JP2009187924A - Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode - Google Patents

Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode Download PDF

Info

Publication number
JP2009187924A
JP2009187924A JP2008175939A JP2008175939A JP2009187924A JP 2009187924 A JP2009187924 A JP 2009187924A JP 2008175939 A JP2008175939 A JP 2008175939A JP 2008175939 A JP2008175939 A JP 2008175939A JP 2009187924 A JP2009187924 A JP 2009187924A
Authority
JP
Japan
Prior art keywords
negative electrode
lithium ion
ion secondary
secondary battery
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008175939A
Other languages
Japanese (ja)
Inventor
Masayuki Kozu
将之 神頭
Yuriko Ida
百合子 井田
Keiji Okabe
圭児 岡部
Yoshito Ishii
義人 石井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Showa Denko Materials Co Ltd
Original Assignee
Hitachi Chemical Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Chemical Co Ltd filed Critical Hitachi Chemical Co Ltd
Priority to JP2008175939A priority Critical patent/JP2009187924A/en
Publication of JP2009187924A publication Critical patent/JP2009187924A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion secondary battery which has a high output characteristics at low temperature and has a high capacity, and to provide a negative electrode material for lithium ion secondary battery and a negative electrode for lithium ion secondary battery, for achieving the above battery. <P>SOLUTION: In the negative electrode material for the lithium ion secondary battery, a size Lc of crystallite analyzed by an X-ray diffraction method is 20 to 90 nm and an average surface distance (d002) is 0.3354 to 0.3370 nm, and a low crystallinity carbon layer is formed on its surface. The negative electrode for the lithium ion secondary battery is composed by having the above negative electrode material, and the lithium ion secondary battery is composed by using the above negative electrode. <P>COPYRIGHT: (C)2009,JPO&INPIT

Description

本発明は、リチウムイオン二次電池用負極材、リチウムイオン二次電池用負極及びこれを用いてなるリチウムイオン二次電池に関する。特に、ハイブリッド自動車及び電気自動車(車載用)の電源等の低温出力を必要とするリチウムイオン二次電池に関する。   The present invention relates to a negative electrode material for a lithium ion secondary battery, a negative electrode for a lithium ion secondary battery, and a lithium ion secondary battery using the same. In particular, the present invention relates to a lithium ion secondary battery that requires low-temperature output, such as a power source for a hybrid vehicle and an electric vehicle (for vehicle use).

リチウムイオン二次電池は電圧、容量が他の二次電池と比較し高いため、携帯電話、パソコン、ビデオカメラなどのモバイル機器用(民生用)の電池として最適であり、昨今その市場は著しい成長を遂げている。民生用のリチウムイオン二次電池では、長時間使用できる要求が高く、セル設計及び材料に関する研究開発は主に高容量化について行われてきた。   Lithium ion rechargeable batteries have higher voltage and capacity than other rechargeable batteries, making them ideal as batteries for mobile devices (consumer use) such as mobile phones, personal computers, video cameras, etc. Have achieved. Consumer-use lithium ion secondary batteries are highly demanded to be usable for a long time, and research and development on cell design and materials have been performed mainly for higher capacity.

近年、リチウムイオン二次電池は電動工具、電動自転車、ハイブリッド自動車及び電気自動車(車載用)の電源など、出力特性が要求される用途向けの検討が盛んに行われている。特に、ハイブリッド自動車及び電気自動車は、排ガス低減など地球環境保全の観点から非常に注目されており、今後、車載用リチウムイオン二次電池は大きな市場が形成されると予測されている。車載用リチウムイオン二次電池は、発進、加速時のパワーアシストに用いられるため、高い出力特性が要求されている。リチウムイオン二次電池の出力特性は0℃以下の低温域で著しく低下する問題があり、車載用リチウムイオン二次電池は、−30℃でも高い出力特性を維持できることが要求されている。   In recent years, lithium ion secondary batteries have been actively studied for applications that require output characteristics such as power tools, electric bicycles, hybrid vehicles, and power sources for electric vehicles (for in-vehicle use). In particular, hybrid vehicles and electric vehicles are attracting a great deal of attention from the viewpoint of global environmental conservation such as reduction of exhaust gas, and it is predicted that a large market will be formed in the future for in-vehicle lithium ion secondary batteries. Since an in-vehicle lithium ion secondary battery is used for power assist during start-up and acceleration, high output characteristics are required. There is a problem that the output characteristics of the lithium ion secondary battery are remarkably lowered in a low temperature range of 0 ° C. or lower, and the in-vehicle lithium ion secondary battery is required to maintain high output characteristics even at −30 ° C.

リチウムイオン二次電池は、正極、負極、セパレータ、非水系電解液及びこれらをパッキングするセル等からなる。負極材にはリチウムイオンを可逆的に吸蔵・放出できる炭素材料が主に使用されている。民生用のリチウムイオン二次電池は高い容量が求められており、負極材には高い容量と充放電効率を有する高結晶性黒鉛が主に用いられている(例えば、特許文献1、2参照)。   A lithium ion secondary battery is composed of a positive electrode, a negative electrode, a separator, a non-aqueous electrolyte, a cell packing these, and the like. As the negative electrode material, a carbon material capable of reversibly occluding and releasing lithium ions is mainly used. High-capacity lithium ion secondary batteries are required for consumer use, and high-crystalline graphite having high capacity and charge / discharge efficiency is mainly used for the negative electrode material (see, for example, Patent Documents 1 and 2). .

しかし、低温での高い出力特性が求められている車載用リチウムイオン二次電池には、民生用で開発されてきた負極材では、その特性を満足することができない。車載向けの負極材の低温出力特性を満足させるためには、民生向けに開発されてきた負極とは異なる新規負極材の開発が必要である。   However, for an in-vehicle lithium ion secondary battery that requires high output characteristics at low temperatures, the negative electrode material developed for consumer use cannot satisfy the characteristics. In order to satisfy the low-temperature output characteristics of the negative electrode material for in-vehicle use, it is necessary to develop a new negative electrode material different from the negative electrode that has been developed for consumer use.

負極材の低温特性の向上を図る手段として、例えば過去に黒鉛粒子表面に低結晶性の炭素を被覆する方法が報告されている。低結晶性炭素はリチウムの移動速度が速いとされており、そのためこれを被覆した負極材は、低温での入出力、サイクル特性が優れると報告されている。しかし、低結晶性炭素を被覆して低温特性改善を試みているいずれの報告においても、その核となる粒子には高結晶性黒鉛などの炭素材料を用いており、いずれの低温出力特性も、車載用リチウムイオン二次電池用負極材としては充分と言い切れない(例えば、特許文献3〜5参照)。一方、低結晶性炭素自体を負極材に用い、黒鉛と比較して高い出力特性が得られるという報告があるが、低結晶性炭素は黒鉛と比較して著しく容量が少ないという問題を有する(例えば、特許文献6参照)。   As a means for improving the low temperature characteristics of the negative electrode material, for example, a method of coating the surface of graphite particles with low crystalline carbon has been reported in the past. Low crystalline carbon is said to have a high lithium moving speed, and therefore, a negative electrode material coated with lithium is reported to have excellent input / output and cycle characteristics at low temperatures. However, in any report that attempts to improve low temperature characteristics by coating low crystalline carbon, the core particles are made of carbon material such as high crystalline graphite. It cannot be said to be sufficient as a negative electrode material for in-vehicle lithium ion secondary batteries (see, for example, Patent Documents 3 to 5). On the other hand, there is a report that low crystalline carbon itself is used as a negative electrode material and high output characteristics can be obtained compared to graphite, but low crystalline carbon has a problem that its capacity is remarkably small compared with graphite (for example, And Patent Document 6).

特開2005−259689号公報Japanese Patent Application Laid-Open No. 2005-259689 特開2003−331835号公報JP 2003-331835 A 特許2643035号公報Japanese Patent No. 2643035 特開2001−185147号公報JP 2001-185147 A 特許3106129号公報Japanese Patent No. 3106129 特開2006−140138号公報JP 2006-140138 A

本発明は、以上の従来の問題点に鑑みなされたものであり、以下の目的を達成することを課題とする。すなわち、
本発明の目的は、高い容量と低温における高い出力特性を有するリチウムイオン二次電池、及びこれを実現するためのリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極を提供することにある。
This invention is made | formed in view of the above conventional trouble, and makes it a subject to achieve the following objectives. That is,
An object of the present invention is to provide a lithium ion secondary battery having high capacity and high output characteristics at a low temperature, a negative electrode material for a lithium ion secondary battery, and a negative electrode for a lithium ion secondary battery for realizing the same. is there.

