JP5927788B2 - Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery - Google Patents

Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Download PDF

Info

Publication number
JP5927788B2
JP5927788B2 JP2011139721A JP2011139721A JP5927788B2 JP 5927788 B2 JP5927788 B2 JP 5927788B2 JP 2011139721 A JP2011139721 A JP 2011139721A JP 2011139721 A JP2011139721 A JP 2011139721A JP 5927788 B2 JP5927788 B2 JP 5927788B2
Authority
JP
Japan
Prior art keywords
lithium ion
ion secondary
secondary battery
negative electrode
graphite particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2011139721A
Other languages
Japanese (ja)
Other versions
JP2013008526A (en
Inventor
学 小椋
学 小椋
圭児 岡部
圭児 岡部
耕士 米田
耕士 米田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Showa Denko Materials Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd, Showa Denko Materials Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2011139721A priority Critical patent/JP5927788B2/en
Publication of JP2013008526A publication Critical patent/JP2013008526A/en
Application granted granted Critical
Publication of JP5927788B2 publication Critical patent/JP5927788B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明はリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びリチウムイオン二次電池に関する。   The present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery.

リチウムイオン二次電池は、その他の二次電池であるニッケル水素電池、ニッケルカドミウム電池及び鉛蓄電池と比べて軽量かつ高い入出力特性を有することから、近年、電気自動車やハイブリット型電気自動車への使用が期待されている。リチウムイオン二次電池を電気自動車やハイブリット型電気自動車に使用する際には、高入出力特性及び高寿命特性を両立したリチウムイオン二次電池の提供が重要であるとされている(例えば、特許文献1参照)。   Lithium ion secondary batteries are lighter and have higher input / output characteristics than other secondary batteries such as nickel metal hydride batteries, nickel cadmium batteries, and lead acid batteries. Is expected. When a lithium ion secondary battery is used in an electric vehicle or a hybrid electric vehicle, it is important to provide a lithium ion secondary battery that has both high input / output characteristics and long life characteristics (for example, patents). Reference 1).

特開2006−324237号公報JP 2006-324237 A

しかしながら、従来、高入出力特性及び高寿命特性に優れるリチウムイオン二次電池と、それを得るためのリチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極は得られていなかった。   However, a lithium ion secondary battery excellent in high input / output characteristics and long life characteristics, and a negative electrode material for lithium ion secondary batteries and a negative electrode for lithium ion secondary batteries for obtaining the same have not been obtained.

本発明は、入出力特性と寿命特性との両方に優れるリチウムイオン二次電池を提供することを目的としている。また、本発明は、入出力特性と寿命特性との両方に優れるリチウムイオン二次電池の提供を可能にするリチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極を提供することを目的とする。   An object of this invention is to provide the lithium ion secondary battery which is excellent in both input-output characteristics and lifetime characteristics. Another object of the present invention is to provide a negative electrode material for a lithium ion secondary battery and a negative electrode for a lithium ion secondary battery that can provide a lithium ion secondary battery that is excellent in both input / output characteristics and life characteristics. And

即ち本発明は、次の各項に関する。
(1)鱗片状黒鉛粒子の凝集粒子を含む炭素材料Aと、球形化黒鉛粒子を含む炭素材料Bとを含有し、細孔体積が0.9ml/g〜1.3ml/gであり、比表面積が4.0m/g〜6.0m/gであり、タップ密度が0.75g/cm〜0.95g/cmであり、前記炭素材料Aの平均粒子径は5μm〜10μmであり、前記炭素材料Aは前記鱗片状黒鉛粒子の凝集粒子の表面の少なくとも一部が低結晶性炭素により被覆された被覆物を含み、前記炭素材料Bは前記球形化黒鉛粒子の表面の少なくとも一部が低結晶性炭素により被覆された被覆物を含むリチウムイオン二次電池用負極材。
(2)ラマンスペクトルにおけるR値が、0.3〜1.0である(1)記載のリチウムイオン二次電池用負極材。
)前記炭素材料Aのアスペクト比が、1.8〜2.7である(1)又は(2)に記載のリチウムイオン二次電池用負極材。
)前記炭素材料Bのアスペクト比が、1.3〜2.0である(1)〜()のいずれか記載のリチウムイオン二次電池用負極材。
)集電体と、該集電体上に設けられ(1)〜()のいずれか記載のリチウムイオン二次電池用負極材を含む負極層とを有するリチウムイオン二次電池用負極。
)()記載のリチウムイオン二次電池用負極と、正極と、電解質とを備えてなるリチウムイオン二次電池。
That is, the present invention relates to the following items.
(1) It contains carbon material A containing aggregated particles of scaly graphite particles and carbon material B containing spheroidized graphite particles, and has a pore volume of 0.9 ml / g to 1.3 ml / g, surface area of 4.0m 2 /g~6.0m 2 / g, a tap density of 0.75g / cm 3 ~0.95g / cm 3 , an average particle diameter of the carbon material a in 5μm~10μm The carbon material A includes a coating in which at least a part of the surface of the aggregate particles of the scaly graphite particles is coated with low crystalline carbon, and the carbon material B is at least one of the surfaces of the spheroidized graphite particles. A negative electrode material for a lithium ion secondary battery, comprising a coating part of which is coated with low crystalline carbon.
(2) The negative electrode material for a lithium ion secondary battery according to (1), wherein the R value in the Raman spectrum is 0.3 to 1.0.
( 3 ) The negative electrode material for a lithium ion secondary battery according to (1) or (2), wherein the aspect ratio of the carbon material A is 1.8 to 2.7.
( 4 ) The negative electrode material for a lithium ion secondary battery according to any one of (1) to ( 3 ), wherein the aspect ratio of the carbon material B is 1.3 to 2.0.
( 5 ) A negative electrode for a lithium ion secondary battery comprising a current collector and a negative electrode layer provided on the current collector and comprising a negative electrode material for a lithium ion secondary battery according to any one of (1) to ( 4 ) .
( 6 ) A lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to ( 5 ), a positive electrode, and an electrolyte.

本発明によれば、入出力特性と寿命特性との両方に優れるリチウムイオン二次電池を提供することが可能である。また、本発明によれば、入出力特性と寿命特性との両方に優れるリチウムイオン二次電池の提供を可能にするリチウムイオン二次電池用負極材及びリチウムイオン二次電池用負極を提供することが可能である。   ADVANTAGE OF THE INVENTION According to this invention, it is possible to provide the lithium ion secondary battery which is excellent in both input-output characteristics and lifetime characteristics. In addition, according to the present invention, it is possible to provide a negative electrode material for a lithium ion secondary battery and a negative electrode for a lithium ion secondary battery that can provide a lithium ion secondary battery excellent in both input / output characteristics and life characteristics. Is possible.

本実施例にかかる炭素材料Aの電子顕微鏡写真の一例を示した図である。It is the figure which showed an example of the electron micrograph of the carbon material A concerning a present Example. 本実施例にかかる炭素材料Bの電子顕微鏡写真の一例を示した図である。It is the figure which showed an example of the electron micrograph of the carbon material B concerning a present Example. 本実施例にかかるリチウムイオン二次電池用負極材の電子顕微鏡写真の一例を示した図である。It is the figure which showed an example of the electron micrograph of the negative electrode material for lithium ion secondary batteries concerning a present Example.

本明細書において「工程」との語は、独立した工程だけではなく、他の工程と明確に区別できない場合であってもその工程の所期の作用が達成されれば、本用語に含まれる。また本明細書において「〜」は、その前後に記載される数値をそれぞれ最小値および最大値として含む範囲を示すものとする。さらに本明細書において組成物中の各成分の量について言及する場合、組成物中に各成分に該当する物質が複数存在する場合には、特に断らない限り、組成物中に存在する当該複数の物質の合計量を意味する。   In this specification, the term “process” is not limited to an independent process, and is included in the term if the intended action of the process is achieved even when it cannot be clearly distinguished from other processes. . In the present specification, “to” indicates a range including the numerical values described before and after the values as a minimum value and a maximum value, respectively. Further, when referring to the amount of each component in the composition in the present specification, when there are a plurality of substances corresponding to each component in the composition, the plurality of the components present in the composition unless otherwise specified. It means the total amount of substance.

<リチウムイオン二次電池用負極材>
本発明のリチウムイオン二次電池用負極材は、鱗片状黒鉛粒子の凝集粒子を含む炭素材料Aと、球形化黒鉛粒子を含む炭素材料Bとを含有し、細孔体積が0.9ml/g〜1.3ml/gであり、比表面積が4.0m/g〜6.0m/gであり、タップ密度が0.75g/cm〜0.95g/cmである。
<Anode material for lithium ion secondary battery>
The negative electrode material for a lithium ion secondary battery of the present invention contains a carbon material A containing aggregated particles of scaly graphite particles and a carbon material B containing spheroidized graphite particles, and has a pore volume of 0.9 ml / g. a ~1.3ml / g, specific surface area of 4.0m 2 /g~6.0m 2 / g, a tap density of 0.75g / cm 3 ~0.95g / cm 3 .

本発明のリチウムイオン二次電池用負極材は、鱗片状黒鉛粒子の凝集粒子を含む炭素材料Aと球形化黒鉛粒子を含む炭素材料Bとを含有し、これら炭素材料Aと炭素材料Bとを含有するリチウムイオン二次電池用負極材(負極活物質)全体として、細孔体積が0.9ml/g〜1.3ml/gであり、比表面積が4.0m/g〜6.0m/gであり、タップ密度が0.75g/cm〜0.95g/cmであるという物性値を示す。 The negative electrode material for a lithium ion secondary battery of the present invention contains a carbon material A containing aggregated particles of scaly graphite particles and a carbon material B containing spheroidized graphite particles. overall containing lithium ion secondary to battery for a negative electrode material (negative electrode active material), the pore volume is 0.9ml / g~1.3ml / g, a specific surface area of 4.0m 2 /g~6.0m 2 / g, and shows physical properties that the tap density of 0.75g / cm 3 ~0.95g / cm 3 .

当該本発明のリチウムイオン二次電池用負極材を用いることにより、リチウムイオンの移動速度の向上、挿入離脱サイトの増大及び粒子間の接触度合の向上などが達成でき、高入出特性を維持することができるリチウムイオン二次電池の提供を可能としたものである。また、細孔体積、比表面積及びタップ密度を特定の範囲とした、当該本発明のリチウムイオン二次電池用負極材を用いることにより、高寿命特性を発揮することができるリチウムイオン二次電池の提供を可能としたものである。   By using the negative electrode material for a lithium ion secondary battery of the present invention, it is possible to achieve an improvement in the movement speed of lithium ions, an increase in insertion / detachment sites, an improvement in the degree of contact between particles, and the like, while maintaining high input / output characteristics It is possible to provide a lithium ion secondary battery that can be used. In addition, by using the negative electrode material for a lithium ion secondary battery according to the present invention in which the pore volume, specific surface area, and tap density are in a specific range, a lithium ion secondary battery that can exhibit long life characteristics can be obtained. It is possible to provide.

(細孔体積)
本発明のリチウムイオン二次電池用負極材の細孔体積は、0.9ml/g〜1.3ml/gである。細孔体積が0.9ml/g未満であるとリチウムイオンの移動速度が低下し、急速充放電性が低下する場合が有り、1.3ml/gを超えると粒子が壊れやすくなり、寿命特性が低下する場合がある。
細孔体積は1.0ml/g〜1.2ml/gであることが好ましく、さらには1.0ml/g〜1.1ml/gであることがより好ましい。
(Pore volume)
The pore volume of the negative electrode material for a lithium ion secondary battery of the present invention is 0.9 ml / g to 1.3 ml / g. If the pore volume is less than 0.9 ml / g, the migration rate of lithium ions may be reduced, and the rapid charge / discharge characteristics may be reduced. May decrease.
The pore volume is preferably 1.0 ml / g to 1.2 ml / g, more preferably 1.0 ml / g to 1.1 ml / g.

なお、本発明において細孔体積は、水銀圧入法(島津製作所製 細孔分布測定装置 オートポア 9520形)により試料量0.2g、初期圧9kPa(約1.3psia、細孔直径約140μm相当)、水銀接触角130degrees、水銀表面張力485.0dynes/cmの条件で測定した値とする。なお、水銀圧入法よる細孔径分布測定では、2nm〜50nmの範囲に該当する細孔分布測定が可能である。   In the present invention, the pore volume is determined by a mercury intrusion method (pore distribution measuring device, Autopore 9520, manufactured by Shimadzu Corporation), a sample amount of 0.2 g, an initial pressure of 9 kPa (about 1.3 psia, pore diameter of about 140 μm), The value is measured under conditions of a mercury contact angle of 130 degrees and a mercury surface tension of 485.0 dynes / cm. In the pore diameter distribution measurement by the mercury intrusion method, the pore distribution measurement corresponding to the range of 2 nm to 50 nm can be performed.

本発明のリチウムイオン二次電池用負極材の細孔体積を0.9ml/g〜1.3ml/gの範囲とするためには、例えば、炭素材料Aと炭素材料Bとの合計を100質量部として、炭素材料Aを30質量部〜60質量部、炭素材料Bを40質量部〜70質量部とし、さらに、低結晶性炭素による被覆量を、炭素材料Aと炭素材料Bとの合計に対して、2質量部〜4質量部とすることで得られる。   In order to set the pore volume of the negative electrode material for a lithium ion secondary battery of the present invention in the range of 0.9 ml / g to 1.3 ml / g, for example, the total of the carbon material A and the carbon material B is 100 masses. The carbon material A is 30 parts by mass to 60 parts by mass, the carbon material B is 40 parts by mass to 70 parts by mass, and the coating amount of the low crystalline carbon is set to the total of the carbon material A and the carbon material B. On the other hand, it is obtained by setting it as 2 mass parts-4 mass parts.

(比表面積)
本発明のリチウムイオン二次電池用負極材の比表面積は、4.0m/g〜6.0m/gである。比表面積が4.0m/g未満であると、リチウムイオンの挿入離脱サイトが減少するため、出力特性が低下する場合が有り、6.0m/gを超えると電解液との反応性が高くなり不導体被膜が厚く形成されて充放電効率が低下し、寿命特性を低下させる場合がある。
比表面積は4.0m/g〜5.8m/gであることが好ましく、さらには4.0m/g〜5.5m/gであることがより好ましい。
(Specific surface area)
The specific surface area of the negative electrode material for a lithium ion secondary battery of the present invention is 4.0m 2 /g~6.0m 2 / g. If the specific surface area is less than 4.0 m 2 / g, the lithium ion insertion / extraction site decreases, so the output characteristics may decrease. If the specific surface area exceeds 6.0 m 2 / g, the reactivity with the electrolytic solution may be reduced. In some cases, the non-conductive coating becomes thicker and the charge / discharge efficiency is lowered, and the life characteristics are lowered.
Preferably the specific surface area is 4.0m 2 /g~5.8m 2 / g, and more preferably even at 4.0m 2 /g~5.5m 2 / g.

