JP3666032B2 - Method for producing carbon-based composite material - Google Patents

Method for producing carbon-based composite material Download PDF

Info

Publication number
JP3666032B2
JP3666032B2 JP23795994A JP23795994A JP3666032B2 JP 3666032 B2 JP3666032 B2 JP 3666032B2 JP 23795994 A JP23795994 A JP 23795994A JP 23795994 A JP23795994 A JP 23795994A JP 3666032 B2 JP3666032 B2 JP 3666032B2
Authority
JP
Japan
Prior art keywords
particles
carbonaceous
carbon
heavy oil
carbonaceous material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP23795994A
Other languages
Japanese (ja)
Other versions
JPH08104510A (en
Inventor
学 林
祥司 山口
文一 水谷
圭子 菅原
彰一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP23795994A priority Critical patent/JP3666032B2/en
Publication of JPH08104510A publication Critical patent/JPH08104510A/en
Application granted granted Critical
Publication of JP3666032B2 publication Critical patent/JP3666032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Carbon And Carbon Compounds (AREA)

Description

【0001】
【産業上の利用分野】
本発明は、炭素系複合材料の製造方法に関し、特に非水溶媒二次電池の電極材として好適な炭素系複合材料の製造方法に関する。
【0002】
【従来の技術】
近年、電子機器の小型化に伴い高容量の二次電池が必要になってきている。特にニッケル・カドミウム、ニッケル・水素電池に比べ、よりエネルギー密度の高い非水溶媒二次電池が注目されてきている。その負極材料として、これまで金属や黒鉛などが検討されている。しかし、金属電極は、充放電を繰り返すと溶媒中の金属がデンドライト状に析出し、最終的には両極を短絡させてしまうという問題があった。また、黒鉛は、その層間に金属イオンの出入りが可能なため、短絡の問題は無いが、プロピレンカーボネート系の電解液を分解する上、エチレンカーボネート系の電解液では充放電サイクル特性が悪いという問題がある。
【0003】
一方、例えば特開平4−171677号公報に示されるような、多相構造を有する炭素質物(炭素系複合材料)を用いることも検討されている。これは、結晶性の高い炭素質物の長所(高容量かつ不可逆容量が小さい)と短所(プロピレンカーボネート系電解液を分解する)および結晶性の小さな炭素質物の長所(電解液との安定性に優れる)と短所(容量が小さく不可逆容量大)を組み合わせ、互いの長所を生かしつつ、短所を補うという考えによる。
【0004】
この様な炭素系複合材料の製造方法としては、例えば前述の特開平4−171677号公報には、(1)1ミクロン位の黒鉛粒子と石油系バインダーピッチの混合物を加熱処理してバインダーピッチをコークスか部分的に黒鉛化された炭素に変換する方法、(2)液化コークスの滴を炉中に噴射する方法がそれぞれ記載されている。
【0005】
【発明が解決しようとする課題】
しかし、(1)の方法では、バインダーピッチが高粘性のため黒鉛の高充填が難しく、熱処理の結果得られた黒鉛複合物中における黒鉛含有率を高めることには限界があり、黒鉛の有する高充放電容量性を十分に活かすことはできない。更に混合物の粘性がきわめて高いために、工業的な規模においては均一な混合物を得ることが比較的難しい。加えて本方法では混合工程完了後、加熱処理工程に移行するため、連続的な工業生産が難しい。
【0006】
また、(2)の方法で得られる球状コークスには、例えば「炭素材料工学」(日刊工業新聞社刊 稲垣道夫著)等にも記載があるように、外観上および内部構造上大きく異なる2種の粒子が混在している。このためこの方法で得られる球状コークスを電極に用いる場合には、粒子の組成および粒径の何れも均一にしがたく、電極成形性が極めて悪い上、比表面積が小さく、高容量が得られないという問題がある。
【0007】
【課題を解決するための手段】
本発明者らは前記目的を解決するために、核を形成する炭素質物粒子(N)の表面上に表相となる炭素質物(S)を形成し、最終的に多相構造を有する炭素系複合材料の製造方法について鋭意検討を重ねた結果、炭素質物粒子表面上に重質油成分を付着後、これを重縮合させることにより、炭素質物粒子(N)の細孔部分にも炭素質物(S)が充填され、かつ薄膜化した炭素質物(S)が均一に表面を被覆した、極めて品質の良好な高性能複合炭素質物粒子を安定して効率よく製造し得ることを見いだし、本発明を完成するに至った。
【0008】
すなわち、本発明は、X線回折におけるd002が0.345nm以下である炭素質物粒子の全体あるいはその一部を、d002が0.345nmより大きい被覆炭素材で複合化した多相構造を有する炭素系複合材料で、真密度が1.80g/cm3以上であり、BET法比表面積が30m2/g以下、体積基準平均粒径が35μm以下であり、波長514.5nmのアルゴンイオンレーザー光を用いたラマンスペクトル分析において、1580cm-1の付近のピークPA 、1360cm-1の付近のピークPB を有し、上記PA の強度IA に対するPB の強度IB の比R(= B /I A)値が、核となる炭素質物粒子のR値を限とする炭素系複合材料の製造方法であって、少なくとも
(A)d002が0.345nm以下で、Lcが50nm以上の炭素質物粒子を50℃における粘度が200cp以下の重質油中又は50℃における粘度が200cp以下となるように溶媒で希釈した重質油中に分散し、接触させ、重質油に含まれる多環芳香族分子あるいはオリゴマーを炭素質物粒子の表面及び細孔中に含侵、吸着して、該多環芳香族分子あるいは該オリゴマーが炭素質物粒子の表面及び細孔中に含侵、吸着された炭素質物粒子を得、
(B)多環芳香族分子あるいはオリゴマーを炭素質物粒子が表面及び細孔中に含浸、吸着された該炭素質物粒子を不活性雰囲気下で熱処理し、炭素質物粒子の表面及び細孔中に含浸された多環芳香族成分に対し、熱化学反応を進行させる
ことを特徴とする炭素系複合材料の製造方法、である。
【0009】
以下、本発明を詳細に説明する。
(1)混合原料の調整及び選択
(a)炭素質物(N)
本発明により製造される炭素系複合材料において、最終的に核を形成する粒子状炭素質物(N)は、体積平均粒径が30μm以下であり、d002が0.345nm以下でかつLc が15nm以上、好ましくは、d002が0.345nm以下でかつLc が50nm以上、より好ましくはd002が0.345nm以下でかつLcが80nm以上の炭素質物である。具体的には、黒鉛質物粒子を始め、ピッチ系、ポリアクリトニトリル(PAN)系、メソフェーズピッチ系、気相成長系それぞれの黒鉛質の炭素繊維を粉末状に加工したものも用いることができる。また、これら2種以上を混合して用いてもよい。
【0010】
炭素質物(N)は、
1.溶融溶解性有機物、熱硬化性高分子等を不活性ガス雰囲気下又は真空中において、1500〜3000℃、好ましくは2000〜3000℃の温度で加熱することによって、炭素化と黒鉛化を行う方法。
2.カーボンブラック、コークス等、既製の炭素質物を更に加熱処理して黒鉛質化を適度に進行させる方法。
3.人造黒鉛、天然黒鉛、気相成長黒鉛ウィスカー、炭素繊維を必要に応じて粒子径あるいは繊維長の調整を行ったのち、粉末状にして用いる方法。
等によって得ることができる。
【0011】
ここで1.の原料である有機化合物は、有機物が固相炭素体へ変換する際に、液相を通過する原料と固相で炭素化が進行する原料とに分類することができる。液相炭素化原料としては、アセナフチレン、ナフタレンの様な芳香族炭化水素やポリ塩化ビニルなど熱溶融高分子、コールタールピッチやエチレンタールピッチなどの重質油が挙げられる。一方、固相炭素化原料としては、セルロース等天然高分子、フェノール−ホルムアルデヒド樹脂など熱硬化性樹脂、ポリアミド、ポリアクリロニトリルなど熱可塑性高分子、更に空気酸化前処理によって不融化された、ポリ塩化ビニル、ピッチなど溶融溶解性有機物が挙げられる。
【0012】
(b)炭素質物(S)
一方、本発明により製造される炭素系複合材料において、最終的に表面相を形成する炭素質物(S)は、d002が0.340nm以上0.400nm以下、好ましくは0.342nm以上0.370nm以下、更に好ましくは0.345nm以上0.365nm以下である。また、Lc は30nm以下、好ましくは、10nm以下、より好ましくは6nm以下、最も好ましくは4nm以下の炭素質物である。 この様な炭素質物の原料としては、所定の粘度以下の、液体状態である重質油を用いることができる。粘度としては、50℃における粘度が200cp以下が好ましく、80cp以下がさらに好ましい。
【0013】
粘度が200cpを超えると、炭素質物粒子と過剰重質油の分離工程において、重質油の分離が十分に行えず、均一な複合炭素系材料が得られない。
なお、50℃における粘度が200cpを越える重質油を用いる場合、トルエン、キノリン等の芳香族系、あるいは複素環式化合物からなる溶媒で希釈し、200cp以下に調製して用いることができる。
【0014】
本発明に用いることのできる重質油としては例えば「炭素材の化学と工学」((株)朝倉書店 持田勲著)に記載されるように、軟ピッチから硬ピッチまでのコールタールピッチや乾留液化油などの石炭系重質油や、常圧残油、減圧残油等の直流系重質油、原油、ナフサなどの熱分解時に副生するエチレンタール等分解系重質油などの石油系重質油がある。これら重質油のなかでも特にナフサ分解時に発生するエチレンヘビーエンドタールは、50℃における粘度がほぼ70cpで、しかも重量平均分子量3000〜4000の多環芳香族分子を3%以上含有しており、本発明の実施に適している。