発明者らは鋭意検討の結果、特定の面間隔を有する負極材の結晶子の大きさが低温での出力特性に影響し、結晶子の大きさを制御することにより、高い容量と低温において高い出力特性を両立することができることを見出した。さらに、この負極材の表面に低結晶性炭素層を形成することにより、更なる低温出力特性の向上が図れることを見出した。
具体的には下記の(1)〜(4)に記載の事項を特徴とするものである。
As a result of intensive studies, the inventors have determined that the crystallite size of the negative electrode material having a specific interplanar spacing affects the output characteristics at low temperatures, and by controlling the crystallite size, it is high at high capacity and low temperature. It was found that the output characteristics can be compatible. Furthermore, it has been found that the low-temperature output characteristics can be further improved by forming a low crystalline carbon layer on the surface of the negative electrode material.
Specifically, the matters described in the following (1) to (4) are characterized.

(1) X線回折法より解析される結晶子の大きさLcの値が20〜90nm、平均面間隔(d002)の値が0.3354〜0.3370nmであり、かつ表面に低結晶性炭素層を有することを特徴とするリチウムイオン二次電池用負極材。
(2) 平均粒子径(50%D)が1〜40μmであることを特徴とする前記(1)に記載のリチウムイオン二次電池用負極材。
(3) 前記(1)または(2)に記載のリチウムイオン二次電池用負極材を有してなるリチウムイオン二次電池用負極。
(4) 前記(3)に記載のリチウムイオン二次電池用負極を用いてなるリチウムイオン二次電池。
(1) The crystallite size Lc analyzed by the X-ray diffraction method is 20 to 90 nm, the average interplanar spacing (d002) is 0.3354 to 0.3370 nm, and low crystalline carbon is present on the surface. A negative electrode material for a lithium ion secondary battery, comprising a layer.
(2) The negative electrode material for a lithium ion secondary battery as described in (1) above, wherein the average particle size (50% D) is 1 to 40 μm.
(3) A negative electrode for a lithium ion secondary battery comprising the negative electrode material for a lithium ion secondary battery according to (1) or (2).
(4) A lithium ion secondary battery using the negative electrode for a lithium ion secondary battery according to (3).

本発明によれば、高い容量と低温における高い出力特性を有するリチウムイオン二次電池、及びこれを実現するためのリチウムイオン二次電池用負極材、リチウムイオン二次電池用負極を提供することができる。   According to the present invention, it is possible to provide a lithium ion secondary battery having high capacity and high output characteristics at a low temperature, a negative electrode material for a lithium ion secondary battery, and a negative electrode for a lithium ion secondary battery for realizing the same. it can.

以下、本発明を詳細に説明する。
<リチウムイオン二次電池用負極材>
本発明のリチウムイオン二次電池用負極材(以下、単に「負極材」と呼ぶ場合がある。)は、X線回折法より解析される結晶子の大きさLcの値が20〜90nm、平均面間隔(d002)の値が0.3354〜0.3370nmであり、かつ表面に低結晶性炭素層を有することを特徴とする。
平均面間隔(d002)が黒鉛理論値に近いことで、非晶質炭素よりも高容量かつ高電圧な負極材を得ることができる。また、結晶子の大きさLcを小さくすることで、リチウムを挿入脱離することができるエッジ面を多くすることができ、かつ、結晶構造内のリチウム移動距離を短くすることができるため、低温においても高い出力特性を得ることができると考えられる。
Hereinafter, the present invention will be described in detail.
<Anode material for lithium ion secondary battery>
The negative electrode material for a lithium ion secondary battery of the present invention (hereinafter sometimes simply referred to as “negative electrode material”) has a crystallite size Lc analyzed by X-ray diffraction method of 20 to 90 nm, average The value of the interplanar spacing (d002) is 0.3354 to 0.3370 nm, and the surface has a low crystalline carbon layer.
When the average interplanar spacing (d002) is close to the theoretical graphite value, a negative electrode material having a higher capacity and higher voltage than amorphous carbon can be obtained. Further, by reducing the crystallite size Lc, the number of edge surfaces capable of inserting and extracting lithium can be increased, and the lithium moving distance in the crystal structure can be shortened. It is considered that high output characteristics can be obtained even in

[結晶子の大きさLc]
本発明において、結晶子の大きさLcは20〜90nmであるが、30〜85nmが好ましく、40〜80nmがより好ましい。結晶子の大きさLcの値が90nmを超えるものは結晶性が高く容量は優れるが、低温出力特性が劣る傾向がある。また、20nm未満のものは結晶性が低いため、容量が低下する傾向がある。
[Crystallite size Lc]
In the present invention, the crystallite size Lc is 20 to 90 nm, preferably 30 to 85 nm, and more preferably 40 to 80 nm. Those having a crystallite size Lc of more than 90 nm have high crystallinity and excellent capacity, but low temperature output characteristics tend to be inferior. Moreover, since the thing below 20 nm has low crystallinity, there exists a tendency for a capacity | capacitance to fall.

[平均面間隔(d002)]
本発明において、平均面間隔(d002)の値は0.3354〜0.3370nmであるが、0.3354〜0.3368nmが好ましく、0.3354〜0.3365nmがより好ましい。平均面間隔(d002)の値は0.3354nmが黒鉛結晶の理論値であり、この値に近い方が好ましい。また、0.3370nmを超えると結晶性が低下し、容量及び充放電時の電圧が低下する傾向がある。なお、本発明で示す結晶子の大きさLc、平均面間隔(d002)は、学振法に基づいて測定して得られる値である。
[Average spacing (d002)]
In the present invention, the average interplanar spacing (d002) is 0.3354 to 0.3370 nm, preferably 0.3354 to 0.3368 nm, and more preferably 0.3354 to 0.3365 nm. The value of the average interplanar spacing (d002) is 0.3354 nm, which is the theoretical value of graphite crystals, and is preferably closer to this value. Moreover, when it exceeds 0.3370 nm, crystallinity will fall, and there exists a tendency for the capacity | capacitance and the voltage at the time of charging / discharging to fall. The crystallite size Lc and the average interplanar spacing (d002) shown in the present invention are values obtained by measurement based on the Gakushin method.

本発明のリチウムイオン二次電池用負極材は、前記記載の結晶子の大きさLc、平均面間隔(d002)を満たすものであれば特に制限はない。例えば、リチウムイオン二次電池用負極材に用いられる炭素材料としては、人造黒鉛、天然黒鉛、低結晶性炭素、メソフェーズカーボン等が挙げられる。これらに熱処理を実施して結晶子の大きさLc及び平均面間隔(d002)を調整し、本発明のリチウムイオン二次電池用負極材を得ることが可能である。また、高分子化合物、ピッチ等の炭素質原料を熱処理することによって得ることも可能である。   The negative electrode material for a lithium ion secondary battery of the present invention is not particularly limited as long as it satisfies the crystallite size Lc and the average interplanar spacing (d002) described above. For example, examples of the carbon material used for the negative electrode material for a lithium ion secondary battery include artificial graphite, natural graphite, low crystalline carbon, mesophase carbon, and the like. It is possible to obtain a negative electrode material for a lithium ion secondary battery of the present invention by performing heat treatment on these to adjust the crystallite size Lc and the average interplanar spacing (d002). It can also be obtained by heat treating a carbonaceous raw material such as a polymer compound or pitch.