なお、本発明において比表面積は、BET法(窒素ガス吸着法)により以下の条件で測定した値とする。すなわち、得られた試料を110℃、2時間常圧で乾燥した後、比表面積計(比表面積測定装置フローソープII2300 島津製作所製)を用い、液体窒素温度(77K)での窒素吸着より得られた等温吸着線からBET法にしたがって算出される。   In the present invention, the specific surface area is a value measured by the BET method (nitrogen gas adsorption method) under the following conditions. That is, after the obtained sample was dried at 110 ° C. and normal pressure for 2 hours, it was obtained by nitrogen adsorption at a liquid nitrogen temperature (77 K) using a specific surface area meter (specific surface area measuring device Flow Soap II 2300, manufactured by Shimadzu Corporation). It is calculated according to the BET method from the isothermal adsorption line.

本発明のリチウムイオン二次電池用負極材の比表面積を4.0m/g〜6.0m/gの範囲とするためには、例えば、炭素材料Aと炭素材料Bとの合計を100質量部として、炭素材料Aを30質量部〜60質量部、炭素材料Bを40質量部〜70質量部とし、さらに、低結晶性炭素による被覆量を、炭素材料Aと炭素材料Bとの合計に対して、2質量部〜4質量部とすることで得られる。 To the specific surface area of the negative electrode material for a lithium ion secondary battery of the present invention in the range of 4.0m 2 /g~6.0m 2 / g, for example, the sum of the carbon material A and carbon material B 100 As mass parts, the carbon material A is 30 parts by mass to 60 parts by mass, the carbon material B is 40 parts by mass to 70 parts by mass, and the coating amount of the low crystalline carbon is the sum of the carbon material A and the carbon material B. It is obtained by setting it as 2 mass parts-4 mass parts with respect to.

(タップ密度)
本発明のリチウムイオン二次電池用負極材のタップ密度は、0.75g/cm〜0.95g/cmである。タップ密度が0.75g/cm未満であると粒子間の接触度合が低くなるため導電性に優れず、入出力特性が低下する場合が有り、0.95g/cmを超えると電解液を注入した際に浸透性が悪くなり、寿命特性および入出力特性が低下する場合がある。
タップ密度は0.80g/cm〜0.95g/cmであることが好ましく、さらには0.85g/cm〜0.95g/cmであることがより好ましい。
(Tap density)
The tap density of the negative electrode material for a lithium ion secondary battery of the present invention is 0.75g / cm 3 ~0.95g / cm 3 . If the tap density is less than 0.75 g / cm 3 , the degree of contact between the particles will be low, so that the conductivity will not be excellent, and the input / output characteristics may be reduced, and if it exceeds 0.95 g / cm 3 , When injected, the permeability may deteriorate and the life characteristics and input / output characteristics may deteriorate.
Preferably the tap density is 0.80g / cm 3 ~0.95g / cm 3 , and more preferably still is 0.85g / cm 3 ~0.95g / cm 3 .

なお、本発明においてタップ密度は、容量150cmのメスシリンダーに試料粉末50gをさじで徐々に投入し、メスシリンダーに栓をした後、充填密度測定装置(蔵持科学機械製作所製:KRS−406)を用いて5cmの高さから250回落下させた後の試料粉末の質量を容量で除することによって算出できる250回タップ密度である。 In the present invention, the tap density is determined by gradually charging 50 g of sample powder into a measuring cylinder having a capacity of 150 cm 3 and plugging the measuring cylinder, followed by a filling density measuring device (manufactured by Kuramotsu Kagaku Seisakusho: KRS-406). The tap density is 250 times that can be calculated by dividing the mass of the sample powder after dropping 250 times from a height of 5 cm by using the volume.

本発明のリチウムイオン二次電池用負極材のタップ密度を0.75g/cm〜0.95g/cmの範囲とするためには、炭素材料Aと炭素材料Bとの合計を100質量部として、炭素材料Aを30質量部〜60質量部、炭素材料Bを40質量部〜70質量部とし、さらに、低結晶性炭素による被覆量を、炭素材料Aと炭素材料Bとの合計に対して、2質量部〜4質量部とすることで得られる。 To the tap density of the negative electrode material for a lithium ion secondary battery of the present invention in the range of 0.75g / cm 3 ~0.95g / cm 3 is 100 parts by weight of the sum of the carbon material A and carbon material B The carbon material A is 30 parts by mass to 60 parts by mass, the carbon material B is 40 parts by mass to 70 parts by mass, and the coating amount of the low crystalline carbon is based on the total of the carbon material A and the carbon material B. And 2 to 4 parts by mass.

本発明のリチウムイオン二次電池用負極材の平均粒子径は7μm〜15μmであることが好ましく、8μm〜13μmであることがより好ましく、10μm〜12.5μmであることがさらに好ましい。
ここで、本明細書において特に断らない限り、平均粒子径は、体積平均粒子径を表し、レーザー散乱回折法粒度分布測定装置(SALD−3000J 島津製作所製)等により測定することができる。
The average particle size of the negative electrode material for a lithium ion secondary battery of the present invention is preferably 7 μm to 15 μm, more preferably 8 μm to 13 μm, and still more preferably 10 μm to 12.5 μm.
Here, unless otherwise specified in the present specification, the average particle diameter represents a volume average particle diameter, and can be measured by a laser scattering diffraction particle size distribution analyzer (SALD-3000J, manufactured by Shimadzu Corporation).

本発明のリチウムイオン二次電池用負極材のアスペクト比は、特に制限はされないが、粒子間接触度合を高くするという観点から、1.5〜2.5が好ましく、1.7〜2.3であることがより好ましい。   The aspect ratio of the negative electrode material for a lithium ion secondary battery of the present invention is not particularly limited, but is preferably 1.5 to 2.5 from the viewpoint of increasing the degree of interparticle contact, and 1.7 to 2.3. It is more preferable that

アスペクト比が1.5以上であると粒子形状が制御され、粒子同士の接触点が増加する点であり、2.5以下であると粒子間空隙が少なくなる点であり好ましい。   When the aspect ratio is 1.5 or more, the shape of the particles is controlled and the contact point between the particles increases, and when the aspect ratio is 2.5 or less, the space between the particles decreases, which is preferable.

本明細書においてアスペクト比は、黒鉛粒子の長軸方向の長さをA、短軸方向の長さをBとしたとき、A/Bで表される。本発明に用いるアスペクト比は、顕微鏡で黒鉛粒子を拡大し、任意に10個の黒鉛粒子を選択してA/Bを測定して、その測定値の算術平均値をとったものである。   In this specification, the aspect ratio is represented by A / B, where A is the length in the major axis direction of the graphite particles and B is the length in the minor axis direction. The aspect ratio used in the present invention is obtained by enlarging graphite particles with a microscope, arbitrarily selecting 10 graphite particles, measuring A / B, and taking the arithmetic average value of the measured values.

このとき、長軸方向の長さは、観察される黒鉛粒子を二本の平行線A,A’で接するように挟んだとき、その間隔が最も大きくなる場合のA,A’間の距離であり、短軸方向の長さは、前記長軸方向の長さを決める二本の平行線A,A’に対して垂直な二本の平行線B,B’で前記黒鉛粒子を接するよう挟んだときのそのB,B’間の距離である。   At this time, the length in the major axis direction is the distance between A and A ′ when the distance between the graphite particles to be observed is the largest when the graphite particles are sandwiched by two parallel lines A and A ′. Yes, the length in the minor axis direction is such that the graphite particles are in contact with two parallel lines B and B ′ perpendicular to the two parallel lines A and A ′ that determine the length in the major axis direction. This is the distance between B and B ′.

(炭素材料A)
本発明における炭素材料Aは、鱗片状黒鉛粒子の凝集粒子を含み、必要に応じて前記鱗片状黒鉛粒子の凝集粒子の表面の少なくとも一部が低結晶性炭素によって被覆されて構成される。炭素材料Aは前記鱗片状黒鉛粒子の凝集粒子を50質量%以上含むことが好ましく、80質量%以上含むことがより好ましく、炭素材料Aはこの鱗片状黒鉛粒子の凝集粒子から実質的に構成されるもの(90質量%以上)であることが特に好ましい。炭素材料Aは、鱗片状黒鉛粒子の凝集粒子を含むことにより、高比表面積を達成することができる。
鱗片状黒鉛としては、天然黒鉛、コークス等を黒鉛化した人造黒鉛などが挙げられるが、安価で黒鉛結晶化度が高いという観点より天然黒鉛が好ましい。
(Carbon material A)
The carbon material A in the present invention includes aggregated particles of flaky graphite particles, and at least a part of the surface of the aggregated particles of the flaky graphite particles is coated with low crystalline carbon as necessary. The carbon material A preferably contains 50% by mass or more of aggregated particles of the scale-like graphite particles, more preferably 80% by mass or more. The carbon material A is substantially composed of aggregated particles of the scale-like graphite particles. It is particularly preferable that the content is 90% by mass or more. The carbon material A can achieve a high specific surface area by including aggregated particles of scaly graphite particles.
Examples of flaky graphite include natural graphite, artificial graphite obtained by graphitizing coke and the like, and natural graphite is preferred from the viewpoint of low cost and high degree of graphite crystallinity.

鱗片状黒鉛粒子のアスペクト比は、特に制限はされないが、上限としては5.0が好ましく、3.0以下がより好ましいが、さらに1.3〜3.0範囲のアスペクト比であることが好ましい。アスペクト比が5.0以下であると急速充放電特性が容易に低下することもなく、アスペクト比は1.2以上であれば粒子間接触面積が減ることもなく、導電性は低下せず、入出力特性が悪化することもない。また、リチウムイオンの挿入離脱の観点から、1.8〜2.7がさらに好ましく、2.0〜2.5であることが最も好ましい。   The aspect ratio of the scaly graphite particles is not particularly limited, but the upper limit is preferably 5.0, more preferably 3.0 or less, and further preferably an aspect ratio in the range of 1.3 to 3.0. . If the aspect ratio is 5.0 or less, the rapid charge / discharge characteristics are not easily lowered, and if the aspect ratio is 1.2 or more, the contact area between particles is not reduced, and the conductivity is not lowered. Input / output characteristics are not deteriorated. Further, from the viewpoint of insertion / extraction of lithium ions, 1.8 to 2.7 is more preferable, and 2.0 to 2.5 is most preferable.

本発明における鱗片状黒鉛粒子の凝集粒子は、上記鱗片状黒鉛粒子を加圧処理して得られたもの、攪拌処理して得られたもの、噴霧処理して得られたものなどが挙げられるが、なかでも加圧処理して得られたものが好ましい。さらに、加圧処理としては、異方性加圧処理でも良いが、等方性加圧処理されてなることが好ましい。
加圧処理を施すことによって高タップ密度を有するという観点で好ましく、特に等方性加圧処理であると高比表面積を維持したまま、高タップ密度が得られるのでより好ましい。
The aggregated particles of the flaky graphite particles in the present invention include those obtained by pressurizing the flaky graphite particles, those obtained by stirring, those obtained by spraying, and the like. Of these, those obtained by pressure treatment are preferred. Further, the pressure treatment may be anisotropic pressure treatment, but isotropic pressure treatment is preferred.
It is preferable from the viewpoint of having a high tap density by applying pressure treatment, and isotropic pressure treatment is more preferable because a high tap density can be obtained while maintaining a high specific surface area.

等方性加圧処理の方法としては、等方的に加圧できる方法であれば特に制限はなく、例えば原料となる鱗片状黒鉛粒子をゴム型等の容器に入れ、水を加圧媒体とする静水圧等方プレスや、空気等のガスを加圧媒体とする空圧による等方性プレス等の加圧処理が挙げられる。   The method of isotropic pressure treatment is not particularly limited as long as it is a method capable of isotropic pressure application. For example, scaly graphite particles as a raw material are placed in a container such as a rubber mold, and water is used as a pressure medium. And a hydrostatic pressure isotropic press, and an isotropic press by an air pressure using a gas such as air as a pressurizing medium.

等方性加圧処理の加圧媒体の圧力としては、50kgf/cm〜2000kgf/cmの範囲が好ましく、300kgf/cm〜2000kgf/cmの範囲であればより好ましく、500kgf/cm〜2000kgf/cmの範囲であればさらに好ましい。圧力が50kgf/cm以上であれば、タップ密度が高く、得られるリチウムイオン電池の高温保存特性が維持される傾向にある。また、圧力が2000kgf/cm以下であると、タップ密度は大きくなりすぎず、比表面積も大きくなるため、得られるリチウムイオン電池の入出力特性が低くなることもない。 The pressure of the isotropic pressure treatment of the pressurized medium, preferably in the range of 50kgf / cm 2 ~2000kgf / cm 2 , more preferably be in the range of 300kgf / cm 2 ~2000kgf / cm 2 , 500kgf / cm 2 More preferably, it is in the range of ˜2000 kgf / cm 2 . If the pressure is 50 kgf / cm 2 or more, the tap density is high, and the high-temperature storage characteristics of the resulting lithium ion battery tend to be maintained. Further, when the pressure is 2000 kgf / cm 2 or less, the tap density does not increase too much and the specific surface area also increases, so the input / output characteristics of the obtained lithium ion battery do not decrease.

なお、上記鱗片状黒鉛粒子に等方性加圧処理を行うと、得られる粒子同士が凝集する可能性が高いため、等方性加圧処理後に解砕及び篩等の処理を行うことが好ましい。解砕、篩等の処理条件は、公知の条件に従うことができ、以下に示す炭素材料Aの物性値を満たすように制御すればよい。   In addition, since it is highly possible that the obtained particles are aggregated when the scaly graphite particles are subjected to isotropic pressure treatment, it is preferable to perform processing such as crushing and sieving after the isotropic pressure treatment. . The treatment conditions such as crushing and sieving can follow known conditions, and may be controlled so as to satisfy the physical property values of the carbon material A shown below.

