JPH08339805A - Manufacture of nonaqueous solvent secondary battery electrode material - Google Patents

Manufacture of nonaqueous solvent secondary battery electrode material

Info

Publication number
JPH08339805A
JPH08339805A JP7145907A JP14590795A JPH08339805A JP H08339805 A JPH08339805 A JP H08339805A JP 7145907 A JP7145907 A JP 7145907A JP 14590795 A JP14590795 A JP 14590795A JP H08339805 A JPH08339805 A JP H08339805A
Authority
JP
Japan
Prior art keywords
carbonaceous material
electrode
heavy oil
mixture
particles
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7145907A
Other languages
Japanese (ja)
Inventor
Manabu Hayashi
学 林
Shoji Yamaguchi
祥司 山口
Takashi Kameda
隆 亀田
Hiromi Chiba
裕美 千葉
Keiko Sugawara
圭子 菅原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP7145907A priority Critical patent/JPH08339805A/en
Publication of JPH08339805A publication Critical patent/JPH08339805A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide nonaqueous solvent secondary battery electrode material which is stable against electrolyte, has a large electrolyte capacity, is excellent in filling density performance to an electrode and charge and discharge cycle characteristics, and is applicable to quick charge and discharge by mixing carbon material and heavy oil so as to perform specified processing. CONSTITUTION: After carbon material (for example, artificial graphite powders) and heavy oil (for example, coal tar pitch) are mixed, this mixture is extrusion- molded into film-like so as to manufacture intermediate material which preferably is in a state that the particles of the carbon material are substantially arranged in parallel with a film plane. Next, after the intermediate material is heated at 500 to 3000 deg.C in an inert gas atmosphere or in a non-oxidizing atmosphere (for example, in N2 gas) so as to form carbonized material, the carbonized material is made into fine particles.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、非水溶媒二次電池に用
いる電極材料の製造方法に関し、特に多相構造を有する
電極材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing an electrode material used in a non-aqueous solvent secondary battery, and more particularly to a method for producing an electrode material having a multiphase structure.

【0002】[0002]

【従来の技術】近年、電子機器の小型化に伴い高容量の
二次電池が必要になってきている。特にニッケル・カド
ミウム、ニッケル・水素電池に比べ、よりエネルギー密
度の高い非水溶媒二次電池が注目されてきている。その
負極材料として、これまで金属や黒鉛などが検討されて
いる。しかし、金属電極は、充放電を繰り返すと溶媒中
の金属がデンドライト状に析出し、最終的には両極を短
絡させてしまうという問題があった。また、黒鉛は、そ
の層間に金属イオンの出入りが可能なため、短絡の問題
は無いが、プロピレンカーボネート系の電解液を分解す
る上、エチレンカーボネート系の電解液では充放電サイ
クル特性が悪いという問題がある。一方、例えば特開平
4−171677号公報に示されるような、多相構造を
有する炭素質物を用いることも検討されている。これ
は、結晶性の高い炭素質物の長所(高容量かつ不可逆容
量が小さい)と短所(プロピレンカーボネート系電解液
を分解する)および結晶性の小さな炭素質物の長所(電
解液との安定性に優れる)と短所(容量が小さく不可逆
容量大)を組み合わせ、互いの長所を生かしつつ、短所
を補うという考えによる。
2. Description of the Related Art In recent years, with the miniaturization of electronic equipment, a high capacity secondary battery has become necessary. In particular, non-aqueous solvent secondary batteries, which have higher energy density than nickel-cadmium and nickel-hydrogen batteries, have been receiving attention. Metals and graphite have been studied as the negative electrode material. However, the metal electrode has a problem that when the charge and discharge are repeated, the metal in the solvent is deposited in the form of dendrite, and eventually both electrodes are short-circuited. In addition, graphite has no problem of short-circuiting because metal ions can enter and leave between the layers, but it decomposes the propylene carbonate-based electrolytic solution, and the problem that the charge / discharge cycle characteristics are poor in the ethylene carbonate-based electrolytic solution. There is. On the other hand, use of a carbonaceous material having a multiphase structure, as shown in, for example, Japanese Patent Application Laid-Open No. 4-171677, has also been studied. This is an advantage (high capacity and small irreversible capacity) and a disadvantage (decomposes a propylene carbonate-based electrolytic solution) of a highly crystalline carbonaceous material, and an advantage (stable stability with an electrolytic solution) of a small crystalline carbonaceous material. ) And disadvantages (small capacity and large irreversible capacity) are combined to make use of each other's strengths while compensating for their weaknesses.

【0003】この様な多相構造を有する炭素質物の製造
方法としては、例えば前述の特開平4−171677号
公報には、(1)1ミクロン位の黒鉛粒子と石油系バイ
ンダーピッチの混合物を加熱処理してバインダーピッチ
をコークスか部分的に黒鉛化された炭素に変換する方
法、(2)液化コークスの滴を炉中に噴射する方法がそ
れぞれ記載されている。
As a method for producing a carbonaceous material having such a multiphase structure, for example, in the above-mentioned Japanese Patent Laid-Open No. 4-171677, (1) heating a mixture of graphite particles of about 1 micron and a petroleum-based binder pitch. A method of treating and converting the binder pitch into coke or partially graphitized carbon, and (2) a method of injecting drops of liquefied coke into a furnace are described.

【0004】[0004]

【発明が解決しようとする課題】しかし、(1)の方法
では、バインダーピッチが高粘性のため黒鉛の高充填が
難しく、熱処理の結果得られた黒鉛複合物中における黒
鉛含有率を高めることには限界があり、黒鉛の有する高
充放電容量性を十分に活かすことはできない。更に混合
物内部では黒鉛が等方的に分散しているために、炭素
化、粉末化した後に得られる粉体にも板状の黒鉛粒子が
等方的に二次粒子化した状態の粉末が多く含まることと
なる。このことは粉末を再度シート成形して電極として
用いる場合に、黒鉛の有する高充填性を十分に活かすこ
とのできない原因となっている。
However, in the method (1), it is difficult to highly fill the graphite because the binder pitch is highly viscous, and the graphite content in the graphite composite obtained as a result of the heat treatment is increased. Is limited, and the high charge / discharge capacity of graphite cannot be fully utilized. Furthermore, since graphite is isotropically dispersed inside the mixture, many of the powders obtained after carbonization and pulverization have plate-like graphite particles isotropically converted to secondary particles. It will be included. This causes the fact that the high packing property of graphite cannot be fully utilized when powder is sheet-molded again and used as an electrode.

【0005】また、(2)の方法で得られる球状コーク
スには、例えば「炭素材料工学」(日刊工業新聞社刊
稲垣道夫著)等にも記載があるように、外観上および内
部構造外観上および内部構造上大きく異なる2種の粒子
が混在している。このためこの方法で得られる球状コー
クスを電極に用いる場合には、粒子の組成および粒径の
何れも均一にしがたく、電極成形性が極めて悪い上、比
表面積が小さく、高容量が得られないという問題があ
る。
The spherical coke obtained by the method (2) includes, for example, "carbon material engineering" (published by Nikkan Kogyo Shimbun).
As described in Michio Inagaki) etc., two types of particles that are greatly different in appearance and internal structure are mixed. Therefore, when the spherical coke obtained by this method is used for an electrode, it is difficult to make the composition and particle size of the particles uniform, the electrode moldability is extremely poor, and the specific surface area is small, so that a high capacity cannot be obtained. There is a problem.

【0006】[0006]

【課題を解決するための手段】本発明者らは前記目的を
解決するため、鋭意検討を重ねた結果、次の工程からな
る製造方法によれば、品質の良好な高性能複合炭素質物
粒子を安定して効率よく、かつ連続的に製造し得ること
を見いだし、この知見に基づいて本発明を完成するに至
った。
Means for Solving the Problems The inventors of the present invention have conducted extensive studies in order to solve the above-mentioned object, and as a result, according to the production method comprising the following steps, high-performance composite carbonaceous material particles having good quality can be obtained. It has been found that stable, efficient, and continuous production is possible, and the present invention has been completed based on this finding.