【0015】
(2)第1工程:混合・含浸・置換工程
本発明における第1工程は炭素質物粒子(炭素質物(N))を、重質油(炭素質物(S)の原料)中に混合・分散し、重質油と十分接触させることで、重質油に含まれる多環芳香族分子、好ましくはより分子量の大きな多環芳香族オリゴマーによって粒子表面及び細孔内を置換する工程である。
【0016】
本工程の前に、炭素質物粒子を予め溶媒処理しておくと、より良好な結果が得られる。即ち、芳香族系あるいは複素環式化合物からなる溶媒に浸漬し、表面及び細孔中を溶媒により置換後、過剰な溶媒から分離した炭素質物粒子を用いることで、炭素質物粒子の重質油に対する「ぬれ」をよくし重質油と炭素質物粒子の接触をより確実にし、重質油中での炭素質物粒子の分散を向上させる。加えて、多環芳香族分子の良溶媒を用いるため、重質油中の多環芳香族分子が炭素質物粒子表面に接触する確率を高める。この結果、重質油中に含まれる多環芳香族分子の炭素質物粒子表面への吸着効率が向上するという効果がある。この溶媒処理に用いる芳香族系あるいは複素環式化合物からなる溶媒としては、重質油中に含まれる多環芳香族分子が容易に溶解するものが好ましい。具体的には、複素環式化合物からなる溶媒としてはキノリンやピリジンが、また、芳香族系溶媒としてはトルエンやベンゼンを挙げることができる。
【0017】
本工程の実施は、回分式または連続式いずれの混合機で行っても良い。また、反応槽を加温しても、しなくとも良いが、反応槽を加温することは混合物の粘度を低下させ、装置にかかる負荷を低減し、混合・含浸・置換効果を高めるので好ましい。更に混合時の槽内圧力を減圧状態にすることで、微小粉末からの脱泡効果を高め、炭素質物粒子の表面及び細孔中に内包された空気を除去し、溶媒による置換、吸着をより完全にすることができる。
【0018】
回分式混合機を用いる場合、その装置には攪拌翼を備えた混合機を1機用いても良いし、複数台用いて順次、分散度、接触度の向上を図っても良い。混合機は、混合物の粘度に応じて様々な形態・方式の装置を選ぶことが可能である。即ち、高速高剪断ミキサーであるディゾルバーや高粘度用のバタフライミキサーの様な一枚のブレードがタンク内を攪拌・分散を行う形態の装置、半円筒状混合槽の側面に沿ってシグマ型等の攪拌翼が回転する構造を有する、いわゆるニーダー形式の装置、2本の枠型ブレードが固定式タンク内で遊星運動を行いながら回転する構造を有する装置、本装置の攪拌翼を合計3軸にした様なトリミックスタイプの装置、分散槽内に回転ディスクと分散媒体を有するいわゆるビーズミル形式の装置などを用いることが出来る。
【0019】
これらの装置のなかでも、スラリーの適用粘度範囲が広い点で、2本の枠型ブレードが固定式タンク内で遊星運動を行いながら回転する構造を有する混合機が好ましい。このような構造を有する混合機としては例えば(株)井上製作所より、プラネタリーミキサーの名称で市販されている。
【0020】
一方、連続式混合機を用いる場合には、パイプラインミキサーを用いても良いし、連続式ビーズミル(媒体分散機)を用いても良い。連続式混合機を用いた場合、第1工程を実施しながら第2工程への反応原料の搬送を同時に行うことができ、より効率的な製造が実現できる。
【0021】
(3)第2工程:固液分離工程
本工程は、第1工程より得られた表面及び細孔内に多環芳香族分子が十分に含浸、吸着した炭素質物粒子を過剰な重質油から濾過により分離する工程である。この分離工程は、フィルタープレスや加圧濾過器などの濾過法あるいは遠心分離法など固液分離に一般的な方法を用いることができる。なお、この工程は重質油の揮発性成分の量や粘度に応じて省略することもできる。
【0022】
(4)第3工程:炭素化工程
本工程は、第2工程より得られた多環芳香族分子が表面及び細孔中に吸着された炭素質物粒子を加熱し、炭素化を進行させる工程である。
炭素化は、窒素ガス、炭酸ガス、アルゴンガス等不活性ガス流通下で第2工程からの炭素質物粒子を加熱して行う。本工程における炭素化はまず、重質油成分のうち揮発分が蒸発し、次に多環芳香族分子をはじめとする残留分が熱化学反応を進行させ、炭素質物粒子表面及び細孔内で縮重合を進行させる。重縮合の進行とともに酸素、窒素、水素が系外へ排出され、重縮合物中に存在する構造欠陥が加熱処理の度合いによって除去され、炭素前駆体、炭素と順次変化する。
【0023】
本工程の加熱温度下限は重質油の種類、その熱履歴によっても若干異なるが通常500℃以上、好ましくは600℃以上、さらに好ましくは700℃以上である。一方、上限温度は重質油の残留分が核となる炭素質物(N)の結晶構造を上回る構造秩序を有しない、即ち炭素質物(N)よりも低黒鉛化度である範囲で定めることができる。従って熱処理の上限温度としては、通常2500℃以下、好ましくは2000℃以下、更に好ましくは1500℃以下である。このような熱処理条件において、昇温速度、冷却速度、熱処理時間などは目的に応じて任意に設定する事ができる。また、比較的低温領域で熱処理した後、所定の温度に昇温する事もできる。
【0024】
なお、第3工程に用いる反応機は回分式加熱炉でも連続式加熱炉でもよく、又一基でも複数基を接続した構成でもよい。更に、反応機に投入する第2工程生成物は、反応機の種類に応じてあらかじめ必要な前処理、即ち形状の加工、具体的には粉砕、解砕あるいは更に造粒を伴う粒度の調整を行っても良い。
【0025】
(5)第4工程:粉体加工工程
第3工程において重質油の残留分が炭素化し、核となる炭素質物粒子表面の一部あるいは全体を被覆した状態で複合化した生成物は第4工程において、必要に応じて粉砕、解砕、分級処理など粉体加工処理を施され、非水溶媒二次電池用電極材料とする。電池においては、一定容積にできるだけ多くの電極材を充填することが必要である。負極用電極材は集電体である金属箔に塗布、圧延してシート電極化して用いられるため、一定以下の粒子径を持つことが望ましい。具体的には体積平均粒径が、1μm以上45μm以下、好ましくは1μm以上35μm以下、さらに好ましくは1μm以上25μm以下、特に好ましくは1μm以上15μm以下である。
なお、粉体加工工程は、前述したとおり、場合により第2、第3工程の間に挿入することもできる。
【0026】
第1〜第4工程を経た結果、
1.BET法比表面積が30m2以下、
2.体積基準平均粒径が35μm以下、
3.真密度が1.80g/cm3以上、
4.X線回折測定で炭素質物(N)に由来する、(002)面の面間隔d002が0.345nm以下、Lcが15nm以上であり、炭素質物(S)に由来するd002が0.345nmより大きい、
5.波長514.5nmのアルゴンイオンレーザー光を用いたラマンスペクトル分析による1580cm-1付近のピークPA 、1360cm-1付近のピークPB のピーク強度の比R(= B /I A)値が、炭素質物(N)単独のR値よりも大きく、より好ましくは0.3以上、
である様な非水溶媒二次電池の電極材として好適な炭素系複合材料が得られる。
【0027】
【実施例】
次に実施例により本発明を更に詳細に説明する。
以下の実施例・比較例において各パラメータの測定は以下のように行った。
(a)(002)面の面間隔(d002)、結晶子の大きさLC
炭素質材料が粉末の場合にはそのまま、微小片状の場合にはメノウ乳鉢で粉末化し、試料に対して約15wt%のX線標準高純度シリコン粉末を加えて混合し、試料セルに詰め、グラファイトモノクロメーターで単色化したCuKα線を線源とし、反射式ディフラクトメーター法によって広角X線回折曲線を測定した。本発明の製造方法による炭素系複合材料は、黒鉛化度の異なる炭素質物(N)および炭素質物(S)から構成されるため、X線回折曲線は異なる結晶化度に由来するふたつのピークが重なりあった形状を有する。具体的には、低角側に被覆相である炭素質物(S)に由来する比較的ブロードなピーク、高角側には核を構成する炭素質物(N)に由来する比較的シャープなピークを有している。この回折曲線に対して、ピークの分離を行った後、それぞれのピークに対してd002とLc を算出した。
【0028】
(b)ラマンスペクトル分析:
波長514.5nmのアルゴンイオンレーザー光を用いたラマンスペクトル分析において、1580cm-1の付近のピークPA の強度IA 、1360cm-1の付近のピークPB の強度IB を測定し、その強度の比R=IB /IA を測定した。
【0029】
(c)真密度
ピクノメーターを用い、ヘリウムガスによるガス置換法によって測定した。
(d)比表面積
比表面積を用い、窒素ガス吸着によるBET1点法によって測定した。
(e)体積基準平均粒径
レーザー回折式粒度分布計を用い、分散媒にエタノールを使用して体積基準平均粒径(メジアン径)を測定した。
【0030】
(実施例1)
(1)第1工程
炭素質物(N)として、人造黒鉛粉末(LONZA社製KS−44:d002=0.336m,Lc=100nm以上,平均体積粒径19μm)5Kg、重質油としてエチレンヘビーエンドタール(三菱油化(株)製:50℃における粘度50cp)30Kgを50リットル混合槽に投入し、(株)井上製作所製のDHC−P−005可搬式ディゾルバーを用い、1200rpmで攪拌した。
【0031】
混合は、液温が50℃となるように混合槽を加温しながら、攪拌開始より30分間行った。30分後、混合液は非常になめらかなスラリーとなって、ほぼ仕込量全量が回収された。スラリーの分散度をグラインドゲージにて調べたところ、人造黒鉛粉末の一次粒子の最大粒径とほぼ一致した軌跡が得られた。
【0032】
(2)第2工程
第1工程にて得られたスラリーを減圧濾過した。濾過物は乾いたケーキ状となっており、手に取ると粉末状に押しつぶすことができた。この粉末は混合前の炭素質物(N)が有する金属光沢は全く有しておらず、褐色の粉末であった。
【0033】
(3)第3工程
第2工程で得られた、炭素質物(N)と重質油の残留分との複合粉体からなるケーキを回分式加熱炉で熱処理した。ケーキを黒鉛容器にいれた状態で内熱式加熱炉に入れ、窒素ガス5リットル/分の流量下、1100℃まで2時間30分かけて昇温したのち、さらに30分かけて1200℃まで昇温し、1200℃で1時間保持した。その後、室温まで自然冷却して重質油の残留分が炭素化した熱処理物を得た。熱処理物は、黒鉛容器の中で熱処理前のケーキの形状を保っていたが、手に取ると簡単に解砕することができた。
【0034】
(4)粉体処理工程
炭素質物粒子と炭素質被覆相からなる複合物となった熱処理物は、粒子間で若干の融着を起こしていた部分もあった為、ロールクラッシャーにて一次粒子に解砕し、平均体積粒径21μmの炭素系複合材料粉末を得た。
【0035】
(5)炭素系複合材料粉末の分析
分析結果は以下のとおりだった。