このようにして得られた鱗片状黒鉛粒子の凝集粒子は、一般に、比較的細かな鱗片状黒鉛粒子が、圧力によって凝集した二次粒子である。この二次粒子は、図1に示すように、一般に、鱗片状黒鉛粒子が凝集し、粒子として一体化したもので、表面は、凝集した鱗片状黒鉛粒子の端部が突出したり、鱗片状微粒子の平板部分が表面に露出したりして、全体として凹凸の大きいゴツゴツした状態である。多数の鱗片状黒鉛粒子から形成されていることがわかる。この状態は電子顕微鏡等で観察できる。   The aggregated particles of the scaly graphite particles thus obtained are generally secondary particles obtained by agglomerating relatively fine scaly graphite particles by pressure. As shown in FIG. 1, the secondary particles are generally obtained by agglomerating the scaly graphite particles and integrating them as particles. The surface of the secondary particles protrudes from the ends of the agglomerated scaly graphite particles or the scaly particles. The flat plate portion is exposed on the surface, and is rugged with large unevenness as a whole. It turns out that it is formed from many scaly graphite particles. This state can be observed with an electron microscope or the like.

本発明に用いる炭素材料Aの細孔体積は1.0ml/g〜1.7ml/gであることが好ましいが、1.0ml/g〜1.5ml/gであることがより好ましい。細孔体積が1.0ml/g〜1.7ml/gの範囲内であると、粒子内部に電解液が染み込みやすく、急速充放電特性に優れ、入出力特性に優れる。1.0ml/g以上であると、粒子内部のリチウムイオンの移動も容易であり、急速充放電特性が低下することもなく1.7ml/g以下であれば、粒子が壊れる可能性も低く、入出力特性が悪化することもない。
なお、本発明における細孔体積は、上記方法によって測定した値とする。
The pore volume of the carbon material A used in the present invention is preferably 1.0 ml / g to 1.7 ml / g, more preferably 1.0 ml / g to 1.5 ml / g. When the pore volume is in the range of 1.0 ml / g to 1.7 ml / g, the electrolyte solution is likely to permeate into the particles, the rapid charge / discharge characteristics are excellent, and the input / output characteristics are excellent. If it is 1.0 ml / g or more, the movement of lithium ions inside the particle is easy, and if it is 1.7 ml / g or less without deterioration of the rapid charge / discharge characteristics, the possibility of breakage of the particles is low. Input / output characteristics are not deteriorated.
In addition, let the pore volume in this invention be the value measured by the said method.

本発明に用いる炭素材料Aの細孔体積を1.0ml/g〜1.7ml/gの範囲とするためには、例えば、500kgf/cm〜2000kgf/cmの範囲で等方性加圧処理を加え、公知の条件に従って解砕、篩を行い、低結晶性炭素による被覆量を、炭素材料Aと炭素材料Bとの合計に対して、2質量部〜4質量部とすることで得られる。 To the pore volume of the carbon material A used in the present invention and the scope of 1.0ml / g~1.7ml / g, for example, isotropic pressure in the range of 500kgf / cm 2 ~2000kgf / cm 2 It is obtained by adding treatment, crushing and sieving according to known conditions, and setting the amount of coating with low crystalline carbon to 2 to 4 parts by mass with respect to the total of carbon material A and carbon material B. It is done.

本発明に用いる炭素材料Aの比表面積は16.0m/g〜18.5m/gであることが好ましいが、16.5m/g〜18.0m/gであることがより好ましい。比表面積が16.5m/g〜18.5m/gの範囲内であると、リチウムイオンの挿入離脱する場所が多くなるため、入出力特性に優れる。16.0m/g以上であれば、低結晶性炭素を被覆した際のリチウムイオンの挿入離脱サイトが減少することもなく、入出力特性が低下することもない。18.5m/g以下であれば、電解液との反応性が高くなり不動態被膜が厚く形成されて充放電効率が低下し、寿命特性を低下させることもない。
なお、本発明における比表面積は、上記方法によって測定した値とする。
The specific surface area of carbon material A used in the present invention is preferably a 16.0m 2 /g~18.5m 2 / g, and more preferably 16.5m 2 /g~18.0m 2 / g . When the specific surface area in the range of from 16.5m 2 /g~18.5m 2 / g, it becomes more a place to insert extraction of lithium ions, excellent in output characteristics. If it is 16.0 m 2 / g or more, the insertion / extraction site of lithium ions when the low crystalline carbon is coated is not reduced, and the input / output characteristics are not deteriorated. If it is 18.5 m < 2 > / g or less, the reactivity with electrolyte solution will become high, a passive film will be formed thickly, charging / discharging efficiency will fall, and a lifetime characteristic will not be reduced.
In addition, let the specific surface area in this invention be the value measured by the said method.

本発明に用いる炭素材料Aの比表面積を16.0m/g〜18.5m/gの範囲とするためには、例えば、500kgf/cm〜2000kgf/cmの範囲で等方性加圧処理を加え、公知の条件に従って解砕、篩を行い、低結晶性炭素による被覆量を、炭素材料Aと炭素材料Bとの合計に対して、2質量部〜4質量部とすることで得られる。 To the specific surface area of the carbon material A used in the present invention and the scope of 16.0m 2 /g~18.5m 2 / g, for example, isotropic pressure in the range of 500kgf / cm 2 ~2000kgf / cm 2 By applying pressure treatment, crushing and sieving according to known conditions, and setting the amount of coating with low crystalline carbon to 2 parts by mass to 4 parts by mass with respect to the total of the carbon material A and the carbon material B can get.

本発明に用いる炭素材料Aのタップ密度は0.30g/cm〜0.80g/cmであることが好ましいが、0.35g/cm〜0.75g/cmであることがより好ましく、0.40g/cm〜0.75g/cmであることがさらに好ましい。タップ密度が0.30g/cm〜0.80g/cmの範囲内であると高温保存特性が良く、寿命特性に優れる。0.30g/cm以上であれば粒子間の接触度合が低くならず、導電性も維持でき、入出力特性が悪化することもない。0.80g/cm以下であれば、電解液を注入した際の浸透性も良好で、寿命特性および入出力特性の低下も見られない。
なお、本発明におけるタップ密度は、上記方法によって測定した値とする。
The tap density of the carbon material A used in the present invention is preferably a 0.30g / cm 3 ~0.80g / cm 3 , more preferably 0.35g / cm 3 ~0.75g / cm 3 , further preferably 0.40g / cm 3 ~0.75g / cm 3 . Tap density to be within the scope of 0.30g / cm 3 ~0.80g / cm 3 good high-temperature storage characteristics, excellent life characteristics. If it is 0.30 g / cm 3 or more, the contact degree between the particles is not lowered, the conductivity can be maintained, and the input / output characteristics are not deteriorated. If it is 0.80 g / cm 3 or less, the permeability at the time of injecting the electrolytic solution is good, and the life characteristics and the input / output characteristics are not deteriorated.
The tap density in the present invention is a value measured by the above method.

本発明に用いる炭素材料Aのタップ密度を0.30g/cm〜0.80g/cmの範囲とするためには、例えば、500kgf/cm〜2000kgf/cmの範囲で等方性加圧処理を加え、公知の条件に従って解砕、篩を行い、低結晶性炭素による被覆量を、炭素材料Aと炭素材料Bとの合計に対して、2質量部〜4質量部とすることで得られる。 To the tap density of the carbon material A used in the present invention range from 0.30g / cm 3 ~0.80g / cm 3, for example, isotropic pressure in the range of 500kgf / cm 2 ~2000kgf / cm 2 By applying pressure treatment, crushing and sieving according to known conditions, and setting the amount of coating with low crystalline carbon to 2 parts by mass to 4 parts by mass with respect to the total of the carbon material A and the carbon material B can get.

炭素材料Aの平均粒子径は5μm〜10μmであることが好ましく、6μm〜9μmであることがより好ましく、7μm〜8μmであることがさらに好ましい。   The average particle size of the carbon material A is preferably 5 μm to 10 μm, more preferably 6 μm to 9 μm, and even more preferably 7 μm to 8 μm.

本発明に用いる炭素材料Aのアスペクト比は、特に制限はされないが、1.8〜2.7が好ましく、2.0〜2.5であることがより好ましい。アスペクト比が1.8〜2.7の範囲である場合には、急速充放電特性等に優れ、好ましい。   The aspect ratio of the carbon material A used in the present invention is not particularly limited, but is preferably 1.8 to 2.7, and more preferably 2.0 to 2.5. When the aspect ratio is in the range of 1.8 to 2.7, the rapid charge / discharge characteristics are excellent, which is preferable.

(炭素材料B)
本発明における炭素材料Bは、球形化黒鉛粒子を含み、必要に応じて前記球形化黒鉛粒子の表面の少なくとも一部が低結晶性炭素によって被覆されて構成される。炭素材料Bは前記の球形化黒鉛粒子を50質量%以上含むことが好ましく、80質量%以上含むことがより好ましく、この球形化黒鉛粒子から実質的に構成されるもの(90質量%以上)であることが特に好ましい。炭素材料Bは、球形化黒鉛粒子を含むことにより、高タップ密度を達成することができる。
(Carbon material B)
The carbon material B in the present invention includes spheroidized graphite particles, and at least a part of the surface of the spheroidized graphite particles is coated with low crystalline carbon as necessary. The carbon material B preferably contains 50% by mass or more of the spheroidized graphite particles, more preferably 80% by mass or more, and is substantially composed of the spheroidized graphite particles (90% by mass or more). It is particularly preferred. The carbon material B can achieve a high tap density by including the spheroidized graphite particles.

球形化黒鉛粒子は、各種黒鉛粒子、例えば、鱗片状天然黒鉛粒子、鱗片状人造黒鉛粒子等の扁平状の黒鉛粒子を、機械的処理(改質処理)することにより得ることができる。
機械的処理とは、上記黒鉛粒子を処理装置内において、装置内部の一部(回転翼、内部壁面、金属等の硬質ボール等)と衝突させる、または黒鉛粒子同士を衝突させること等をいう。
球形化黒鉛粒子は、球形化処理により一般にその表面が比較的滑らかになっている。球形化黒鉛粒子は、図2に示すように、一般に、複数の一次粒子が結合又は集合して形成されているような外観ではなく、表面が滑らかな1つの粒子であり、ジャガ芋のような外観形状として観察できる。これは電子顕微鏡等で観察できる。従って、上記鱗片状黒鉛粒子の凝集粒子とは、明らかに異なった粒子として観察できる。
Spherical graphite particles can be obtained by subjecting various graphite particles, for example, flat graphite particles such as flaky natural graphite particles and flaky artificial graphite particles, to mechanical treatment (modification treatment).
The mechanical treatment means that the graphite particles collide with a part of the inside of the apparatus (rotary blade, internal wall surface, hard ball such as metal) in the processing apparatus, or the graphite particles collide with each other.
Spherical graphite particles generally have a relatively smooth surface due to the spheronization treatment. As shown in FIG. 2, the spheroidized graphite particles are generally one particle having a smooth surface rather than an appearance in which a plurality of primary particles are combined or aggregated. It can be observed as an external shape. This can be observed with an electron microscope or the like. Therefore, it can be observed as particles distinctly different from the aggregated particles of the scaly graphite particles.

球形化黒鉛粒子のアスペクト比は1.3〜2.0であることが好ましく、1.5〜1.8であることがリチウムイオンを吸蔵・放出し易い点で好ましい。なお、アスペクト比は上記記載の方法によって求めることができる。   The aspect ratio of the spheroidized graphite particles is preferably 1.3 to 2.0, and 1.5 to 1.8 is preferable in terms of easy occlusion / release of lithium ions. The aspect ratio can be obtained by the method described above.

本発明に用いる炭素材料Bの細孔体積は0.5ml/g〜1.0ml/gであることが好ましいが、0.6ml/g〜0.9ml/gであることがより好ましく、0.7ml/g〜0.8ml/gであることがさらに好ましい。細孔体積が0.5ml/g〜1.0ml/gの範囲内であると、粒子内部に電解液が染み込みやすく、急速充放電特性に優れ、入出力特性に優れる。0.5ml/g以上であれば、粒子内部でリチウムイオンの移動が制限されることもなく、急速充放電特性が低下することもない。1.0ml/g以下であれば、粒子が壊れることもなく入出力特性が悪化することもない。なお、本発明における細孔体積は、上記方法によって測定した値とする。   The pore volume of the carbon material B used in the present invention is preferably from 0.5 ml / g to 1.0 ml / g, more preferably from 0.6 ml / g to 0.9 ml / g. More preferably, it is 7 ml / g-0.8 ml / g. When the pore volume is in the range of 0.5 ml / g to 1.0 ml / g, the electrolyte solution can easily permeate into the particles, has excellent rapid charge / discharge characteristics, and excellent input / output characteristics. If it is 0.5 ml / g or more, the movement of lithium ions is not restricted inside the particles, and the rapid charge / discharge characteristics are not deteriorated. If it is 1.0 ml / g or less, the particles are not broken and the input / output characteristics are not deteriorated. In addition, let the pore volume in this invention be the value measured by the said method.

本発明に用いる炭素材料Bの細孔体積を0.5ml/g〜1.0ml/gの範囲とするためには、球形化処理を加え、低結晶性炭素による被覆量を、炭素材料Aと炭素材料Bとの合計に対して、2質量部〜4質量部とすることで得られる。   In order to make the pore volume of the carbon material B used in the present invention in the range of 0.5 ml / g to 1.0 ml / g, a spheronization treatment is added, and the coating amount with the low crystalline carbon is changed to the carbon material A. It is obtained by setting it as 2 mass parts-4 mass parts with respect to the sum total with the carbon material B. FIG.

本発明に用いる炭素材料Bの比表面積は9.0m/g〜10.5m/gであることが好ましいが、9.5m/g〜10.0m/gであることがより好ましい。比表面積が9.0m/g〜10.5m/gの範囲内であると、リチウムイオンの挿入離脱の場所が多くなるため、入出力特性に優れる。9.0m/g以上であれば、低結晶性炭素を被覆した際もリチウムイオンの挿入離脱の場所が減少することはなく、入出力特性が低くなることもない。10.5m/g以下であれば、電解液との反応性が高くなりすぎて、不動態被膜が厚く形成されて充放電効率が低下し、寿命特性を低下させるということもない。
なお、本発明における比表面積は、上記方法によって測定した値とする。
The specific surface area of the carbon material B used in the present invention is preferably a 9.0m 2 /g~10.5m 2 / g, more preferably 9.5m 2 /g~10.0m 2 / g . If the specific surface area is within the range of 9.0m 2 /g~10.5m 2 / g, it becomes many places insertion extraction of lithium ions, excellent in output characteristics. If it is 9.0 m 2 / g or more, even when the low crystalline carbon is coated, the places where lithium ions are inserted and released do not decrease, and the input / output characteristics do not deteriorate. If it is 10.5 m < 2 > / g or less, the reactivity with electrolyte solution will become high too much, a passive film will be formed thickly, charging / discharging efficiency will fall, and a lifetime characteristic will not be reduced.
In addition, let the specific surface area in this invention be the value measured by the said method.