【0007】すなわち、本発明は、 (A)炭素質物と重質油とを混合し、混合物を得る工
程。 (B)前記混合物をフィルム状に押出し成形し、中間物
質を得る工程。 (C)前記中間物質を、不活性ガス雰囲気中又は非酸化
性雰囲気中で500℃〜3000℃に加熱し、炭素化物
質を得る工程。 (D)前記炭素化物質を粉体加工する工程。 の工程を有する、非水溶媒二次電池電極材料の製造方法
である。
That is, the present invention includes the step (A) of mixing a carbonaceous material and a heavy oil to obtain a mixture. (B) A step of extruding the mixture into a film to obtain an intermediate substance. (C) A step of heating the intermediate substance to 500 ° C. to 3000 ° C. in an inert gas atmosphere or a non-oxidizing atmosphere to obtain a carbonized substance. (D) A step of powder-processing the carbonized substance. The method for producing a non-aqueous solvent secondary battery electrode material, which comprises the steps of

【0008】以下、本発明を詳細に説明する。 (1)混合原料の選択 本発明においては最終的に核を形成する黒鉛質、炭素質
の粒子状炭素質物(以下、炭素質物(N)とする)は、
d002が0.345nm以下、Lcが15nm以上、
好ましくは、d002が0.340nm以下、Lcが5
0nm以上、より好ましくはLcが80nm以上であ
り、体積平均粒径にして30μm以下であることを満た
す。また、単体でも、これら2種以上を混合して用いて
もよい。
The present invention will be described in detail below. (1) Selection of mixed raw material In the present invention, the graphitic and carbonaceous particulate carbonaceous material (hereinafter referred to as carbonaceous material (N)) that finally forms nuclei are:
d002 is 0.345 nm or less, Lc is 15 nm or more,
Preferably, d002 is 0.340 nm or less and Lc is 5
It satisfies 0 nm or more, more preferably Lc is 80 nm or more, and the volume average particle diameter is 30 μm or less. Moreover, you may use these individually or in mixture of 2 or more types.

【0009】具体的な炭素質物(N)の調製方法として
は、 (a)溶融溶解性有機物、熱硬化性高分子等を不活性ガ
ス雰囲気下又は真空中において、1500〜3000
℃、好ましくは2000〜3000℃の温度で加熱する
ことによって、炭素化と黒鉛化を行う方法。 (b)カーボンブラック、コークス等、既製の炭素質物
を更に加熱処理して黒鉛などを用いることができる。
As a specific method for preparing the carbonaceous material (N), (a) a melt-soluble organic material, a thermosetting polymer, or the like in an inert gas atmosphere or in a vacuum is 1500 to 3000.
A method of performing carbonization and graphitization by heating at a temperature of ℃, preferably 2000 to 3000 ℃. (B) A carbonaceous material such as carbon black or coke, which has already been manufactured, may be further heat-treated to use graphite or the like.

【0010】一方、最終的に炭素質物(N)を被覆する
炭素質物(以下、炭素質物(S)とする)の原料には、
重質油を用いる。重質油としては、軟ピッチ〜硬ピッチ
までのコールタールピッチ、石炭液化油等の石炭系重質
油、アスファルテン等の直流系重質油、原油、ナフサな
どの熱分解時に副生するエチレンヘビーエンドタール等
分解系重質油等の石油系重質油、分解系重質油を熱処理
することで得られる、エチレンタールピッチ、など熱処
理ピッチ等を用いることができる。
On the other hand, as a raw material for the carbonaceous material (hereinafter referred to as carbonaceous material (S)) that finally coats the carbonaceous material (N),
Use heavy oil. Heavy oil includes coal tar pitch from soft pitch to hard pitch, coal-based heavy oil such as coal liquefied oil, direct-current heavy oil such as asphaltene, and ethylene heavy produced as a by-product during thermal decomposition of crude oil and naphtha. It is possible to use a petroleum heavy oil such as a cracked heavy oil such as end tar, or a heat-treated pitch such as ethylene tar pitch obtained by heat-treating a cracked heavy oil.

【0011】炭素質物粒子(N)に対する重質油の量
は、重質油が炭素化反応を終了した炭素質物(S)の炭
素質物粒子(N)に対する割合を重量比で規定する。本
発明においては炭素化工程終了後における炭素質物
(N)100重量部に対し、炭素質物(S)が1〜1〜
100重量部が好ましく、1〜50重量部がさらに好ま
しい。重質油の種類により、炭素化による重量変化率が
異なるので、予め重量変化率を考慮して、前述の割合に
なるように量を決定する。
The amount of the heavy oil relative to the carbonaceous material particles (N) defines the ratio of the carbonaceous material (S) in which the heavy oil has completed the carbonization reaction to the carbonaceous material particles (N) in a weight ratio. In the present invention, the carbonaceous material (S) is 1 to 1 to 100 parts by weight of the carbonaceous material (N) after the completion of the carbonization step.
100 parts by weight is preferable, and 1 to 50 parts by weight is more preferable. Since the rate of change in weight due to carbonization differs depending on the type of heavy oil, the rate of change in weight is taken into consideration in advance to determine the amount so that the above ratio is achieved.

【0012】A.混合工程 本発明における第1工程、即ち混合工程は回分式または
連続式のいずれの装置で行っても良い。また、室温で行
っても良いし、反応槽を加温して行っても良い。反応槽
を加温することで混合物の粘度を低下させ、装置にかか
る負荷を低減し、混合効率を高めることが出来る。更に
少量の溶剤や可塑剤を添加することで、混練を十分に行
えるようにすることも可能である。なお、混合時の槽内
圧力を減圧状態にすることで、微小粉末からの脱泡効果
を高め、分散性の向上を図ることも可能である。更に減
圧操作を行うことで、重質油と炭素質物の十分な混合終
了後に添加した溶剤を除去することもできる。これら混
合工程は十分に行うことが重要である。不十分であると
電極性能にばらつきが生じる為、好ましくない。これは
重質油が炭素質物(N)に存在する細孔へ充填されにく
くなるからと考えられる。この充填が不十分だと、a.
多相構造炭素質物の表面に黒鉛が露出しやすくなるた
め、電解液との安定性が低下する、b.細孔内に残った
ガスが熱処理過程で噴出することにより、多相構造が破
壊される恐れがある、c.細孔が残ったままだと、導電
性の悪化や金属イオン移動の妨げの原因になる、等の問
題が生じる。
A. Mixing Step The first step in the present invention, that is, the mixing step may be performed by either a batch type apparatus or a continuous type apparatus. Further, it may be carried out at room temperature or may be carried out by heating the reaction tank. By heating the reaction tank, it is possible to reduce the viscosity of the mixture, reduce the load on the device, and increase the mixing efficiency. It is also possible to sufficiently knead the mixture by adding a small amount of a solvent or a plasticizer. It is also possible to enhance the defoaming effect from the fine powder and improve the dispersibility by reducing the pressure in the tank during mixing. The solvent added after the completion of sufficient mixing of the heavy oil and the carbonaceous material can be removed by further performing a pressure reduction operation. It is important to perform these mixing steps sufficiently. If it is insufficient, the electrode performance will vary, which is not preferable. It is considered that this is because the heavy oil is less likely to be filled in the pores present in the carbonaceous material (N). If this filling is insufficient, a.
Since graphite is likely to be exposed on the surface of the carbonaceous material having a multiphase structure, the stability with the electrolytic solution is reduced. B. The gas remaining in the pores may be blown out during the heat treatment process, which may destroy the multiphase structure. C. If the pores remain, problems such as deterioration of conductivity and hindrance of movement of metal ions occur.

【0013】回分式の場合、混合装置は攪拌翼を備えた
混合機1機で構成しても、複数台構成することで順次、
分散度の向上を図っても良い。回分式混合装置として
は、ミキシングロール、2本の枠型ブレードが固定式タ
ンク内で遊星運動を行いながら回転する構造を有する混
合機、攪拌翼を合計3軸にしたトリミックスタイプの装
置、高速高剪断ミキシングする構造を有する混合機、攪
拌翼を合計3軸にしたトリミックスタイプの装置、高速
高剪断ミキクスタイプの装置、高速高剪断ミキサーであ
るディゾルバーや高粘度用のバタフライミキサーの様な
一枚のブレードがタンク内を攪拌・分散を行う形態の装
置、半円筒状混合槽の側面に沿ってシグマ型等の攪拌翼
が回転する構造を有する、いわゆるニーダー形式の装
置、更に加圧しながら混和を行う加圧式のニーダー装
置、円筒状や逆円錐状の反応器の内部にリボン翼形やス
クリュー形の攪拌機が備わっている装置等を用いること
ができる。いずれの装置を用いるかは、炭素質物(N)
と重質油とを混合する際の材粘度を考慮して、高度な剪
断力が掛けられる装置を決定すればよい。
In the case of the batch type, even if the mixing device is composed of one mixer equipped with a stirring blade, a plurality of mixers can be used to sequentially
The degree of dispersion may be improved. As the batch type mixing device, a mixing roll, a mixer having a structure in which two frame type blades rotate while performing planetary motion in a fixed tank, a trimix type device having a total of three stirring blades, a high speed Mixers with high-shear mixing structure, trimix type devices with a total of three mixing blades, high-speed high-shear mix type devices, high-speed high-shear mixers such as dissolvers and high-viscosity butterfly mixers. A device in which one blade stirs and disperses the inside of the tank, a so-called kneader type device having a structure in which a stirring blade such as a sigma type is rotated along the side surface of the semi-cylindrical mixing tank, while further pressurizing Use a pressure kneader device for mixing, a device with a ribbon blade type or screw type agitator inside a cylindrical or inverted conical reactor, etc. It can be. Which device to use depends on the carbonaceous material (N)
The device to which a high shearing force is applied may be determined in consideration of the material viscosity when mixing the oil with the heavy oil.

【0014】一方、連続式装置を用いる場合には、連続
式の混練機を用いても良いし、縦型及び横型で攪拌機能
を有し、真空排気も可能な反応器を用いても良い。真空
排気も可能な装置としては、一軸ないし二軸式の装置等
を用いることができる。混合装置と次工程を受け持つ装
置が別個の場合は、連続式混合機を用いることにより、
次工程を受け持つ装置への搬送を混合と同時に行うこと
ができ、製造工程をより効率化することができる。ま
た、必要に応じてペレタイザーにより顆粒化することも
できる。
On the other hand, when a continuous type apparatus is used, a continuous type kneader may be used, or a vertical or horizontal type reactor having a stirring function and capable of being evacuated may be used. As a device that can also be evacuated, a uniaxial or biaxial device or the like can be used. If the mixing device and the device responsible for the next process are separate, by using a continuous mixer,
It is possible to carry out the conveyance to the device in charge of the next process at the same time as the mixing, and to make the manufacturing process more efficient. Further, it can be granulated with a pelletizer if necessary.

【0015】上述の装置としては、回分式の装置として
は例えば、(株)栗本鐵工所(株)製の「小型バッチニ
ーダ」、井上製作所製の「プラネタリーミキサー」や
「トリミックス」、三菱重工(株)製の「逆円錐リボン
翼式リアクタ」、ドイツ連邦共和国Gebr der
L dige Maschinenbau 有限会社製
の「レディゲミキサー」等がある。また、連続式の例と
しては、(株)栗本鐵工所製の「SCプロセッサ」、三
菱重工(株)製の「セルフクリーニング式リアクタSC
R」や「横型二軸式リアクタHVR」等がある。
As the above-mentioned apparatus, for example, as a batch type apparatus, "small batch kneader" manufactured by Kurimoto Iron Works Co., Ltd., "planetary mixer" or "trimix" manufactured by Inoue Seisakusho, Mitsubishi "Inverted Conical Ribbon Wing Reactor" manufactured by Heavy Industries, Ltd., Gebr der, Federal Republic of Germany
There is a "Ledige mixer" manufactured by L dige Maschinenbau Co., Ltd. As an example of the continuous type, "SC Processor" manufactured by Kurimoto Iron Works Co., Ltd., "Self-cleaning Reactor SC" manufactured by Mitsubishi Heavy Industries, Ltd.
R "and" horizontal biaxial reactor HVR ".

【0016】B.炭素質物が配列した中間物質を得る工
程(押出し工程) 混合工程で炭素質物(N)が十分均一に分散し、また炭
素質物(N)の細孔にも重質油が十分充填された混合物
は、本工程で混練(攪拌)されながら加熱されフィルム
状に押出し成形されることにより、炭素質物粒子(N)
と重質油成分が高度に分散し、かつ重質油をマトリクス
として板状の炭素質物が互いにその面を平行に配列させ
た中間物として回収される。
B. Step of obtaining an intermediate substance in which carbonaceous material is arranged (extrusion step) A mixture in which carbonaceous material (N) is sufficiently uniformly dispersed in the mixing step, and the pores of carbonaceous material (N) are sufficiently filled with heavy oil The carbonaceous material particles (N) are obtained by being extruded into a film by being heated while being kneaded (stirred) in this step.
And the heavy oil component are highly dispersed, and the plate-like carbonaceous material is recovered as an intermediate product in which the surfaces thereof are arranged in parallel with each other using the heavy oil as a matrix.

【0017】本工程においては、板状の炭素質物がその
面を互いに実質的に平行に配列するよう、混合物を押出
し成形することが重要である。たとえば、顕微鏡観察に
おいて炭素質物の板面がフィルム面に対し、±10°以
内、好ましくは±5°以内の角度に配列してなるように
形成されていることが好ましい。そのためには、フィル
ム状に高速に押出し成形することが必要になる。更に本
工程で重要なのは、フィルム状成型物内部の炭素質物粒
子の配列であり、成型物がフィルム状の形態を保つこと
ではない。従って押出し成形後、重質油が冷却固化する
に伴い、成型物に亀裂が入り、形が崩れてしまっても何
ら問題はない。
In this step, it is important to extrude the mixture so that the plate-like carbonaceous materials have their surfaces arranged substantially parallel to each other. For example, it is preferable that the carbonaceous material is formed so that the plate surface of the carbonaceous material is arranged at an angle of ± 10 ° or less, preferably ± 5 ° or less with a microscopic observation. For that purpose, it is necessary to extrude into a film at a high speed. Furthermore, what is important in this step is the arrangement of the carbonaceous material particles inside the film-shaped molded product, and not to maintain the film-shaped morphology of the molded product. Therefore, after the extrusion molding, as the heavy oil is cooled and solidified, there is no problem even if the molded product is cracked and loses its shape.

【0018】本発明でいうフィルム状に押出し成形する
とは、混合物に対し、一両方向からの圧力を加えること
によって薄いフィルム状に形状変化させることを意味
し、フィルム状の好ましい厚さとしては、0.05〜1
0mm、更には0.1〜3mmである。本工程に適した
装置としては、スクリュー式やプランジャー式の押し出
し成型機が考えられるが、上記目的を果たす装置であれ
ばこれ以外の装置を用いてもかまわない。更に減圧可能
な機種を用いれば、高密度に配列した中間生成物を得る
こともできる。この様な構造を有する反応装置を用いる
ことにより、炭素質物粒子(N)の細孔部分にも炭素質
物(S)が充填され、かつ炭素質物粒子(N)が互いに
平行に配列している為に電極を成形する際の圧縮成形性
(充填性)の優れた、品質の良好な非水溶媒二次電池負
極材料を得ることができる。
The term "extrusion molding in the form of a film" as used in the present invention means that the mixture is changed in shape into a thin film by applying a pressure in one direction, and a preferable thickness of the film is 0. .05 to 1
It is 0 mm, further 0.1 to 3 mm. As a device suitable for this step, a screw type or a plunger type extrusion molding machine is conceivable, but any other device may be used as long as it is a device that fulfills the above purpose. Further, if a model capable of reducing the pressure is used, it is possible to obtain an intermediate product which is arranged in high density. By using the reactor having such a structure, the carbonaceous material (S) is filled in the pores of the carbonaceous material particles (N), and the carbonaceous material particles (N) are arranged in parallel with each other. It is possible to obtain a good quality non-aqueous solvent secondary battery negative electrode material having excellent compression moldability (fillability) when molding an electrode.

【0019】上述の装置としては例えば本田鐵工(株)
製の「HDE型真空押出し成形機」や(株)東芝セルマ
ック製の「TEM」がある。また、前述の混合工程と押
出し工程を一台で連続的に行うことのできる装置として
(株)栗本鐵工所製の「KRC−Eニーダ」や本田鐵工
(株)製の連続混練真空押出し成形機「CKE型」があ
る。
As the above-mentioned device, for example, Honda Iron Works Co., Ltd.
There is "HDE type vacuum extrusion molding machine" manufactured by Toshiba and "TEM" manufactured by Toshiba Selmac Co., Ltd. Further, as a device capable of continuously performing the above-mentioned mixing process and extrusion process by one unit, "KRC-E Kneader" manufactured by Kurimoto Iron Works Co., Ltd. and continuous kneading vacuum extrusion manufactured by Honda Iron Works Co., Ltd. There is a molding machine "CKE type".

【0020】本工程において、装置内の雰囲気は不活性
雰囲気が望ましいがこれに限らない。更に装置内圧力を
減圧状態にすることで、微小粉末からの脱泡効果を高
め、分散性の向上を図り、併せて炭素質物の重質油マト
リクス内での充填性を高めることもできる。本工程にお
ける熱処理温度は、重質油の種類により最適条件が異な
るが、通常100℃〜350℃の範囲である。また、本
工程は減圧下ないし常圧下で行われる。押出し機より取
り出されたフィルム状成形物は冷却されるに伴って急速
に固化するが、切断、破砕等によりその後の工程の操作
に適した形に加工することも可能である。
In this step, the atmosphere in the apparatus is preferably an inert atmosphere, but not limited to this. Further, by reducing the internal pressure of the apparatus, the defoaming effect from the fine powder can be enhanced, the dispersibility can be improved, and at the same time, the filling property of the carbonaceous material in the heavy oil matrix can be enhanced. Optimum conditions for the heat treatment temperature in this step differ depending on the type of heavy oil, but are usually in the range of 100 ° C to 350 ° C. In addition, this step is performed under reduced pressure or normal pressure. The film-shaped molded product taken out from the extruder rapidly solidifies as it is cooled, but it can also be processed into a form suitable for the operation of the subsequent steps by cutting, crushing, or the like.

【0021】C.炭素化物質を得る工程(炭素化工程) 炭素質物粒子(N)と重質油からなる中間物質は本工程
において窒素ガス、アルゴンガス等不活性ガス流通下で
加熱される。本工程においては炭素前駆体の熱化学反応
が進行し、前駆体の組成中に残留した酸素、窒素、水素
が系外へ排出されるとともに構造欠陥が加熱処理の度合
いによって除去され、黒鉛化の度合いを高めていく。
C. Step of Obtaining Carbonized Substance (Carbonization Step) The intermediate substance consisting of carbonaceous material particles (N) and heavy oil is heated in this step under the flow of an inert gas such as nitrogen gas or argon gas. In this step, the thermochemical reaction of the carbon precursor proceeds, oxygen, nitrogen, and hydrogen remaining in the composition of the precursor are discharged to the outside of the system, and structural defects are removed depending on the degree of heat treatment, resulting in graphitization. Increase the degree.

【0022】本工程の加熱処理条件としては、熱履歴温
度条件が重要である。その温度下限は芳香族化した重質
油の種類、その熱履歴によっても若干異なるが通常50
0℃以上、好ましくは600℃以上である。一方、上限
温度は基本的に炭素質物(N)の結晶構造を上回る構造
秩序を有しない温度まで上げることができる。従って、
熱処理の上限温度としては、通常3000℃以下、好ま
しくは2800℃以下が好ましい範囲である。このよう
な熱処理条件において、昇温速度、冷却速度、熱処理時
間などは目的に応じて任意に設定することができる。ま
た、比較的低温領域で熱処理した後、所定の温度に昇温
することもできる。なお、本工程に用いる反応機は回分
式でも連続式でも又、一基でも複数基でもよい。
The heat history temperature condition is important as the heat treatment condition in this step. The lower limit of temperature is usually 50 depending on the type of heavy oil that has been aromatized and its heat history, but usually 50
The temperature is 0 ° C or higher, preferably 600 ° C or higher. On the other hand, the upper limit temperature can be basically raised to a temperature at which there is no structural order exceeding the crystal structure of the carbonaceous material (N). Therefore,
The upper limit temperature of the heat treatment is usually 3000 ° C or lower, preferably 2800 ° C or lower. Under such heat treatment conditions, the temperature rising rate, the cooling rate, the heat treatment time, etc. can be arbitrarily set according to the purpose. Also, after heat treatment in a relatively low temperature region, the temperature can be raised to a predetermined temperature. The reactor used in this step may be a batch type or a continuous type, and may have one unit or a plurality of units.

【0023】D.粉体加工工程 こうして炭素化工程において炭素質物(S)が炭素化
し、炭素質物(N)表面の一部あるいは全体を被覆した
状態で複合化した生成物は本工程において、その他粉砕
され、必要に応じて解砕、分級処理など粉体加工処理を
施され、複合炭素質物粒子となり、非水溶媒二次電池用
電極材料として用いられる。複合炭素質物粒子は、各種
の形状をとりうるが粒径100μm以下、好ましくは5
0μm以下の粒子であることが好ましい。又、BET法
による比表面積としては1m2 /g以上、好ましくは2
2 /g以上、さらに好ましくは4m2 /g以上である
ことが、非水溶媒の担持量を確保し、高容量電池を得る
上で好ましい。
D. Powder processing step In this way, in the carbonization step, the carbonaceous material (S) is carbonized, and the composite product obtained by coating a part or the whole of the surface of the carbonaceous material (N) is pulverized in this step, and if necessary, Accordingly, powder processing such as crushing and classification is performed to form composite carbonaceous material particles, which are used as an electrode material for a non-aqueous solvent secondary battery. The composite carbonaceous material particles may have various shapes, but the particle diameter is 100 μm or less, preferably 5
The particle size is preferably 0 μm or less. The specific surface area by the BET method is 1 m 2 / g or more, preferably 2
It is preferably m 2 / g or more, more preferably 4 m 2 / g or more in order to secure the amount of the non-aqueous solvent supported and obtain a high capacity battery.

【0024】このようにして得られた本発明の複合炭素
質物粒子は、炭素質物(N)が炭素質物(S)に少なく
とも一部被覆された多層構造を有する。従って、CuK
a線を線源とする広角X線回折曲線を測定した場合に、
少なくとも2つの異なるピークが重なりあった形状、す
なわち、低角側には炭素質物(S)に由来する比較的ブ
ロードなピークを示し、高角側には炭素質物(N)に由
来する比較的シャープなピークを示す。
The thus-obtained composite carbonaceous material particles of the present invention have a multi-layer structure in which the carbonaceous material (N) is at least partially covered with the carbonaceous material (S). Therefore, CuK
When measuring a wide-angle X-ray diffraction curve with the a-ray as the source,
A shape in which at least two different peaks are overlapped, that is, a relatively broad peak derived from the carbonaceous material (S) is shown on the low angle side, and a relatively sharp peak derived from the carbonaceous material (N) is shown on the high angle side. Shows a peak.

【0025】この炭素質物(S)に由来するピークは、
d002が0.341nm以上、好ましくは0.345
nmより大きく、C軸方向の結晶子の大きさLcは15
nm以下、好ましくは0.5〜10nmであることが好
ましく、炭素質物(N)に由来するピークは、d002
が0.345nm以下で、Lcは50nm以上であるこ
とが好ましい。又、本発明の複合炭素質物粒子は、波長
514.5nmのアルゴンイオンレーザー光を用いたラ
マンスペクトル分析において、1580cm-1の付近の
ピークPA の強度IA ,1360cm-1の範囲のピーク
B の強度IB を測定した場合の、強度の比R=IB
A が、0.12以上、好ましくは0.3以上0.6以
下であることが好ましい。 更に、複合炭素質物粒子の
真密度は、ヘリウムガスによるガス置換法による測定法
で、1.0g/cm以上好ましくは2.0g/cm以上
であることが好ましい。
The peak derived from this carbonaceous material (S) is
d002 is 0.341 nm or more, preferably 0.345
and the crystallite size Lc in the C-axis direction is greater than 15 nm.
nm or less, preferably 0.5 to 10 nm, and the peak derived from the carbonaceous material (N) is d002.
Is 0.345 nm or less, and Lc is preferably 50 nm or more. Further, the composite carbonaceous material particles of the present invention, in the Raman spectrum analysis using an argon ion laser beam having a wavelength of 514.5 nm, the intensity of the peak P A in the vicinity of 1580 cm -1 I A, the peak in the range of 1360 cm -1 P in the case of measuring the intensity I B of B, the ratio of the intensity R = I B /
It is preferable that I A is 0.12 or more, preferably 0.3 or more and 0.6 or less. Furthermore, the true density of the composite carbonaceous material particles is 1.0 g / cm or more, preferably 2.0 g / cm or more, as measured by a gas replacement method using helium gas.

【0026】[0026]

【実施例】次に実施例により本発明を更に詳細に説明す
るが、本発明はこれらの例によってなんら限定されるも
のではない。 (実施例1) (1)混合工程 入江商会社製「小型卓上ニーダーPNV−5H」(内容
積5リットル)に炭素質物(N)として人造黒鉛粉末
(LONZA社製「KS−44」)を1Kgを投入し、
炭素質物(S)として新日鐵化学社製コールタールピッ
チ(Aグレード)を1.5Kgを加え、シグマ型の攪拌
翼を2枚装着して、200℃に加熱しながら、60分攪
拌した。混合物を流動状態のままニーダーより取り出
し、冷却固化させて回収した。この操作を4バッチ行
い、混合物を合計10kg回収した。
The present invention will be described in more detail with reference to examples, but the present invention is not limited to these examples. (Example 1) (1) Mixing step 1 kg of artificial graphite powder ("KS-44" manufactured by LONZA Co., Ltd.) as a carbonaceous material (N) was added to "Small tabletop kneader PNV-5H" manufactured by Irie Shosha Co., Ltd. (internal volume 5 liters). Throw in,
As carbonaceous material (S), 1.5 kg of coal tar pitch (A grade) manufactured by Nippon Steel Chemical Co., Ltd. was added, two sigma type stirring blades were attached, and the mixture was stirred for 60 minutes while being heated to 200 ° C. The mixture was taken out of the kneader in a fluid state, cooled and solidified, and collected. This operation was performed in 4 batches, and a total of 10 kg of the mixture was recovered.

【0027】(2)押し出し成形工程 混合工程で得られた混合物を押し出し装置に投入するた
めに、直径1〜2mm程度に破砕した。この破砕された
混合物を栗本鉄工所(株)製「KRCS1ニーダー」1
台に1Kg/hで供給し、フィルム状に押出し、混合物
中の炭素質物がそのフィルム面と平行に配列した状態の
中間物質を得る工程を行った。ニーダーの内温を150
℃に保ち、十分に混練を行い、高粘性を示す半固溶体で
ある混練物を、「KRCニーダー」出口より、フィルム
状で1Kg/hで回収した。こうして炭素質物粒子とコ
ールタールピッチの複合物を炭素質物粒子がフィルム平
面と平行に配向した状態で得た。なお、押し出しに用い
た「KRCニーダー」には、直径25mmの凸レンズ型
パドルを45度ずらして計15枚取り付け、製品吐出口
には、1辺が1mmと7mmの長方形のダイスを使用し
た。
(2) Extrusion molding step The mixture obtained in the mixing step was crushed to a diameter of about 1 to 2 mm in order to put it into an extrusion device. This crushed mixture is manufactured by Kurimoto Iron Works Co., Ltd. “KRCS1 kneader” 1
It was supplied to the table at 1 Kg / h and extruded in a film form to obtain an intermediate substance in which the carbonaceous material in the mixture was arranged in parallel with the film surface. 150 kneader internal temperature
The kneaded product, which was a semi-solid solution having a high viscosity, was recovered in a film form at 1 Kg / h from the exit of the “KRC kneader” while keeping the temperature at 0 ° C. and sufficiently kneading. Thus, a composite of carbonaceous material particles and coal tar pitch was obtained with the carbonaceous material particles oriented parallel to the film plane. In the “KRC kneader” used for extrusion, a total of 15 convex lens type paddles having a diameter of 25 mm were shifted by 45 degrees and a total of 15 pieces were attached, and a rectangular die having sides of 1 mm and 7 mm was used for the product discharge port.

【0028】(3)炭素化工程 上記、炭素質物粒子とコールタールピッチの複合物を回
分式加熱炉で熱処理した。複合物を黒鉛容器にいれた状
態で内熱式加熱炉に入れ、窒素ガスを5リットル/分の
流量下で3時間で1200℃まで昇温し、1時間保持し
た。その後、室温まで冷却して被覆相が炭素化した状態
の複合物を得た。
(3) Carbonization Step The above composite of carbonaceous material particles and coal tar pitch was heat-treated in a batch heating furnace. The composite was put in a graphite container and placed in an internal heating furnace, and the temperature of nitrogen gas was raised to 1200 ° C. in 3 hours under a flow rate of 5 liters / minute, and kept for 1 hour. Then, it was cooled to room temperature to obtain a composite in which the coating phase was carbonized.

【0029】(4)粉体処理工程 炭素化工程で得られた複合物を衝撃式粉砕機を用いて微
粉砕し、一定の粒径分布をもった複合炭素質物粒子を得
た。得られた粒子は、粒子中に炭素質物(N)を1粒子
含んだ一次粒子と複数個含んだ二次粒子から構成されて
いた。なお、粉砕機の回転数は1000rpmであっ
た。
(4) Powder Treatment Step The composite material obtained in the carbonization step was finely pulverized using an impact type pulverizer to obtain composite carbonaceous material particles having a constant particle size distribution. The obtained particles were composed of primary particles containing one particle of carbonaceous material (N) and secondary particles containing a plurality of carbonaceous materials (N). The rotation speed of the crusher was 1000 rpm.

【0030】(5)複合炭素質物粒子の分析 (5−1)(002)面の面間隔(d002)、結晶子
の大きさLc炭素化工程で得られた粉末の場合はそのま
ま、微小片状の場合にはメノウ乳鉢で粉末化し、試料に
対して約15wt%のX線標準高純度シリコン粉末を加
えて混合し、試料セルに詰め、グラファイトモノクロメ
ーターで単色化したCuKa線を線源とし、反射式ディ
フラクトメーター法によって広角X線回折曲線を測定し
た。得られたX線回折曲線は異なる結晶化度に由来する
ふたつのピークが重なりあった形状を呈しており、低角
側には炭素質被覆相に由来する比較的ブロードなピー
ク、高角側には内核に相当する炭素質に由来する比較的
シャープなピークを有している。この回折曲線に対し
て、ピークの分離を行った後、それぞれのピークに対し
てd002とLcを算出した。その結果、低角側ピーク
から算出されるd002は、0.352nm、Lcは
4.0nmであり、高角側ピークから算出されるd00
2は0.336nm、Lcは100nm以上であった。
(5) Analysis of complex carbonaceous material particles (5-1) Interplanar spacing (d002) of (002) plane, crystallite size Lc In the case of powder obtained in the carbonization step, it is in the form of fine flakes. In the case of, powdered in an agate mortar, about 15 wt% X-ray standard high-purity silicon powder was added to the sample, mixed, packed in a sample cell, and made into a monochromatic CuKa line with a graphite monochromator as a radiation source, The wide-angle X-ray diffraction curve was measured by the reflection diffractometer method. The obtained X-ray diffraction curve has a shape in which two peaks derived from different crystallinities are overlapped with each other. A relatively broad peak derived from the carbonaceous coating phase is present on the low angle side and a high angle side is exhibited on the high angle side. It has a relatively sharp peak derived from carbonaceous matter corresponding to the inner core. After separating the peaks from this diffraction curve, d002 and Lc were calculated for each peak. As a result, d002 calculated from the low-angle side peak is 0.352 nm and Lc is 4.0 nm, and d00 calculated from the high-angle side peak.
2 was 0.336 nm, and Lc was 100 nm or more.

【0031】(5−2)ラマンスペクトル分析:波長5
14.5nmのアルゴンイオンレーザー光を用いたラマ
ンスペクトル分析において、1580cm-1の付近のピ
ークPA の強度IA 、1360cm-1の範囲のピークP
B の強度IB を測定し、その強度の比R=IB /IA を
測定した。その結果、R値は0.43であった。黒鉛
「KS−44」のラマン比はR=0.14であり、表面
が被覆されていると判断された。
(5-2) Raman spectrum analysis: wavelength 5
In the Raman spectrum analysis using argon ion laser light of 14.5 nm, intensity IA of peak PA near the 1580 cm -1, a peak in the range of 1360 cm -1 P
The intensity IB of B was measured and the intensity ratio R = IB / IA was measured. As a result, the R value was 0.43. The Raman ratio of graphite “KS-44” was R = 0.14, and it was determined that the surface was covered.

【0032】(5−3)真密度 ピクノメーターを用い、ヘリウムガスによるガス置換法
によって測定した。その結果、真密度は2.17g/c
3 であった。 (5−4)比表面積 比表面積を用い、窒素ガス吸着によるBET1点法によ
って測定した。その結果、比表面積は4.5m3 /gで
あった。 (5−5)体積基準平均粒径 レーザー回折式粒度分布計を用い、分散媒にエタノール
を使用して体積基準平均粒径(メジアン径)を測定し
た。その結果、平均粒径は27μmであった。
(5-3) True Density Using a pycnometer, measurement was carried out by a gas replacement method with helium gas. As a result, the true density is 2.17 g / c
It was m 3 . (5-4) Specific surface area Using the specific surface area, it was measured by the BET one-point method by nitrogen gas adsorption. As a result, the specific surface area was 4.5 m 3 / g. (5-5) Volume-based average particle diameter Using a laser diffraction particle size distribution meter, ethanol was used as the dispersion medium to measure the volume-based average particle diameter (median diameter). As a result, the average particle diameter was 27 μm.

【0033】(6)電極性能評価 (6−1)電極成形体の作成 熱可塑性エラストマー(スチレン・エチレン・ブチレン
・スチレン・ブロックコポリマー)のトルエン溶液およ
びポリエチレン粉末を加えてかくはんし、スラリーを得
た。重量比は、炭素質物93wt%、熱可塑性エラスト
マー(固形分)4wt%、ポリエチレン粉末3wt%と
した。このスラリーを銅箔上に塗布し、80℃で予備乾
燥を行った。さらに銅箔にロールプレスにより圧着させ
たのち、直径20mmの円盤上に打ち抜き、110℃で
減圧乾燥をして電極とした。この時、炭素材料の電極へ
の充填密度は、1.45g/cm3 であった。
(6) Evaluation of Electrode Performance (6-1) Preparation of Electrode Molded Body Toluene solution of thermoplastic elastomer (styrene / ethylene / butylene / styrene / block copolymer) and polyethylene powder were added and stirred to obtain a slurry. . The weight ratio was 93 wt% carbonaceous material, 4 wt% thermoplastic elastomer (solid content), and 3 wt% polyethylene powder. This slurry was applied on a copper foil and pre-dried at 80 ° C. Further, the copper foil was pressure-bonded by a roll press, punched out on a disk having a diameter of 20 mm, and dried under reduced pressure at 110 ° C. to obtain an electrode. At this time, the packing density of the carbon material in the electrode was 1.45 g / cm 3 .

【0034】(6−2)半電池による電極評価 上記電極に対し、電解液を含浸させたセパレーターをは
さみ、リチウム金属電極に対向させたコイン型セルを作
成し、充放電試験を行った。電解液としては、エチレン
カーボネートとジエチレンカーボネートを重量比1:1
の比率で混合した溶媒に過塩素酸リチウムを1.5モル
/リットルの割合で溶解させたものを用いた。
(6-2) Electrode Evaluation by Half Battery A coin-shaped cell facing the lithium metal electrode was sandwiched between the above electrodes and a separator impregnated with an electrolytic solution, and a charge-discharge test was conducted. As the electrolytic solution, ethylene carbonate and diethylene carbonate are in a weight ratio of 1: 1.
Lithium perchlorate was dissolved in the solvent mixed at the ratio of 1.5 mol / liter at a ratio of 1.5 mol / liter.

【0035】充放電試験は電流値を1.54mAとし、
両電極間の電位差が0Vになるまで充電を行い、1.5
Vまで放電を行った。その結果、充電容量は269mA
h/g、放電容量は257mAh/gであった。又、各
容量から充放電効率は96%と算出された。
In the charge / discharge test, the current value was 1.54 mA,
Charge until the potential difference between both electrodes becomes 0V, then 1.5
Discharged to V. As a result, the charging capacity is 269mA
The discharge capacity was h / g and the discharge capacity was 257 mAh / g. The charge / discharge efficiency was calculated to be 96% from each capacity.

【0036】(実施例2)重質油として東邦タール
(株)社製のコールタールピッチ「溶融ピッチ」を用い
た実験を行った。まず、粉体フィーダーでの定量供給を
正確に行えるように溶融ピッチを予め平均粒径30μm
程度に微粉砕した。栗本鉄工所(株)社製「KRCS1
ニーダー」1台で、混合工程と押し出し工程を同時に実
施した。「KRCS1ニーダー」の原料供給口から溶融
ピッチを0.6kg/hで、LONZA社製人造黒鉛粉
末「KS−44」を0.4kg/hでそれぞれ同時に投
入した。1機目のKRCS1ニーダーは大気圧、内温1
30℃に保ち、フィードされたピッチ粉末を加熱、溶融
させ、人造黒鉛粉末と混合重量比が40:60になるよ
うに混練を行った。高粘性を示す半固溶体である混合物
を実施例1と同様にフィルム状に回収した。こうして炭
素質物粒子とコールタールピッチの複合物を炭素質物粒
子がフィルム平面と平行に配向した状態で得た。こうし
て得られた複合物を実施例1と同様に1200℃で熱処
理を行い、その後粉体加工処理を施して非水溶媒二次電
池電極材料を得た。
(Example 2) An experiment was conducted using coal tar pitch "melt pitch" manufactured by Toho Tar Co., Ltd. as heavy oil. First, the melt pitch was previously set to an average particle size of 30 μm so that a fixed amount of powder could be supplied accurately.
Finely ground to a degree. "KRCS1" manufactured by Kurimoto Iron Works Co., Ltd.
The mixing process and the extrusion process were simultaneously performed with one kneader. From the raw material supply port of "KRCS1 kneader", the melting pitch was 0.6 kg / h and the artificial graphite powder "KS-44" manufactured by LONZA was 0.4 kg / h at the same time. The first KRCS1 kneader is atmospheric pressure, internal temperature 1
The pitch powder fed was heated and melted at 30 ° C. and kneaded with the artificial graphite powder so that the mixing weight ratio was 40:60. The mixture, which is a semi-solid solution showing high viscosity, was collected in a film form as in Example 1. Thus, a composite of carbonaceous material particles and coal tar pitch was obtained with the carbonaceous material particles oriented parallel to the film plane. The composite thus obtained was heat-treated at 1200 ° C. in the same manner as in Example 1 and then subjected to powder processing to obtain a non-aqueous solvent secondary battery electrode material.

【0037】以下、実施例1と同様に分析、電極評価を
行った。その結果、広角X線回折測定では低角側ピーク
から算出されるd002は、0.351nm、Lcは
3.8nmであり、高角側ピークから算出されるd00
2は0.336nm、Lcは100nm以上であった。
ラマンスペクトル分析では、ピークのR値は0.45で
あった。更に真密度は2.18g/cm3 、比表面積は
4.3m3 /g、平均粒径は23μmであった。一方、
電極評価結果も実施例1と同条件で行い、負極への充填
密度は、1.44g/cm3 、充電容量が282mAh
/g、放電容量が279mAh/g、充放電効率が99
%であった。
Hereinafter, analysis and electrode evaluation were carried out in the same manner as in Example 1. As a result, in wide-angle X-ray diffraction measurement, d002 calculated from the low-angle side peak was 0.351 nm, Lc was 3.8 nm, and d00 calculated from the high-angle side peak.
2 was 0.336 nm, and Lc was 100 nm or more.
In the Raman spectrum analysis, the R value of the peak was 0.45. Furthermore, the true density was 2.18 g / cm 3 , the specific surface area was 4.3 m 3 / g, and the average particle size was 23 μm. on the other hand,
The results of electrode evaluation were also performed under the same conditions as in Example 1, the packing density in the negative electrode was 1.44 g / cm 3 , and the charging capacity was 282 mAh.
/ G, discharge capacity is 279 mAh / g, charge / discharge efficiency is 99
%Met.

【0038】(実施例3) (1)混合工程 入江商会社製「小型卓上ニーダーPNV−5H」(内容
積5リットル)に炭素質物(N)として人造黒鉛粉末
(LONZA社製「KS−44」)を1Kgを投入し、
炭素質物(S)として新日鐵化学社製コールタールピッ
チ(Aグレード)を1.5Kgを加え、シグマ型の攪拌
翼を2枚装着して、200℃に加熱しながら、60分攪
拌した。混合物を流動状態のままニーダーより取り出
し、冷却固化させて回収した。この操作を4バッチ行
い、混合物を合計10kg回収した。
(Example 3) (1) Mixing step "Small tabletop kneader PNV-5H" (internal volume: 5 liters) manufactured by Irie Shosha Co., Ltd. was used as an artificial graphite powder (NKS manufactured by LONZA "KS-44"). ) Is charged 1 kg,
As carbonaceous material (S), 1.5 kg of coal tar pitch (A grade) manufactured by Nippon Steel Chemical Co., Ltd. was added, two sigma type stirring blades were attached, and the mixture was stirred for 60 minutes while being heated to 200 ° C. The mixture was taken out of the kneader in a fluid state, cooled and solidified, and collected. This operation was performed in 4 batches, and a total of 10 kg of the mixture was recovered.

【0039】(2)押し出し成形工程 混合工程で得られた混合物を押し出し装置に投入するた
めに、直径1〜2mm程度に破砕した。この破砕された
混合物を栗本鉄工所(株)製「KRCS1ニーダー」1
台に1Kg/hで供給し、ニーダーの内温を150℃に
保ちながらフィルム状に押出し、混合物中の炭素質物が
そのフィルム面と平行に配列した状態の中間物質を得る
工程を行った。こうして炭素質物粒子とコールタールピ
ッチの複合物を炭素質物粒子がフィルム平面と平行に配
向した状態で得た。
(2) Extrusion molding step The mixture obtained in the mixing step was crushed to a diameter of about 1 to 2 mm in order to put it into an extrusion device. This crushed mixture is manufactured by Kurimoto Iron Works Co., Ltd. “KRCS1 kneader” 1
A step of supplying 1 Kg / h to a table and extruding into a film shape while keeping the internal temperature of the kneader at 150 ° C., was carried out to obtain an intermediate substance in a state where the carbonaceous material in the mixture was arranged parallel to the film surface. Thus, a composite of carbonaceous material particles and coal tar pitch was obtained with the carbonaceous material particles oriented parallel to the film plane.

【0040】(3)炭素化工程および粉体処理工程 こうして得られた複合物を実施例1と同様に1200℃
で熱処理を行い、その後粉体加工処理を施して非水溶媒
二次電池用複合炭素電極材料を得た。実施例1と同様に
分析、電極評価を行った結果、広角X線回折測定では低
角側ピークから算出されるd002は、0.345n
m、Lcは3.6nmであり、高角側ピークから算出さ
れるd002は0.337nm、Lcは84nmであっ
た。ラマンスペクトル分析におけるピークのR値は0.
40であった。また、真密度は2.20g/cm3 、比
表面積は5.7m3 /g、平均粒径は17μmであっ
た。一方、電極評価結果も実施例1と同条件で行った結
果、負極への充填密度は、1.45g/cm3 、充電容
量が237mAh/g、放電容量が233mAh/g、
充放電効率が98%であった。
(3) Carbonization step and powder treatment step The composite thus obtained was treated at 1200 ° C. in the same manner as in Example 1.
Was heat treated, and then powder processing was performed to obtain a composite carbon electrode material for a non-aqueous solvent secondary battery. As a result of performing analysis and electrode evaluation in the same manner as in Example 1, d002 calculated from the low-angle side peak in the wide-angle X-ray diffraction measurement was 0.345n.
m and Lc were 3.6 nm, d002 calculated from the high-angle peak was 0.337 nm, and Lc was 84 nm. The R value of the peak in Raman spectrum analysis is 0.
It was 40. The true density was 2.20 g / cm 3 , the specific surface area was 5.7 m 3 / g, and the average particle size was 17 μm. On the other hand, as a result of performing the electrode evaluation under the same conditions as in Example 1, the packing density in the negative electrode was 1.45 g / cm 3 , the charge capacity was 237 mAh / g, and the discharge capacity was 233 mAh / g.
The charge / discharge efficiency was 98%.

