waves for 1 minute to disperse the Si fine particles, and then using a particle size analyzer Microtrac (“HRA” manufactured by Nikkiso Co., Ltd.). Used.

(負極材料の作製)
上記で作製した平均粒子径が1.4μmの黒鉛粒子2kg、コールタールピッチ(大阪化成株式会社製「ペレット」)(非晶質炭素(A)となる前躯体)1.4kg及び上記で作製したSi微粒子を20重量%含むメチルナフタレン2.4kgを、二軸加熱ニーダーを用いて100℃で1時間混合した後、200℃でメチルナフタレンを蒸発させた。次いで、窒素雰囲気中、900℃で1時間焼成し、Si微粒子、黒鉛及び非晶質炭素(非晶質炭素(A))からなる複合粒子を作製した。次に、この複合粒子200gを、アルミナ製の振動ミルで5分間粉砕した後、コールタールピッチ(川崎製鉄株式会社社製「PKQL」、非晶質炭素(B)となる前躯体)60gを溶かしたテトラヒドロフラン溶液中に分散し、アセチレンブラック粒子(電気化学工業株式会社社製「デンカブラック」、平均粒子径2.1μm、炭素質物質粒子)10gを加え、その後テトラヒドロフランをエバポレーターで蒸発させて、アセチレンブラック粒子とピッチで表面被覆された複合粒子を得た。ついで、この表面被覆複合粒子を窒素雰囲気中、1150℃で1時間焼成した後、粉砕機で解砕し、390メッシュの篩でふるい、390メッシュ以下の負極材料粒子を得た。負極材料の平均粒子径(D50)は5.6μmであった。なお、負極材料の粒子径の測定はSALD−3000J(島津社製)を用いて、屈折率2.00〜0.20i、平均回数64回の条件で行い、分散剤(花王株式会社製「ポリオキシエチレン(20)ソルビタンモノラウレート」)を溶かした水溶液を用いて、超音波で30秒間分散させた後に測定を行した。また、BET比表面積は10.2m/gであった。なお、BET比表面積は、AUTOSORB−1(Quantachrome 社製)を用いてN吸着等温線を測定し、BET法により解析した。また、比表面積測定の前処理として、120℃にて2時間真空排気を行った。
(Preparation of negative electrode material)
2 kg of graphite particles having an average particle diameter of 1.4 μm prepared above, 1.4 kg of coal tar pitch (“pellet” manufactured by Osaka Kasei Co., Ltd.) (precursor to be amorphous carbon (A)) and the above were prepared. After mixing 2.4 kg of methylnaphthalene containing 20% by weight of Si fine particles at 100 ° C. for 1 hour using a biaxial heating kneader, methyl naphthalene was evaporated at 200 ° C. Subsequently, it baked at 900 degreeC in nitrogen atmosphere for 1 hour, and produced the composite particle which consists of Si microparticles, graphite, and amorphous carbon (amorphous carbon (A)). Next, 200 g of this composite particle was pulverized for 5 minutes with an alumina vibration mill, and then 60 g of coal tar pitch (“PKQL” manufactured by Kawasaki Steel Corporation, precursor of amorphous carbon (B)) was dissolved. 10 g of acetylene black particles (“DENKA BLACK” manufactured by Denki Kagaku Kogyo Co., Ltd., average particle diameter of 2.1 μm, carbonaceous material particles) were added, and then the tetrahydrofuran was evaporated by an evaporator. Composite particles surface-coated with black particles and pitch were obtained. Subsequently, the surface-coated composite particles were fired at 1150 ° C. for 1 hour in a nitrogen atmosphere, and then pulverized with a pulverizer, and sieved with a 390 mesh sieve to obtain negative electrode material particles of 390 mesh or less. The average particle diameter (D50) of the negative electrode material was 5.6 μm. The particle size of the negative electrode material was measured using SALD-3000J (manufactured by Shimadzu Corporation) under the conditions of a refractive index of 2.00 to 0.20i and an average number of 64 times. Using an aqueous solution in which oxyethylene (20) sorbitan monolaurate ") was dissolved, the measurement was performed after ultrasonically dispersing for 30 seconds. The BET specific surface area was 10.2 m 2 / g. The BET specific surface area was analyzed by BET method by measuring the N 2 adsorption isotherm using AUTOSORB-1 (manufactured by Quantachrome). Further, as a pretreatment for measuring the specific surface area, evacuation was performed at 120 ° C. for 2 hours.