本発明に用いる炭素材料Bの比表面積を9.0m/g〜10.5m/gの範囲とするためには、球形化処理を加え、低結晶性炭素による被覆量を、炭素材料Aと炭素材料Bとの合計に対して、2質量部〜4質量部とすることで得られる。 To the specific surface area of the carbon material B used in the present invention and the scope of 9.0m 2 /g~10.5m 2 / g is a sphering treatment was added, the amount of coating with low crystalline carbon, a carbon material A And 2 to 4 parts by mass with respect to the total of the carbon material B.

本発明に用いる炭素材料Bのタップ密度は0.8g/cm〜1.1g/cmであることが好ましいが、0.9g/cm〜1.0g/cmであることがさらに好ましい。タップ密度が0.8g/cm〜1.1g/cmの範囲内であると、高温保存特性が良く、高寿命特性に優れる。0.8g/cm以上であれば充填性が高く、粒子間の密着性も良好である。1.1g/cm以下であれば、電解液を注入した際の浸透性も良好であり、寿命特性および入出力特性の低下という問題も生じない。
なお、本発明におけるタップ密度は、上記方法によって測定した値とする。
The tap density of the carbon material B used in the present invention is preferably a 0.8g / cm 3 ~1.1g / cm 3 , further preferably 0.9g / cm 3 ~1.0g / cm 3 . When the tap density is within the range of 0.8g / cm 3 ~1.1g / cm 3 , good high temperature storage characteristics, excellent long life characteristics. If it is 0.8 g / cm 3 or more, the filling property is high and the adhesion between particles is also good. If it is 1.1 g / cm 3 or less, the permeability at the time of injecting the electrolytic solution is good, and there is no problem of deterioration of life characteristics and input / output characteristics.
The tap density in the present invention is a value measured by the above method.

本発明に用いる炭素材料Bのタップ密度を0.8g/cm〜1.1g/cmの範囲とするためには、球形化処理を加え、低結晶性炭素による被覆量を、炭素材料Aと炭素材料Bとの合計に対して、2質量部〜4質量部とすることで得られる。 To the tap density of the carbon material B used in the present invention range from 0.8g / cm 3 ~1.1g / cm 3 is the sphering treatment was added, the amount of coating with low crystalline carbon, a carbon material A And 2 to 4 parts by mass with respect to the total of the carbon material B.

炭素材料Bの平均粒子径は7μm〜13μmであることが好ましく、8μm〜12μmであることがより好ましく、9μm〜12μmであることがさらに好ましい。   The average particle size of the carbon material B is preferably 7 μm to 13 μm, more preferably 8 μm to 12 μm, and still more preferably 9 μm to 12 μm.

本発明に用いる炭素材料Bのアスペクト比は、アスペクト比は、特に制限はされないが、1.3〜2.0が好ましく、1.5〜2.0であることがより好ましい。アスペクト比が1.3〜2.0の範囲である場合には、急速充放電特性等に優れ好ましい。   The aspect ratio of the carbon material B used in the present invention is not particularly limited, but is preferably 1.3 to 2.0, and more preferably 1.5 to 2.0. When the aspect ratio is in the range of 1.3 to 2.0, it is excellent in rapid charge / discharge characteristics and the like.

本発明のリチウムイオン二次電池用負極材は、炭素材料Aと炭素材料Bとを混合して得ることができるが、これらを混合する方法に特に制限はない。例えば、リボン型混合機、V型混合機、円錐型混合機、プラネタリーミキサー、らいかい機、手混ぜ等によって混合することができる。
炭素材料Aと炭素材料Bとの混合比率は特に制限はないが、炭素材料A/炭素材料B(質量比)が、3/7〜7/3であることが、入出力特性または寿命特性を向上させる点で好ましく、4/6〜6/4が入出力特性と寿命特性との両立を図るという点でより好ましい。
Although the negative electrode material for lithium ion secondary batteries of this invention can be obtained by mixing the carbon material A and the carbon material B, there is no restriction | limiting in particular in the method of mixing these. For example, they can be mixed by a ribbon type mixer, a V type mixer, a cone type mixer, a planetary mixer, a raking machine, hand mixing, or the like.
The mixing ratio of the carbon material A and the carbon material B is not particularly limited. However, the carbon material A / carbon material B (mass ratio) is 3/7 to 7/3, so that input / output characteristics or life characteristics are improved. It is preferable in terms of improvement, and 4/6 to 6/4 is more preferable in terms of achieving both input / output characteristics and life characteristics.

(低結晶性炭素による被覆)
また、本発明のリチウムイオン二次電池用負極材は、炭素材料Aと炭素材料Bとの混合物であればよいが、電解液の反応性を抑制するという観点からは、炭素材料Aは鱗片状黒鉛粒子の凝集粒子の表面の少なくとも一部が低結晶性炭素により被覆された被覆物であり、炭素材料Bは球形化黒鉛粒子の表面の少なくとも一部が低結晶性炭素により被覆された被覆物であることがより好ましい。
(Coating with low crystalline carbon)
Moreover, the negative electrode material for a lithium ion secondary battery of the present invention may be a mixture of the carbon material A and the carbon material B, but from the viewpoint of suppressing the reactivity of the electrolytic solution, the carbon material A is scaly. The surface of the aggregated particle of the graphite particles is a coating in which at least a part is coated with low crystalline carbon, and the carbon material B is a coating in which at least a part of the surface of the spheroidized graphite particle is coated with low crystalline carbon It is more preferable that

なお、本発明のリチウムイオン二次電池用負極材は、鱗片状黒鉛粒子の凝集粒子と球形化黒鉛粒子とのいずれもが共に低結晶性炭素により被覆されていることが好ましく、鱗片状黒鉛粒子の凝集粒子と球形化黒鉛粒子とをそれぞれ低結晶性炭素により被覆した後にそれらを混合してもよいし、鱗片状黒鉛粒子の凝集粒子と球形化黒鉛粒子とを予め混合し、当該混合物を低結晶性炭素により被覆してもよい。なお、工程簡略化の観点より、鱗片状黒鉛粒子の凝集粒子と球形化黒鉛粒子とを予め混合し、当該混合物を低結晶性炭素により被覆することが好ましい。   The negative electrode material for a lithium ion secondary battery of the present invention is preferably such that both the aggregated particles of flaky graphite particles and the spheroidized graphite particles are coated with low crystalline carbon. The agglomerated particles and the spheroidized graphite particles may be mixed with each other after being coated with low crystalline carbon, or the aggregated particles of the flaky graphite particles and the spheroidized graphite particles may be mixed in advance to reduce the mixture. You may coat | cover with crystalline carbon. From the viewpoint of simplification of the process, it is preferable that the aggregated particles of the scaly graphite particles and the spheroidized graphite particles are mixed in advance and the mixture is covered with low crystalline carbon.

本発明において低結晶性炭素としては、黒鉛性物質のような特定の結晶構造を有していない炭素からなる物質を意味する。低結晶性炭素はシリコン粒子と黒鉛性物質とを結着させること、さらに両粒子間の導電性を構築する役割を果たすと考えられる。   In the present invention, the low crystalline carbon means a substance made of carbon that does not have a specific crystal structure such as a graphite substance. Low crystalline carbon is considered to play a role in binding silicon particles and graphitic substances, and further building electrical conductivity between the two particles.

鱗片状黒鉛粒子の凝集粒子の表面、球形化黒鉛粒子の表面又は鱗片状黒鉛粒子の凝集粒子と球形化黒鉛粒子との混合物の表面に低結晶性炭素を被覆する方法としては、特に制限はないが、例えば、有機化合物を溶媒に溶解又は分散させた混合溶液に核となる炭素粒子(粉末)を分散・混合した後、溶媒を除去する湿式法、炭素粒子と有機化合物を固体同士で混合し、その混合物に力学エネルギ−を加え付着させる乾式法、CVD法などの気相法等が挙げられる。   There is no particular limitation on the method of coating the surface of the aggregated particles of the flaky graphite particles, the surface of the spheroidized graphite particles, or the surface of the mixture of the aggregated particles of the flaky graphite particles and the spheroidized graphite particles with low crystalline carbon. However, for example, after dispersing and mixing carbon particles (powder) as a core in a mixed solution in which an organic compound is dissolved or dispersed in a solvent, a wet method in which the solvent is removed, the carbon particles and the organic compound are mixed together as solids. And a vapor phase method such as a dry method and a CVD method in which mechanical energy is applied to the mixture for adhesion.

湿式法で被覆する場合、低結晶性炭素は、これを構成する炭素性物質前駆体を焼成工程で炭化することにより形成される。従って、低結晶性炭素は、用いる前駆体の種類によってその構造が大きく影響される。低結晶性炭素を構成する前駆体としては、フェノール樹脂、スチレン樹脂等の高分子化合物、コールタールピッチ等の炭化可能な固体物などを用いることが可能であるが、充放電効率、容量などの電極特性及びコストなどの観点から、ピッチを用いて構成されることが好ましい。   In the case of coating by a wet method, the low crystalline carbon is formed by carbonizing a carbonaceous material precursor constituting the low crystalline carbon in a firing step. Therefore, the structure of low crystalline carbon is greatly influenced by the type of precursor used. As the precursor constituting the low crystalline carbon, it is possible to use a polymer compound such as a phenol resin or a styrene resin, a carbonizable solid such as coal tar pitch, etc., but the charge / discharge efficiency, capacity, etc. From the viewpoint of electrode characteristics and cost, it is preferable to use a pitch.

電気自動車及びハイブリット自動車用リチウムイオン二次電池には、発進及び加速時のパワーアシストの観点から、高入力特性が要求される。そのため、低温における高入出力特性の追求という観点より、炭素材料A及び炭素材料Bは、乾式法により被覆されることが好ましい。   High input characteristics are required for lithium ion secondary batteries for electric vehicles and hybrid vehicles from the viewpoint of power assist during start-up and acceleration. Therefore, from the viewpoint of pursuing high input / output characteristics at low temperatures, the carbon material A and the carbon material B are preferably coated by a dry method.

鱗片状黒鉛粒子の凝集粒子の表面の少なくとも一部が低結晶性炭素で被覆される場合には、被覆前の鱗片状黒鉛粒子の凝集粒子として、細孔体積が1.0ml/g〜1.7ml/gであり、比表面積が16.0m/g〜18.5m/gであり、タップ密度が0.35g/cm〜0.80g/cmである鱗片状黒鉛粒子の凝集粒子を使用することが好ましい。 When at least a part of the surface of the aggregated particles of the flaky graphite particles is coated with low crystalline carbon, the pore volume of the flocculated graphite particles before coating is 1.0 ml / g to 1. a 7 ml / g, specific surface area of 16.0m 2 /g~18.5m 2 / g, agglomerated particles of scaly graphite particles tap density of 0.35g / cm 3 ~0.80g / cm 3 Is preferably used.

また、球形化黒鉛粒子の表面の少なくとも一部が、低結晶性炭素で被覆される場合には、被覆前の球形化黒鉛粒子として、細孔体積が0.5ml/g〜1.0ml/gであり、比表面積が9.0m/g〜10.5m/gであり、タップ密度が0.9g/cm〜1.1g/cmである球形化黒鉛粒子を使用することが好ましい。 In addition, when at least a part of the surface of the spheroidized graphite particles is coated with low crystalline carbon, the pore volume is 0.5 ml / g to 1.0 ml / g as the spheroidized graphite particles before coating. , and the specific surface area of 9.0m 2 /g~10.5m 2 / g, it is preferable that the tap density using spherical graphite particles is 0.9g / cm 3 ~1.1g / cm 3 .

また、鱗片状黒鉛粒子の凝集粒子と球形化黒鉛粒子との混合物が低結晶性炭素で被覆される場合には、被覆前の鱗片状黒鉛粒子の凝集粒子と球形化黒鉛粒子との混合物として、細孔体積が0.9ml/g〜1.3ml/gであり、比表面積が12.5m/g〜14.0m/gであり、タップ密度が0.80g/cm〜0.90g/cmである混合物を使用することが好ましい。 In addition, when the mixture of aggregated particles of flaky graphite particles and spheroidized graphite particles is coated with low crystalline carbon, as a mixture of aggregated particles of flaky graphite particles and spheroidized graphite particles before coating, pore volume is 0.9ml / g~1.3ml / g, specific surface area of 12.5m 2 /g~14.0m 2 / g, a tap density of 0.80g / cm 3 ~0.90g It is preferred to use a mixture that is / cm 3 .

炭素材料A、炭素材料B並びに炭素材料A及び炭素材料Bの混合物を用いることにより、高入出特性を維持しながら、低結晶性炭素を多く被覆した場合でも高寿命特性を維持することが可能なリチウムイオン二次電池用負極材となる。   By using the carbon material A, the carbon material B, and the mixture of the carbon material A and the carbon material B, it is possible to maintain high life characteristics even when a large amount of low crystalline carbon is coated while maintaining high input / output characteristics. It becomes a negative electrode material for a lithium ion secondary battery.

低結晶性炭素の被覆量としては特に制限はないが、被覆前に対して被覆後の低結晶性炭素量が、炭素材料Aと炭素材料Bとの合計に対して、1質量部〜6質量部であることが入出力特性または寿命特性を向上させる点で好ましく、3質量部〜5質量部であることが入出力特性と寿命特性を両立させる点でより好ましい。   Although there is no restriction | limiting in particular as a coating amount of low crystalline carbon, The low crystalline carbon amount after coating | coated with respect to the sum total of the carbon material A and the carbon material B with respect to before coating | cover is 1 mass part-6 masses Is preferably from 3 parts by mass to 5 parts by mass, more preferably from the viewpoint of achieving both input / output characteristics and life characteristics.