Figure 0003666032
【0036】
(6)電極性能評価
(6−1)電極成形体の作成
実施例1で得られた炭素系複合材料93重量%、熱可塑性エラストマー(スチレン・エチレン・ブチレン・スチレン・ブロックコポリマー)のトルエン溶液4重量%(固形分)およびポリエチレン粉末3重量%を加えてかくはんし、スラリーを得た。このスラリーを銅箔上に塗布し、80℃で予備乾燥を行った。さらに銅箔に圧着させたのち、直径20mmの円盤上に打ち抜き、110℃で減圧乾燥をして電極とした。
【0037】
(6−2)半電池による電極評価
上記電極に対し、電解液を含浸させたセパレーター(ポリエチレン製多孔性フィルム)をはさみ、リチウム金属電極に対向させたコイン型セルを作成し、充放電試験を行った。電解液には、エチレンカーボネートとジエチルカーボネートを重量比1:1の比率で混合した溶媒に過塩素酸リチウムを1.5モル/リットルの割合で溶解させたものを用いた。
【0038】
充放電試験は電流値を1.54mAとし、両電極間の電位差が0Vになるまで充電を行い、1.5Vまで放電を行った。その結果、充電容量は255mAh/g、放電容量は253mAh/gであった。又、各容量から充放電効率は99%と算出された。
【0039】
(実施例2)
(1)第1工程
炭素質物(N)として、人造黒鉛粉末(LONZA社製KS−44:d002=0.336m,Lc=100nm以上,平均体積粒径19μm)5Kg、重質油としてコールタールピッチ(川崎製鉄(株)社製のPKQL:50℃において固体)10kgを用いた実験を行った。このコールタールピッチはキノリン不溶分が0.01%以下と極めて少ないため、キノリンで30cpに希釈して使用した。これを実施例1と同様に(株)井上製作所製のDHC−P−005可搬式ディゾルバーを用い、1200rpmで攪拌した。混合は、常温で行い、攪拌開始より30分間行った。30分後、混合液はスラリーとなって、ほぼ仕込量全量が回収された。スラリーの分散度をグラインドゲージにて調べたところ、人造黒鉛粉末の一次粒子の最大粒径とほぼ一致した軌跡が得られた。
【0040】
(2)第2〜第4工程
こうして得られた複合物を実施例1と同様に固液分離処理ののち、1200℃で熱処理を行い、その後、粉体加工処理を施して炭素系複合材料を得た。
【0041】
(3)炭素系複合材料の分析
分析結果は以下のとおりだった。
Figure 0003666032
【0042】
(5)電極性能評価
実施例1と同様に半電池を製造し、充放電特性を測定した。
充電容量は267mAh/g、放電容量が263mAh/g、充放電効率が99%であった。
【0043】
(比較例1)
1ミクロン位の黒鉛粒子と石油系バインダーピッチの混合物を加熱処理してピッチバインダーをコークスか部分的に黒鉛化された炭素に変換する方法で作成された炭素質物の評価を行った。この様な炭素質物として、アメリカ、オハイオ、チャングリングフォールのグラファイトセールス社のHNOGSI−EC110(等方性黒鉛)を用いた。
【0044】
得られた電極材料について、実施例1と同様に分析、電極性能評価を行った。その結果、広角X線回折測定ではピーク分離が行えず、d002は、0.337nm、Lcは73nmであった。ラマンスペクトル分析では、ピークのR値は0.25であった。更に真密度は2.17g/cm3 、比表面積は5.2m2 /g、平均粒径は24μmであった。
【0045】
一方、電極性能評価結果については、充電容量が81mAh/g、放電容量が76mAh/g、充放電効率が94%であった。
【0046】
(比較例2)
液化コークスの滴を炉中に噴射することで得られる黒鉛域顆粒とその粒界に黒鉛化の少ない部分を含んだ黒鉛化相を有する球状黒鉛について評価を行った。この様な球状黒鉛として、アメリカ、イリノイ、シカゴのシューペリオアグラファイト社の#9400を用いた。
【0047】
実施例1と同様に分析、電極性能評価を行った。その結果、広角X線回折測定ではピーク分離が行えず、d002は、0.338nm、Lcは29nmであった。ラマンスペクトル分析では、ピークのR値は0.22であった。また真密度は1.73g/cm3 、比表面積は0.49m2 /gであった。
なお、粒子がかなり粗く、レーザー式の粒度分布計の測定範囲以上の粒子も存在し、平均粒径を算出することができなかった。一方、実施例1と同条件で行った電極性能評価結果については、充電容量、放電容量がそれぞれ、62mAh/g、57mAh/gであり、充放電効率は92%であった。なお、#9400は電極成形性がきわめて悪く、実際に電極として使用するのには困難な点が多かった。
【0048】
実施例1〜2および比較例1〜2の、広角X線回折測定結果を表1に、電極性能評価結果を表2にそれぞれ示す。
【0049】
【表1】
Figure 0003666032
【0050】
【表2】
Figure 0003666032
【0051】
【発明の効果】
以上説明したように、本願の炭素系複合電極材料の製造方法は、炭素質物粒子と重質油を原料とし、含浸処理、固液分離処理、炭素化処理、粉体加工処理を組み合わせることで高性能炭素系複合電極材料を製造する方法であって、第1、2工程において、炭素質物粒子に被覆炭素質物の出発物質である重質油を表面のみならず細孔内にまで含浸した後、熱処理を行うことによって、均一な複合炭素材料を得ることができ、より完全な被覆相の薄膜化を図ることができる。従って本発明により、性能が均一で品質の良好な高性能炭素材料を安定的に効率よく製造することができる。
【0052】
本発明方法で得られた炭素系複合材料は、電解液に安定で、電極容量が大きく、充放電サイクル特性に優れ、急速充放電にも対応可能な非水溶媒2次電池用電極材料として好適である。[0001]
[Industrial application fields]
The present invention relates to a method for producing a carbon-based composite material, and more particularly to a method for producing a carbon-based composite material suitable as an electrode material for a non-aqueous solvent secondary battery.
[0002]
[Prior art]
In recent years, a secondary battery having a high capacity has been required along with miniaturization of electronic equipment. In particular, non-aqueous solvent secondary batteries with higher energy density have attracted attention as compared with nickel-cadmium and nickel-hydrogen batteries. As the negative electrode material, metals and graphite have been studied so far. However, the metal electrode has a problem that when charging and discharging are repeated, the metal in the solvent is deposited in a dendrite shape, and eventually both electrodes are short-circuited. In addition, since graphite allows metal ions to enter and exit between the layers, there is no short circuit problem, but in addition to decomposing the propylene carbonate electrolyte, the charge / discharge cycle characteristics of the ethylene carbonate electrolyte are poor. There is.
[0003]
On the other hand, the use of a carbonaceous material (carbon-based composite material) having a multiphase structure as disclosed in, for example, Japanese Patent Application Laid-Open No. 4-171777 has been studied. This is because of the advantages (high capacity and small irreversible capacity) and disadvantages (decomposes propylene carbonate electrolyte) and the advantages (high stability of the electrolyte) of carbonaceous materials with low crystallinity. ) And shortcomings (small capacity and large irreversible capacity), based on the idea of making up for each other while taking advantage of each other's strengths.
[0004]
As a method for producing such a carbon-based composite material, for example, in the above-mentioned Japanese Patent Laid-Open No. 4-171777, (1) a binder pitch is obtained by heat-treating a mixture of graphite particles of about 1 micron and petroleum-based binder pitch. A method for converting coke into partially graphitized carbon and (2) a method for injecting droplets of liquefied coke into a furnace are described.
[0005]
[Problems to be solved by the invention]
However, in the method (1), high filling of graphite is difficult due to the high viscosity of the binder pitch, and there is a limit to increasing the graphite content in the graphite composite obtained as a result of the heat treatment. The charge / discharge capacity cannot be fully utilized. Furthermore, due to the extremely high viscosity of the mixture, it is relatively difficult to obtain a uniform mixture on an industrial scale. In addition, since this method shifts to a heat treatment step after completion of the mixing step, continuous industrial production is difficult.
[0006]
In addition, the spherical coke obtained by the method (2), as described in, for example, “Carbon Materials Engineering” (written by Michio Inagaki published by Nikkan Kogyo Shimbun Co., Ltd.) etc. Particles are mixed. Therefore, when the spherical coke obtained by this method is used for an electrode, it is difficult to make the particle composition and particle size uniform, the electrode formability is extremely poor, the specific surface area is small, and a high capacity cannot be obtained. There is a problem.
[0007]
[Means for Solving the Problems]
In order to solve the above-mentioned object, the present inventors form a carbonaceous material (S) as a surface phase on the surface of carbonaceous material particles (N) forming nuclei, and finally a carbon system having a multiphase structure. As a result of earnest examination about the manufacturing method of the composite material, after attaching a heavy oil component on the carbonaceous material particle surface, this is polycondensed, so that the carbonaceous material (N It has been found that high-quality composite carbonaceous material particles having a very good quality in which S) is filled and the thinned carbonaceous material (S) is uniformly coated on the surface can be stably and efficiently produced. It came to be completed.
[0008]
That is, the present invention is a carbon having a multiphase structure in which all or part of carbonaceous material particles having a d002 of 0.345 nm or less in X-ray diffraction are combined with a coated carbon material having a d002 of greater than 0.345 nm. A composite material having a true density of 1.80 g / cm 3 or more, a BET specific surface area of 30 m 2 / g or less, a volume-based average particle size of 35 μm or less, and an argon ion laser beam having a wavelength of 514.5 nm. in the Raman spectrum analysis using a peak in the vicinity of 1580 cm -1 PA, it has a peak PB around the 1360 cm -1, a ratio of the intensity IB of PB to the intensity IA of the PA R (= I B / I a) value but the R value of the carbonaceous material particles as a core method for manufacturing a carbon-based composite material with the lower limit, at least (a) d002 is below 0.345 nm, Lc is 50 nm or more The carbonaceous material particles dispersed heavy oil having a viscosity viscosity in the following heavy oil or 50 ° C. 200 cp and diluted with a solvent such that the following 200 cp at 50 ° C., is contacted, multi contained in heavy oil Cyclic aromatic molecules or oligomers were impregnated and adsorbed on the surface and pores of carbonaceous particles, and the polycyclic aromatic molecules or oligomers were impregnated and adsorbed on the surfaces and pores of carbonaceous particles. Get carbonaceous particles,
(B) Carbonaceous particles impregnated with polycyclic aromatic molecules or oligomers on the surfaces and pores, and the adsorbed carbonaceous particles are heat-treated in an inert atmosphere to impregnate the surfaces and pores of the carbonaceous particles. A thermochemical reaction proceeds on the polycyclic aromatic component,