(負極の作製)
負極材料に、導電剤としてアセチレンブラック(昭和電工株式会社社製「HS−100」)を負極材料重量の5重量%、結着剤としてポリフッ化ビニリデンを同じく10重量%、溶剤のN−メチルピロリドンを同じく30重量%の量で加え、混錬して均一なスラリーとした。このスラリーを40μm厚の電解銅箔に塗布し、乾燥させ、ロール圧延して圧密化させた後、直径9mmのポンチを用いて打ち抜きして得た円板部材を負極とした。なお、銅箔上の負極活物質層の厚みは約30μmであった。
(Preparation of negative electrode)
As the negative electrode material, acetylene black (“HS-100” manufactured by Showa Denko Co., Ltd.) as a conductive agent is 5% by weight of the negative electrode material weight, polyvinylidene fluoride is also 10% by weight as a binder, and N-methylpyrrolidone as a solvent. Was added in an amount of 30% by weight, and kneaded to obtain a uniform slurry. The slurry was applied to an electrolytic copper foil having a thickness of 40 μm, dried, roll-rolled, consolidated, and then punched with a punch having a diameter of 9 mm to obtain a negative electrode. The negative electrode active material layer on the copper foil had a thickness of about 30 μm.

(実施例2)
炭素質物質粒子として、アセチレンブラック粒子を20g用いたこと以外は実施例1と同様にして負極材料および負極を作製した。当該負極材料のBET比表面積及び平均粒子径を表1に示す。
(Example 2)
A negative electrode material and a negative electrode were produced in the same manner as in Example 1 except that 20 g of acetylene black particles were used as the carbonaceous material particles. Table 1 shows the BET specific surface area and average particle diameter of the negative electrode material.

(実施例3)
炭素質物質粒子として、アセチレンブラック粒子を40g用いたこと以外は実施例1と同様にして負極材料および負極を作製した。当該負極材料のBET比表面積及び平均粒子径を表1に示す。
(Example 3)
A negative electrode material and a negative electrode were produced in the same manner as in Example 1 except that 40 g of acetylene black particles were used as the carbonaceous material particles. Table 1 shows the BET specific surface area and average particle diameter of the negative electrode material.

(実施例4)
炭素質物質粒子として、アセチレンブラック粒子の代わりに、上記で作製した平均粒子径1.4μmの黒鉛粒子を40g用いた以外は実施例1と同様にして負極材料および負極を作製した。当該負極材料のBET比表面積及び平均粒子径を表1に示す。
Example 4
A negative electrode material and a negative electrode were prepared in the same manner as in Example 1 except that 40 g of graphite particles having an average particle diameter of 1.4 μm prepared above were used as carbonaceous material particles instead of acetylene black particles. Table 1 shows the BET specific surface area and average particle diameter of the negative electrode material.

(比較例1)
上記で作製した平均粒子径が1.4μmの黒鉛2kg、コールタールピッチ(大阪化成株式会社製「ペレット」)1.4kg及び上記で作製したSi微粒子を20重量%含むメチルナフタレン2.4kgを、二軸加熱ニーダーを用いて100℃で1時間混合した後、200℃でメチルナフタレンを蒸発させた。次いで、窒素雰囲気中、900℃で1時間焼成し、Si微粒子、黒鉛及び非晶質炭素からなる複合粒子を作製した。次に、この複合粒子200gを、アルミナ製の振動ミルで5分間粉砕した後、コールタールピッチ(川崎製鉄株式会社社製「PKQL」)60gを溶かしたテトラヒドロフラン溶液中に分散し、その後テトラヒドロフランをエバポレーターで蒸発させて、ピッチで表面被覆された複合粒子を得た。ついで、この表面被覆複合粒子を窒素雰囲気中、1150℃で1時間焼成した後、粉砕機で解砕し、390メッシュの篩でふるい、390メッシュ以下の負極材料粒子を得た。後は当該負極材料粒子を用いて実施例1と同様にして負極を作製した。負極材料のBET比表面積及び平均粒子径を表1に示す。
(Comparative Example 1)
2 kg of graphite having an average particle diameter of 1.4 μm prepared above, 1.4 kg of coal tar pitch (“pellet” manufactured by Osaka Kasei Co., Ltd.) and 2.4 kg of methylnaphthalene containing 20% by weight of the Si fine particles prepared above, After mixing at 100 ° C. for 1 hour using a biaxial heating kneader, methyl naphthalene was evaporated at 200 ° C. Subsequently, it baked at 900 degreeC in nitrogen atmosphere for 1 hour, and produced the composite particle which consists of Si microparticles, graphite, and amorphous carbon. Next, 200 g of the composite particles were pulverized for 5 minutes with an alumina vibration mill, and then dispersed in a tetrahydrofuran solution in which 60 g of coal tar pitch (“PKQL” manufactured by Kawasaki Steel Corporation) was dissolved, and then the tetrahydrofuran was evaporated. To obtain composite particles surface-coated with pitch. Subsequently, the surface-coated composite particles were fired at 1150 ° C. for 1 hour in a nitrogen atmosphere, and then pulverized with a pulverizer, and sieved with a 390 mesh sieve to obtain negative electrode material particles of 390 mesh or less. Thereafter, a negative electrode was produced in the same manner as in Example 1 using the negative electrode material particles. Table 1 shows the BET specific surface area and average particle diameter of the negative electrode material.