(ラマンスペクトルにおけるR値)
本発明のリチウムイオン二次電池用負極材のラマンスペクトルにおけるR値は、0.3〜1.0であることが好ましく、0.4〜0.8であることがより好ましく、0.4〜0.6であることがさらに好ましい。ラマンスペクトルにおけるR値が0.3以上であればリチウムイオン二次電池の寿命特性及び入出力特性は良好であり、1.0以下であれば、リチウムイオン二次電池の不可逆容量の増大も観察されない。
(R value in Raman spectrum)
The R value in the Raman spectrum of the negative electrode material for a lithium ion secondary battery of the present invention is preferably 0.3 to 1.0, more preferably 0.4 to 0.8, and 0.4 to 0.8. More preferably, it is 0.6. If the R value in the Raman spectrum is 0.3 or more, the life characteristics and input / output characteristics of the lithium ion secondary battery are good, and if it is 1.0 or less, an increase in the irreversible capacity of the lithium ion secondary battery is also observed. Not.

ラマンスペクトルにおけるR値は、励起波長532nmのレーザーラマン分光法により求めたプロファイルの中で、1360cm−1付近に現れる強度をId、1580cm−1付近に現れる強度をIgとし、その両ピークの強度比Id/Igにより算出可能である。 R values in the Raman spectra, in a profile obtained by laser Raman spectroscopy of the excitation wavelength 532 nm, the intensity appearing intensity appearing in the vicinity of 1360 cm -1 Id, around 1580 cm -1 and Ig, the intensity ratio of the two peaks It can be calculated by Id / Ig.

なお、1360cm−1付近のピークは、通常、炭素の非晶質構造に対応すると同定されるピークであり、1580cm−1付近のピークは、通常、黒鉛結晶構造に対応すると同定されるピークである。 The peak near 1360 cm −1 is usually a peak identified as corresponding to an amorphous structure of carbon, and the peak near 1580 cm −1 is a peak usually identified as corresponding to a graphite crystal structure. .

レーザーラマン分光法は、レーザーラマン分光法測定装置(日本分光株式会社製 NSR−1000)を用い、励起波長532nm、レーザー出力3.9mW、入射スリット150μmの設定で測定することができる。   Laser Raman spectroscopy can be measured using a laser Raman spectroscopy measuring device (NSR-1000, manufactured by JASCO Corporation) at an excitation wavelength of 532 nm, a laser output of 3.9 mW, and an incident slit of 150 μm.

本発明のリチウムイオン二次電池用負極材のラマンスペクトルにおけるR値を0.3〜1.0の範囲とするためには、炭素材料Aと炭素材料Bとの合計を100質量部として、炭素材料Aを30質量部〜60質量部、炭素材料Bを40質量部〜70質量部とし、さらに、低結晶性炭素による被覆量を、炭素材料Aと炭素材料Bとの合計に対して、2質量部〜4質量部とすることで得られる。   In order to make the R value in the Raman spectrum of the negative electrode material for a lithium ion secondary battery of the present invention in the range of 0.3 to 1.0, the total of the carbon material A and the carbon material B is set to 100 parts by mass. The material A is 30 parts by mass to 60 parts by mass, the carbon material B is 40 parts by mass to 70 parts by mass, and the coating amount of the low crystalline carbon is 2 with respect to the total of the carbon material A and the carbon material B. It is obtained by setting it as a mass part-4 mass parts.

本発明のリチウムイオン二次電池用負極材は、鱗片状黒鉛粒子の凝集粒子を含む炭素粒子Aと、球形化黒鉛粒子を含む炭素粒子Bとを混合する混合工程によって得られる。また、必要に応じて、本発明のリチウムイオン二次電池用負極材の製造工程は、鱗片状黒鉛粒子の凝集粒子、球形化黒鉛粒子又は鱗片状黒鉛粒子の凝集粒子と球形化黒鉛粒子との混合物を、低結晶性炭素により被覆する被覆工程を含んでいてもよい。   The negative electrode material for a lithium ion secondary battery of the present invention is obtained by a mixing step of mixing carbon particles A containing aggregated particles of scaly graphite particles and carbon particles B containing spheroidized graphite particles. Further, if necessary, the production process of the negative electrode material for a lithium ion secondary battery according to the present invention may include agglomerated particles of flaky graphite particles, spheroidized graphite particles, or agglomerated particles of flaky graphite particles and spheroidized graphite particles. A coating step of coating the mixture with low crystalline carbon may be included.

<リチウムイオン二次電池用負極>
本発明におけるリチウムイオン二次電池用負極は、集電体と、集電体上に設けられたリチウムイオン二次電池用負極材を含む負極層とを有するものである。
<Anode for lithium ion secondary battery>
The negative electrode for lithium ion secondary batteries in this invention has a collector and a negative electrode layer containing the negative electrode material for lithium ion secondary batteries provided on the collector.

本発明のリチウムイオン二次電池用負極は、本発明のリチウムイオン二次電池用負極材に、例えば有機系結着材を添加して、溶剤とともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等の分散装置により混練し、リチウムイオン二次電池用負極材スラリーを調製し、これを集電体に塗布して、負極層を形成することで得られる。
または、ペースト状のリチウムイオン二次電池用負極材スラリーをシート状、ペレット状等の形状に成形し、これを前記集電体と一体化することで得ることができる。
The negative electrode for a lithium ion secondary battery of the present invention includes, for example, an organic binder added to the negative electrode material for a lithium ion secondary battery of the present invention, and a stirrer, ball mill, super sand mill, pressure kneader, etc. together with a solvent. The negative electrode material slurry for a lithium ion secondary battery is prepared and applied to a current collector to form a negative electrode layer.
Or it can obtain by shape | molding the paste-form negative electrode material slurry for lithium ion secondary batteries in sheet shape, pellet shape, etc., and integrating this with the said electrical power collector.

上記有機系結着剤としては、特に限定されないが、例えば、スチレン−ブタジエン共重
合体、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸、ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリフォスファゼン、ポリアクリロニトリル等のイオン導電性の大きな高分子化合物などが挙げられる。
Although it does not specifically limit as said organic type binder, For example, a styrene-butadiene copolymer, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) ) Ethylenically unsaturated carboxylic acid esters such as acrylates, ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid and maleic acid, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphoric acid Examples thereof include polymer compounds having a large ion conductivity such as sphazene and polyacrylonitrile.

この有機系結着剤の含有量は、本発明のリチウムイオン二次電池用負極材と有機系結着剤の合計100質量部に対して1質量部〜20質量部含有することが、密着性の観点より好ましい。   The content of the organic binder is 1 to 20 parts by mass with respect to 100 parts by mass in total of the negative electrode material for a lithium ion secondary battery of the present invention and the organic binder. From the viewpoint of

上記溶剤としては、上記有機系結着剤を溶解又は分散可能な溶剤であれば特に制限されない。例えば、N−メチル−2−ピロリドン、N,N−ジメチルアセトアミド、N,N−ジメチルホルムアミド、γ−ブチロラクトンなどの有機溶媒を例示することができる。
溶剤の使用量はペースト状となる限り特に制限されない。例えば、前記リチウムイオン二次電池用負極材100質量部に対して、通常、60質量部〜150質量部程度、好ましくは60質量部〜100質量部程度である。
The solvent is not particularly limited as long as it is a solvent that can dissolve or disperse the organic binder. For example, organic solvents such as N-methyl-2-pyrrolidone, N, N-dimethylacetamide, N, N-dimethylformamide, and γ-butyrolactone can be exemplified.
The amount of the solvent used is not particularly limited as long as it becomes a paste. For example, with respect to 100 parts by mass of the negative electrode material for a lithium ion secondary battery, it is usually about 60 parts by mass to 150 parts by mass, preferably about 60 parts by mass to 100 parts by mass.

また、上記リチウムイオン二次電池用負極材スラリーには、粘度を調整するための増粘剤を添加してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼインなどを使用することができる。
増粘剤の使用量は、本発明のリチウムイオン二次電池用負極材100質量部に対して、1質量部〜2質量部程度とすればよい。
Moreover, you may add the thickener for adjusting a viscosity to the said negative electrode material slurry for lithium ion secondary batteries. As the thickener, for example, carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, casein and the like can be used.
The usage-amount of a thickener should just be about 1 mass part-2 mass parts with respect to 100 mass parts of negative electrode materials for lithium ion secondary batteries of this invention.

また、上記リチウムイオン二次電池用負極材スラリーには、導電助剤を混合してもよい。導電助剤としては、例えば、カーボンブラック、グラファイト、アセチレンブラック、あるいは導電性を示す。酸化物や窒化物等が挙げられる。
導電助剤の使用量は、本発明のリチウムイオン二次電池用負極材100質量部に対して、1質量部〜15質量部程度とすればよい。
Moreover, you may mix a conductive support agent with the said negative electrode material slurry for lithium ion secondary batteries. Examples of the conductive assistant include carbon black, graphite, acetylene black, and conductivity. Examples thereof include oxides and nitrides.
The usage-amount of a conductive support agent should just be about 1 mass part-15 mass parts with respect to 100 mass parts of negative electrode materials for lithium ion secondary batteries of this invention.

また、上記集電体の材質及び形状については、導電性を有する物質であれば特に限定されず、例えば、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いればよい。また、多孔性材料、たとえばポーラスメタル(発泡メタル)やカーボンペーパーなども使用可能である。   In addition, the material and shape of the current collector are not particularly limited as long as they are conductive materials. For example, aluminum, copper, nickel, titanium, stainless steel, etc., foil shape, perforated foil shape, mesh A belt-like member having a shape or the like may be used. A porous material such as porous metal (foamed metal) or carbon paper can also be used.

上記リチウムイオン二次電池用負極材スラリーを集電体に塗布する方法としては、特に限定されないが、例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法など公知の方法が挙られる。塗布後は、必要に応じて平板プレス、カレンダーロール等による圧延処理を行う。また、シート状、ペレット状等の形状に成形された負極材スラリーと集電体との一体化は、例えば、ロール、プレス、もしくはこれらの組み合わせ等、公知の方法により行うことができる。   The method for applying the negative electrode slurry for a lithium ion secondary battery to a current collector is not particularly limited. For example, a metal mask printing method, an electrostatic coating method, a dip coating method, a spray coating method, a roll coating method, Known methods such as a doctor blade method, a gravure coating method, and a screen printing method are listed. After the application, a rolling process using a flat plate press, a calendar roll or the like is performed as necessary. Further, the integration of the negative electrode material slurry formed into a sheet shape, a pellet shape, and the like with the current collector can be performed by a known method such as a roll, a press, or a combination thereof.

<リチウムイオン二次電池>
本発明のリチウムイオン二次電池は、本発明のリチウムイオン二次電池用負極と正極とをセパレータを介して対向して配置し、電解質を含む溶液(電解液)を注入することにより得ることができる。
<Lithium ion secondary battery>
The lithium ion secondary battery of the present invention can be obtained by arranging the negative electrode and the positive electrode for the lithium ion secondary battery of the present invention facing each other through a separator and injecting a solution (electrolyte) containing an electrolyte. it can.

上記正極は、上記リチウムイオン二次電池用負極と同様にして、集電体表面上に正極層を形成することで得ることができる。この場合の集電体はアルミニウム、チタン、ステンレス鋼等の金属や合金を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。   The positive electrode can be obtained by forming a positive electrode layer on the surface of the current collector in the same manner as the negative electrode for a lithium ion secondary battery. In this case, the current collector may be a band-shaped material made of a metal or an alloy such as aluminum, titanium, or stainless steel in a foil shape, a punched foil shape, a mesh shape, or the like.

上記正極層に用いる正極材料としては、特に制限はなく、例えば、リチウムイオンをドーピングまたはインターカレーション可能な金属化合物、金属酸化物、金属硫化物、また
は導電性高分子材料を用いればよく、特に限定されないが、例えば、コバルト酸リチウム
(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、及びこれらの複酸化物(LiCoNiMn、X+Y+Z=1)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素等などを単独或いは混合して使用することができる。
The positive electrode material used for the positive electrode layer is not particularly limited. For example, a metal compound, metal oxide, metal sulfide, or conductive polymer material that can be doped or intercalated with lithium ions may be used. Although not limited, for example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and double oxides thereof (LiCo x Ni y Mn z O 2 , X + Y + Z = 1) , Lithium manganese spinel (LiMn 2 O 4 ), lithium vanadium compound, V 2 O 5 , V 6 O 13 , VO 2 , MnO 2 , TiO 2 , MoV 2 O 8 , TiS 2 , V 2 S 5 , VS 2 , MoS 2 , MoS 3 , Cr 3 O 8 , Cr 2 O 5 , olivine-type LiMPO 4 (M : Co, Ni, Mn, Fe), conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, and polyacene, porous carbon, and the like can be used alone or in combination.

上記セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィン
を主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものを使用する
ことができる。なお、作製するリチウムイオン二次電池の正極と負極が直接接触しない構
造にした場合は、セパレータを使用する必要はない。
As the separator, for example, a nonwoven fabric mainly composed of polyolefin such as polyethylene and polypropylene, cloth, microporous film, or a combination thereof can be used. In addition, when it is set as the structure where the positive electrode and negative electrode of the lithium ion secondary battery to produce are not in direct contact, it is not necessary to use a separator.

本発明のリチウムイオン二次電池に用いられる電解質は特に制限されず、公知のものを用いることができる。例えば、電解質を有機溶剤に溶解させた電解液を用いることにより、非水系リチウムイオン二次電池を製造することができる。   The electrolyte used in the lithium ion secondary battery of the present invention is not particularly limited, and a known one can be used. For example, a non-aqueous lithium ion secondary battery can be manufactured by using an electrolytic solution in which an electrolyte is dissolved in an organic solvent.

電解質としては、例えば、LiPF、LiClO、LiBF、LiClF、LiAsF、LiSbF、LiAlO、LiAlCl、LiN(CFSO、LiN(CSO、LiC(CFSO、LiCl、LiIなどの溶媒和しにくいアニオンを生成するリチウム塩を例示することができる。
また前記電解質の濃度は特に限定されない。例えば、電解液1Lに対して電解質0.3モル〜5モルであることが好ましく、0.5モル〜3モルであることがより好ましく、0.8モル〜1.5モルであることが特に好ましい。
As the electrolyte, for example, LiPF 6, LiClO 4, LiBF 4, LiClF 4, LiAsF 6, LiSbF 6, LiAlO 4, LiAlCl 4, LiN (CF 3 SO 2) 2, LiN (C 2 F 5 SO 2) 2, Examples thereof include lithium salts that generate anions that are difficult to solvate, such as LiC (CF 3 SO 2 ) 3 , LiCl, and LiI.
The concentration of the electrolyte is not particularly limited. For example, the electrolyte is preferably 0.3 mol to 5 mol, more preferably 0.5 mol to 3 mol, and particularly preferably 0.8 mol to 1.5 mol with respect to 1 L of the electrolytic solution. preferable.