This is a method for producing a carbon-based composite material .
[0009]
Hereinafter, the present invention will be described in detail.
(1) Preparation and selection of mixed raw materials (a) Carbonaceous material (N)
In the carbon-based composite material produced by the present invention, the particulate carbonaceous material (N) that finally forms nuclei has a volume average particle size of 30 μm or less, d 002 of 0.345 nm or less, and Lc of 15 nm. or more, preferably, d 002 is 0.345nm less and Lc is 50nm or more, more preferably and the d 002 is 0.345nm less Lc is carbonaceous material above 80 nm. Specifically, it is also possible to use graphite-based particles, as well as pitch-type, polyacrylonitrile (PAN) -type, mesophase pitch-type, and vapor-phase-growth-type graphite carbon fibers processed into powder. Moreover, you may mix and use these 2 or more types.
[0010]
Carbonaceous material (N)
1. A method of carbonization and graphitization by heating a melt-soluble organic substance, a thermosetting polymer, or the like in an inert gas atmosphere or in a vacuum at a temperature of 1500 to 3000 ° C., preferably 2000 to 3000 ° C.
2. A method in which an already-made carbonaceous material such as carbon black or coke is further heat-treated to cause graphitization appropriately.
3. A method of using artificial graphite, natural graphite, vapor-grown graphite whisker, and carbon fiber in powder form after adjusting the particle diameter or fiber length as necessary.
Etc. can be obtained.
[0011]
Where: The organic compound that is a raw material can be classified into a raw material that passes through a liquid phase and a raw material that undergoes carbonization in the solid phase when the organic substance is converted into a solid-phase carbon body. Examples of liquid phase carbonization raw materials include aromatic hydrocarbons such as acenaphthylene and naphthalene, hot melt polymers such as polyvinyl chloride, and heavy oils such as coal tar pitch and ethylene tar pitch. On the other hand, solid-phase carbonization raw materials include natural polymers such as cellulose, thermosetting resins such as phenol-formaldehyde resins, thermoplastic polymers such as polyamide and polyacrylonitrile, and polyvinyl chloride infusible by air oxidation pretreatment. And melt-soluble organic substances such as pitch.
[0012]
(B) Carbonaceous material (S)
On the other hand, in the carbon-based composite material produced according to the present invention, the carbonaceous material (S) that finally forms the surface phase has d 002 of 0.340 nm to 0.400 nm, preferably 0.342 nm to 0.370 nm. Hereinafter, it is more preferably 0.345 nm or more and 0.365 nm or less. Lc is a carbonaceous material of 30 nm or less, preferably 10 nm or less, more preferably 6 nm or less, and most preferably 4 nm or less. As a raw material for such a carbonaceous material, heavy oil in a liquid state having a predetermined viscosity or less can be used. The viscosity at 50 ° C. is preferably 200 cp or less, and more preferably 80 cp or less.
[0013]
If the viscosity exceeds 200 cp, the heavy oil cannot be sufficiently separated in the separation process of the carbonaceous particles and the excess heavy oil, and a uniform composite carbon-based material cannot be obtained.
In addition, when using the heavy oil whose viscosity in 50 degreeC exceeds 200 cp, it can dilute with the solvent which consists of aromatics, such as toluene and quinoline, or a heterocyclic compound, and can prepare and use to 200 cp or less.
[0014]
Heavy oils that can be used in the present invention include, for example, coal tar pitch from soft pitch to hard pitch and dry distillation as described in “Chemicals and Engineering of Carbon Materials” (Asakura Shoten Isao Mochida). Petroleum systems such as coal-based heavy oils such as liquefied oils, direct-current heavy oils such as atmospheric residual oil and vacuum residual oil, and cracked heavy oils such as ethylene tar produced as a by-product during thermal decomposition of crude oil and naphtha There is heavy oil. Among these heavy oils, ethylene heavy end tar generated particularly when naphtha is decomposed has a viscosity of approximately 70 cp at 50 ° C. and contains 3% or more of polycyclic aromatic molecules having a weight average molecular weight of 3000 to 4000, Suitable for the practice of the present invention.
[0015]
(2) First step: Mixing / impregnation / replacement step The first step in the present invention is to mix and disperse carbonaceous particles (carbonaceous matter (N)) in heavy oil (raw material of carbonaceous matter (S)). In this step, the surface of the particles and the inside of the pores are replaced with polycyclic aromatic molecules contained in the heavy oil, preferably polycyclic aromatic oligomers having a higher molecular weight, by sufficiently contacting with the heavy oil.
[0016]
If the carbonaceous material particles are preliminarily treated with a solvent before this step, better results can be obtained. That is, by immersing in a solvent composed of an aromatic or heterocyclic compound, replacing the surface and pores with a solvent, and then using carbonaceous particles separated from excess solvent, carbonaceous particles with respect to heavy oil Improves "wetting", ensures more contact between heavy oil and carbonaceous particles, and improves dispersion of carbonaceous particles in heavy oil. In addition, since a good solvent for polycyclic aromatic molecules is used, the probability that the polycyclic aromatic molecules in the heavy oil come into contact with the surface of the carbonaceous material particles is increased. As a result, there is an effect that the adsorption efficiency of the polycyclic aromatic molecules contained in the heavy oil to the surface of the carbonaceous particles is improved. As the solvent comprising an aromatic or heterocyclic compound used for the solvent treatment, a solvent in which polycyclic aromatic molecules contained in heavy oil can be easily dissolved is preferable. Specifically, quinoline and pyridine can be mentioned as the solvent composed of the heterocyclic compound, and toluene and benzene can be mentioned as the aromatic solvent.
[0017]
This step may be carried out using either a batch type or continuous type mixer. Although the reaction vessel may or may not be heated, heating the reaction vessel is preferable because it reduces the viscosity of the mixture, reduces the load on the apparatus, and increases the mixing / impregnation / substitution effect. . Furthermore, by reducing the internal pressure of the tank during mixing, the defoaming effect from the fine powder is enhanced, the air encapsulated in the surface and pores of the carbonaceous particles is removed, and the substitution and adsorption by the solvent are further improved. Can be complete.
[0018]
In the case of using a batch mixer, the apparatus may be a single mixer equipped with a stirring blade, or a plurality of units may be used to improve the dispersity and the contact degree sequentially. As the mixer, various types and types of apparatuses can be selected according to the viscosity of the mixture. That is, a single blade such as a dissolver that is a high-speed high shear mixer and a butterfly mixer for high viscosity stirs and disperses the inside of the tank, a sigma type along the side of the semi-cylindrical mixing tank, etc. A so-called kneader-type device having a structure in which a stirring blade rotates, a device having a structure in which two frame-type blades rotate while performing planetary motion in a fixed tank, and a total of three stirring blades in this device. Such a trimix type apparatus, a so-called bead mill type apparatus having a rotating disk and a dispersion medium in a dispersion tank, and the like can be used.
[0019]
Among these apparatuses, a mixer having a structure in which two frame-type blades rotate while performing planetary motion in a fixed tank is preferable in terms of a wide application viscosity range of the slurry. A mixer having such a structure is commercially available from Inoue Seisakusho Co., Ltd. under the name of planetary mixer.
[0020]