<リチウム二次電池の作製と評価>
(リチウム二次電池の作製)
作用極として各実施例及び各比較例で得られた負極を用い、対極として厚さ1mmの金属リチウムを用い、これら両極をセパレーター(宝泉株式会社製「セルガード#2400」)を介して対向させた。さらに1.5MLiPF/エチレンカーボネート、ジエチルカーボネート及びジメチルカーボネートの混合溶液(1:1:1容量比)にビニレンカーボネートを1重量%添加した非水電解液を注入し、通常の方法によってリチウム二次電池を作製した。
<Production and evaluation of lithium secondary battery>
(Production of lithium secondary battery)
The negative electrode obtained in each Example and each Comparative Example was used as a working electrode, and 1 mm thick metal lithium was used as a counter electrode, and both electrodes were opposed to each other via a separator (“Celguard # 2400” manufactured by Hosen Co., Ltd.). It was. Further, a nonaqueous electrolytic solution in which 1% by weight of vinylene carbonate was added to a mixed solution of 1.5 M LiPF 6 / ethylene carbonate, diethyl carbonate and dimethyl carbonate (1: 1: 1 volume ratio) was injected, and a secondary lithium secondary solution was injected by a normal method. A battery was produced.

(リチウム二次電池の評価)
上記で作製したリチウム二次電池について、1サイクル放電容量および32サイクル容量維持率を下記に従い測定した。結果をまとめて表1に示す。
(Evaluation of lithium secondary battery)
About the lithium secondary battery produced above, 1 cycle discharge capacity and 32 cycle capacity maintenance factor were measured according to the following. The results are summarized in Table 1.

放電容量:対極(リチウム極)に対し、0.1Cに相当する電流で0.02Vまで充電した。放電はリチウム極に対して0.1Cに相当する電流で1.5Vまで行い、初期(初回)放電容量を測定した。なお、放電容量は、カット電圧が1.5Vの時の容量とした。   Discharge capacity: The counter electrode (lithium electrode) was charged to 0.02 V with a current corresponding to 0.1 C. Discharge was performed up to 1.5 V with a current corresponding to 0.1 C with respect to the lithium electrode, and the initial (initial) discharge capacity was measured. The discharge capacity was the capacity when the cut voltage was 1.5V.

容量維持率:上記充放電サイクルを32回繰り返し、1サイクル目放電容量に対する32サイクル目の放電容量の比率を、容量維持率(%)として算出した。なお、3サイクル目以降は、充放電の電流値を1.0Cに相当する値に設定した。   Capacity maintenance rate: The above charge / discharge cycle was repeated 32 times, and the ratio of the discharge capacity at the 32nd cycle to the first cycle discharge capacity was calculated as the capacity maintenance rate (%). In the third and subsequent cycles, the charge / discharge current value was set to a value corresponding to 1.0C.

Figure 2008277232
Figure 2008277232

表1から、実施例の負極材料を用いれば、初期充放電容量が大きく、なおかつ充放電サイクル特性に優れたリチウム二次電池を得ることが可能であることがわかる。   From Table 1, it can be seen that by using the negative electrode material of the example, it is possible to obtain a lithium secondary battery having a large initial charge / discharge capacity and excellent charge / discharge cycle characteristics.