前記有機溶剤としては、例えば、カーボネート類(プロピレンカーボネート、エチレンカーボネート、ジエチルカーボネートなど)、ラクトン類(γ−ブチロラクトンなど)、鎖状エーテル類(1,2−ジメトキシエタン、ジメチルエーテル、ジエチルエーテルなど)、環状エーテル類(テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、4−メチルジオキソランなど)、スルホラン類(スルホランなど)、スルホキシド類(ジメチルスルホキシドなど)、ニトリル類(アセトニトリル、プロピオニトリル、ベンゾニトリルなど)、アミド類(N,N−ジメチルホルムアミド、N,N−ジメチルアセトアミドなど)、ポリオキシアルキレングリコール類(ジエチレングリコールなど)などの非プロトン性溶媒を例示することができる。
有機溶剤は、単独で用いてもよく2種以上の混合溶剤として用いてもよい。
Examples of the organic solvent include carbonates (propylene carbonate, ethylene carbonate, diethyl carbonate, etc.), lactones (γ-butyrolactone, etc.), chain ethers (1,2-dimethoxyethane, dimethyl ether, diethyl ether, etc.), Cyclic ethers (tetrahydrofuran, 2-methyltetrahydrofuran, dioxolane, 4-methyldioxolane, etc.), sulfolanes (sulfolane, etc.), sulfoxides (dimethylsulfoxide, etc.), nitriles (acetonitrile, propionitrile, benzonitrile, etc.), amides Aprotic solvents such as polyoxyalkylene glycols (such as diethylene glycol), and the like (N, N-dimethylformamide, N, N-dimethylacetamide, etc.) Can.
An organic solvent may be used independently and may be used as 2 or more types of mixed solvents.

本発明のリチウムイオン二次電池の構造は、特に限定されないが、通常、リチウムイオン二次電池用負極と、正極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群とし、これら極板群を外装体中に封入した構造とするのが一般的である。   The structure of the lithium ion secondary battery of the present invention is not particularly limited. Usually, a negative electrode for a lithium ion secondary battery, a positive electrode, and a separator provided as necessary are wound in a flat spiral shape. In general, it is a type of electrode plate group, or these are laminated in a flat plate shape to form a laminated type electrode plate group, and these electrode plate groups are enclosed in an exterior body.

本発明のリチウムイオン二次電池は、特に限定されないが、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池などとして使用される。   Although the lithium ion secondary battery of this invention is not specifically limited, It is used as a paper-type battery, a button-type battery, a coin-type battery, a laminated battery, a cylindrical battery, etc.

以上で説明した本発明のリチウムイオン二次電池は、従来の炭素材料を負極に用いたリチウムイオン二次電池と比較して、急速充放電特性、サイクル特性に優れ、不可逆容量が小さく、安全性に優れる。特に、高入出特性を維持しながら高寿命特性を発揮することが可能であるため、電気自動車やハイブリッド自動車用の車載電池として有用である。   The lithium ion secondary battery of the present invention described above is superior in rapid charge / discharge characteristics, cycle characteristics, small irreversible capacity, and safety compared to a lithium ion secondary battery using a conventional carbon material as a negative electrode. Excellent. In particular, since it is possible to exhibit high life characteristics while maintaining high input / output characteristics, it is useful as an in-vehicle battery for electric vehicles and hybrid vehicles.

尚、上述した本発明のリチウムイオン二次電池用負極材は、リチウムイオン二次電池用と記載したが、リチウムイオンを挿入脱離することを充放電機構とする電気化学装置全般、例えば、ハイブリッドキャパシタなどにも適用することが可能である。   The negative electrode material for a lithium ion secondary battery according to the present invention described above is described for a lithium ion secondary battery. However, in general, an electrochemical device having a charge / discharge mechanism that inserts and desorbs lithium ions, for example, a hybrid It can also be applied to capacitors and the like.

以下、実施例及び比較例を用いて本発明をさらに詳細に説明する。尚、特に断りのない限り、「部」及び「%」は質量基準である。   Hereinafter, the present invention will be described in more detail using Examples and Comparative Examples. Unless otherwise specified, “part” and “%” are based on mass.

(実施例1)
細孔体積1.35ml/g、比表面積17.5m/g、タップ密度0.50g/cm、平均粒子径5μmの鱗片状天然黒鉛粒子をゴム製の容器に充填、密閉した後、該ゴム製容器を空圧プレス機で、加圧媒体の圧力を1000kgf/cmで等方性加圧処理を行った。次いで、衝撃型粉砕機を用いて回転数2500rpm、スクリーン0.3μmの条件で解砕し、250メッシュの標準篩を通した。得られた粒子を電子顕微鏡で観察したところ、鱗片状黒鉛粒子が凝集し二次粒子を形成していた。得られた鱗片状黒鉛粒子の凝集粒子の細孔体積は1.0ml/gであり、比表面積は16.5m/gであり、タップ密度は0.75g/cmであり、平均粒子径は7.5μmであり、アスペクト比は2.5であった。
その後、鱗片状天然黒鉛粒子を改質処理により球形化し、細孔体積0.75ml/g、比表面積9.5m/g、タップ密度1.0g/cm、平均粒子径12.0μm、アスペクト比1.5の球形化黒鉛粒子を得た。
得られた鱗片状黒鉛粒子の凝集粒子及び球形化黒鉛粒子をそれぞれ1対1の質量割合で、V型混合機を用いて30分間混合して、リチウムイオン二次電池負極材として用いる鱗片状黒鉛粒子の凝集粒子と球形化黒鉛粒子との混合物(黒鉛粒子)を得た。
上記、得られた黒鉛粒子に、コールタールピッチ(炭素前駆体)を黒鉛粒子量に対して4質量部(低結晶炭素層として50質量部残るため、実質被覆量2質量部)添加し、さらにV型混合機で30分間混合したものを窒素流通下、20℃/時間の昇温速度で850℃まで昇温し、1時間保持した後、自然冷却したものを350メッシュ標準篩で通した。これにより、細孔体積1.0ml/g、比表面積4.3m/g、タップ密度0.90g/cm、平均粒子径12.0μm、アスペクト比2.0の低結晶炭素で被覆された本発明のリチウムイオン二次電池用負極材を得た。
Example 1
After filling and sealing a rubber container with flaky natural graphite particles having a pore volume of 1.35 ml / g, a specific surface area of 17.5 m 2 / g, a tap density of 0.50 g / cm 3 and an average particle diameter of 5 μm, The rubber container was subjected to an isotropic pressure treatment with a pneumatic press at a pressure of a pressure medium of 1000 kgf / cm 2 . Next, the mixture was pulverized using an impact pulverizer under the conditions of a rotational speed of 2500 rpm and a screen of 0.3 μm, and passed through a 250 mesh standard sieve. When the obtained particles were observed with an electron microscope, the scaly graphite particles were aggregated to form secondary particles. The resulting flake graphite particles have an aggregate particle pore volume of 1.0 ml / g, a specific surface area of 16.5 m 2 / g, a tap density of 0.75 g / cm 3 and an average particle diameter. Was 7.5 μm and the aspect ratio was 2.5.
Thereafter, the scaly natural graphite particles were spheroidized by modification treatment, and the pore volume was 0.75 ml / g, the specific surface area was 9.5 m 2 / g, the tap density was 1.0 g / cm 3 , the average particle size was 12.0 μm, the aspect ratio Spherical graphite particles having a ratio of 1.5 were obtained.
The obtained flocculent graphite particles and spheroidized graphite particles are mixed at a mass ratio of 1: 1, respectively, for 30 minutes using a V-type mixer, and then used as a negative electrode material for a lithium ion secondary battery. A mixture (graphite particles) of aggregated particles of particles and spheroidized graphite particles was obtained.
To the obtained graphite particles, 4 parts by mass of coal tar pitch (carbon precursor) with respect to the amount of graphite particles (substantially covering amount of 2 parts by mass because 50 parts by mass remains as a low crystalline carbon layer) is further added. The mixture mixed for 30 minutes with a V-type mixer was heated to 850 ° C. at a temperature increase rate of 20 ° C./hour under nitrogen flow, held for 1 hour, and then naturally cooled, passed through a 350 mesh standard sieve. As a result, it was coated with low crystalline carbon having a pore volume of 1.0 ml / g, a specific surface area of 4.3 m 2 / g, a tap density of 0.90 g / cm 3 , an average particle diameter of 12.0 μm, and an aspect ratio of 2.0. A negative electrode material for a lithium ion secondary battery of the present invention was obtained.

(実施例2)
実施例1において得られた鱗片状黒鉛粒子の凝集粒子と球形化黒鉛粒子とを3対2の質量割合で混合して、鱗片状黒鉛粒子の凝集粒子と球形化黒鉛粒子との混合物(黒鉛粒子)を得た。
得られた黒鉛粒子に、コールタールピッチ(炭素前駆体)を黒鉛粒子量に対して4質量部(低結晶炭素層として50質量部残るため、実質被覆量2質量部)添加し、上記リチウムイオン二次電池負極材を得た。
これにより、細孔体積1.1ml/g、比表面積5.0m/g、タップ密度0.85g/cm、平均粒子径11.5μm、アスペクト比2.3の低結晶炭素粒子で被覆された本発明のリチウムイオン二次電池用負極材を得た。
(Example 2)
Aggregated particles of flaky graphite particles obtained in Example 1 and spheroidized graphite particles were mixed at a mass ratio of 3 to 2, and a mixture of aggregated particles of flaky graphite particles and spheroidized graphite particles (graphite particles )
To the obtained graphite particles, 4 parts by mass of coal tar pitch (carbon precursor) is added with respect to the amount of graphite particles (50 parts by mass as a low crystalline carbon layer remains, so that the actual covering amount is 2 parts by mass), and the lithium ions A secondary battery negative electrode material was obtained.
Thereby, it is coated with low crystalline carbon particles having a pore volume of 1.1 ml / g, a specific surface area of 5.0 m 2 / g, a tap density of 0.85 g / cm 3 , an average particle diameter of 11.5 μm, and an aspect ratio of 2.3. In addition, a negative electrode material for a lithium ion secondary battery of the present invention was obtained.

(実施例3)
実施例1において得られた鱗片状黒鉛粒子の凝集粒子と球形化黒鉛粒子とを2対3の質量割合で混合して、鱗片状黒鉛粒子の凝集粒子と球形化黒鉛粒子との混合物(黒鉛粒子)を得た。
得られた黒鉛粒子に、コールタールピッチ(炭素前駆体)を黒鉛粒子量に対して4質量部%(低結晶炭素層として50質量部残るため、実質被覆量2質量部)添加し、上記リチウムイオン二次電池負極材を得た。これにより、細孔体積1.0ml/g、比表面積4.0m/g、タップ密度0.95g/cm、平均粒子径12.5μm、アスペクト比1.8の低結晶炭素粒子で被覆された本発明のリチウムイオン二次電池用負極材を得た。
(Example 3)
The aggregated particles of flaky graphite particles obtained in Example 1 and the spheroidized graphite particles were mixed at a mass ratio of 2 to 3, and a mixture of the aggregated particles of flaky graphite particles and the spheroidized graphite particles (graphite particles )
To the obtained graphite particles, coal tar pitch (carbon precursor) is added in an amount of 4 parts by mass (substantially covering 2 parts by mass since 50 parts by mass remains as a low crystalline carbon layer) with respect to the amount of graphite particles, and the lithium An ion secondary battery negative electrode material was obtained. Thereby, it is coated with low crystalline carbon particles having a pore volume of 1.0 ml / g, a specific surface area of 4.0 m 2 / g, a tap density of 0.95 g / cm 3 , an average particle diameter of 12.5 μm, and an aspect ratio of 1.8. In addition, a negative electrode material for a lithium ion secondary battery of the present invention was obtained.

(実施例4)
実施例1において得られた鱗片状黒鉛粒子の凝集粒子と球形化黒鉛粒子とを1対1の質量割合で混合して、鱗片状黒鉛粒子の凝集粒子と球形化黒鉛粒子との混合物(黒鉛粒子)を得た。
得られた黒鉛粒子に、コールタールピッチ(炭素前駆体)を黒鉛粒子量に対して2質量部(低結晶炭素層とし50質量部残るため、実質量1質量部被覆)添加し、上記リチウムイオン二次電池負極材を得た。これにより、細孔体積1.1ml/g、比表面積5.5m/g、タップ密度0.85g/cm、平均粒子径11.0μm、アスペクト比2.0の、低結晶炭素粒子で被覆された本発明のリチウムイオン二次電池用負極材を得た。
Example 4
The aggregated particles of flaky graphite particles obtained in Example 1 and the spheroidized graphite particles were mixed at a mass ratio of 1: 1, and a mixture of aggregated particles of flaky graphite particles and spheroidized graphite particles (graphite particles). )
To the obtained graphite particles, 2 parts by mass of coal tar pitch (carbon precursor) with respect to the amount of graphite particles (substantially 1 part by mass coating because 50 parts by mass remains as a low crystalline carbon layer) is added, and the lithium ion A secondary battery negative electrode material was obtained. Thus, it is coated with low crystalline carbon particles having a pore volume of 1.1 ml / g, a specific surface area of 5.5 m 2 / g, a tap density of 0.85 g / cm 3 , an average particle diameter of 11.0 μm and an aspect ratio of 2.0. A negative electrode material for a lithium ion secondary battery of the present invention was obtained.

(比較例1)
細孔体積1.0ml/g、比表面積13.5m/g、タップ密度0.80g/cm、平均粒子径9.0μm、アスペクト比2.0である鱗片状黒鉛粒子の凝集粒子と、実施例1で作製した球状化黒鉛粒子とを、実施例1に記載の方法により1対1の質量割合で混合し、リチウムイオン二次電池用負極材を得た。
(Comparative Example 1)
Aggregated particles of flaky graphite particles having a pore volume of 1.0 ml / g, a specific surface area of 13.5 m 2 / g, a tap density of 0.80 g / cm 3 , an average particle size of 9.0 μm, and an aspect ratio of 2.0, The spheroidized graphite particles produced in Example 1 were mixed at a mass ratio of 1: 1 by the method described in Example 1 to obtain a negative electrode material for a lithium ion secondary battery.

(比較例2)
細孔体積1.35ml/g、比表面積16.5m/g、タップ密度0.75g/cm、平均粒子径7.5μm、アスペクト比2.5である鱗片状黒鉛の凝集粒子からなるリチウムイオン二次電池用負極材を得た。
(Comparative Example 2)
Lithium composed of aggregated particles of scaly graphite having a pore volume of 1.35 ml / g, a specific surface area of 16.5 m 2 / g, a tap density of 0.75 g / cm 3 , an average particle diameter of 7.5 μm, and an aspect ratio of 2.5. A negative electrode material for an ion secondary battery was obtained.

(比較例3)
細孔体積0.75ml/g、比表面積9.5m/g、タップ密度1.0g/cm、アスペクト比1.5である球形化黒鉛粒子からなるリチウムイオン二次電池用負極材を得た。
(Comparative Example 3)
A negative electrode material for a lithium ion secondary battery comprising spheroidized graphite particles having a pore volume of 0.75 ml / g, a specific surface area of 9.5 m 2 / g, a tap density of 1.0 g / cm 3 and an aspect ratio of 1.5 is obtained. It was.

上記実施例1〜実施例4及び比較例1〜比較例3で得られたリチウムイオン二次電池用負極材の粉体物性及び電気化学特性を下記の要領で測定した。   The powder physical properties and electrochemical characteristics of the negative electrode materials for lithium ion secondary batteries obtained in Examples 1 to 4 and Comparative Examples 1 to 3 were measured as follows.

細孔体積は水銀圧入法(島津製作所 細孔分布測定装置 オートポア 9520形)により試料量0.2g、初期圧9kPa(約1.3psia、細孔直径約140μm相当)、水銀接触角130degrees、水銀表面張力485.0dynes/cmの条件で測定を行った。結果を表1に示す。   The pore volume was measured by the mercury intrusion method (Shimadzu Corporation pore distribution measuring device Autopore 9520 type), 0.2 g sample size, initial pressure 9 kPa (approximately 1.3 psia, pore diameter approximately 140 μm), mercury contact angle 130 degrees, mercury surface Measurement was performed under the condition of a tension of 485.0 dynes / cm. The results are shown in Table 1.

比表面積は得られた試料を110℃、2時間常圧で乾燥した後、比表面積計(比表面積測定装置フローソープII2300)を用い、液体窒素温度(77K)での窒素吸着より得られた等温吸着線からBET法にしたがって算出した。結果を表1に示す。   The specific surface area was obtained by drying the obtained sample at 110 ° C. and normal pressure for 2 hours, and then isothermally obtained by nitrogen adsorption at a liquid nitrogen temperature (77 K) using a specific surface area meter (specific surface area measuring device Flow Soap II 2300). It calculated according to the BET method from the adsorption line. The results are shown in Table 1.

タップ密度は、容量150cmのメスシリンダーに試料粉末50gをさじで徐々に投入し、メスシリンダーに栓をした後、充填密度測定装置(蔵持科学機械製作所製:KRS−406)で5cmの高さから250回落下させた後の試料粉末の質量を容量で除することによって、タップ密度を算出した。結果を表1に示す。 The tap density is about 5 cm high with a filling density measurement device (Kuraji Scientific Machinery Co., Ltd .: KRS-406) after gradually pouring 50 g of sample powder into a measuring cylinder with a capacity of 150 cm 3 and plugging the measuring cylinder. The tap density was calculated by dividing the mass of the sample powder after being dropped 250 times by the volume. The results are shown in Table 1.

ラマンR値は、レーザーラマン分光法測定装置(日本分光株式会社製 NSR−1000)を用い、励起波長532nm、レーザー出力3.9mW、入射スリット150μm、積算回数2回、露光時間30秒で測定を行った。結果を表1に示す。   The Raman R value is measured using a laser Raman spectroscopy measuring device (NSR-1000 manufactured by JASCO Corporation), with an excitation wavelength of 532 nm, a laser output of 3.9 mW, an incident slit of 150 μm, an integration number of 2 times, and an exposure time of 30 seconds. went. The results are shown in Table 1.

(初回充放電効率の評価)
実施例1〜実施例4及び比較例1〜比較例3で得られたリチウムイオン二次電池用負極材98質量部、バインダーとしてスチレンブタジエン樹脂(SBR 40.1%水分散液)(製造元:日本ゼオン(株)、製品名:BM−400B)1質量部、増粘剤としてカルボキシメチルセルロース(製造元:ダイセル化学工業(株)、製品名:CMC #2200)1.5質量部を固形分として、水を加えた水分散塗料(固形分濃度48.0%)を作製し、これを40μmの電解銅箔上に単位面積当りの塗布量が4.5±0.2mg/cmなるように塗工して、各試料電極を得た。
塗工後の各試料電極は、80℃で5時間、120℃で3時間乾燥させた。乾燥後、1.5±0.05g/cm得られるようプレスし、試料電極(負極)として、放電容量評価用に14mmφの円形状に打ち抜いた。
評価用のコイン電池は、CR2016型コインセルに、上記各試料電極と、金属リチウムとを25μmのポリプロピレン製セパレータを介して対向させ、電解液を注入することにより作製した。
電解液は、エチルカーボネート(EC)とメチルエチルカーボネート(MEC)との体積比3対7の混合溶媒に、ビニレンカーボネート(VC)を0.5質量部添加させ、LiPFを1mol/Lの濃度になるように溶解させたもの(1M LiPFEC:MEC=3:7 VC 0.5質量部)を用いた。
(Evaluation of initial charge / discharge efficiency)
98 parts by mass of negative electrode materials for lithium ion secondary batteries obtained in Examples 1 to 4 and Comparative Examples 1 to 3, styrene butadiene resin (SBR 40.1% aqueous dispersion) as a binder (manufacturer: Japan) ZEON Co., Ltd., product name: BM-400B) 1 part by mass, carboxymethylcellulose (manufacturer: Daicel Chemical Industries, Ltd., product name: CMC # 2200) as a thickener, 1.5 parts by mass as water, water A water-dispersed paint with a solid content (solid content concentration 48.0%) is prepared and coated on a 40 μm electrolytic copper foil so that the coating amount per unit area is 4.5 ± 0.2 mg / cm 2. Thus, each sample electrode was obtained.
Each sample electrode after coating was dried at 80 ° C. for 5 hours and 120 ° C. for 3 hours. After drying, it was pressed to obtain 1.5 ± 0.05 g / cm 3 and punched into a 14 mmφ circular shape as a sample electrode (negative electrode) for discharge capacity evaluation.
A coin battery for evaluation was produced by injecting an electrolytic solution to a CR2016 type coin cell with each sample electrode and metal lithium facing each other through a 25 μm polypropylene separator.
The electrolytic solution was prepared by adding 0.5 parts by mass of vinylene carbonate (VC) to a mixed solvent of ethyl carbonate (EC) and methyl ethyl carbonate (MEC) in a volume ratio of 3 to 7, and adding LiPF 6 to a concentration of 1 mol / L. (1M LiPF 6 EC: MEC = 3: 7 VC 0.5 parts by mass) was used.

得られた評価用のコイン電池の試料電極と対極の間に、0.192mAの定電流で0V( V vs. Li/Li)まで充電し、次いで0Vの定電圧で電流が0.0192mAになるまで充電した。次に30分の休止時間後に0.0192mAの定電流で1.5V( V vs. Li/Li)まで放電する1サイクル試験を行い、初回充放電効率を測定した。初回充放電効率は、(初回放電容量)/(初回充電容量)×100として算出した。結果を表1に示す。 Between the sample electrode and the counter electrode of the obtained coin battery for evaluation, the battery was charged to 0 V (V vs. Li / Li + ) with a constant current of 0.192 mA, and then the current was 0.0192 mA with a constant voltage of 0 V. Charged until Next, after a 30-minute rest period, a one-cycle test was conducted to discharge to 1.5 V (V vs. Li / Li + ) at a constant current of 0.0192 mA, and the initial charge / discharge efficiency was measured. The initial charge / discharge efficiency was calculated as (initial discharge capacity) / (initial charge capacity) × 100. The results are shown in Table 1.

(DCRの評価)
上記と同様の方法で作製した評価用のコイン電池を0.48mAの定電流で0V( V vs. Li/Li)まで充電し、30分の休止時間後に、0.48mAの定電流で1.5V(V vs. Li/Li)まで放電し、低電流での電極体積当りの放電容量を測定した。次いで、2サイクル目に、0.48mAの定電流で0V( V vs. Li/Li)まで充電し、30分の休止時間後に、1.2mAの定電流で1.5V(V vs. Li/Li)まで放電し、大電流での電極体積当りの放電容量を測定した。なお、電極体積当りの放電容量(mAh/cm)は、負極材質量当りの充放電容量(mAh/g)の測定値に電極密度(g/cm)を乗じて算出した。この値が室温および低温で低いほど入出力特性に優れると判断することができる。結果を表1に示す。
(Evaluation of DCR)
The coin cell for evaluation manufactured by the same method as described above was charged to 0 V (V vs. Li / Li + ) with a constant current of 0.48 mA, and after a rest time of 30 minutes, 1 with a constant current of 0.48 mA. Discharge to 0.5 V (V vs. Li / Li + ), and the discharge capacity per electrode volume at a low current was measured. Then, in the second cycle, the battery was charged to 0 V (V vs. Li / Li + ) with a constant current of 0.48 mA, and after a 30-minute rest period, 1.5 V (V vs. Li with a constant current of 1.2 mA). / Li + ), and the discharge capacity per electrode volume at a large current was measured. The discharge capacity (mAh / cm 3 ) per electrode volume was calculated by multiplying the measured value of charge / discharge capacity (mAh / g) per negative electrode mass by the electrode density (g / cm 3 ). It can be determined that the lower the value at room temperature and the lower the better the input / output characteristics. The results are shown in Table 1.

上記評価用のコイン電池を0.48mAの定電流で0V(V vs. Li/Li)まで充電し、次いで0Vの定電圧で電流が0.048mAになるまで充電した。次に30分の休止時間後、0.48mA定電流で1.5V(V vs. Li/Li)まで放電した。その後、0.48mAの定電流でセル容量の50%まで充電した後、室温(25℃)において2.4 mA,7.2 mA,12mAの定電流、続いて0.048mAの定電流でセル容量の50%まで充電した後、低温(−30℃)において0.24 mA,0.72mA/cm,1.2mAと変化させて行った。この各放電における放電開始時の開回路電位V(0s)、放電開始0又は10秒目の電圧V(0,10s)を測定し、電圧変化(Δ=V(10s)−V(0s))を求め、放電電流Iに対するΔVの値をプロットして、このI−ΔV特性の傾きから抵抗を算出した。結果を表1に示す。 The coin battery for evaluation was charged to 0 V (V vs. Li / Li + ) with a constant current of 0.48 mA, and then charged with a constant voltage of 0 V until the current reached 0.048 mA. Next, after a rest time of 30 minutes, the battery was discharged to 1.5 V (V vs. Li / Li + ) at a constant current of 0.48 mA. Then, after charging up to 50% of the cell capacity with a constant current of 0.48 mA, the cell with a constant current of 2.4 mA, 7.2 mA, 12 mA at room temperature (25 ° C.), followed by a constant current of 0.048 mA. After charging to 50% of the capacity, the temperature was changed to 0.24 mA, 0.72 mA / cm 2 and 1.2 mA at a low temperature (−30 ° C.). The open circuit potential V (0 s) at the start of discharge and the voltage V (0, 10 s) at the start of discharge or 10 seconds in each discharge are measured, and the voltage change (Δ = V (10 s) −V (0 s)) The value of ΔV against the discharge current I was plotted, and the resistance was calculated from the slope of this I−ΔV characteristic. The results are shown in Table 1.

(寿命特性の評価)
上記と同様に試料電極(負極)を作製し、1.5±0.05g/cmになるようプレスし、16mmφの円形状に打ち抜いた。
(Evaluation of life characteristics)
A sample electrode (negative electrode) was prepared in the same manner as described above, pressed to 1.5 ± 0.05 g / cm 3 , and punched into a 16 mmφ circular shape.

正極活物質は、粒径5μmのコバルト酸リチウム94質量部に、導電補助材としてアセチレンブラックを3質量部、N−メチル−2ピロリドンに溶解したポリフッ化ビニリデン(PVDF)を固形分で3質量部となるよう加えて混練し、ペースト状の正極材スラリーを作製した。このスラリーを厚さ10μmの電解アルミ箔に単位面積当りの塗布量が9.5±0.2mg/cmとなるように塗工機を用いて塗布した後、120℃で乾燥してN−メチル−2ピロリドンを除去し、さらに、ロールプレス機により合剤密度が3.0±0.05g/cmとなるように圧縮成型し、14mmφの円形状に打ち抜いて正極を作製した。 The positive electrode active material is composed of 94 parts by mass of lithium cobalt oxide having a particle size of 5 μm, 3 parts by mass of acetylene black as a conductive auxiliary material, and 3 parts by mass of polyvinylidene fluoride (PVDF) dissolved in N-methyl-2pyrrolidone in solid content. And kneaded to prepare a paste-like positive electrode material slurry. This slurry was applied to an electrolytic aluminum foil having a thickness of 10 μm using a coating machine so that the coating amount per unit area was 9.5 ± 0.2 mg / cm 2, and then dried at 120 ° C. Methyl-2 pyrrolidone was removed, and further, compression molding was performed by a roll press machine so that the mixture density was 3.0 ± 0.05 g / cm 3, and punched into a circular shape of 14 mmφ to produce a positive electrode.

評価用のコイン電池は、CR2016型コインセルに上記負極と正極を5μmのポリプロピレン製セパレータを介して対向させ、電解液を注入することにより作製した。電解液は、エチルカーボネート(EC)とメチルエチルカーボネート(MEC)との体積比3対7の混合溶媒に、ビニレンカーボネート(VC)を0.5質量部添加させ、LiPF6を1mol/Lの濃度になるように溶解させたもの(1M LiPF6 EC:MEC=3:7 VC 0.5質量部)を用いた。   A coin battery for evaluation was produced by injecting an electrolytic solution with a CR2016 type coin cell facing the negative electrode and the positive electrode through a 5 μm polypropylene separator. The electrolyte solution was prepared by adding 0.5 parts by mass of vinylene carbonate (VC) to a mixed solvent of ethyl carbonate (EC) and methyl ethyl carbonate (MEC) in a volume ratio of 3 to 7, and adding LiPF6 to a concentration of 1 mol / L. What was dissolved so that (1M LiPF6 EC: MEC = 3: 7 VC 0.5 mass part) was used.