On the other hand, when a continuous mixer is used, a pipeline mixer may be used, or a continuous bead mill (medium disperser) may be used. When a continuous mixer is used, the reaction raw materials can be simultaneously conveyed to the second step while performing the first step, and more efficient production can be realized.
[0021]
(3) Second step: Solid-liquid separation step In this step, the carbonaceous material particles sufficiently impregnated and adsorbed with the polycyclic aromatic molecules in the surface and pores obtained from the first step are removed from excess heavy oil. This is a step of separation by filtration. In this separation step, a general method for solid-liquid separation such as a filtration method such as a filter press or a pressure filter or a centrifugal separation method can be used. In addition, this process can also be abbreviate | omitted according to the quantity and viscosity of a volatile component of heavy oil.
[0022]
(4) Third step: Carbonization step This step is a step in which the carbonaceous particles adsorbed on the surface and pores of the polycyclic aromatic molecules obtained in the second step are heated to advance carbonization. is there.
Carbonization is performed by heating the carbonaceous material particles from the second step under an inert gas flow such as nitrogen gas, carbon dioxide gas, and argon gas. In the carbonization in this process, first, the volatile component of the heavy oil component is evaporated, and then the residual component including the polycyclic aromatic molecule advances the thermochemical reaction, and on the surface of the carbonaceous particles and in the pores. The condensation polymerization proceeds. As the polycondensation proceeds, oxygen, nitrogen, and hydrogen are discharged out of the system, and structural defects present in the polycondensate are removed depending on the degree of heat treatment, and sequentially change to a carbon precursor and carbon.
[0023]
The lower limit of the heating temperature in this step is usually 500 ° C. or higher, preferably 600 ° C. or higher, more preferably 700 ° C. or higher, although it varies slightly depending on the type of heavy oil and its heat history. On the other hand, the upper limit temperature is determined within a range in which the residue of heavy oil does not have a structural order exceeding the crystal structure of the carbonaceous material (N) as a nucleus, that is, the degree of graphitization is lower than that of the carbonaceous material (N). it can. Therefore, the upper limit temperature of the heat treatment is usually 2500 ° C. or lower, preferably 2000 ° C. or lower, more preferably 1500 ° C. or lower. Under such heat treatment conditions, the heating rate, cooling rate, heat treatment time, etc. can be arbitrarily set according to the purpose. Further, after heat treatment in a relatively low temperature region, the temperature can be raised to a predetermined temperature.
[0024]
The reactor used in the third step may be a batch-type heating furnace or a continuous heating furnace, and may have a configuration in which one or a plurality of units are connected. Furthermore, the second step product to be charged into the reactor is pre-treated according to the type of the reactor, that is, the shape is processed, specifically, the particle size is adjusted by crushing, crushing or further granulation. You can go.
[0025]
(5) Fourth step: Powder processing step In the third step, the heavy oil residue is carbonized, and the product compounded in a state where a part or the whole of the carbonaceous material particle surface as a core is covered is the fourth. In the process, powder processing such as pulverization, pulverization, and classification is performed as necessary to obtain an electrode material for a non-aqueous solvent secondary battery. In a battery, it is necessary to fill a certain volume with as many electrode materials as possible. Since the negative electrode material is applied to a metal foil as a current collector and rolled into a sheet electrode, it is desirable that the negative electrode material has a particle diameter of a certain value or less. Specifically, the volume average particle size is 1 μm to 45 μm, preferably 1 μm to 35 μm, more preferably 1 μm to 25 μm, and particularly preferably 1 μm to 15 μm.
In addition, as above-mentioned, a powder processing process can also be inserted between a 2nd, 3rd process depending on the case.
[0026]
As a result of going through the first to fourth steps,
1. BET specific surface area is 30 m 2 or less,
2. The volume average particle size is 35 μm or less,
3. True density is 1.80 g / cm 3 or more,
4). The (002) plane spacing d002 derived from the carbonaceous material (N) by X-ray diffraction measurement is 0.345 nm or less, Lc is 15 nm or more, and d002 derived from the carbonaceous material (S) is greater than 0.345 nm. ,
5. Peak PA around 1580 cm -1 by Raman spectrum analysis using an argon ion laser beam having a wavelength of 514.5 nm, the ratio R (= I B / I A ) value of the peak intensity of the peak PB around 1360 cm -1 is carbonaceous material (N) larger than the single R value, more preferably 0.3 or more,
Thus, a carbon-based composite material suitable as an electrode material for a non-aqueous solvent secondary battery can be obtained.
[0027]
【Example】
Next, the present invention will be described in more detail with reference to examples.
In the following examples and comparative examples, each parameter was measured as follows.
(A) (002) plane spacing (d 002 ), crystallite size LC
If the carbonaceous material is a powder, it is powdered in an agate mortar as it is in the form of a fine piece, mixed with about 15 wt% of X-ray standard high purity silicon powder, mixed in a sample cell, A wide angle X-ray diffraction curve was measured by a reflective diffractometer method using CuKα rays monochromatized with a graphite monochromator as a radiation source. Since the carbon-based composite material according to the production method of the present invention is composed of carbonaceous material (N) and carbonaceous material (S) having different graphitization degrees, the X-ray diffraction curve has two peaks derived from different crystallinity degrees. It has an overlapping shape. Specifically, the low angle side has a relatively broad peak derived from the carbonaceous material (S) as the coating phase, and the high angle side has a relatively sharp peak derived from the carbonaceous material (N) constituting the nucleus. doing. After separating the peaks from this diffraction curve, d 002 and Lc were calculated for each peak.
[0028]
(B) Raman spectrum analysis:
In Raman spectrum analysis using an argon ion laser beam having a wavelength of 514.5 nm, the intensity I A of the peak P A in the vicinity of 1580 cm -1, the intensity I B of a peak P B in the vicinity of 1360 cm -1 were measured, the intensity the ratio R = I B / I a was measured for.
[0029]
(C) Using a true density pycnometer, measurement was performed by a gas replacement method with helium gas.
(D) Specific surface area The specific surface area was measured by the BET one-point method using nitrogen gas adsorption.
(E) Volume-based average particle diameter A laser diffraction particle size distribution meter was used, and volume-based average particle diameter (median diameter) was measured using ethanol as a dispersion medium.
[0030]
(Example 1)
(1) As a first step carbonaceous material (N), artificial graphite powder (KS-44 manufactured by LONZA: d 002 = 0.336 m, Lc = 100 nm or more, average volume particle size 19 μm) 5 kg, heavy oil as ethylene heavy 30 kg of end tar (Mitsubishi Oil Chemical Co., Ltd .: viscosity 50 cp at 50 ° C.) was put into a 50 liter mixing tank, and stirred at 1200 rpm using a DHC-P-005 portable dissolver manufactured by Inoue Seisakusho.
[0031]
Mixing was performed for 30 minutes from the start of stirring while heating the mixing tank so that the liquid temperature was 50 ° C. After 30 minutes, the mixed solution became a very smooth slurry, and almost the entire charged amount was recovered. When the degree of dispersion of the slurry was examined with a grind gauge, a locus almost coincident with the maximum primary particle size of the artificial graphite powder was obtained.
[0032]
(2) Second Step The slurry obtained in the first step was filtered under reduced pressure. The filtered product was in the form of a dry cake that could be crushed into a powder when taken. This powder had no metallic luster of the carbonaceous material (N) before mixing, and was a brown powder.