本発明の負極材料の一形態を示す断面模式図である。It is a cross-sectional schematic diagram which shows one form of the negative electrode material of this invention.

符号の説明Explanation of symbols

1 負極材粒子
2 黒鉛粒子
3 Si微粒子
4 非晶質炭素(A)
5 炭素質物質粒子
6 非晶質炭素(B)
7 複合粒子
1 Negative electrode material particle 2 Graphite particle 3 Si fine particle 4 Amorphous carbon (A)
5 Carbonaceous material particles 6 Amorphous carbon (B)
7 Composite particles

Claims (12)

黒鉛粒子、Si微粒子及び非晶質炭素(A)を含む複合粒子の表面に、黒鉛又はカーボンブラックから選ばれる少なくとも一種以上を含む炭素質物質粒子が配置されるとともに、該炭素質物質粒子が非晶質炭素(B)によって被覆されていることを特徴とするリチウム二次電池用負極材料。   Carbonaceous material particles containing at least one or more selected from graphite or carbon black are disposed on the surface of the composite particles containing graphite particles, Si fine particles, and amorphous carbon (A), and the carbonaceous material particles are non-coated. A negative electrode material for a lithium secondary battery, which is coated with crystalline carbon (B). 前記炭素質物質粒子の平均粒径(D50)が0.01〜5μmであることを特徴とする請求項1に記載のリチウム二次電池用負極材料。   2. The negative electrode material for a lithium secondary battery according to claim 1, wherein an average particle size (D50) of the carbonaceous material particles is 0.01 to 5 μm. 前記黒鉛粒子の平均粒径(D50)が0.5〜5μmであり、前記Si微粒子の平均粒子径(D50)が0.05〜1μmである請求項1または2に記載のリチウム二次電池用負極材料。   3. The lithium secondary battery according to claim 1, wherein an average particle diameter (D50) of the graphite particles is 0.5 to 5 μm, and an average particle diameter (D50) of the Si fine particles is 0.05 to 1 μm. Negative electrode material. BET比表面積が2〜20m/gである請求項1〜3のいずれかに記載のリチウム二次電池用負極材料。 The negative electrode material for a lithium secondary battery according to claim 1, wherein the BET specific surface area is 2 to 20 m 2 / g. 平均粒径(D50)が5〜40μmである請求項1〜4のいずれかに記載のリチウム二次電池用負極材料。   The negative electrode material for a lithium secondary battery according to any one of claims 1 to 4, wherein the average particle size (D50) is 5 to 40 µm. (I)Si微粒子と、黒鉛粒子と、熱処理によって非晶質炭素(A)となる前駆体と、を混合する工程、
(II)前記工程(I)により得られた混合物を熱処理して、前記Si微粒子と前記黒鉛粒子と前記非晶質炭素(A)とを含む複合材料を作製する工程、
(III)前記複合材料と、黒鉛及びカーボンブラックから選ばれる少なくとも一種以上を含む炭素質物質粒子と、熱処理によって非晶質炭素(B)となる前駆体と、を混合する工程、並びに
(IV)前記工程(III)により得られた混合物を熱処理する工程、
を有するリチウム二次電池用負極材料の製造方法。
(I) a step of mixing Si fine particles, graphite particles, and a precursor that becomes amorphous carbon (A) by heat treatment;
(II) heat treating the mixture obtained in the step (I) to produce a composite material including the Si fine particles, the graphite particles, and the amorphous carbon (A);