結晶子の大きさLc及び平均面間隔(d002)を調整する具体的な方法として、例えば、低結晶性炭素、黒鉛化が不十分な黒鉛、あるいは炭素質原料などを不活性雰囲気下、2000℃以上で熱処理することが挙げられる。一般的に炭素材料の黒鉛化は2000℃以上から進行するとされている。熱処理温度としては2000℃〜3000℃が好ましく、2200〜3000℃がより好ましく、2400℃〜3000℃がさらに好ましい。熱処理温度が2000℃未満の場合、充分な結晶子の大きさLc及び平均面間隔(d002)が得られない傾向がある。また、熱処理温度が3000℃を超える場合、高結晶性化が進み低温出力が低下する傾向がある。   As a specific method for adjusting the crystallite size Lc and the average interplanar spacing (d002), for example, low crystalline carbon, poorly graphitized graphite, or a carbonaceous raw material is used at 2000 ° C. in an inert atmosphere. The heat treatment is mentioned above. Generally, graphitization of a carbon material is said to proceed from 2000 ° C. or higher. The heat treatment temperature is preferably 2000 ° C to 3000 ° C, more preferably 2200 to 3000 ° C, and further preferably 2400 ° C to 3000 ° C. When the heat treatment temperature is less than 2000 ° C., sufficient crystallite size Lc and average interplanar spacing (d002) tend not to be obtained. On the other hand, when the heat treatment temperature exceeds 3000 ° C., the crystallinity increases and the low-temperature output tends to decrease.

熱処理を行う材料として、例えば、低結晶性炭素ではコークスなどが挙げられる。平均面間隔(d002)を黒鉛理論値に近づける点から、易黒鉛化性炭素を用いることが好ましい。また、コークスの中でも、結晶子の大きさLcを低くする点から、モザイクコークスを用いることが好ましい。また、黒鉛化が不十分な黒鉛としては、例えば、天然黒鉛の中でも土状黒鉛が挙げられる。天然黒鉛は産地、鉱山などにより結晶性、構造などが異なる黒鉛が得られ、鱗状、鱗片状、土状黒鉛などに分類されるが、中でも、結晶性が低い点から土状黒鉛が好ましい。また、炭素質原料として、例えば、塩化ビニル樹脂、フェノール樹脂、フラン樹脂、ポリビニル樹脂等の高分子化合物、またはピッチ等が挙げられる。中でも、平均面間隔(d002)を黒鉛理論値に近づける点から、塩化ビニル樹脂、ポリビニル樹脂、ピッチなどの易黒鉛化性炭素を用いることが好ましい。   Examples of the material to be heat-treated include coke for low crystalline carbon. From the viewpoint of bringing the average interplanar spacing (d002) close to the theoretical graphite value, it is preferable to use graphitizable carbon. Among cokes, it is preferable to use mosaic coke from the viewpoint of reducing the crystallite size Lc. Examples of graphite that is insufficiently graphitized include earth-like graphite among natural graphites. Natural graphite has different crystallinity and structure depending on the production area, mine, etc., and is classified into scaly, scaly, earthy graphite, etc. Among them, earthy graphite is preferred because of its low crystallinity. Examples of the carbonaceous raw material include polymer compounds such as vinyl chloride resin, phenol resin, furan resin, and polyvinyl resin, or pitch. Of these, graphitizable carbon such as vinyl chloride resin, polyvinyl resin, and pitch is preferably used from the viewpoint of bringing the average interplanar spacing (d002) close to the theoretical graphite value.

[低結晶性炭素層]
本発明のリチウムイオン二次電池用負極材は、負極材表面に低結晶性炭素層を有するが、その構成により、リチウムの挿入脱離速度が向上することが知られており、前記記載の結晶構造を有する負極材表面が低結晶性炭素層を有することで、低温出力特性をさらに向上させることができる。表面に低結晶性炭素層を有する負極材としては、負極材表面全体が低結晶性炭素層で覆われていることが好ましいが、部分的に低結晶性炭素が存在している状態でも構わない。
[Low crystalline carbon layer]
The negative electrode material for a lithium ion secondary battery of the present invention has a low crystalline carbon layer on the surface of the negative electrode material, and it is known that the insertion and desorption rate of lithium is improved by the structure, and the crystal described above Since the surface of the negative electrode material having a structure has a low crystalline carbon layer, the low-temperature output characteristics can be further improved. As a negative electrode material having a low crystalline carbon layer on the surface, it is preferable that the entire surface of the negative electrode material is covered with a low crystalline carbon layer, but a state in which low crystalline carbon is partially present may be used. .

負極材表面に低結晶性炭素層を形成する方法として特にこれらに限定はされないが、湿式混合法、化学蒸着法、メカノケミカル法などが挙げられる。均一かつ反応系が制御でき、負極材形状が維持できるといった点から、化学蒸着法及び湿式混合法が好ましい。低結晶性炭素層を形成するための炭素源についても特に限定はないが、化学蒸着法では脂肪族炭化水素、芳香族炭化水素、脂環族炭化水素など用いることができ、具体的にはメタン、エタン、プロパン、トルエン、ベンゼン、キシレン、スチレン、ナフタレン、クレゾール、アントラセン、またはこれらの誘導体等が挙げられる。また、湿式混合法及びメカノケミカル法では、フェノール樹脂、スチレン樹脂等の高分子化合物、ピッチ等の炭化可能な固体物などを、固形または溶解物などにして処理を行うことができる。処理温度については、化学蒸着法では、800〜1200℃で熱処理することが好ましい。800℃未満では蒸着炭素の生成速度が遅く、処理時間が長くなる傾向がある。一方、1200℃を超えると生成速度が速すぎるため、被膜形成の制御が困難となる傾向がある。また、湿式混合法及びメカノケミカル法では、700〜2000℃で熱処理することが好ましい。湿式混合法及びメカノケミカル法では、負極材表面に予め炭素源を均一に付着させて焼成するため、比較的高温でも熱処理することが可能である。700℃未満では炭素結晶性が低すぎるため、電解液分解性が高くなる傾向がある。2000℃を超えると炭素結晶性が高くなりすぎるため、出力特性が低下する傾向がある。   The method for forming the low crystalline carbon layer on the surface of the negative electrode material is not particularly limited, and examples thereof include a wet mixing method, a chemical vapor deposition method, and a mechanochemical method. The chemical vapor deposition method and the wet mixing method are preferable from the viewpoint that the reaction system can be controlled uniformly and the shape of the negative electrode material can be maintained. The carbon source for forming the low crystalline carbon layer is not particularly limited, but in the chemical vapor deposition method, aliphatic hydrocarbons, aromatic hydrocarbons, alicyclic hydrocarbons, etc. can be used. Ethane, propane, toluene, benzene, xylene, styrene, naphthalene, cresol, anthracene, or derivatives thereof. In the wet mixing method and the mechanochemical method, a polymer compound such as a phenol resin or a styrene resin, or a carbonizable solid material such as pitch can be processed as a solid or dissolved material. About processing temperature, it is preferable to heat-process at 800-1200 degreeC with a chemical vapor deposition method. If it is less than 800 degreeC, the production | generation rate of vapor deposition carbon will be slow, and there exists a tendency for processing time to become long. On the other hand, when the temperature exceeds 1200 ° C., the production rate is too high, and thus control of film formation tends to be difficult. Moreover, in the wet mixing method and the mechanochemical method, it is preferable to heat-process at 700-2000 degreeC. In the wet mixing method and the mechanochemical method, the carbon source is uniformly deposited in advance on the surface of the negative electrode material and fired, so that heat treatment can be performed even at a relatively high temperature. If it is less than 700 ° C., the carbon crystallinity is too low, so that the electrolytic solution decomposability tends to be high. When the temperature exceeds 2000 ° C., the carbon crystallinity becomes too high, and the output characteristics tend to deteriorate.