[0033]
(3) Third Step The cake made of the composite powder of the carbonaceous material (N) and the heavy oil residue obtained in the second step was heat-treated in a batch heating furnace. The cake is put in an internal heating furnace in a graphite container, heated to 1100 ° C. over 2 hours and 30 minutes at a flow rate of 5 liters / minute of nitrogen gas, and then raised to 1200 ° C. over 30 minutes. Warm and hold at 1200 ° C. for 1 hour. Thereafter, it was naturally cooled to room temperature to obtain a heat-treated product in which the heavy oil residue was carbonized. The heat-treated product maintained the shape of the cake before the heat treatment in the graphite container, but could be easily crushed when picked up.
[0034]
(4) Powder processing step Since the heat-treated product composed of the carbonaceous particles and the carbonaceous coating phase had some fusion between the particles, it was changed to primary particles by a roll crusher. Crushing to obtain a carbon-based composite material powder having an average volume particle size of 21 μm.
[0035]
(5) The analysis results of the carbon-based composite powder were as follows.
Figure 0003666032
[0036]
(6) Electrode performance evaluation (6-1) Preparation of electrode molded body Toluene solution 4 of 93% by weight of carbon-based composite material obtained in Example 1 and thermoplastic elastomer (styrene / ethylene / butylene / styrene / block copolymer) Weight% (solid content) and 3% by weight of polyethylene powder were added and stirred to obtain a slurry. This slurry was applied onto a copper foil and pre-dried at 80 ° C. Further, after being crimped to a copper foil, it was punched out on a disk having a diameter of 20 mm and dried under reduced pressure at 110 ° C. to obtain an electrode.
[0037]
(6-2) Electrode evaluation by half-cell A coin-type cell made of a separator (polyethylene porous film) impregnated with an electrolyte solution and facing a lithium metal electrode was prepared on the above electrode, and a charge / discharge test was conducted. went. As the electrolytic solution, a solution obtained by dissolving lithium perchlorate at a ratio of 1.5 mol / liter in a solvent in which ethylene carbonate and diethyl carbonate were mixed at a weight ratio of 1: 1 was used.
[0038]
In the charge / discharge test, the current value was 1.54 mA, the battery was charged until the potential difference between the two electrodes became 0 V, and discharged to 1.5 V. As a result, the charge capacity was 255 mAh / g, and the discharge capacity was 253 mAh / g. The charge / discharge efficiency was calculated to be 99% from each capacity.
[0039]
(Example 2)
(1) As a first step carbonaceous material (N), artificial graphite powder (KS-44 manufactured by LONZA: d 002 = 0.336 m, Lc = 100 nm or more, average volume particle size 19 μm) 5 kg, coal tar as heavy oil An experiment using 10 kg of pitch (PKQL manufactured by Kawasaki Steel Co., Ltd .: solid at 50 ° C.) was performed. Since this coal tar pitch has an extremely low quinoline insoluble content of 0.01% or less, it was diluted to 30 cp with quinoline and used. This was stirred at 1200 rpm using a DHC-P-005 portable dissolver manufactured by Inoue Mfg. Co., Ltd. as in Example 1. Mixing was performed at room temperature and 30 minutes from the start of stirring. After 30 minutes, the mixed solution became a slurry, and almost the entire charged amount was recovered. When the degree of dispersion of the slurry was examined with a grind gauge, a locus almost coincident with the maximum primary particle size of the artificial graphite powder was obtained.
[0040]
(2) Second to fourth steps The composite thus obtained is subjected to a solid-liquid separation process in the same manner as in Example 1, followed by a heat treatment at 1200 ° C., and then a powder processing process to obtain a carbon-based composite material. Obtained.
[0041]
(3) The analysis results of the carbon-based composite material were as follows.
Figure 0003666032
[0042]
(5) Electrode performance evaluation A half battery was manufactured in the same manner as in Example 1, and the charge / discharge characteristics were measured.
The charge capacity was 267 mAh / g, the discharge capacity was 263 mAh / g, and the charge / discharge efficiency was 99%.
[0043]
(Comparative Example 1)
A carbonaceous material prepared by a method of converting a pitch binder into coke or partially graphitized carbon by heating a mixture of graphite particles of about 1 micron and petroleum-based binder pitch was evaluated. As such a carbonaceous material, HNOGSI-EC110 (isotropic graphite) of Graphite Sales Co., USA, Ohio, Changing Fall was used.
[0044]
The obtained electrode material was analyzed and the electrode performance was evaluated in the same manner as in Example 1. As a result, peak separation was not possible in wide-angle X-ray diffraction measurement, and d002 was 0.337 nm and Lc was 73 nm. In the Raman spectrum analysis, the R value of the peak was 0.25. Further, the true density was 2.17 g / cm 3 , the specific surface area was 5.2 m 2 / g, and the average particle size was 24 μm.
[0045]
On the other hand, as for the electrode performance evaluation results, the charge capacity was 81 mAh / g, the discharge capacity was 76 mAh / g, and the charge / discharge efficiency was 94%.
[0046]
(Comparative Example 2)
Evaluation was made on the graphite region granules obtained by injecting droplets of liquefied coke into the furnace and the spherical graphite having a graphitized phase containing less graphitized parts at the grain boundaries. As such spheroidal graphite, # 9400 of Supérioa Graphite Co. of Chicago, Illinois, USA was used.
[0047]
Analysis and electrode performance evaluation were performed in the same manner as in Example 1. As a result, peak separation was not possible in wide-angle X-ray diffraction measurement, and d002 was 0.338 nm and Lc was 29 nm. In the Raman spectrum analysis, the R value of the peak was 0.22. The true density was 1.73 g / cm 3 and the specific surface area was 0.49 m 2 / g.
The particles were quite coarse, and there were particles that were beyond the measurement range of the laser type particle size distribution meter, and the average particle size could not be calculated. On the other hand, regarding the electrode performance evaluation results performed under the same conditions as in Example 1, the charge capacity and discharge capacity were 62 mAh / g and 57 mAh / g, respectively, and the charge / discharge efficiency was 92%. In addition, # 9400 has extremely poor electrode formability, and there are many points that are difficult to actually use as an electrode.
[0048]
The results of wide-angle X-ray diffraction measurements of Examples 1-2 and Comparative Examples 1-2 are shown in Table 1, and the electrode performance evaluation results are shown in Table 2, respectively.
[0049]
[Table 1]
Figure 0003666032
[0050]
[Table 2]
Figure 0003666032
[0051]
【The invention's effect】
As described above, the method for producing a carbon-based composite electrode material of the present application is based on a combination of impregnation treatment, solid-liquid separation treatment, carbonization treatment, and powder processing treatment using carbonaceous particles and heavy oil as raw materials. A method for producing a performance carbon-based composite electrode material, wherein in the first and second steps, carbonaceous particles are impregnated not only into the surface but also into the pores with heavy oil that is the starting material of the coated carbonaceous material, By performing the heat treatment, a uniform composite carbon material can be obtained, and a thinner coating phase can be achieved. Therefore, according to the present invention, a high-performance carbon material having uniform performance and good quality can be stably and efficiently produced.
[0052]
The carbon-based composite material obtained by the method of the present invention is suitable as an electrode material for a non-aqueous solvent secondary battery that is stable in an electrolyte, has a large electrode capacity, is excellent in charge / discharge cycle characteristics, and can also be used for rapid charge / discharge. It is.