(III) A step of mixing the composite material, carbonaceous material particles containing at least one selected from graphite and carbon black, and a precursor that becomes amorphous carbon (B) by heat treatment, and (IV) Heat-treating the mixture obtained by the step (III),
The manufacturing method of the negative electrode material for lithium secondary batteries which has this.
前記工程(II)における熱処理の温度が、700〜1500℃の範囲である請求項6に記載のリチウム二次電池用負極材料の製造方法。   The method for producing a negative electrode material for a lithium secondary battery according to claim 6, wherein a temperature of the heat treatment in the step (II) is in a range of 700 to 1500 ° C. 前記工程(IV)における熱処理の温度が、700〜2000℃の範囲である請求項6または7に記載のリチウム二次電池用負極材料の製造方法。   The method for producing a negative electrode material for a lithium secondary battery according to claim 6 or 7, wherein a temperature of the heat treatment in the step (IV) is in a range of 700 to 2000 ° C. 前記炭素質物質粒子の平均粒径(D50)が0.01〜5μmであることを特徴とする請求項6〜8のいずれかに記載のリチウム二次電池用負極材料の製造方法。   The method for producing a negative electrode material for a lithium secondary battery according to any one of claims 6 to 8, wherein an average particle size (D50) of the carbonaceous material particles is 0.01 to 5 µm. 前記黒鉛粒子の平均粒径(D50)が0.5〜5μmであり、前記Si微粒子の平均粒子径(D50)が0.05〜1μmである請求項6〜9のいずれかに記載のリチウム二次電池用負極材料の製造方法。   10. The lithium secondary battery according to claim 6, wherein the graphite particles have an average particle diameter (D50) of 0.5 to 5 μm and the Si fine particles have an average particle diameter (D50) of 0.05 to 1 μm. A method for producing a negative electrode material for a secondary battery. 請求項1〜5のいずれかに記載のリチウム二次電池用負極材料もしくは請求項6〜10のいずれかに記載のリチウム二次電池用負極材料の製造方法により得られるリチウム二次電池用負極材料及び結着剤を含む混合物と、集電体とを一体化してなるリチウム二次電池用負極。   The negative electrode material for lithium secondary batteries according to any one of claims 1 to 5, or the negative electrode material for lithium secondary batteries obtained by the method for producing a negative electrode material for lithium secondary batteries according to any one of claims 6 to 10. And a negative electrode for a lithium secondary battery obtained by integrating a mixture containing a binder and a current collector. 請求項11に記載のリチウム二次電池用負極を備えてなるリチウム二次電池。   A lithium secondary battery comprising the negative electrode for a lithium secondary battery according to claim 11.
JP2007154975A 2007-04-05 2007-06-12 Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery Pending JP2008277232A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007154975A JP2008277232A (en) 2007-04-05 2007-06-12 Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2007099345 2007-04-05
JP2007154975A JP2008277232A (en) 2007-04-05 2007-06-12 Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery

Publications (1)

Publication Number Publication Date
JP2008277232A true JP2008277232A (en) 2008-11-13

Family

ID=40054937

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007154975A Pending JP2008277232A (en) 2007-04-05 2007-06-12 Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery

Country Status (1)

Country Link
JP (1) JP2008277232A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099287A (en) * 2007-10-12 2009-05-07 Toyota Motor Corp Electrode material powder for secondary battery, and manufacturing method thereof
JP2010129169A (en) * 2008-11-25 2010-06-10 National Institute Of Advanced Industrial Science & Technology Carbon nanotube material for negative electrode and lithium ion secondary battery using this as negative electrode
JP2010262914A (en) * 2009-04-29 2010-11-18 Samsung Sdi Co Ltd Lithium secondary battery
JP2012038735A (en) * 2008-12-26 2012-02-23 Sekisui Chem Co Ltd Carbon particle for electrode, and anode material for lithium-ion secondary battery
WO2012077785A1 (en) * 2010-12-10 2012-06-14 日立化成工業株式会社 Negative electrode material for lithium ion secondary battery, method for manufacturing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012124115A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012124117A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012124121A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Method for manufacturing negative electrode material for lithium secondary battery
JP2012124122A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Lithium secondary battery
JP2012124116A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN102867944A (en) * 2011-07-06 2013-01-09 东丽纤维研究所(中国)有限公司 Mesoporous carbon/silicon composite anode material and preparation method thereof
WO2013141041A1 (en) * 2012-03-22 2013-09-26 中央電気工業株式会社 Composite graphitic particles and method for manufacturing same
JP2013197069A (en) * 2012-03-22 2013-09-30 National Institute Of Advanced Industrial & Technology Negative electrode material for lithium secondary battery and manufacturing method thereof, negative electrode for lithium secondary battery and manufacturing method thereof, lithium secondary battery, and electric device with lithium secondary battery
CN103811717A (en) * 2014-02-19 2014-05-21 新乡市赛日新能源科技有限公司 Power lithium-ion battery negative electrode material with core-shell structure and preparation method thereof
JP2014120286A (en) * 2012-12-14 2014-06-30 Showa Denko Kk Negative electrode material for lithium battery, method for producing the same, electrode and battery
JP2015028955A (en) * 2014-10-29 2015-02-12 日立化成株式会社 Lithium secondary battery
US20150099187A1 (en) * 2013-10-04 2015-04-09 Board Of Trustees Of The Leland Stanford Junior University Large-volume-change lithium battery electrodes
WO2015097974A1 (en) * 2013-12-25 2015-07-02 株式会社豊田自動織機 Negative electrode active material, method for producing same and electricity storage device
JP2015532514A (en) * 2012-10-22 2015-11-09 ハイドロ−ケベック Method of manufacturing electrode material for lithium-ion secondary battery and lithium-ion battery using the electrode material
WO2015189926A1 (en) * 2014-06-11 2015-12-17 小林 光 Negative electrode material for lithium ion batteries, lithium ion battery, method and apparatus for producing negative electrode for lithium ion batteries, and method and apparatus for producing negative electrode material for lithium ion batteries
JP2016021393A (en) * 2014-07-11 2016-02-04 オーシーアイ カンパニー リミテッドOCI Company Ltd. Negative electrode active material for secondary batteries, and method for manufacturing the same
CN105390698A (en) * 2014-09-03 2016-03-09 Oci有限公司 Carbon-silicon composite and manufacturing method thereof
JP2016509739A (en) * 2012-12-27 2016-03-31 サムスン エレクトロニクス カンパニー リミテッド Negative electrode active material for secondary battery, conductive composition for secondary battery, negative electrode material including the same, negative electrode structure and secondary battery including the same, and manufacturing method thereof
JP2016100226A (en) * 2014-11-21 2016-05-30 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US9543579B2 (en) 2014-07-08 2017-01-10 Hitachi, Ltd. Lithium ion secondary battery
JP2018029049A (en) * 2016-08-10 2018-02-22 東ソー株式会社 Composite active material for silicon based lithium secondary battery and method for manufacturing the same
WO2018145733A1 (en) * 2017-02-07 2018-08-16 Wacker Chemie Ag Core-shell composite particles for anode materials of lithium ion batteries
WO2018145765A1 (en) * 2017-02-10 2018-08-16 Wacker Chemie Ag Core-shell-composite particles for anode materials of lithium-ion batteries
WO2019069668A1 (en) 2017-10-05 2019-04-11 昭和電工株式会社 Negative electrode material for lithium ion secondary cell, method for producing same, paste for negative electrode, negative electrode sheet, and lithium ion secondary cell
JP2019522886A (en) * 2016-12-23 2019-08-15 エルジー・ケム・リミテッド Negative electrode active material and negative electrode for electrochemical device including the same
JPWO2020129467A1 (en) * 2018-12-19 2021-02-15 Dic株式会社 Silicon nanoparticles and non-aqueous secondary batteries using them Active materials for negative electrodes and secondary batteries
WO2021157460A1 (en) * 2020-02-07 2021-08-12 Dic株式会社 Low oxygen-type silicon nanoparticle-containing slurry, negative electrode active material, negative electrode and lithium ion secondary battery

Cited By (52)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009099287A (en) * 2007-10-12 2009-05-07 Toyota Motor Corp Electrode material powder for secondary battery, and manufacturing method thereof
JP2010129169A (en) * 2008-11-25 2010-06-10 National Institute Of Advanced Industrial Science & Technology Carbon nanotube material for negative electrode and lithium ion secondary battery using this as negative electrode
JP2012038735A (en) * 2008-12-26 2012-02-23 Sekisui Chem Co Ltd Carbon particle for electrode, and anode material for lithium-ion secondary battery
JP2010262914A (en) * 2009-04-29 2010-11-18 Samsung Sdi Co Ltd Lithium secondary battery
US8597833B2 (en) 2009-04-29 2013-12-03 Samsung Sdi Co., Ltd. Rechargeable lithium battery
JP2012124117A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US9614216B2 (en) 2010-12-10 2017-04-04 Hitachi Chemical Company, Ltd. Negative electrode material for lithium ion secondary battery, method for manufacturing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012124121A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Method for manufacturing negative electrode material for lithium secondary battery
JP2012124122A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Lithium secondary battery
JP2012124116A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN103262314B (en) * 2010-12-10 2015-07-01 日立化成株式会社 Negative electrode material for lithium ion secondary battery, method for manufacturing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN103262314A (en) * 2010-12-10 2013-08-21 日立化成株式会社 Negative electrode material for lithium ion secondary battery, method for manufacturing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2012124115A (en) * 2010-12-10 2012-06-28 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
KR101451538B1 (en) 2010-12-10 2014-10-15 히타치가세이가부시끼가이샤 Negative electrode material for lithium ion secondary battery, method for manufacturing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2012077785A1 (en) * 2010-12-10 2012-06-14 日立化成工業株式会社 Negative electrode material for lithium ion secondary battery, method for manufacturing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN102867944A (en) * 2011-07-06 2013-01-09 东丽纤维研究所(中国)有限公司 Mesoporous carbon/silicon composite anode material and preparation method thereof
JP2013197069A (en) * 2012-03-22 2013-09-30 National Institute Of Advanced Industrial & Technology Negative electrode material for lithium secondary battery and manufacturing method thereof, negative electrode for lithium secondary battery and manufacturing method thereof, lithium secondary battery, and electric device with lithium secondary battery
WO2013141041A1 (en) * 2012-03-22 2013-09-26 中央電気工業株式会社 Composite graphitic particles and method for manufacturing same
JPWO2013141041A1 (en) * 2012-03-22 2015-08-03 中央電気工業株式会社 Composite graphite particles and method for producing the same
US11545668B2 (en) 2012-10-22 2023-01-03 Hydro-Quebec Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
US12068484B2 (en) 2012-10-22 2024-08-20 HYDRO-QUéBEC Method of producing electrode material for lithium-ion secondary battery and lithium-ion battery using such electrode material
JP2015532514A (en) * 2012-10-22 2015-11-09 ハイドロ−ケベック Method of manufacturing electrode material for lithium-ion secondary battery and lithium-ion battery using the electrode material
JP2014120286A (en) * 2012-12-14 2014-06-30 Showa Denko Kk Negative electrode material for lithium battery, method for producing the same, electrode and battery
JP2016509739A (en) * 2012-12-27 2016-03-31 サムスン エレクトロニクス カンパニー リミテッド Negative electrode active material for secondary battery, conductive composition for secondary battery, negative electrode material including the same, negative electrode structure and secondary battery including the same, and manufacturing method thereof
US20150099187A1 (en) * 2013-10-04 2015-04-09 Board Of Trustees Of The Leland Stanford Junior University Large-volume-change lithium battery electrodes
US10873074B2 (en) * 2013-10-04 2020-12-22 The Board Of Trustees Of The Leland Stanford Junior University Large-volume-change lithium battery electrodes
WO2015097974A1 (en) * 2013-12-25 2015-07-02 株式会社豊田自動織機 Negative electrode active material, method for producing same and electricity storage device
DE112014006065B4 (en) 2013-12-25 2019-01-10 Kabushiki Kaisha Toyota Jidoshokki Negative electrode active material, method of manufacturing the same and electric storage device
JPWO2015097974A1 (en) * 2013-12-25 2017-03-23 株式会社豊田自動織機 NEGATIVE ELECTRODE ACTIVE MATERIAL, ITS MANUFACTURING METHOD, AND POWER STORAGE DEVICE
CN103811717A (en) * 2014-02-19 2014-05-21 新乡市赛日新能源科技有限公司 Power lithium-ion battery negative electrode material with core-shell structure and preparation method thereof
WO2015189926A1 (en) * 2014-06-11 2015-12-17 小林 光 Negative electrode material for lithium ion batteries, lithium ion battery, method and apparatus for producing negative electrode for lithium ion batteries, and method and apparatus for producing negative electrode material for lithium ion batteries
JP5866589B1 (en) * 2014-06-11 2016-02-17 小林 光 Method for producing negative electrode or negative electrode material of lithium ion battery
CN106415897A (en) * 2014-06-11 2017-02-15 小林光 Negative electrode material for lithium ion batteries, lithium ion battery, method and apparatus for producing negative electrode for lithium ion batteries, and method and apparatus for producing negative electrode material for lithium ion batteries
US9543579B2 (en) 2014-07-08 2017-01-10 Hitachi, Ltd. Lithium ion secondary battery
JP2016021393A (en) * 2014-07-11 2016-02-04 オーシーアイ カンパニー リミテッドOCI Company Ltd. Negative electrode active material for secondary batteries, and method for manufacturing the same
JP2016054145A (en) * 2014-09-03 2016-04-14 オーシーアイ カンパニー リミテッドOCI Company Ltd. Carbon-silicon complex and method for producing the same
CN105390698A (en) * 2014-09-03 2016-03-09 Oci有限公司 Carbon-silicon composite and manufacturing method thereof
US10193148B2 (en) 2014-09-03 2019-01-29 Oci Company Ltd. Carbon-silicon composite and manufacturing method thereof
JP2015028955A (en) * 2014-10-29 2015-02-12 日立化成株式会社 Lithium secondary battery
JP2016100226A (en) * 2014-11-21 2016-05-30 日立化成株式会社 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2018029049A (en) * 2016-08-10 2018-02-22 東ソー株式会社 Composite active material for silicon based lithium secondary battery and method for manufacturing the same
US11158847B2 (en) 2016-12-23 2021-10-26 Lg Chem, Ltd. Negative electrode active material and negative electrode including the same
JP2019522886A (en) * 2016-12-23 2019-08-15 エルジー・ケム・リミテッド Negative electrode active material and negative electrode for electrochemical device including the same
WO2018145733A1 (en) * 2017-02-07 2018-08-16 Wacker Chemie Ag Core-shell composite particles for anode materials of lithium ion batteries
WO2018145765A1 (en) * 2017-02-10 2018-08-16 Wacker Chemie Ag Core-shell-composite particles for anode materials of lithium-ion batteries
KR20200073208A (en) 2017-10-05 2020-06-23 쇼와 덴코 가부시키가이샤 Negative electrode material for lithium ion secondary battery, manufacturing method thereof, paste for negative electrode, negative electrode sheet and lithium ion secondary battery
CN111418097A (en) * 2017-10-05 2020-07-14 昭和电工株式会社 Negative electrode material for lithium ion secondary battery, method for producing same, paste for negative electrode, negative electrode sheet, and lithium ion secondary battery
WO2019069668A1 (en) 2017-10-05 2019-04-11 昭和電工株式会社 Negative electrode material for lithium ion secondary cell, method for producing same, paste for negative electrode, negative electrode sheet, and lithium ion secondary cell
TWI765100B (en) * 2017-10-05 2022-05-21 比利時商烏明克公司 Negative electrode material for lithium ion secondary battery and production method thereof, paste for negative electrode, negative electrode sheet, and lithium ion secondary battery
US11777082B2 (en) 2017-10-05 2023-10-03 Showa Denko K.K. Negative electrode material for lithium ion secondary batteries, method for manufacturing the same, paste for negative electrode, negative electrode sheet, and lithium ion secondary
JPWO2020129467A1 (en) * 2018-12-19 2021-02-15 Dic株式会社 Silicon nanoparticles and non-aqueous secondary batteries using them Active materials for negative electrodes and secondary batteries
WO2021157460A1 (en) * 2020-02-07 2021-08-12 Dic株式会社 Low oxygen-type silicon nanoparticle-containing slurry, negative electrode active material, negative electrode and lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2008112710A (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery
JP5927788B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP4854289B2 (en) Non-aqueous electrolyte secondary battery
JP5462445B2 (en) Lithium ion secondary battery
JP2008277231A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP5494344B2 (en) Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5494343B2 (en) Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5611453B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the negative electrode
JP2014139942A (en) Carbon-coated graphite negative electrode material for lithium ion secondary battery, method for manufacturing the same, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP2017228439A (en) Lithium ion secondary battery and method for manufacturing the same
JP5799500B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2016219410A (en) Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2019012646A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2003168429A (en) Nonaqueous electrolyte secondary battery
WO2012127548A1 (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013187016A (en) Composite material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP6584975B2 (en) Carbon material for negative electrode of lithium ion secondary battery, negative electrode of lithium ion secondary battery, and method for producing lithium ion secondary battery
JP2008251523A (en) Negative electrode material for nonaqueous electrolyte secondary battery, negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2009187924A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode
WO2021019727A1 (en) Negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
WO2021019728A1 (en) Method for manufacturing negative electrode material for lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP6939880B2 (en) Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries
JP5990872B2 (en) Lithium secondary battery negative electrode material, lithium secondary battery negative electrode and lithium secondary battery
JP2015165510A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100526

A072 Dismissal of procedure

Free format text: JAPANESE INTERMEDIATE CODE: A073

Effective date: 20110929