負極材表面に形成する低結晶性炭素層の量について、本発明では、炭素源の残炭率を熱重量分析などにより予め測定しておき、作製時の炭素源使用量及びその残炭率の積を被覆した炭素量とする。低結晶性炭素層の炭素量については特に制限はないが、0.5wt%〜20wt%が好ましく、1wt%〜15wt%がより好ましく、2wt%〜10wt%がより好ましい。低結晶性炭素層の炭素量が0.5wt%未満であると、十分な低温出力特性が得られない傾向がある。また、低結晶性炭素層の炭素量20wt%を超えると低比表面積化によって低温出力特性の低下が見られるほか、粒子同子の凝集、あるいは低結晶性成分が多いことによる容量低下が起こる傾向が見られる。なお、負極材表面に被覆された低結晶性炭素については、透過型電子顕微鏡(TEM)により観察することが可能である。例えば、図1、図2に示すように、負極材表面に形成された低結晶性炭素層は、負極材のグラファイト層の構造とは明らかに異なること確認することができる。なお、図1における矢印は負極材の表面を指し示し、図2における2つの矢印はそれぞれ低結晶炭素層の表面と裏面とにおける一方の面と他方の面とを指し示す。
また、ラマンスペクトル解析から得られるR値を用いても、層形成処理前後でR値が増加する傾向があるため、形成された低結晶性炭素層の確認を便宜的に行うことができる。さらに、負極材表面に形成されている低結晶性炭素層は、核粒子の量と比較して少量であるため、XRD解析には大きく影響しない。よって、平均面間隔(d002)及び結晶子の大きさLc値は、核粒子のものと同等とみなすことができる。
About the amount of the low crystalline carbon layer to be formed on the surface of the negative electrode material, in the present invention, the residual carbon rate of the carbon source is measured in advance by thermogravimetric analysis, etc. The product is the amount of carbon covered. Although there is no restriction | limiting in particular about the carbon content of a low crystalline carbon layer, 0.5 wt%-20 wt% are preferable, 1 wt%-15 wt% are more preferable, 2 wt%-10 wt% are more preferable. When the amount of carbon in the low crystalline carbon layer is less than 0.5 wt%, sufficient low temperature output characteristics tend not to be obtained. In addition, when the carbon content of the low crystalline carbon layer exceeds 20 wt%, the low temperature output characteristics are reduced due to the low specific surface area, and the capacity decreases due to the aggregation of particles or the presence of many low crystalline components. Is seen. The low crystalline carbon coated on the surface of the negative electrode material can be observed with a transmission electron microscope (TEM). For example, as shown in FIGS. 1 and 2, it can be confirmed that the low crystalline carbon layer formed on the surface of the negative electrode material is clearly different from the structure of the graphite layer of the negative electrode material. In addition, the arrow in FIG. 1 points out the surface of a negative electrode material, and the two arrows in FIG. 2 point out the one surface and the other surface in the surface and back surface of a low crystalline carbon layer, respectively.
Further, even when the R value obtained from the Raman spectrum analysis is used, the R value tends to increase before and after the layer formation treatment, so that the formed low crystalline carbon layer can be confirmed conveniently. Furthermore, since the low crystalline carbon layer formed on the surface of the negative electrode material is small compared with the amount of the core particles, it does not greatly affect the XRD analysis. Therefore, the average interplanar spacing (d002) and the crystallite size Lc can be regarded as equivalent to those of the core particles.

ラマンスペクトル解析から得られるR値を用いて低結晶性炭素層の確認を行うには、 波長514.5nmのアルゴンレーザー光を用いたラマンスペクトル分析において、R=I1580/I1350(I1580はラマンスペクトルにおいて、1580〜1620cm−1の範囲のピークP1の強度、I1350は1350〜1370cm−1の範囲のピークP2の強度)で示されるR値によって確認する。波長514.5nmのアルゴンレーザー光を用いて測定されたラマンスペクトル中、1580〜1620cm−1の範囲のピークP1は高結晶性炭素、1350〜1370cm−1の範囲のピークP2は低結晶性炭素に対応する。 In order to confirm the low crystalline carbon layer using the R value obtained from the Raman spectrum analysis, in the Raman spectrum analysis using an argon laser beam having a wavelength of 514.5 nm, R = I1580 / I1350 (I1580 is the Raman spectrum) the intensity of the peak P1 in the range of 1580~1620cm -1, I1350 is confirmed by R value represented by 1350~1370cm intensity of the peak P2 in the range of -1). In the Raman spectrum measured using an argon laser beam having a wavelength of 514.5 nm, the peak P1 in the range of 1580 to 1620 cm −1 is high crystalline carbon, and the peak P2 in the range of 1350 to 1370 cm −1 is low crystalline carbon. Correspond.

本発明のリチウムイオン二次電池用負極材は、平均粒子径(50%D)1〜40μmであることが好ましい。本発明の負極材の粉砕については、低結晶性炭素層を形成する前の負極材について行うことが好ましい。これは、低結晶性炭素層を形成した後に粉砕すると、層形成した炭素が剥離したりするためである。また、粉砕機については、ハンマーミル、ビースミル、ターボミル、ジェットミル等が挙げられるが、特にこれらに限定はない。   The negative electrode material for a lithium ion secondary battery of the present invention preferably has an average particle diameter (50% D) of 1 to 40 μm. About the grinding | pulverization of the negative electrode material of this invention, it is preferable to carry out about the negative electrode material before forming a low crystalline carbon layer. This is because when the low crystalline carbon layer is formed and then pulverized, the layered carbon peels off. Examples of the pulverizer include a hammer mill, a bead mill, a turbo mill, and a jet mill, but there is no particular limitation thereto.

本発明のリチウムイオン二次電池用負極材の平均粒子径(50%D)は1〜40μmであることが好ましいが、1〜30μmがより好ましく、1〜20μmがさらに好ましい。平均粒子径(50%D)は小さくなるほど低温出力特性が向上するが、比表面積が増加し、充放電効率が低下する傾向がある。一方、平均粒子径(50%D)が大きくなると、低温出力特性は低下するが、充放電効率が向上する傾向がある。よって、平均粒子径(50%D)については電池設計の観点から出力特性を充放電効率などとのバランスを考慮し、適宜決定することが好ましい。なお、本発明の負極材については、平均粒子径(50%D)が1μm以下であると、大きな出力特性向上の効果が見られないほか、電極作製上、スラリー化しにくいといった製造上の問題点を生じる。また、平均粒子径(50%D)が40μmを超えると、低温での出力特性が著しく低下する問題が生じる。
なお、粒度分布は界面活性剤を含んだ精製水に試料を分散させ、レーザー回折式粒度分布測定装置(株式会社島津製作所製SALD−3000J)で測定することができ、平均粒径は50%Dとして算出される。
The average particle size (50% D) of the negative electrode material for a lithium ion secondary battery of the present invention is preferably 1 to 40 μm, more preferably 1 to 30 μm, and even more preferably 1 to 20 μm. As the average particle size (50% D) decreases, the low-temperature output characteristics improve, but the specific surface area increases and the charge / discharge efficiency tends to decrease. On the other hand, when the average particle size (50% D) is increased, the low-temperature output characteristics are lowered, but the charge / discharge efficiency tends to be improved. Therefore, the average particle size (50% D) is preferably determined as appropriate from the viewpoint of battery design in consideration of the balance with charge / discharge efficiency and the like. In addition, regarding the negative electrode material of the present invention, when the average particle diameter (50% D) is 1 μm or less, there is no significant improvement in output characteristics, and it is difficult to make a slurry in terms of electrode preparation. Produce. On the other hand, when the average particle size (50% D) exceeds 40 μm, there arises a problem that output characteristics at low temperatures are remarkably deteriorated.
The particle size distribution can be measured by dispersing a sample in purified water containing a surfactant and measuring with a laser diffraction particle size distribution measuring device (SALD-3000J, manufactured by Shimadzu Corporation), and the average particle size is 50% D Is calculated as

<リチウムイオン二次電池用負極>
本発明のリチウムイオン二次電池用負極は、既述の本発明のリチウムイオン二次電池用負極材を用いてなることを特徴とする。
例えば、上述の本発明のリチウムイオン二次電池用負極材及び有機結着材を溶剤とともに撹拌機、ボールミル、スーパーサンドミル、加圧ニーダー等の分散装置により混練して、負極材スラリーを調製し、これを集電体に塗布して負極層を形成する、または、ペースト状の負極材スラリーをシート状、ペレット状等の形状に成形し、これを集電体と一体化することで得ることができる。
<Anode for lithium ion secondary battery>
The negative electrode for a lithium ion secondary battery of the present invention is characterized by using the above-described negative electrode material for a lithium ion secondary battery of the present invention.
For example, the negative electrode material and the organic binder for the lithium ion secondary battery of the present invention described above are kneaded together with a solvent by a dispersing device such as a stirrer, a ball mill, a super sand mill, a pressure kneader to prepare a negative electrode material slurry, This can be applied to a current collector to form a negative electrode layer, or a paste-like negative electrode material slurry can be formed into a sheet shape, a pellet shape, etc. and integrated with the current collector. it can.

上記有機系結着剤としては、特に限定されないが、例えば、スチレン−ブタジエン共重合体、メチル(メタ)アクリレート、エチル(メタ)アクリレート、ブチル(メタ)アクリレート、(メタ)アクリロニトリル、ヒドロキシエチル(メタ)アクリレート等のエチレン性不飽和カルボン酸エステル、アクリル酸、メタクリル酸、イタコン酸、フマル酸、マレイン酸等のエチレン性不飽和カルボン酸、ポリ弗化ビニリデン、ポリエチレンオキサイド、ポリエピクロヒドリン、ポリフォスファゼン、ポリアクリロニトリル等のイオン導電性の大きな高分子化合物などが挙げられる。この有機系結着剤の含有量は、本発明のリチウムイオン二次電池用負極材と有機系結着剤の合計100重量部に対して1〜20重量部含有することが好ましい。   The organic binder is not particularly limited. For example, styrene-butadiene copolymer, methyl (meth) acrylate, ethyl (meth) acrylate, butyl (meth) acrylate, (meth) acrylonitrile, hydroxyethyl (meth) ) Ethylenically unsaturated carboxylic acid esters such as acrylates, ethylenically unsaturated carboxylic acids such as acrylic acid, methacrylic acid, itaconic acid, fumaric acid and maleic acid, polyvinylidene fluoride, polyethylene oxide, polyepichlorohydrin, polyphosphoric acid Examples thereof include polymer compounds having a large ion conductivity such as sphazene and polyacrylonitrile. The content of the organic binder is preferably 1 to 20 parts by weight with respect to 100 parts by weight in total of the negative electrode material for a lithium ion secondary battery and the organic binder of the present invention.

また、上記負極材スラリーには、粘度を調整するための増粘剤を添加してもよい。増粘剤としては、例えば、カルボキシメチルセルロース、メチルセルロース、ヒドロキシメチルセルロース、エチルセルロース、ポリビニルアルコール、ポリアクリル酸(塩)、酸化スターチ、リン酸化スターチ、カゼインなどを使用することができる。   Moreover, you may add the thickener for adjusting a viscosity to the said negative electrode material slurry. As the thickener, for example, carboxymethylcellulose, methylcellulose, hydroxymethylcellulose, ethylcellulose, polyvinyl alcohol, polyacrylic acid (salt), oxidized starch, phosphorylated starch, casein and the like can be used.

また、上記負極材スラリーには、導電補助材を混合してもよい。導電補助材としては、例えば、カーボンブラック、グラファイト、アセチレンブラック、あるいは導電性を示す酸化物や窒化物等が挙げられる。導電補助剤の使用量は、本発明の負極材の1〜15重量%程度とすればよい。   Moreover, you may mix a conductive support material with the said negative electrode material slurry. Examples of the conductive auxiliary material include carbon black, graphite, acetylene black, or an oxide or nitride that exhibits conductivity. The usage-amount of a conductive support agent should just be about 1 to 15 weight% of the negative electrode material of this invention.

また、上記集電体の材質および形状については、特に限定されず、例えば、アルミニウム、銅、ニッケル、チタン、ステンレス鋼等を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いればよい。また、多孔性材料、たとえばポーラスメタル(発泡メタル)やカーボンペーパーなども使用可能である。   Further, the material and shape of the current collector are not particularly limited. For example, a strip-shaped one made of aluminum, copper, nickel, titanium, stainless steel or the like in a foil shape, a punched foil shape, a mesh shape, or the like. Use it. A porous material such as porous metal (foamed metal) or carbon paper can also be used.

上記負極材スラリーを集電体に塗布する方法としては、特に限定されないが、例えば、メタルマスク印刷法、静電塗装法、ディップコート法、スプレーコート法、ロールコート法、ドクターブレード法、グラビアコート法、スクリーン印刷法など公知の方法が挙げられる。塗布後は、必要に応じて平板プレス、カレンダーロール等による圧延処理を行う。また、シート状、ペレット状等の形状に成形された負極材スラリーと集電体との一体化は、例えば、ロール、プレス、もしくはこれらの組み合わせ等、公知の方法により行うことができる。   The method of applying the negative electrode material slurry to the current collector is not particularly limited. For example, metal mask printing method, electrostatic coating method, dip coating method, spray coating method, roll coating method, doctor blade method, gravure coating And publicly known methods such as screen printing and the like. After the application, a rolling process using a flat plate press, a calendar roll, or the like is performed as necessary. Further, the integration of the negative electrode material slurry formed into a sheet shape, a pellet shape, and the like with the current collector can be performed by a known method such as a roll, a press, or a combination thereof.

<リチウムイオン二次電池>
本発明のリチウムイオン二次電池は、既述の本発明のリチウムイオン二次電池用負極を用いてなることを特徴とする。例えば、上記本発明のリチウムイオン二次電池用負極と正極とをセパレータを介して対向して配置し、電解液を注入することにより得ることができる。
<Lithium ion secondary battery>
The lithium ion secondary battery of the present invention is characterized by using the above-described negative electrode for a lithium ion secondary battery of the present invention. For example, it can be obtained by placing the negative electrode for a lithium ion secondary battery and the positive electrode of the present invention facing each other with a separator interposed therebetween and injecting an electrolytic solution.

上記正極は、上記負極と同様にして、集電体表面上に正極層を形成することで得ることができる。この場合の集電体はアルミニウム、チタン、ステンレス鋼等の金属や合金を、箔状、穴開け箔状、メッシュ状等にした帯状のものを用いることができる。   The positive electrode can be obtained by forming a positive electrode layer on the current collector surface in the same manner as the negative electrode. In this case, the current collector may be a band-shaped material made of a metal or an alloy such as aluminum, titanium, or stainless steel in a foil shape, a punched foil shape, a mesh shape, or the like.

上記正極層に用いる正極材料としては、特に制限はなく、例えば、リチウムイオンをドーピングまたはインターカレーション可能な金属化合物、金属酸化物、金属硫化物、または導電性高分子材料を用いればよく、特に限定されないが、例えば、コバルト酸リチウム(LiCoO)、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、およびこれらの複酸化物(LiCoxNiyMnzO、x+y+z=1)、リチウムマンガンスピネル(LiMn)、リチウムバナジウム化合物、V、V13、VO、MnO、TiO、MoV、TiS、V、VS、MoS、MoS、Cr、Cr、オリビン型LiMPO(M:Co、Ni、Mn、Fe)、ポリアセチレン、ポリアニリン、ポリピロール、ポリチオフェン、ポリアセン等の導電性ポリマー、多孔質炭素等などを単独或いは混合して使用することができる。 The positive electrode material used for the positive electrode layer is not particularly limited. For example, a metal compound, metal oxide, metal sulfide, or conductive polymer material that can be doped or intercalated with lithium ions may be used. Without limitation, for example, lithium cobaltate (LiCoO 2 ), lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and double oxides thereof (LiCoxNiyMnzO 2 , x + y + z = 1), lithium manganese spinel (LiMn) 2 O 4), lithium vanadium compounds, V 2 O 5, V 6 O 13, VO 2, MnO 2, TiO 2, MoV 2 O 8, TiS 2, V 2 S 5, VS 2, MoS 2, MoS 3, Cr 3 O 8 , Cr 2 O 5 , olivine type LiMPO 4 (M: Co, Ni, Mn, Fe), conductive polymers such as polyacetylene, polyaniline, polypyrrole, polythiophene, and polyacene, porous carbon, and the like can be used alone or in combination.

上記セパレータとしては、例えば、ポリエチレン、ポリプロピレン等のポリオレフィンを主成分とした不織布、クロス、微孔フィルム又はそれらを組み合わせたものを使用することができる。なお、作製するリチウムイオン二次電池の正極と負極が直接接触しない構造にした場合は、セパレータを使用する必要はない。   As the separator, for example, a nonwoven fabric mainly composed of polyolefin such as polyethylene and polypropylene, cloth, microporous film, or a combination thereof can be used. In addition, when it is set as the structure where the positive electrode and negative electrode of a lithium ion secondary battery to produce are not in direct contact, it is not necessary to use a separator.

上記電解液としては、例えば、LiClO、LiPF、LiAsF、LiBF、LiSOCF等のリチウム塩を、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ビニレンカーボネート、シクロペンタノン、スルホラン、3−メチルスルホラン、2,4−ジメチルスルホラン、3−メチル−1,3−オキサゾリジン−2−オン、γ−ブチロラクトン、ジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネート、メチルプロピルカーボネート、ブチルメチルカーボネート、エチルプロピルカーボネート、ブチルエチルカーボネート、ジプロピルカーボネート、1,2−ジメトキシエタン、テトラヒドロフラン、2−メチルテトラヒドロフラン、1,3−ジオキソラン、酢酸メチル、酢酸エチル等の単体もしくは2成分以上の混合物の非水系溶剤に溶解した、いわゆる有機電解液を使用することができる。 Examples of the electrolyte include lithium salts such as LiClO 4 , LiPF 6 , LiAsF 6 , LiBF 4 , LiSO 3 CF 3 , ethylene carbonate, propylene carbonate, butylene carbonate, vinylene carbonate, cyclopentanone, sulfolane, 3- Methyl sulfolane, 2,4-dimethyl sulfolane, 3-methyl-1,3-oxazolidine-2-one, γ-butyrolactone, dimethyl carbonate, diethyl carbonate, ethyl methyl carbonate, methyl propyl carbonate, butyl methyl carbonate, ethyl propyl carbonate, Butyl ethyl carbonate, dipropyl carbonate, 1,2-dimethoxyethane, tetrahydrofuran, 2-methyltetrahydrofuran, 1,3-dioxolane, methyl acetate A so-called organic electrolyte solution dissolved in a non-aqueous solvent of a simple substance such as ethyl acetate or a mixture of two or more components can be used.

本発明のリチウムイオン二次電池の構造は、特に限定されないが、通常、正極および負極と、必要に応じて設けられるセパレータとを、扁平渦巻状に巻回して巻回式極板群としたり、これらを平板状として積層して積層式極板群としたりし、これら極板群を外装体中に封入した構造とするのが一般的である。   Although the structure of the lithium ion secondary battery of the present invention is not particularly limited, usually, a positive electrode and a negative electrode, and a separator provided as necessary, are wound into a flat spiral to form a wound electrode group, In general, these are laminated as a flat plate to form a laminated electrode plate group, or the electrode plate group is enclosed in an exterior body.

本発明のリチウムイオン二次電池は、特に限定されないが、ペーパー型電池、ボタン型電池、コイン型電池、積層型電池、円筒型電池、角型電池などとして使用される。   The lithium ion secondary battery of the present invention is not particularly limited, but is used as a paper-type battery, a button-type battery, a coin-type battery, a laminated battery, a cylindrical battery, a rectangular battery, or the like.

上述の本発明のリチウムイオン二次電池用負極材は、リチウムイオン二次電池用と記載したが、リチウムイオンを挿入脱離することを充放電機構とする電気化学装置全般、例えば、ハイブリッドキャパシタなどにも適用することが可能である。   The above-described negative electrode material for a lithium ion secondary battery according to the present invention has been described as being used for a lithium ion secondary battery. It is also possible to apply to.

以下に実施例により本発明を更に具体的に説明するが、本発明は以下の実施例に限定されるものではない。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples.

[実施例1]
(負極材の作製)
中国産の天然土状黒鉛を、ジェットミルで平均粒子径(50%D)4μmまで粉砕した。この粉砕粉200gと、THF300mlに石炭系ピッチ(軟化点90℃)16gを溶解させた溶液とを40℃の温度で1時間撹拌混合した後、溶媒のTHFを減圧除去し、その後、120℃で完全に乾燥させて混合物を得た。混合物は窒素雰囲気の焼成炉内で900℃、3時間の焼成を行い、粒子表面に低結晶性炭素層が形成された負極材を得た。得られた負極材はミキサーで解砕した後、300メッシュ篩で篩分けを行い、その篩下分を本実施例の負極材とした。得られた負極材については、下記方法により、XRD解析、ラマンスペクトル解析、比表面積測定、及び平均粒子径(50%D)測定について評価した。
[Example 1]
(Preparation of negative electrode material)
Natural earth-like graphite from China was pulverized with a jet mill to an average particle size (50% D) of 4 μm. After 200 g of this pulverized powder and a solution obtained by dissolving 16 g of coal-based pitch (softening point 90 ° C.) in 300 ml of THF were stirred and mixed at a temperature of 40 ° C. for 1 hour, THF as a solvent was removed under reduced pressure, and then at 120 ° C. Completely dried to obtain a mixture. The mixture was fired at 900 ° C. for 3 hours in a firing furnace in a nitrogen atmosphere to obtain a negative electrode material in which a low crystalline carbon layer was formed on the particle surface. The obtained negative electrode material was pulverized with a mixer and then sieved with a 300 mesh sieve, and the portion under the sieve was used as the negative electrode material of this example. About the obtained negative electrode material, the following method evaluated the XRD analysis, the Raman spectrum analysis, the specific surface area measurement, and the average particle diameter (50% D) measurement.

○XRD解析(結晶子の大きさLc、平均面間隔(d002)の測定)
リガク社製広角X線回折測定装置で行い、学振法に基づき、結晶子の大きさLc、平均面間隔(d002)を算出した。結晶子の大きさLc及び平均面間隔(d002)は(002)由来のピークより求めた。
○R値測定(ラマンスペクトル解析)
日本分光社製ラマンスペクトル測定装置NRS−1000型(励起光:アルゴンイオンレーザ 514.5nm)を用いて測定した。R値は、測定範囲(830cm−1〜1940cm−1)全体をベースラインとし、Gバンド由来のピーク高さ(Hg)とDバンド由来のピーク高さ(Hd)の比、Hd/HgをR値とした。
○BET比表面積測定
島津製作所製のN吸脱着測定装置ASAP−2010を用いて測定を行った。比表面積はBET法より算出した。
○平均粒子径(50%D)測定
〈平均粒子径の測定方法〉
負極材試料を界面活性剤と共に精製水中に分散させた溶液を、レーザー回折式粒度分布測定装置((株)島津製作所製SALD−3000J)の試料水槽に入れ、超音波をかけながらポンプで循環させながら、レーザー回折式で測定した。得られた粒度分布の累積50%粒径(50%D)を平均粒径とした。
○ XRD analysis (measurement of crystallite size Lc, average interplanar spacing (d002))
The measurement was performed with a wide-angle X-ray diffraction measurement apparatus manufactured by Rigaku Corporation, and the crystallite size Lc and average interplanar spacing (d002) were calculated based on the Gakushin method. The crystallite size Lc and average plane spacing (d002) were determined from the peak derived from (002).
○ R value measurement (Raman spectrum analysis)
The measurement was performed using a Raman spectrum measuring apparatus NRS-1000 type (excitation light: argon ion laser 514.5 nm) manufactured by JASCO Corporation. The R value is based on the entire measurement range (830 cm −1 to 1940 cm −1 ) as a baseline, the ratio of the peak height (Hg) derived from the G band to the peak height (Hd) derived from the D band, and Hd / Hg as R Value.
○ was measured using a BET specific surface area measurement Shimadzu N 2 adsorption-desorption measurement device ASAP-2010. The specific surface area was calculated by the BET method.
○ Measurement of average particle size (50% D) <Measuring method of average particle size>
A solution in which a negative electrode material sample is dispersed in purified water together with a surfactant is placed in a sample water tank of a laser diffraction particle size distribution analyzer (SALD-3000J, manufactured by Shimadzu Corporation) and circulated with a pump while applying ultrasonic waves. However, it was measured by a laser diffraction method. The 50% cumulative particle size (50% D) of the obtained particle size distribution was taken as the average particle size.

(リチウムイオン二次電池用負極の作製)
リチウムイオン二次電池用負極を作製するに当たり、負極材98重量%、バインダーとしてスチレンブタジエン樹脂1重量%、増粘材としてカルボキシメチルセルロース1重量%を固形分とした水分散塗料を調製し、これを50μmの銅箔上に70μm程度の厚みになるように塗工した。この塗工物を、80℃で5時間、120℃で3時間乾燥させた。乾燥後、リチウムイオン二次電池用負極として評価するため、放電容量評価用に9mmφの円形状に打ち抜き、−30℃DCR評価用に16mmφの円形状に打ち抜いた。
(Preparation of negative electrode for lithium ion secondary battery)
In preparing a negative electrode for a lithium ion secondary battery, a water-dispersed paint having a solid content of 98% by weight of a negative electrode material, 1% by weight of a styrene butadiene resin as a binder and 1% by weight of carboxymethyl cellulose as a thickener is prepared. It coated so that it might become a thickness of about 70 micrometers on 50 micrometers copper foil. The coated product was dried at 80 ° C. for 5 hours and at 120 ° C. for 3 hours. After drying, in order to evaluate as a negative electrode for a lithium ion secondary battery, a 9 mmφ circular shape was punched for discharge capacity evaluation, and a 16 mmφ circular shape was cut for -30 ° C DCR evaluation.

(評価用セルの作製)
評価用セルは、CR2016型コインセルに上記負極と金属リチウムを40μmのポリプロピレン製セパレータを介して対向させ、電解液を注入することにより作製した。電解液は、放電容量評価に、エチルカーボネートとメチルエチルカーボネートを体積比3対7の混合溶媒LiPFを1mol/Lの濃度になるように溶解させたものを用いた(1M LiPF EC:MEC=3:7)。また、−30℃DCR測定には、前記記載の電解液にビニルカーボネートを1.5重量%添加させたものを用いた(1M LiPF EC:MEC=3:7+ 1.5wt%VC)。
(Production of evaluation cell)
The evaluation cell was produced by injecting an electrolyte solution with a CR2016 coin cell facing the negative electrode and metallic lithium through a 40 μm polypropylene separator. The electrolytic solution used for the evaluation of the discharge capacity was one obtained by dissolving ethyl carbonate and methyl ethyl carbonate in a mixed solvent LiPF 6 having a volume ratio of 3 to 7 so as to have a concentration of 1 mol / L (1M LiPF 6 EC: MEC). = 3: 7). Further, -30 ° C. DCR was used for the measurement that the vinyl carbonate is added 1.5 wt% in the electrolyte of the claimed (1M LiPF 6 EC: MEC = 3: 7+ 1.5wt% VC).

−放電容量及び−30℃下の直流抵抗(DCR)の評価−
○評価条件
放電容量評価は、初回の充放電試験の放電容量とした。評価条件は25℃雰囲気下、0.2mA(0.28mA/cm)の定電流で0Vまで充電後、0Vの定電圧で電流値が0.028mAになるまで充電し、次いで、0.2mAの定電流で1.5Vの電圧値まで放電を行った。
−30℃DCR評価は、上記同様の条件で充放電試験を実施した後、0.5mAの定電流で50%の充電状態(SOC)になるように充電を行った。この充電状態のコインセルを−30℃の雰囲気下にし、0.235mAで1分定電流放電し、次いで0.705mAで1分定電流放電し、更に1.175mAで1分定電流放電を行った。上記試験から、SOC50%の電圧値と各電流値での放電10秒後の電圧値の差(ΔV)を求め、横軸に電流値、縦軸にΔVをプロットした図の傾きを−30℃DCR値とした。なお、−30℃DCR値は、340Ω以下であれば良好である。
-Evaluation of discharge capacity and direct current resistance (DCR) at -30 ° C-
○ Evaluation conditions The discharge capacity evaluation was the discharge capacity of the first charge / discharge test. The evaluation condition is that the battery is charged to 0 V with a constant current of 0.2 mA (0.28 mA / cm 2 ) in a 25 ° C. atmosphere, then charged to a current value of 0.028 mA with a constant voltage of 0 V, and then 0.2 mA. Discharge was performed to a voltage value of 1.5 V at a constant current of.
In the −30 ° C. DCR evaluation, after conducting a charge / discharge test under the same conditions as described above, the battery was charged so as to be in a 50% state of charge (SOC) at a constant current of 0.5 mA. The charged coin cell was placed in an atmosphere of −30 ° C., discharged at a constant current of 0.235 mA for 1 minute, then discharged at a constant current of 0.705 mA for 1 minute, and further discharged at a constant current of 1.175 mA for 1 minute. . From the above test, the difference (ΔV) between the voltage value of SOC 50% and the voltage value after 10 seconds of discharge at each current value was obtained, and the slope of the graph plotting the current value on the horizontal axis and ΔV on the vertical axis was −30 ° C. The DCR value was used. The -30 ° C DCR value is good if it is 340Ω or less.

[実施例2]
実施例1において、中国産の土状黒鉛を不活性雰囲気下、2900℃で3時間処理して用いた以外は、実施例1と同様にして負極材を作製し同様の評価を行った。
[Example 2]
In Example 1, a negative electrode material was prepared and evaluated in the same manner as in Example 1 except that Chinese earth graphite was used after being treated at 2900 ° C. for 3 hours under an inert atmosphere.

[実施例3]
実施例1において、モザイクコークスを不活性雰囲気下、2800℃で3時間処理して得た人造黒鉛を用いた以外は、実施例1と同様にして負極材を作製し同様の評価を行った。
[Example 3]
In Example 1, a negative electrode material was prepared and evaluated in the same manner as in Example 1 except that artificial graphite obtained by treating mosaic coke at 2800 ° C. for 3 hours in an inert atmosphere was used.

[比較例1]
実施例1において、ニードルコークスに黒鉛化触媒として炭化珪素30wt%混合し、不活性雰囲気下、2800℃で3時間処理して得た人造黒鉛を用いた以外は、実施例1と同様にして負極材を作製し同様の評価を行った。
[Comparative Example 1]
In Example 1, a negative electrode was prepared in the same manner as in Example 1 except that artificial graphite obtained by mixing 30 wt% of silicon carbide as a graphitization catalyst with needle coke and treating at 2800 ° C. for 3 hours in an inert atmosphere was used. A material was prepared and evaluated in the same manner.

[比較例2]
実施例1において、中国産の球状化天然黒鉛を用いた以外は、実施例1と同様にして負極材を作製し同様の評価を行った。
[Comparative Example 2]
In Example 1, except that Chinese spheroidized natural graphite was used, a negative electrode material was prepared and evaluated in the same manner as in Example 1.

[比較例3]
実施例1において、不活性雰囲気下、1500℃で3時間処理したニードルコークスを用いた以外は、実施例1と同様にして負極材を作製し同様の評価を行った。
[Comparative Example 3]
A negative electrode material was produced in the same manner as in Example 1 except that needle coke treated at 1500 ° C. for 3 hours in an inert atmosphere was used.

[比較例4]
実施例1において、低結晶性炭素層の形成処理を実施しなかった以外は、実施例1と同様にして負極材を作製し同様の評価を行った。また、比較例4においては電極作製時の水分散塗料がゲル化したため、負極材評価を実施することができなかった。
[Comparative Example 4]
In Example 1, a negative electrode material was produced and evaluated in the same manner as in Example 1 except that the formation process of the low crystalline carbon layer was not performed. In Comparative Example 4, the negative electrode material could not be evaluated because the water-dispersed paint at the time of electrode preparation was gelled.

[比較例5]
実施例2において、低結晶性炭素層の形成処理を実施しなかった以外は、実施例2と同様にして負極材を作製し同様の評価を行った。
[Comparative Example 5]
In Example 2, a negative electrode material was produced and evaluated in the same manner as in Example 2 except that the formation process of the low crystalline carbon layer was not performed.

[比較例6]
実施例3において、低結晶性炭素層の形成処理を実施しなかった以外は、実施例3と同様にして負極材を作製し同様の評価を行った。
[Comparative Example 6]
In Example 3, a negative electrode material was produced and evaluated in the same manner as in Example 3 except that the formation process of the low crystalline carbon layer was not performed.

以上の実施例及び比較例の評価結果を下記表1に示す。表1中、「N.D」はNo Data を示す。   The evaluation results of the above examples and comparative examples are shown in Table 1 below. In Table 1, “ND” indicates No Data.

表1より、実施例のリチウムイオン二次電池用負極材は、高い容量かつ低温域で高い出力特性を有することが分かる。   From Table 1, it can be seen that the negative electrode materials for lithium ion secondary batteries of the examples have high capacity and high output characteristics in a low temperature range.

表面に低結晶性炭素層を有しない負極材を透過型電子顕微鏡(TEM)により観察した外観を示す図面代用写真である。It is a drawing substitute photograph which shows the external appearance which observed the negative electrode material which does not have a low crystalline carbon layer on the surface with a transmission electron microscope (TEM). 表面に低結晶性炭素層を有する負極材を透過型電子顕微鏡(TEM)により観察した外観を示す図面代用写真である。It is a drawing substitute photograph which shows the external appearance which observed the negative electrode material which has a low crystalline carbon layer on the surface with a transmission electron microscope (TEM).

Claims (4)

X線回折法より解析される結晶子の大きさLcの値が20〜90nm、平均面間隔(d002)の値が0.3354〜0.3370nmであり、かつ表面に低結晶性炭素層を有することを特徴とするリチウムイオン二次電池用負極材。   The crystallite size Lc analyzed by the X-ray diffraction method is 20 to 90 nm, the average interplanar spacing (d002) is 0.3354 to 0.3370 nm, and has a low crystalline carbon layer on the surface. A negative electrode material for a lithium ion secondary battery. 平均粒子径(50%D)が1〜40μmであることを特徴とする請求項1に記載のリチウムイオン二次電池用負極材。   2. The negative electrode material for a lithium ion secondary battery according to claim 1, wherein an average particle diameter (50% D) is 1 to 40 μm. 請求項1または2に記載のリチウムイオン二次電池用負極材を有してなるリチウムイオン二次電池用負極。   The negative electrode for lithium ion secondary batteries which has the negative electrode material for lithium ion secondary batteries of Claim 1 or 2. 請求項3に記載のリチウムイオン二次電池用負極を用いてなるリチウムイオン二次電池。   The lithium ion secondary battery which uses the negative electrode for lithium ion secondary batteries of Claim 3.
JP2008175939A 2008-01-11 2008-07-04 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode Pending JP2009187924A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008175939A JP2009187924A (en) 2008-01-11 2008-07-04 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2008004695 2008-01-11
JP2008175939A JP2009187924A (en) 2008-01-11 2008-07-04 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode

Publications (1)

Publication Number Publication Date
JP2009187924A true JP2009187924A (en) 2009-08-20

Family

ID=41070947

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008175939A Pending JP2009187924A (en) 2008-01-11 2008-07-04 Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode

Country Status (1)

Country Link
JP (1) JP2009187924A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039477A1 (en) * 2010-09-24 2012-03-29 日立化成工業株式会社 Lithium ion battery, and battery module utilizing same
CN102779990A (en) * 2011-05-11 2012-11-14 三星Sdi株式会社 Negative active material, method of preparing the same, and lithium battery including the same
WO2015093894A1 (en) * 2013-12-20 2015-06-25 주식회사 엘지화학 Anode active material, and lithium secondary battery comprising same
CN105659417A (en) * 2013-12-20 2016-06-08 株式会社Lg化学 Anode active material, and lithium secondary battery comprising same
WO2023101372A1 (en) * 2021-12-01 2023-06-08 오씨아이 주식회사 Negative electrode material for secondary battery, and preparation method thereof

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339805A (en) * 1995-06-13 1996-12-24 Mitsubishi Chem Corp Manufacture of nonaqueous solvent secondary battery electrode material
JPH09237638A (en) * 1995-12-25 1997-09-09 Sharp Corp Nonaqueous secondary battery
JP2002042887A (en) * 2000-07-21 2002-02-08 Denso Corp Lithium secondary battery
JP2003173778A (en) * 2001-09-26 2003-06-20 Kawasaki Steel Corp Complex graphite material and its manufacturing method, as well as anode material for lithium ion secondary battery and lithium ion secondary battery
JP2004207252A (en) * 2004-03-05 2004-07-22 Mitsubishi Chemicals Corp Anode material for non-aqueous solvent secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH08339805A (en) * 1995-06-13 1996-12-24 Mitsubishi Chem Corp Manufacture of nonaqueous solvent secondary battery electrode material
JPH09237638A (en) * 1995-12-25 1997-09-09 Sharp Corp Nonaqueous secondary battery
JP2002042887A (en) * 2000-07-21 2002-02-08 Denso Corp Lithium secondary battery
JP2003173778A (en) * 2001-09-26 2003-06-20 Kawasaki Steel Corp Complex graphite material and its manufacturing method, as well as anode material for lithium ion secondary battery and lithium ion secondary battery
JP2004207252A (en) * 2004-03-05 2004-07-22 Mitsubishi Chemicals Corp Anode material for non-aqueous solvent secondary battery

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2012039477A1 (en) * 2010-09-24 2012-03-29 日立化成工業株式会社 Lithium ion battery, and battery module utilizing same
JPWO2012039477A1 (en) * 2010-09-24 2014-02-03 日立化成株式会社 Lithium ion battery and battery module using the same
JP6003648B2 (en) * 2010-09-24 2016-10-05 日立化成株式会社 Negative electrode active material, lithium ion battery, and battery module using the same
CN102779990A (en) * 2011-05-11 2012-11-14 三星Sdi株式会社 Negative active material, method of preparing the same, and lithium battery including the same
CN102779990B (en) * 2011-05-11 2016-10-05 三星Sdi株式会社 Negative active core-shell material, its preparation method and include its lithium battery
WO2015093894A1 (en) * 2013-12-20 2015-06-25 주식회사 엘지화학 Anode active material, and lithium secondary battery comprising same
CN105659417A (en) * 2013-12-20 2016-06-08 株式会社Lg化学 Anode active material, and lithium secondary battery comprising same
KR101790400B1 (en) * 2013-12-20 2017-10-25 주식회사 엘지화학 Anode active material and lithium secondary battery comprising the same
US10177380B2 (en) 2013-12-20 2019-01-08 Lg Chem, Ltd. Anode active material and lithium secondary battery including the same
US10964946B2 (en) 2013-12-20 2021-03-30 Lg Chem, Ltd. Anode active material and lithium secondary battery including the same
WO2023101372A1 (en) * 2021-12-01 2023-06-08 오씨아이 주식회사 Negative electrode material for secondary battery, and preparation method thereof

Similar Documents

Publication Publication Date Title
JP5927788B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
CN115939379B (en) Negative electrode material for lithium ion secondary battery, method for producing same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
TWI620372B (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5439701B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP5494343B2 (en) Negative electrode material for lithium secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2008277232A (en) Negative electrode material for lithium secondary battery, its manufacturing method, negative electrode for lithium secondary battery using the negative electrode material, and lithium secondary battery
JP5799500B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7371735B2 (en) Method for producing negative electrode material for lithium ion secondary batteries, and negative electrode material for lithium ion secondary batteries
JP2016219410A (en) Negative electrode active material for secondary battery, production method of negative electrode active material for secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP5811999B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP2012124116A (en) Negative electrode material for lithium ion secondary battery, method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013187016A (en) Composite material, method for producing the same, anode for lithium-ion secondary battery, and lithium-ion secondary battery
JP2009187924A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode
WO2017191820A1 (en) Negative electrode material for lithium ion secondary cell, method for manufacturing negative electrode material for lithium ion secondary cell, negative electrode for lithium ion secondary cell, and lithium ion secondary cell
JP5590159B2 (en) Negative electrode material for lithium ion secondary battery, production method thereof, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
JP5707707B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery using the negative electrode material, and lithium ion secondary battery
US20220131147A1 (en) Negative electrode material for lithium-ion secondary cell, method for manufacturing negative electrode material for lithium-ion secondary cell, negative electrode material slurry for lithium-ion secondary cell, negative electrode for lithium-ion secondary cell, and lithium-ion secondary cell
JP6218348B2 (en) Lithium ion secondary battery and manufacturing method thereof
JP6922927B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP5691468B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP7004093B2 (en) Negative electrode material for lithium ion secondary battery, method for manufacturing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP7047892B2 (en) Carbonaceous particles, negative material for lithium-ion secondary batteries, negative-negative materials for lithium-ion secondary batteries, and lithium-ion secondary batteries
JP5885919B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2015165510A (en) Negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6319260B2 (en) Lithium ion secondary battery and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110613

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130327

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20130402

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20130924