Claims (3)

X線回折におけるd002が0.345nm以下である炭素質物粒子の全体あるいはその一部を、d002が0.345nmより大きい被覆炭素材で複合化した多相構造を有する炭素系複合材料で、真密度が1.80g/cm3以上であり、BET法比表面積が30m2 /g以下、体積基準平均粒径が35μm以下であり、波長514.5nmのアルゴンイオンレーザー光を用いたラマンスペクトル分析において、1580cm-1の付近のピークPA 、1360cm-1の付近のピークPB を有し、上記PA の強度IA に対するPB の強度IB の比R(= B /I A)値が、核となる炭素質物粒子のR値を限とする炭素系複合材料の製造方法であって、少なくとも
(A)d002が0.345nm以下で、Lcが50nm以上の炭素質物粒子を50℃における粘度が200cp以下の重質油中又は50℃における粘度が200cp以下となるように溶媒で希釈した重質油中に分散し、接触させ、重質油に含まれる多環芳香族分子あるいはオリゴマーを炭素質物粒子の表面及び細孔中に含侵、吸着して、該多環芳香族分子あるいは該オリゴマーが炭素質物粒子の表面及び細孔中に含侵、吸着された炭素質物粒子を得、
(B)多環芳香族分子あるいはオリゴマーを炭素質物粒子が表面及び細孔中に含浸、吸着された該炭素質物粒子を不活性雰囲気下で熱処理し、炭素質物粒子の表面及び細孔中に含浸された多環芳香族成分に対し、熱化学反応を進行させる
ことを特徴とする炭素系複合材料の製造方法。
A carbon-based composite material having a multiphase structure in which all or part of carbonaceous material particles having a d002 of 0.345 nm or less in X-ray diffraction are composited with a coated carbon material having a d002 of greater than 0.345 nm. In a Raman spectrum analysis using an argon ion laser beam having a density of 1.80 g / cm 3 or more, a BET specific surface area of 30 m 2 / g or less, a volume-based average particle size of 35 μm or less, and a wavelength of 514.5 nm. , the peak PA around the 1580 cm -1, a peak PB around the 1360 cm -1, the ratio R (= I B / I a ) of the intensity IB of PB to the intensity IA of the PA becomes a ring carbon the R value of the pledge particles a method of manufacturing a carbon-based composite material according to lower bound, at least (a) d002 is 0.345nm or less, Lc is not less than 50 nm the carbonaceous material particles 50 Viscosity dispersed heavy oil viscosity is diluted with a solvent such that the following 200 cp in the following heavy oil or 50 ° C. 200 cp at, contacting, polycyclic aromatic molecule or oligomer contained in the heavy oil Is impregnated and adsorbed into the surface and pores of the carbonaceous material particles to obtain carbonaceous material particles in which the polycyclic aromatic molecules or oligomers are impregnated and adsorbed into the surface and pores of the carbonaceous material particles,
(B) Carbonaceous particles impregnated with polycyclic aromatic molecules or oligomers on the surfaces and pores, and the adsorbed carbonaceous particles are heat-treated in an inert atmosphere to impregnate the surfaces and pores of the carbonaceous particles. A thermochemical reaction proceeds on the polycyclic aromatic component,
A method for producing a carbon-based composite material .
R値が0.3以上である請求項1に記載の炭素系複合材料の製造方法。The method for producing a carbon-based composite material according to claim 1, wherein the R value is 0.3 or more. d002が0.345nm以下で、Lcが50nm以上の炭素質物粒子を重質油中に分散し、接触させ、重質油に含まれる多環芳香族分子あるいはオリゴマーを炭素質物粒子の表面及び細孔中に含侵、吸着した後、該多環芳香族分子あるいは該オリゴマーが炭素質物粒子の表面及び細孔中に含侵、吸着された炭素質物粒子を過剰な重質油と分離した後、前記熱処理を行うことを特徴とする請求項1又は2記載の炭素系複合材料の製造方法。 Carbonaceous material particles having d002 of 0.345 nm or less and Lc of 50 nm or more are dispersed in heavy oil and brought into contact with each other, so that polycyclic aromatic molecules or oligomers contained in the heavy oil are brought into contact with the surface and pores of the carbonaceous particles. after impregnation, adsorption during, after polycyclic aromatic molecules or the oligomer is separated impregnated, the excess heavy oil adsorbed carbonaceous material particles into the surface and pores of the carbonaceous material particles, wherein The method for producing a carbon-based composite material according to claim 1 or 2, wherein heat treatment is performed.
JP23795994A 1994-09-30 1994-09-30 Method for producing carbon-based composite material Expired - Fee Related JP3666032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23795994A JP3666032B2 (en) 1994-09-30 1994-09-30 Method for producing carbon-based composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23795994A JP3666032B2 (en) 1994-09-30 1994-09-30 Method for producing carbon-based composite material