【0041】(比較例1)1ミクロン位の黒鉛粒子と石
油系ピッチバインダーの混合物を加熱処理し、ピッチバ
インダーをコークスが部分的に黒鉛化された炭素に変換
する方法で作成された炭素質物の評価を行った。混合物
としては、アメリカ、オハイオ、チャングリングフォー
ルのグラファイトセールス社の「HNOGSI−EC1
10」を用いた。得られた電極材料について、実施例1
と同様に分析、電極評価を行った。その結果、広角X線
回折測定ではピーク分離が行えず、d002は、0.3
37nm、Lcは73nmであった。ラマンスペクトル
分析におけるピークのR値は0.25であった。更に真
密度は2.17g/cm3 、比表面積は5.2m3
g、平均粒径は24μmであった。一方、電極評価結果
については、極板への充填密度が1.10g/cm3
充電容量が81mAh/g、放電容量が76mAh/
g、充放電効率が94%であった。
(Comparative Example 1) A carbonaceous material prepared by a method in which a mixture of graphite particles of about 1 micron and petroleum pitch binder is heat-treated to convert the pitch binder into partially graphitized carbon of coke. An evaluation was made. As a mixture, "HNOGSI-EC1" of Graphite Sales Co. of Changling Falls, Ohio, USA
10 ”was used. Regarding the obtained electrode material, Example 1
Analysis and electrode evaluation were performed in the same manner as in. As a result, peak separation was not possible in wide-angle X-ray diffraction measurement, and d002 was 0.3.
37 nm and Lc were 73 nm. The R value of the peak in the Raman spectrum analysis was 0.25. Furthermore, the true density is 2.17 g / cm 3 , and the specific surface area is 5.2 m 3 /
and the average particle size was 24 μm. On the other hand, regarding the electrode evaluation results, the packing density in the electrode plate was 1.10 g / cm 3 ,
Charge capacity 81mAh / g, discharge capacity 76mAh /
g, the charge / discharge efficiency was 94%.

【0042】(比較例2)液化コークスの滴を炉中に噴
射することで得られる黒鉛域顆粒とその粒界に黒鉛化の
少ない部分を含んだ黒鉛化相を有する球状黒鉛について
評価を行った。この様な組成を有する球状黒鉛として、
アメリカのシューペリオアグラファイト社の#9400
を用いた。実施例1と同様に分析、電極評価を行った結
果、広角X線回折測定ではピーク分離が行えず、d00
2は、0.338nm、Lcは29nmであった。ラマ
ンスペクトル分析では、ピークのR値は0.22であっ
た。更に真密度は1.73g/cm3 、比表面積は0.
49m3 /gであった。
(Comparative Example 2) Spherical graphite having a graphitized phase granule obtained by injecting liquefied coke droplets into a furnace and a graphitized phase containing a portion with less graphitization at the grain boundary was evaluated. . As spheroidal graphite having such a composition,
# 9400 from American Superior Graphite Company
Was used. As a result of performing analysis and electrode evaluation in the same manner as in Example 1, peak separation was not possible in wide-angle X-ray diffraction measurement, and d00
2 was 0.338 nm and Lc was 29 nm. In the Raman spectrum analysis, the R value of the peak was 0.22. Furthermore, the true density is 1.73 g / cm 3 , and the specific surface area is 0.7.
It was 49 m 3 / g.

【0043】なお、粒子がかなり粗く、レーザー式の粒
度分布計の測定範囲以上の粒子も存在し、平均粒径を算
出することができなかった。一方、実施例1と同条件で
行った電極評価結果については、充電容量、放電容量が
それぞれ、62mAh/g、57mAh/gであり、充
放電効率は92%であった。なお、#9400は電極成
形性がきわめて悪く、実際に電極として使用するのには
困難な点が多かった。極板密度は、0.7g/cm3
あったが、密度測定中にも電極材料の剥離がおこり、正
確な値の測定は不可能であった。実施例1〜4および比
較例1〜2の、広角X線回折測定およびラマンスペクト
ル分析結果を表1に、電池性能評価結果を表2にそれぞ
れ示す。
The average particle size could not be calculated because the particles were considerably coarse and there were particles that were in the measurement range of the laser type particle size distribution meter. On the other hand, regarding the electrode evaluation results performed under the same conditions as in Example 1, the charge capacity and the discharge capacity were 62 mAh / g and 57 mAh / g, respectively, and the charge / discharge efficiency was 92%. In addition, # 9400 had extremely poor electrode moldability, and there were many difficulties in actually using it as an electrode. The electrode plate density was 0.7 g / cm 3 , but the electrode material peeled off during the density measurement, and an accurate value could not be measured. The wide-angle X-ray diffraction measurement results and Raman spectrum analysis results of Examples 1 to 4 and Comparative Examples 1 and 2 are shown in Table 1, and the battery performance evaluation results are shown in Table 2.

【0044】(比較例3) (1)混合工程 実施例3と同様な手法を用いて人造黒鉛粉末(LONZ
A社製「KS−44」)と新日鐵化学社製コールタール
ピッチ(Aグレード)の混合物(重量比4:6)を10
kg回収した。
Comparative Example 3 (1) Mixing Step Using the same method as in Example 3, artificial graphite powder (LONZ)
A (KS-44) manufactured by Company A) and coal tar pitch (A grade) manufactured by Nippon Steel Chemical Co., Ltd. (weight ratio 4: 6)
kg was recovered.

【0045】(2)押し出し成形工程 混合工程で得られた混合物を押し出し装置に投入するた
めに、直径1〜2mm程度に破砕した。この破砕された
混合物を栗本鉄工所(株)製「KRCS1ニーダー」1
台に1Kg/hで供給し、ニーダーの内温を150℃に
保ちながら十分に混練を行い、高粘性を示す半固溶体で
ある混練物を円筒状に1Kg/hで回収した。こうして
炭素質物粒子とコールタールピッチの複合物を炭素質物
粒子が配向しない状態で得た。なお、押し出しに用いた
「KRCニーダー」には、直径25mmの凸レンズ型パ
ドルを45度ずらして計15枚取り付け、製品吐出口に
は直径5mmの円形の排出ノズルを用いた。
(2) Extrusion Molding Step The mixture obtained in the mixing step was crushed to a diameter of about 1 to 2 mm so as to be put into an extrusion device. This crushed mixture is manufactured by Kurimoto Iron Works Co., Ltd. “KRCS1 kneader” 1
It was supplied to the table at 1 Kg / h and sufficiently kneaded while keeping the internal temperature of the kneader at 150 ° C., and the kneaded material which was a semi-solid solution having high viscosity was collected in a cylindrical shape at 1 Kg / h. Thus, a composite of carbonaceous material particles and coal tar pitch was obtained in a state where the carbonaceous material particles were not oriented. In the “KRC kneader” used for extrusion, a total of 15 convex lens type paddles having a diameter of 25 mm were displaced by 45 degrees and a total of 15 pieces were attached, and a circular discharge nozzle having a diameter of 5 mm was used as a product discharge port.

【0046】(3)炭素化工程および粉体処理工程 こうして得られた複合物を実施例1と同様に1200℃
で熱処理を行い、その後粉体加工処理を施して非水溶媒
二次電池用複合炭素電極材料を得た。実施例1と同様に
分析、電極評価を行った結果、広角X線回折測定では低
角側ピークから算出されるd002は、0.345n
m、Lcは3.6nmであり、高角側ピークから算出さ
れるd002は0.337nm、Lcは84nmであっ
た。ラマンスペクトル分析におけるピークのR値は0.
42であった。また、真密度は2.18g/cm3 、比
表面積は5.0m3 /g、平均粒径は20μmであっ
た。一方、電極評価結果も実施例1と同条件で行った結
果、負極への充填密度は、1.30g/cm3 、充電容
量が250mAh/g、放電容量が245mAh/g、
充放電効率が98%であった。
(3) Carbonization step and powder treatment step The composite thus obtained was treated at 1200 ° C. in the same manner as in Example 1.
Was heat treated, and then powder processing was performed to obtain a composite carbon electrode material for a non-aqueous solvent secondary battery. As a result of performing analysis and electrode evaluation in the same manner as in Example 1, d002 calculated from the low-angle side peak in the wide-angle X-ray diffraction measurement was 0.345n.
m and Lc were 3.6 nm, d002 calculated from the high-angle peak was 0.337 nm, and Lc was 84 nm. The R value of the peak in Raman spectrum analysis is 0.
It was 42. The true density was 2.18 g / cm 3 , the specific surface area was 5.0 m 3 / g, and the average particle size was 20 μm. On the other hand, the results of electrode evaluation were also conducted under the same conditions as in Example 1, and as a result, the packing density in the negative electrode was 1.30 g / cm 3 , the charge capacity was 250 mAh / g, and the discharge capacity was 245 mAh / g.
The charge / discharge efficiency was 98%.

【0047】[0047]

【表1】 [Table 1]

【0048】[0048]

【表2】 [Table 2]

【0049】[0049]

【発明の効果】以上説明したように、本発明の非水溶媒
二次電池電極材料の製造方法は、炭素質物粒子と重質油
を原料とし、混合工程、押出し工程、炭素化工程、粉体
加工工程を組み合わせることで高性能炭素系複合電極材
料を製造する方法であって、特に炭素質物粒子と重質油
の混合物をフィルム状に押し出すことにより、粒径分布
をもった二次電池電極材料粉末の内、炭素質物粒子が複
数個二次粒子化した粉体粒子において、板状の炭素質物
粒子が互い平行に配列し、重質油に均一に被覆された構
成の多相構造炭素質物を安定的に効率よく製造すること
ができる。本発明方法で得られた高性能複合炭素材料
は、電解液に安定で、電極容量が大きく、電極への充填
密度性、充放電サイクル特性に優れ、急速充放電にも対
応可能な非水溶媒二次電池用負極電極材料として、好適
に用いられる。
As described above, the method for producing a non-aqueous solvent secondary battery electrode material of the present invention uses carbonaceous material particles and heavy oil as raw materials, and a mixing step, an extrusion step, a carbonization step, and a powder. A method for producing a high-performance carbon-based composite electrode material by combining processing steps, in particular, a secondary battery electrode material having a particle size distribution by extruding a mixture of carbonaceous material particles and heavy oil into a film. Among the powders, in the powder particles in which a plurality of carbonaceous material particles are secondary particles, plate-like carbonaceous material particles are arranged in parallel with each other, and a multiphase carbonaceous material having a structure in which heavy oil is evenly coated is used. It can be manufactured stably and efficiently. The high-performance composite carbon material obtained by the method of the present invention is a nonaqueous solvent that is stable in an electrolytic solution, has a large electrode capacity, is excellent in the packing density of electrodes, has excellent charge / discharge cycle characteristics, and can be used for rapid charge / discharge. It is preferably used as a negative electrode material for secondary batteries.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 千葉 裕美 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 (72)発明者 菅原 圭子 茨城県稲敷郡阿見町中央八丁目3番1号 三菱化学株式会社筑波研究所内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Hiromi Chiba 3-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Mitsubishi Chemical Corporation Tsukuba Research Laboratory (72) Inventor Keiko Sugawara 8-chome, Ami-cho, Inashiki-gun, Ibaraki 3-1 No. 1 Tsukuba Research Laboratory, Mitsubishi Chemical Corporation

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 次の工程を有する非水溶媒二次電池電極
材料の製造方法。 (A)炭素物質と重質油とを混合し、混合物を得る工
程。 (B)前記混合物をフィルム状に押出し成形し、中間物
質を得る工程。 (C)前記中間物質を、不活性ガス雰囲気中又は非酸化
性雰囲気中で500℃〜3000℃に加熱し、炭素化物
質を得る工程。 (D)前記炭素化物質を粉体加工する工程。
1. A method for producing a non-aqueous solvent secondary battery electrode material comprising the steps of: (A) A step of mixing a carbon material and heavy oil to obtain a mixture. (B) A step of extruding the mixture into a film to obtain an intermediate substance. (C) A step of heating the intermediate substance to 500 ° C. to 3000 ° C. in an inert gas atmosphere or a non-oxidizing atmosphere to obtain a carbonized substance. (D) A step of powder-processing the carbonized substance.
【請求項2】 フィルム状の中間物質中の炭素質物の粒
子が、フィルム平面に対し、実質的に平行に配向してな
ることを特徴とする特許請求の範囲第1項記載の非水溶
媒二次電池電極材料の製造方法。
2. The non-aqueous solvent according to claim 1, wherein the particles of the carbonaceous material in the film-like intermediate substance are oriented substantially parallel to the plane of the film. Method for manufacturing secondary battery electrode material.
JP7145907A 1995-06-13 1995-06-13 Manufacture of nonaqueous solvent secondary battery electrode material Pending JPH08339805A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7145907A JPH08339805A (en) 1995-06-13 1995-06-13 Manufacture of nonaqueous solvent secondary battery electrode material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7145907A JPH08339805A (en) 1995-06-13 1995-06-13 Manufacture of nonaqueous solvent secondary battery electrode material

Publications (1)

Publication Number Publication Date
JPH08339805A true JPH08339805A (en) 1996-12-24

Family

ID=15395832

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7145907A Pending JPH08339805A (en) 1995-06-13 1995-06-13 Manufacture of nonaqueous solvent secondary battery electrode material

Country Status (1)

Country Link
JP (1) JPH08339805A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134797A (en) * 1996-10-25 1998-05-22 Pilot Precision Co Ltd Film electrode and manufacture thereof
WO1998034291A1 (en) * 1997-02-04 1998-08-06 Mitsubishi Chemical Corporation Lithium ion secondary battery
JPH11265718A (en) * 1998-03-16 1999-09-28 Sanyo Electric Co Ltd Lithium secondary battery
KR100388527B1 (en) * 2001-01-04 2003-06-25 삼성에스디아이 주식회사 A manufacturing method of anode active materials for lithium secondary battery
JP2009187924A (en) * 2008-01-11 2009-08-20 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode
CN107039654A (en) * 2017-03-24 2017-08-11 上海杉杉科技有限公司 A kind of preparation method of high power capacity long circulating artificial plumbago negative pole material
JP2019523973A (en) * 2016-06-07 2019-08-29 ユニヴェルシテ ド リエージュUniversite De Liege Method for producing an electrode for an electrochemical storage device

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10134797A (en) * 1996-10-25 1998-05-22 Pilot Precision Co Ltd Film electrode and manufacture thereof
WO1998034291A1 (en) * 1997-02-04 1998-08-06 Mitsubishi Chemical Corporation Lithium ion secondary battery
JPH11265718A (en) * 1998-03-16 1999-09-28 Sanyo Electric Co Ltd Lithium secondary battery
KR100388527B1 (en) * 2001-01-04 2003-06-25 삼성에스디아이 주식회사 A manufacturing method of anode active materials for lithium secondary battery
JP2009187924A (en) * 2008-01-11 2009-08-20 Hitachi Chem Co Ltd Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery using the negative electrode
JP2019523973A (en) * 2016-06-07 2019-08-29 ユニヴェルシテ ド リエージュUniversite De Liege Method for producing an electrode for an electrochemical storage device
CN107039654A (en) * 2017-03-24 2017-08-11 上海杉杉科技有限公司 A kind of preparation method of high power capacity long circulating artificial plumbago negative pole material

Similar Documents

Publication Publication Date Title
KR101441712B1 (en) Composite graphite particles for non-aqueous secondary batteries, negative electrode material containing the same, negative electrodes, and non-aqueous secondary batteries
JP3460742B2 (en) Method for producing electrode material for non-aqueous solvent secondary battery
KR101341695B1 (en) 2 2 graphite composite particle for nonaqueous secondary battery negative electrode active material comprising the same negative electrode and nonaqueous secondary battery
KR101618386B1 (en) Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
EP1801903B1 (en) Negative electrode material for nonaqueous secondary cells, negative electrode for nonaqueous secondary cells, and nonaqueous secondary cell
EP1363341B1 (en) Conductive silicon composite, preparation thereof, and negative electrode material for non-aqueous electrolyte secondary cell
JP3534391B2 (en) Carbon material for electrode and non-aqueous secondary battery using the same
JP3916012B2 (en) Non-aqueous secondary battery electrode
CN113226986B (en) Preparation method of lithium secondary battery negative electrode active material
KR102002797B1 (en) Graphite and electrodes for secondary batteries using the same
EP3054505A1 (en) Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
CN112661148B (en) Composite graphite negative electrode material, preparation method and application thereof, and lithium ion battery
JP7127275B2 (en) Negative electrode material for non-aqueous secondary battery, negative electrode for non-aqueous secondary battery, and non-aqueous secondary battery
CN105409040A (en) Composite particles of silicon phase-containing substance and graphite, and method for producing same
JP3106129B2 (en) Anode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP2000223120A (en) Carbon material for electrode
JPH09213328A (en) Electrode material for non-aqueous solvent secondary battery and manufacture of the electrode material
JP3666032B2 (en) Method for producing carbon-based composite material
JPH08339805A (en) Manufacture of nonaqueous solvent secondary battery electrode material
EP1571127B1 (en) Production process for carbonized product
CN113023724A (en) Preparation method of high-rate graphite negative electrode material for lithium ion power battery
JP7067029B2 (en) Negative electrode material for non-aqueous secondary batteries, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
WO2019131863A1 (en) Negative electrode material for lithium-ion secondary cells
CN113526956B (en) Low-cost long-circulation graphite negative electrode material and preparation method and application thereof
JP2009158356A (en) Composite carbon material for negative electrode material of lithium secondary battery and its manufacturing method

Legal Events

Date Code Title Description
A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040506