次いで、この評価用のコイン電池を25℃の恒温槽中において0.192mAの定電流で4.15Vまで充電し、さらに4.15Vの定電圧で電流が0.0192mAになるまで充電し、30分の休止後に0.0192mAの定電流で2.7Vまで放電を行った。これを4サイクル繰り返した後、0.0192mAの定電流で4.15Vまで充電し、30分の休止後に電池を取り出し、50℃の恒温槽に移した。保存日数は30日間とした。30日保存後は0.0192mAの定電流で2.7Vまで放電し、30分の休止後に0.192mAの定電流で4.15Vまで充電し、さらに4.15Vの定電圧で電流が0.0192mAになるまで充電し、30分の休止後に0.0192mAの定電流で2.7Vまで放電して寿命特性の評価を行なった。容量維持率は、(30日保存直後の放電容量)/(保存前4サイクル目放電容量)×100容量回復率は、(30日保存後の最大放電容量)/(保存前4サイクル目放電容量)×100より算出した。この値が大きいほど寿命特性に優れると判断することができる。結果を表1に示す。   Next, this coin cell for evaluation was charged to 4.15 V with a constant current of 0.192 mA in a constant temperature bath at 25 ° C., and further charged to a current of 0.0192 mA with a constant voltage of 4.15 V, 30 After a rest of minutes, the battery was discharged to 2.7 V at a constant current of 0.0192 mA. After repeating this for 4 cycles, it was charged to 4.15 V with a constant current of 0.0192 mA, the battery was taken out after a pause of 30 minutes, and transferred to a 50 ° C. thermostat. The storage period was 30 days. After storage for 30 days, the battery was discharged to 2.7 V at a constant current of 0.0192 mA, charged to 4.15 V at a constant current of 0.192 mA after a 30-minute pause, and further at a constant voltage of 4.15 V, the current was 0.1. The battery was charged until it reached 0192 mA, and after 30 minutes of rest, it was discharged to 2.7 V at a constant current of 0.0192 mA, and the life characteristics were evaluated. The capacity retention rate is (discharge capacity immediately after storage for 30 days) / (discharge capacity at the 4th cycle before storage) × 100 capacity recovery rate is (maximum discharge capacity after 30 days of storage) / (discharge capacity at the 4th cycle before storage) ) × 100. It can be determined that the larger the value, the better the life characteristics. The results are shown in Table 1.

表1の結果より、等方性加圧処理を施した鱗片状黒鉛粒子の凝集粒子を用いることで、比表面積高く、入出力特性に優れるリチウムイオン二次電池を提供できることが明らかとなった。低結晶炭素による被覆量を適量増やすことで、寿命特性にも優れるリチウムイオン二次電池を提供できることが明らかとなった。さらに、鱗片状黒鉛粒子の凝集粒子を含む炭素材料Aと、球形化黒鉛粒子を含む炭素材料Bとを含有し、特定の物性値を示すリチウムイオン二次電池用負極材を用いることにより高入出力特性と長寿命特性を有するリチウムイオン二次電池を提供できることが明らかとなった。   From the results shown in Table 1, it has been clarified that a lithium ion secondary battery having a high specific surface area and excellent input / output characteristics can be provided by using aggregated particles of scaly graphite particles subjected to isotropic pressure treatment. It has been clarified that a lithium ion secondary battery having excellent life characteristics can be provided by appropriately increasing the amount of coating with low crystalline carbon. Further, by using a negative electrode material for a lithium ion secondary battery containing a carbon material A containing aggregated particles of scaly graphite particles and a carbon material B containing spheroidized graphite particles and having specific physical properties, It was revealed that a lithium ion secondary battery having output characteristics and long life characteristics can be provided.

Claims (6)

鱗片状黒鉛粒子の凝集粒子を含む炭素材料Aと、球形化黒鉛粒子を含む炭素材料Bとを含有し、細孔体積が0.9ml/g〜1.3ml/gであり、比表面積が4.0m/g〜6.0m/gであり、タップ密度が0.75g/cm〜0.95g/cmであり、前記炭素材料Aの平均粒子径は5μm〜10μmであり、前記炭素材料Aは前記鱗片状黒鉛粒子の凝集粒子の表面の少なくとも一部が低結晶性炭素により被覆された被覆物を含み、前記炭素材料Bは前記球形化黒鉛粒子の表面の少なくとも一部が低結晶性炭素により被覆された被覆物を含むリチウムイオン二次電池用負極材。 It contains a carbon material A containing aggregated particles of scaly graphite particles and a carbon material B containing spheroidized graphite particles, a pore volume of 0.9 ml / g to 1.3 ml / g, and a specific surface area of 4 .0m a 2 /g~6.0m 2 / g, a tap density of 0.75g / cm 3 ~0.95g / cm 3 , an average particle diameter of the carbon material a is 5 m to 10 m, the The carbon material A includes a coating in which at least part of the surface of the aggregated particles of the scaly graphite particles is coated with low crystalline carbon, and the carbon material B has at least part of the surface of the spheroidized graphite particles being low. A negative electrode material for a lithium ion secondary battery, comprising a coating coated with crystalline carbon. ラマンスペクトルにおけるR値が、0.3〜1.0である請求項1記載のリチウムイオン二次電池用負極材。   The negative electrode material for a lithium ion secondary battery according to claim 1, wherein an R value in a Raman spectrum is 0.3 to 1.0. 前記炭素材料Aのアスペクト比が、1.8〜2.7である請求項1又は請求項2に記載のリチウムイオン二次電池用負極材。 The negative electrode material for a lithium ion secondary battery according to claim 1 or 2, wherein the carbon material A has an aspect ratio of 1.8 to 2.7. 前記炭素材料Bのアスペクト比が、1.3〜2.0である請求項1〜請求項のいずれか1項記載のリチウムイオン二次電池用負極材。 The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 3 , wherein the carbon material B has an aspect ratio of 1.3 to 2.0. 集電体と、該集電体上に設けられ請求項1〜請求項のいずれか1項記載のリチウムイオン二次電池用負極材を含む負極層とを有するリチウムイオン二次電池用負極。 The negative electrode for lithium ion secondary batteries which has a collector and the negative electrode layer which is provided on this collector and contains the negative electrode material for lithium ion secondary batteries of any one of Claims 1-4 . 請求項記載のリチウムイオン二次電池用負極と、正極と、電解質とを備えるリチウムイオン二次電池。 A lithium ion secondary battery comprising the negative electrode for a lithium ion secondary battery according to claim 5 , a positive electrode, and an electrolyte.
JP2011139721A 2011-06-23 2011-06-23 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery Active JP5927788B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2011139721A JP5927788B2 (en) 2011-06-23 2011-06-23 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2011139721A JP5927788B2 (en) 2011-06-23 2011-06-23 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Publications (2)

Publication Number Publication Date
JP2013008526A JP2013008526A (en) 2013-01-10
JP5927788B2 true JP5927788B2 (en) 2016-06-01

Family

ID=47675723

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2011139721A Active JP5927788B2 (en) 2011-06-23 2011-06-23 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery

Country Status (1)

Country Link
JP (1) JP5927788B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2013030355A (en) * 2011-07-28 2013-02-07 Hitachi Vehicle Energy Ltd Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
KR101602526B1 (en) * 2013-02-04 2016-03-11 주식회사 엘지화학 Anode active material for lithium secondary battery and lithium secondary battery comprising the same
JP5986035B2 (en) * 2013-02-05 2016-09-06 Jfeケミカル株式会社 Lithium ion secondary battery negative electrode material and method for producing the same, lithium ion secondary battery negative electrode and lithium ion secondary battery
EP2960971B1 (en) * 2013-02-21 2020-04-22 Connexx Systems Corporation Composite active material for lithium secondary battery and method for producing same
KR101530686B1 (en) * 2013-05-31 2015-06-23 재단법인 포항산업과학연구원 Negative electrode active material for rechargeable lithium battery, method for preparing the same, negative electrode including the same, and rechargeable lithium battery including the negative electrode
KR101512823B1 (en) * 2013-09-04 2015-04-17 (주)포스코켐텍 Method for preparing negative electrode active material for rechargeable lithium battery, negative electrode active material for rechargeable lithium battery and rechargeable lithium battery
KR20150065041A (en) * 2013-12-04 2015-06-12 (주)포스코켐텍 Negative electrode active material for rechargeable lithium battery, method for preparing the same and rechargeable lithium battery using the same
KR101927294B1 (en) * 2013-12-18 2018-12-11 주식회사 엘지화학 Anode active material of high density and lithium secondary battery comprising the same
JP6281278B2 (en) * 2013-12-19 2018-02-21 日本ゼオン株式会社 Slurry composition for composite particle for electrochemical element negative electrode, composite particle for electrochemical element negative electrode, and method for producing composite particle for electrochemical element negative electrode
CN106463727B (en) * 2014-03-31 2019-03-15 Nec 能源元器件株式会社 Negative electrode active material, negative electrode and lithium ion secondary battery based on graphite
WO2015152115A1 (en) * 2014-03-31 2015-10-08 Necエナジーデバイス株式会社 Lithium ion secondary battery
US20170200941A1 (en) * 2014-06-06 2017-07-13 Nec Corporation Nano-carbon composite and method for producing the same
CN115504464A (en) 2014-07-07 2022-12-23 三菱化学株式会社 Carbon material, method for producing carbon material, and nonaqueous secondary battery using carbon material
JP6906891B2 (en) * 2015-09-02 2021-07-21 三菱ケミカル株式会社 Carbon material for non-aqueous secondary batteries and lithium ion secondary batteries
KR101938236B1 (en) 2015-11-11 2019-01-14 주식회사 엘지화학 Negative electrode slurry for secondary battery for improving dispensability and reducing resistance and negative electrode comprising the same
JP6859593B2 (en) * 2016-01-12 2021-04-14 三菱ケミカル株式会社 Carbon material for non-aqueous secondary batteries and lithium-ion secondary batteries
WO2017169616A1 (en) 2016-03-31 2017-10-05 パナソニックIpマネジメント株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries
JP6907677B2 (en) * 2017-04-25 2021-07-21 トヨタ自動車株式会社 Method for Manufacturing Negative Electrode Active Material Particles for Lithium Ion Secondary Battery
KR102347000B1 (en) * 2019-01-03 2022-01-05 주식회사 엘지에너지솔루션 Negative electrode active material for secondary battery, negative electrode including same and manufacturing method thereof
CN113161514A (en) * 2020-01-07 2021-07-23 珠海冠宇电池股份有限公司 Graphite composition, battery cathode and lithium ion battery
JP2023504473A (en) * 2020-04-30 2023-02-03 寧徳時代新能源科技股▲分▼有限公司 SECONDARY BATTERY, PREPARATION METHOD THEREOF, AND APPARATUS CONTAINING SAME SECONDARY BATTERY
CN114551829A (en) * 2022-02-10 2022-05-27 珠海冠宇电池股份有限公司 Cathode material and lithium ion battery containing same
WO2024044963A1 (en) * 2022-08-30 2024-03-07 宁德新能源科技有限公司 Negative electrode sheet, secondary battery, and electronic device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4828118B2 (en) * 1996-12-26 2011-11-30 日立化成工業株式会社 Negative electrode for lithium secondary battery
JP5430063B2 (en) * 2000-09-26 2014-02-26 三菱化学株式会社 Lithium secondary battery and negative electrode
JP2007200871A (en) * 2005-12-28 2007-08-09 Mitsubishi Chemicals Corp Lithium ion secondary battery
KR100817977B1 (en) * 2007-05-03 2008-03-31 엘에스전선 주식회사 Anode material of secondary battery and secondary battery using the same
JP5563743B2 (en) * 2008-03-28 2014-07-30 日立化成株式会社 Carbon material for negative electrode of lithium ion secondary battery, negative electrode mixture for lithium ion secondary battery and lithium ion secondary battery using the same
JP6121645B2 (en) * 2010-09-16 2017-04-26 三菱化学株式会社 Negative electrode material for non-aqueous electrolyte secondary battery, negative electrode using the same, and non-aqueous electrolyte secondary battery

Also Published As

Publication number Publication date
JP2013008526A (en) 2013-01-10

Similar Documents

Publication Publication Date Title
JP5927788B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
TWI620372B (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5277656B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode and lithium ion secondary battery
JP5494344B2 (en) Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5494343B2 (en) Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5439701B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP6938914B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP2008112710A (en) Negative electrode material for lithium secondary battery, negative electrode for lithium secondary battery using this, and lithium secondary battery
JP2008277231A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP6946781B2 (en) Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries
JP7371735B2 (en) Method for producing negative electrode material for lithium ion secondary batteries, and negative electrode material for lithium ion secondary batteries
CN102770994B (en) Anode material for lithium-ion secondary battery, the lithium ion secondary battery cathode using this negative material and lithium rechargeable battery
JP4747482B2 (en) Positive electrode material for lithium secondary battery, positive electrode for lithium secondary battery, and lithium secondary battery
JP5590159B2 (en) Negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP2009187924A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode
TWI752112B (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7226559B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
KR102608550B1 (en) Carbonaceous particles, negative electrode material for lithium ion secondary batteries, negative electrode for lithium ion secondary batteries, and lithium ion secondary batteries
JP6939880B2 (en) Negative electrode material for lithium ion secondary batteries, negative electrode materials for lithium ion secondary batteries, and lithium ion secondary batteries
KR20160121833A (en) Phosphate positive electrode active material for lithium secondary battery and a method of manufacturing the same
JP7444322B1 (en) Negative electrode materials for lithium ion secondary batteries, negative electrodes for lithium ion secondary batteries, and lithium ion secondary batteries
JP7226558B2 (en) Method for producing negative electrode material for lithium ion secondary battery and method for producing lithium ion secondary battery
WO2010082240A1 (en) Composite oxide, process for production thereof, and non-aqueous electrolyte secondary battery using the composite oxide
US20220223864A1 (en) Negative electrode active material for lithium ion secondary battery, negative electrode, and lithium ion secondary battery including the same

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20130426

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20140509

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141118

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20141119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150113

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150630

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150824

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20160126

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20160304

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20160329

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20160411

R151 Written notification of patent or utility model registration

Ref document number: 5927788

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

S533 Written request for registration of change of name

Free format text: JAPANESE INTERMEDIATE CODE: R313533

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350