Publications (2)

Publication Number Publication Date
JPH08104510A JPH08104510A (en) 1996-04-23
JP3666032B2 true JP3666032B2 (en) 2005-06-29

Family

ID=17023007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23795994A Expired - Fee Related JP3666032B2 (en) 1994-09-30 1994-09-30 Method for producing carbon-based composite material

Country Status (1)

Country Link
JP (1) JP3666032B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CA2238286C (en) * 1995-11-14 2004-02-17 Osaka Gas Company Limited Material for negative electrode of lithium secondary battery, method for production thereof and lithium secondary battery using the same
JP3873325B2 (en) * 1996-07-25 2007-01-24 大阪瓦斯株式会社 Carbon material for lithium secondary battery negative electrode and method for producing the same
JP4081621B2 (en) * 1998-03-05 2008-04-30 大阪瓦斯株式会社 Negative electrode carbon material for lithium secondary battery and lithium secondary battery
WO2003034518A1 (en) * 2001-10-10 2003-04-24 Ngk Insulators, Ltd. Lithium secondary cell and method for manufacturing negative plate active material used therefor
JP4896381B2 (en) * 2003-06-05 2012-03-14 昭和電工株式会社 Carbon material for battery electrode, production method and use thereof
JP5311592B2 (en) * 2003-06-05 2013-10-09 昭和電工株式会社 Lithium secondary battery
JP4834299B2 (en) * 2004-10-13 2011-12-14 シャープ株式会社 Lithium secondary battery
JP5216285B2 (en) * 2007-09-18 2013-06-19 Jx日鉱日石エネルギー株式会社 Amorphous carbon material for negative electrode of lithium ion secondary battery and method for producing the same
JP2010165580A (en) * 2009-01-16 2010-07-29 Mitsubishi Chemicals Corp Manufacturing method of negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode, and non-aqueous electrolyte secondary battery
JP2015207412A (en) * 2014-04-18 2015-11-19 Jfeケミカル株式会社 Manufacturing method of composite graphite particle for lithium ion secondary battery negative electrode
KR102273781B1 (en) * 2016-11-18 2021-07-06 삼성에스디아이 주식회사 Negative active material and preparation method thereof

Also Published As

Publication number Publication date
JPH08104510A (en) 1996-04-23

Similar Documents

Publication Publication Date Title
US20220123311A1 (en) Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material
JP3534391B2 (en) Carbon material for electrode and non-aqueous secondary battery using the same
KR101341695B1 (en) 2 2 graphite composite particle for nonaqueous secondary battery negative electrode active material comprising the same negative electrode and nonaqueous secondary battery
JP3460742B2 (en) Method for producing electrode material for non-aqueous solvent secondary battery
JP3916012B2 (en) Non-aqueous secondary battery electrode
JP3803866B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
KR20170103003A (en) Carbon material and nonaqueous secondary battery using carbon material
KR20110033134A (en) Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
JPWO2006109497A1 (en) Method for producing mesocarbon microbeads
WO1997018160A1 (en) Cathode material for lithium secondary battery, process for manufacturing the same, and secondary battery using the same
WO2009099029A1 (en) Carbonaceous material having multilayer structure, process for producing the carbonaceous material, and nonaqueous rechargeable battery using the carbonaceous material
JP5772939B2 (en) Carbon material for electrodes
JP3945928B2 (en) Method for producing carbon material for negative electrode of lithium ion secondary battery
JP3666032B2 (en) Method for producing carbon-based composite material
JP3106129B2 (en) Anode material for lithium secondary battery, method for producing the same, and lithium secondary battery
JP3712288B2 (en) Nonaqueous solvent secondary battery electrode material and method for producing the same
JP4199813B2 (en) Carbonaceous or graphite particles
JP4045438B2 (en) Double-layer carbon material for secondary battery and lithium secondary battery using the same
JP3540085B2 (en) Carbonaceous material for battery electrode, method for producing the same, electrode structure, and battery
JP4973247B2 (en) Carbon material for electrodes
WO2019131863A1 (en) Negative electrode material for lithium-ion secondary cells
JP5668661B2 (en) Carbon material for electrodes
JPH08339805A (en) Manufacture of nonaqueous solvent secondary battery electrode material
JP2002121570A (en) Process for manufacturing bulk mesophase carbon and graphite powder
JP2000149946A (en) Carbon material for nonaqueous solvent secondary battery negative electrode and its manufacture

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees