JPH08104510A - Production of carbon based composite material - Google Patents

Production of carbon based composite material

Info

Publication number
JPH08104510A
JPH08104510A JP6237959A JP23795994A JPH08104510A JP H08104510 A JPH08104510 A JP H08104510A JP 6237959 A JP6237959 A JP 6237959A JP 23795994 A JP23795994 A JP 23795994A JP H08104510 A JPH08104510 A JP H08104510A
Authority
JP
Japan
Prior art keywords
carbon
carbonaceous material
based composite
composite material
heavy oil
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP6237959A
Other languages
Japanese (ja)
Other versions
JP3666032B2 (en
Inventor
Manabu Hayashi
学 林
Shoji Yamaguchi
祥司 山口
Bunichi Mizutani
文一 水谷
Keiko Sugawara
圭子 菅原
Shoichiro Mori
彰一郎 森
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP23795994A priority Critical patent/JP3666032B2/en
Publication of JPH08104510A publication Critical patent/JPH08104510A/en
Application granted granted Critical
Publication of JP3666032B2 publication Critical patent/JP3666032B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • H01M4/587Carbonaceous material, e.g. graphite-intercalation compounds or CFx for inserting or intercalating light metals
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To produce a carbon based composite material uniform and good in performance and suitable to an electrode material for nonaqueous solvent secondary cell by treating carbonaceous particles having a specified physical property with heavy oil, then, heat-treating its treated matter in an inactive atmosphere. CONSTITUTION: This material is obtained by following A and B stage. (A) The carbonaceous particles whose d002 is <=0.345nm and Lc is >=15nm, preferably >=50nm are dispersed in the heavy oil and is brought into contact with the heavy oil to make a polycyclic arom. molecule or oligomer impregnated and adsorbed on a surface of the carbonaceous particles and in fine pores. (B) A thermochemical reaction such as polycondensation of the polycyclic arom. component impregnated on the surface of the carbonaceous particles and in the fine pores is allowed to proceed by heat-treating a product of the A stage in the inactive atmosphere. A solid-liq. separation stage is provided after the A stage and a powder processing stage is provided after the B stage at need. This composite material has <=30m<2> BET method specific surface area and <=35μm volume average grain size.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、炭素系複合材料の製造
方法に関し、特に非水溶媒二次電池の電極材として好適
な炭素系複合材料の製造方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a method for producing a carbon composite material, and more particularly to a method for producing a carbon composite material suitable as an electrode material for a non-aqueous solvent secondary battery.

【0002】[0002]

【従来の技術】近年、電子機器の小型化に伴い高容量の
二次電池が必要になってきている。特にニッケル・カド
ミウム、ニッケル・水素電池に比べ、よりエネルギー密
度の高い非水溶媒二次電池が注目されてきている。その
負極材料として、これまで金属や黒鉛などが検討されて
いる。しかし、金属電極は、充放電を繰り返すと溶媒中
の金属がデンドライト状に析出し、最終的には両極を短
絡させてしまうという問題があった。また、黒鉛は、そ
の層間に金属イオンの出入りが可能なため、短絡の問題
は無いが、プロピレンカーボネート系の電解液を分解す
る上、エチレンカーボネート系の電解液では充放電サイ
クル特性が悪いという問題がある。
2. Description of the Related Art In recent years, with the miniaturization of electronic equipment, a high capacity secondary battery has become necessary. In particular, non-aqueous solvent secondary batteries, which have higher energy density than nickel-cadmium and nickel-hydrogen batteries, have been receiving attention. Metals and graphite have been studied as the negative electrode material. However, the metal electrode has a problem that when the charge and discharge are repeated, the metal in the solvent is deposited in the form of dendrite, and eventually both electrodes are short-circuited. In addition, graphite has no problem of short-circuiting because metal ions can enter and leave between the layers, but it decomposes the propylene carbonate-based electrolytic solution, and the problem that the charge / discharge cycle characteristics are poor in the ethylene carbonate-based electrolytic solution. There is.

【0003】一方、例えば特開平4−171677号公
報に示されるような、多相構造を有する炭素質物(炭素
系複合材料)を用いることも検討されている。これは、
結晶性の高い炭素質物の長所(高容量かつ不可逆容量が
小さい)と短所(プロピレンカーボネート系電解液を分
解する)および結晶性の小さな炭素質物の長所(電解液
との安定性に優れる)と短所(容量が小さく不可逆容量
大)を組み合わせ、互いの長所を生かしつつ、短所を補
うという考えによる。
On the other hand, the use of a carbonaceous material (carbon-based composite material) having a multiphase structure, as disclosed in, for example, Japanese Patent Application Laid-Open No. 4-171677, has been studied. this is,
Advantages (high capacity and small irreversible capacity) and disadvantages (decomposes propylene carbonate-based electrolytic solution) of carbonaceous matter with high crystallinity and advantages (excellent stability with electrolytic solution) and disadvantages of carbonaceous matter with low crystallinity It is based on the idea of combining (small capacity and large irreversible capacity) to make up for each other's strengths while compensating for their weaknesses.

【0004】この様な炭素系複合材料の製造方法として
は、例えば前述の特開平4−171677号公報には、
(1)1ミクロン位の黒鉛粒子と石油系バインダーピッ
チの混合物を加熱処理してバインダーピッチをコークス
か部分的に黒鉛化された炭素に変換する方法、(2)液
化コークスの滴を炉中に噴射する方法がそれぞれ記載さ
れている。
A method for producing such a carbon-based composite material is disclosed in, for example, the above-mentioned Japanese Patent Laid-Open No. 4-171677.
(1) Heat treatment of a mixture of 1 micron graphite particles and petroleum-based binder pitch to convert the binder pitch to coke or partially graphitized carbon. (2) Drop of liquefied coke in a furnace. Each injection method is described.

【0005】[0005]

【発明が解決しようとする課題】しかし、(1)の方法
では、バインダーピッチが高粘性のため黒鉛の高充填が
難しく、熱処理の結果得られた黒鉛複合物中における黒
鉛含有率を高めることには限界があり、黒鉛の有する高
充放電容量性を十分に活かすことはできない。更に混合
物の粘性がきわめて高いために、工業的な規模において
は均一な混合物を得ることが比較的難しい。加えて本方
法では混合工程完了後、加熱処理工程に移行するため、
連続的な工業生産が難しい。
However, in the method (1), it is difficult to highly fill the graphite because the binder pitch is highly viscous, and the graphite content in the graphite composite obtained as a result of the heat treatment is increased. Is limited, and the high charge / discharge capacity of graphite cannot be fully utilized. Furthermore, it is relatively difficult to obtain a homogeneous mixture on an industrial scale because the viscosity of the mixture is extremely high. In addition, in this method, after the mixing process is completed, the process moves to the heat treatment process,
Continuous industrial production is difficult.

【0006】また、(2)の方法で得られる球状コーク
スには、例えば「炭素材料工学」(日刊工業新聞社刊
稲垣道夫著)等にも記載があるように、外観上および内
部構造上大きく異なる2種の粒子が混在している。この
ためこの方法で得られる球状コークスを電極に用いる場
合には、粒子の組成および粒径の何れも均一にしがた
く、電極成形性が極めて悪い上、比表面積が小さく、高
容量が得られないという問題がある。
The spherical coke obtained by the method (2) includes, for example, "carbon material engineering" (published by Nikkan Kogyo Shimbun).
As described by Michio Inagaki) and the like, two types of particles that are greatly different in appearance and internal structure are mixed. Therefore, when the spherical coke obtained by this method is used for an electrode, it is difficult to make the composition and particle size of the particles uniform, the electrode moldability is extremely poor, and the specific surface area is small, so that a high capacity cannot be obtained. There is a problem.

【0007】[0007]

【課題を解決するための手段】本発明者らは前記目的を
解決するために、核を形成する炭素質物粒子(N)の表
面上に表相となる炭素質物(S)を形成し、最終的に多
相構造を有する炭素系複合材料の製造方法について鋭意
検討を重ねた結果、炭素質物粒子表面上に重質油成分を
付着後、これを重縮合させることにより、炭素質物粒子
(N)の細孔部分にも炭素質物(S)が充填され、かつ
薄膜化した炭素質物(S)が均一に表面を被覆した、極
めて品質の良好な高性能複合炭素質物粒子を安定して効
率よく製造し得ることを見いだし、本発明を完成するに
至った。
In order to solve the above-mentioned object, the present inventors formed a carbonaceous material (S) as a surface phase on the surface of carbonaceous material particles (N) forming nuclei, and finally, As a result of repeated intensive studies on a method for producing a carbon-based composite material having a multi-phase structure, a carbonaceous material particle (N) is obtained by depositing a heavy oil component on the surface of the carbonaceous material particle and then polycondensing it. The high-performance composite carbonaceous material particles of extremely good quality, in which the carbonaceous material (S) is also filled in the pores of and the surface of the thinned carbonaceous material (S) is uniformly coated, can be stably and efficiently produced. As a result, they have completed the present invention.

【0008】すなわち、本発明は、X線回折におけるd
002が0.345nm以下である炭素質物粒子の全体
あるいはその一部を、d002が0.345より大きい
被覆炭素材で複合化した多相構造を有する炭素系複合材
料で、真密度が1.80g/cm3 以上であり、BET法
比表面積が30m2 /g以下、体積基準平均粒径が35
μm以下であり、波長514.5nmのアルゴンイオン
レーザー光を用いたラマンスペクトル分析において、1
580cm-1の付近のピークPA 、1360cm-1の付
近のピークP B を有し、上記PA の強度IA に対するP
B の強度IB の比R(=IA /IB )値が、核となる炭
素質物粒子のR値を上限とし、より好ましくはR値が
0.3以上である炭素系複合材料の製造方法であって、
少なくとも (A)d002が0.345nm以下で、Lcが15n
m以上、好ましくは50nm以上の炭素質物粒子を重質
油中に分散し、接触させ、重質油に含まれる多環芳香族
分子あるいはオリゴマーを炭素質物粒子の表面及び細孔
中に含侵、吸着する第1工程 (B)第1工程生成物を不活性雰囲気下で熱処理し、炭
素質物粒子の表面及び細孔中に含浸された多環芳香族成
分に対し、重縮合等の熱化学反応を進行させる第2工程 から構成される製造方法である。
That is, the present invention is based on d in X-ray diffraction.
Of carbonaceous material particles having 002 of 0.345 nm or less
Or part of it, d002 is larger than 0.345
Carbon-based composite material with multi-phase structure compounded with coated carbon material
The true density is 1.80 g / cm3That is the BET method
Specific surface area is 30m2/ G or less, volume-based average particle size is 35
Argon ions with a wavelength of 514.5 nm or less
In Raman spectrum analysis using laser light, 1
580 cm-1Peak P nearA, 1360 cm-1With
Near peak P BAnd has the above PAStrength IAP for
BStrength IBRatio R (= IA/ IB) The value is the core charcoal
The upper limit is the R value of the elementary particles, and more preferably the R value is
A method for producing a carbon-based composite material, which is 0.3 or more,
At least (A) d002 is 0.345 nm or less and Lc is 15 n
m or more, preferably 50 nm or more carbonaceous material particles
Polycyclic aromatics contained in heavy oil dispersed in oil and contacted
Molecules or oligomers on the surface and pores of carbonaceous material particles
First step of impregnating and adsorbing in (B) First step Heat treatment of the product under an inert atmosphere
Polycyclic aromatic compounds impregnated on the surface and pores of elementary particles
The production method is composed of a second step of advancing a thermochemical reaction such as polycondensation.

【0009】以下、本発明を詳細に説明する。 (1)混合原料の調整及び選択 (a)炭素質物(N) 本発明により製造される炭素系複合材料において、最終
的に核を形成する粒子状炭素質物(N)は、体積平均粒
径が30μm以下であり、d002が0.345nm以下で
かつLc が15nm以上、好ましくは、d002が0.34
5nm以下でかつLc が50nm以上、より好ましくは
d002が0.345nm以下でかつLcが80nm以上の
炭素質物である。具体的には、黒鉛質物粒子を始め、ピ
ッチ系、ポリアクリトニトリル(PAN)系、メソフェ
ーズピッチ系、気相成長系それぞれの黒鉛質の炭素繊維
を粉末状に加工したものも用いることができる。また、
これら2種以上を混合して用いてもよい。
The present invention will be described in detail below. (1) Adjustment and Selection of Mixed Raw Material (a) Carbonaceous Material (N) In the carbon-based composite material produced by the present invention, the particulate carbonaceous material (N) that finally forms a nucleus has a volume average particle diameter of 30 μm or less, d 002 is 0.345 nm or less, and Lc is 15 nm or more, and preferably d 002 is 0.34.
5 nm or less and Lc of 50 nm or more, more preferably
It is a carbonaceous material having d 002 of 0.345 nm or less and Lc of 80 nm or more. Specifically, it is also possible to use graphite-based particles, as well as pitch-based, polyacrytonitrile (PAN) -based, mesophase-pitch-based, and vapor-phase-grown graphite carbon fibers processed into powder form. Also,
You may use these 2 or more types in mixture.

【0010】炭素質物(N)は、 1.溶融溶解性有機物、熱硬化性高分子等を不活性ガス
雰囲気下又は真空中において、1500〜3000℃、
好ましくは2000〜3000℃の温度で加熱すること
によって、炭素化と黒鉛化を行う方法。 2.カーボンブラック、コークス等、既製の炭素質物を
更に加熱処理して黒鉛質化を適度に進行させる方法。 3.人造黒鉛、天然黒鉛、気相成長黒鉛ウィスカー、炭
素繊維を必要に応じて粒子径あるいは繊維長の調整を行
ったのち、粉末状にして用いる方法。 等によって得ることができる。
The carbonaceous material (N) is 1. Melt-soluble organic matter, thermosetting polymer, etc. in an inert gas atmosphere or in vacuum at 1500 to 3000 ° C.,
A method of carbonizing and graphitizing by preferably heating at a temperature of 2000 to 3000 ° C. 2. A method in which a ready-made carbonaceous material such as carbon black or coke is further heat-treated to appropriately promote graphitization. 3. A method in which artificial graphite, natural graphite, vapor-grown graphite whiskers, and carbon fiber are adjusted in particle size or fiber length as necessary, and then powdered. Etc. can be obtained.

【0011】ここで1.の原料である有機化合物は、有
機物が固相炭素体へ変換する際に、液相を通過する原料
と固相で炭素化が進行する原料とに分類することができ
る。液相炭素化原料としては、アセナフチレン、ナフタ
レンの様な芳香族炭化水素やポリ塩化ビニルなど熱溶融
高分子、コールタールピッチやエチレンタールピッチな
どの重質油が挙げられる。一方、固相炭素化原料として
は、セルロース等天然高分子、フェノール−ホルムアル
デヒド樹脂など熱硬化性樹脂、ポリアミド、ポリアクリ
ロニトリルなど熱可塑性高分子、更に空気酸化前処理に
よって不融化された、ポリ塩化ビニル、ピッチなど溶融
溶解性有機物が挙げられる。
Here, 1. The organic compound, which is the raw material, can be classified into a raw material that passes through a liquid phase and a raw material that carbonizes in the solid phase when an organic substance is converted into a solid-phase carbon body. Examples of the liquid-phase carbonization raw material include aromatic hydrocarbons such as acenaphthylene and naphthalene, hot-melt polymers such as polyvinyl chloride, and heavy oils such as coal tar pitch and ethylene tar pitch. On the other hand, as the solid-phase carbonization raw material, natural polymers such as cellulose, thermosetting resins such as phenol-formaldehyde resin, thermoplastic polymers such as polyamide and polyacrylonitrile, and polyvinyl chloride that has been infusibilized by air oxidation pretreatment. , And melt-soluble organic substances such as pitch.

【0012】(b)炭素質物(S) 一方、本発明により製造される炭素系複合材料におい
て、最終的に表面相を形成する炭素質物(S)は、d002
が0.340nm以上0.400nm以下、好ましくは
0.342nm以上0.370nm以下、更に好ましく
は0.345nm以上0.365nm以下である。ま
た、Lc は30nm以下、好ましくは、10nm以下、
より好ましくは6nm以下、最も好ましくは4nm以下
の炭素質物である。 この様な炭素質物の原料として
は、所定の粘度以下の、液体状態である重質油を用いる
ことができる。粘度としては、50℃における粘度が2
00cp以下が好ましく、80cp以下がさらに好まし
い。
(B) Carbonaceous Material (S) On the other hand, in the carbon-based composite material produced by the present invention, the carbonaceous material (S) that finally forms the surface phase is d 002.
Is 0.340 nm or more and 0.400 nm or less, preferably 0.342 nm or more and 0.370 nm or less, and more preferably 0.345 nm or more and 0.365 nm or less. Lc is 30 nm or less, preferably 10 nm or less,
The carbonaceous material is more preferably 6 nm or less, and most preferably 4 nm or less. As a raw material for such a carbonaceous material, heavy oil in a liquid state having a predetermined viscosity or less can be used. As for the viscosity, the viscosity at 50 ° C is 2
It is preferably 00 cp or less, more preferably 80 cp or less.

【0013】粘度が200cpを超えると、炭素質物粒
子と過剰重質油の分離工程において、重質油の分離が十
分に行えず、均一な複合炭素系材料が得られない。な
お、50℃における粘度が200cpを越える重質油を
用いる場合、トルエン、キノリン等の芳香族系、あるい
は複素環式化合物からなる溶媒で希釈し、200cp以
下に調製して用いることができる。
If the viscosity exceeds 200 cp, the heavy oil cannot be sufficiently separated in the step of separating the carbonaceous material particles and the excess heavy oil, and a uniform composite carbon material cannot be obtained. When a heavy oil having a viscosity of more than 200 cp at 50 ° C. is used, it can be prepared by diluting it with a solvent composed of an aromatic system such as toluene or quinoline or a heterocyclic compound and preparing it at 200 cp or less.

【0014】本発明に用いることのできる重質油として
は例えば「炭素材の化学と工学」((株)朝倉書店 持
田勲著)に記載されるように、軟ピッチから硬ピッチま
でのコールタールピッチや乾留液化油などの石炭系重質
油や、常圧残油、減圧残油等の直流系重質油、原油、ナ
フサなどの熱分解時に副生するエチレンタール等分解系
重質油などの石油系重質油がある。これら重質油のなか
でも特にナフサ分解時に発生するエチレンヘビーエンド
タールは、50℃における粘度がほぼ70cpで、しか
も重量平均分子量3000〜4000の多環芳香族分子
を3%以上含有しており、本発明の実施に適している。
As the heavy oil that can be used in the present invention, for example, as described in "Chemical and Engineering of Carbon Materials" (Asakura Shoten Isao Mochida), coal tar from soft pitch to hard pitch. Heavy coal oil such as pitch and dry-distilled liquefied oil, direct-current heavy oil such as atmospheric residual oil and vacuum residual oil, cracked heavy oil such as ethylene tar produced by thermal decomposition of crude oil, naphtha, etc. There is a heavy petroleum oil. Among these heavy oils, ethylene heavy end tar generated especially during naphtha decomposition has a viscosity of about 70 cp at 50 ° C. and contains 3% or more of polycyclic aromatic molecules having a weight average molecular weight of 3000 to 4000, Suitable for practicing the present invention.

【0015】(2)第1工程:混合・含浸・置換工程 本発明における第1工程は炭素質物粒子(炭素質物
(N))を、重質油(炭素質物(S)の原料)中に混合
・分散し、重質油と十分接触させることで、重質油に含
まれる多環芳香族分子、好ましくはより分子量の大きな
多環芳香族オリゴマーによって粒子表面及び細孔内を置
換する工程である。
(2) First step: mixing / impregnation / substitution step In the first step of the present invention, carbonaceous material particles (carbonaceous matter (N)) are mixed with heavy oil (raw material for carbonaceous matter (S)). A step of substituting the polycyclic aromatic molecule contained in the heavy oil, preferably a polycyclic aromatic oligomer having a larger molecular weight, to disperse the particle surface and the inside of the pores by dispersing and sufficiently contacting with the heavy oil. .

【0016】本工程の前に、炭素質物粒子を予め溶媒処
理しておくと、より良好な結果が得られる。即ち、芳香
族系あるいは複素環式化合物からなる溶媒に浸漬し、表
面及び細孔中を溶媒により置換後、過剰な溶媒から分離
した炭素質物粒子を用いることで、炭素質物粒子の重質
油に対する「ぬれ」をよくし重質油と炭素質物粒子の接
触をより確実にし、重質油中での炭素質物粒子の分散を
向上させる。加えて、多環芳香族分子の良溶媒を用いる
ため、重質油中の多環芳香族分子が炭素質物粒子表面に
接触する確率を高める。この結果、重質油中に含まれる
多環芳香族分子の炭素質物粒子表面への吸着効率が向上
するという効果がある。この溶媒処理に用いる芳香族系
あるいは複素環式化合物からなる溶媒としては、重質油
中に含まれる多環芳香族分子が容易に溶解するものが好
ましい。具体的には、複素環式化合物からなる溶媒とし
てはキノリンやピリジンが、また、芳香族系溶媒として
はトルエンやベンゼンを挙げることができる。
If the carbonaceous material particles are subjected to a solvent treatment in advance before this step, better results can be obtained. That is, by immersing in a solvent composed of an aromatic system or a heterocyclic compound, after replacing the surface and pores with the solvent, by using the carbonaceous material particles separated from the excess solvent, to the heavy oil of the carbonaceous material particles "Wet" is improved to ensure contact between the heavy oil and the carbonaceous material particles, and to improve the dispersion of the carbonaceous material particles in the heavy oil. In addition, since a good solvent for the polycyclic aromatic molecule is used, the probability that the polycyclic aromatic molecule in the heavy oil will contact the carbonaceous material particle surface is increased. As a result, there is an effect that the adsorption efficiency of the polycyclic aromatic molecule contained in the heavy oil on the surface of the carbonaceous material particles is improved. As the solvent composed of an aromatic or heterocyclic compound used for this solvent treatment, a solvent in which the polycyclic aromatic molecule contained in the heavy oil is easily dissolved is preferable. Specifically, quinoline or pyridine can be used as the solvent composed of the heterocyclic compound, and toluene or benzene can be used as the aromatic solvent.

【0017】本工程の実施は、回分式または連続式いず
れの混合機で行っても良い。また、反応槽を加温して
も、しなくとも良いが、反応槽を加温することは混合物
の粘度を低下させ、装置にかかる負荷を低減し、混合・
含浸・置換効果を高めるので好ましい。更に混合時の槽
内圧力を減圧状態にすることで、微小粉末からの脱泡効
果を高め、炭素質物粒子の表面及び細孔中に内包された
空気を除去し、溶媒による置換、吸着をより完全にする
ことができる。
This step may be carried out by either a batch type mixer or a continuous type mixer. In addition, the reaction tank may or may not be heated, but heating the reaction tank lowers the viscosity of the mixture, reduces the load on the device, and
It is preferable because it enhances the impregnation / substitution effect. Further, by reducing the pressure in the tank during mixing, the effect of defoaming from the fine powder is enhanced, the air entrapped on the surface of the carbonaceous material particles and in the pores is removed, and the substitution and adsorption by the solvent is further improved. Can be complete.

【0018】回分式混合機を用いる場合、その装置には
攪拌翼を備えた混合機を1機用いても良いし、複数台用
いて順次、分散度、接触度の向上を図っても良い。混合
機は、混合物の粘度に応じて様々な形態・方式の装置を
選ぶことが可能である。即ち、高速高剪断ミキサーであ
るディゾルバーや高粘度用のバタフライミキサーの様な
一枚のブレードがタンク内を攪拌・分散を行う形態の装
置、半円筒状混合槽の側面に沿ってシグマ型等の攪拌翼
が回転する構造を有する、いわゆるニーダー形式の装
置、2本の枠型ブレードが固定式タンク内で遊星運動を
行いながら回転する構造を有する装置、本装置の攪拌翼
を合計3軸にした様なトリミックスタイプの装置、分散
槽内に回転ディスクと分散媒体を有するいわゆるビーズ
ミル形式の装置などを用いることが出来る。
When a batch type mixer is used, one mixer having a stirring blade may be used as the apparatus, or a plurality of mixers may be used to successively improve the dispersity and the contact degree. The mixer can select various types and types of devices depending on the viscosity of the mixture. That is, a device such as a dissolver that is a high-speed high-shear mixer and a blade mixer such as a butterfly mixer for high viscosity that stirs and disperses the inside of the tank, a sigma type or the like along the side surface of the semi-cylindrical mixing tank. A so-called kneader type device having a structure in which a stirring blade rotates, a device having a structure in which two frame type blades rotate while performing a planetary motion in a fixed tank, and the stirring blades of this device have a total of three axes. Such a trimix type device, a so-called bead mill type device having a rotating disk and a dispersion medium in a dispersion tank can be used.

【0019】これらの装置のなかでも、スラリーの適用
粘度範囲が広い点で、2本の枠型ブレードが固定式タン
ク内で遊星運動を行いながら回転する構造を有する混合
機が好ましい。このような構造を有する混合機としては
例えば(株)井上製作所より、プラネタリーミキサーの
名称で市販されている。
Among these devices, a mixer having a structure in which two frame-type blades rotate while performing planetary motion in a fixed tank is preferable in that the applicable viscosity range of the slurry is wide. A mixer having such a structure is commercially available, for example, from Inoue Seisakusho under the name of a planetary mixer.

【0020】一方、連続式混合機を用いる場合には、パ
イプラインミキサーを用いても良いし、連続式ビーズミ
ル(媒体分散機)を用いても良い。連続式混合機を用い
た場合、第1工程を実施しながら第2工程への反応原料
の搬送を同時に行うことができ、より効率的な製造が実
現できる。
On the other hand, when a continuous mixer is used, a pipeline mixer may be used, or a continuous bead mill (medium disperser) may be used. When a continuous mixer is used, the reaction raw materials can be conveyed to the second step at the same time while the first step is performed, and more efficient production can be realized.

【0021】(3)第2工程:固液分離工程 本工程は、第1工程より得られた表面及び細孔内に多環
芳香族分子が十分に含浸、吸着した炭素質物粒子を過剰
な重質油から濾過により分離する工程である。この分離
工程は、フィルタープレスや加圧濾過器などの濾過法あ
るいは遠心分離法など固液分離に一般的な方法を用いる
ことができる。なお、この工程は重質油の揮発性成分の
量や粘度に応じて省略することもできる。
(3) Second Step: Solid-Liquid Separation Step In this step, the surface and pores obtained in the first step are sufficiently impregnated with polycyclic aromatic molecules, and the carbonaceous material particles adsorbed are excessively weighted. This is a step of separating the oil from the oil by filtration. In this separation step, a general method for solid-liquid separation such as a filtration method using a filter press or a pressure filter or a centrifugal separation method can be used. Note that this step can be omitted depending on the amount and viscosity of the volatile component of the heavy oil.

【0022】(4)第3工程:炭素化工程 本工程は、第2工程より得られた多環芳香族分子が表面
及び細孔中に吸着された炭素質物粒子を加熱し、炭素化
を進行させる工程である。炭素化は、窒素ガス、炭酸ガ
ス、アルゴンガス等不活性ガス流通下で第2工程からの
炭素質物粒子を加熱して行う。本工程における炭素化は
まず、重質油成分のうち揮発分が蒸発し、次に多環芳香
族分子をはじめとする残留分が熱化学反応を進行させ、
炭素質物粒子表面及び細孔内で縮重合を進行させる。重
縮合の進行とともに酸素、窒素、水素が系外へ排出さ
れ、重縮合物中に存在する構造欠陥が加熱処理の度合い
によって除去され、炭素前駆体、炭素と順次変化する。
(4) Third Step: Carbonization Step In this step, carbonaceous material particles having the polycyclic aromatic molecule obtained in the second step adsorbed on the surface and in the pores are heated to advance carbonization. It is the process of making. Carbonization is performed by heating the carbonaceous material particles from the second step under a flow of an inert gas such as nitrogen gas, carbon dioxide gas, argon gas. In the carbonization in this step, first, the volatile components of the heavy oil component evaporate, and then the residual components including polycyclic aromatic molecules proceed thermochemical reaction,
Polycondensation is allowed to proceed on the surface of the carbonaceous material particles and in the pores. As the polycondensation progresses, oxygen, nitrogen, and hydrogen are discharged out of the system, structural defects existing in the polycondensate are removed depending on the degree of heat treatment, and the carbon precursor and carbon are sequentially changed.

【0023】本工程の加熱温度下限は重質油の種類、そ
の熱履歴によっても若干異なるが通常500℃以上、好
ましくは600℃以上、さらに好ましくは700℃以上
である。一方、上限温度は重質油の残留分が核となる炭
素質物(N)の結晶構造を上回る構造秩序を有しない、
即ち炭素質物(N)よりも低黒鉛化度である範囲で定め
ることができる。従って熱処理の上限温度としては、通
常2500℃以下、好ましくは2000℃以下、更に好
ましくは1500℃以下である。このような熱処理条件
において、昇温速度、冷却速度、熱処理時間などは目的
に応じて任意に設定する事ができる。また、比較的低温
領域で熱処理した後、所定の温度に昇温する事もでき
る。
The lower limit of the heating temperature in this step is usually 500 ° C. or higher, preferably 600 ° C. or higher, more preferably 700 ° C. or higher, though it varies slightly depending on the type of heavy oil and its heat history. On the other hand, the upper limit temperature does not have a structural order that exceeds the crystal structure of the carbonaceous material (N) whose residue is the heavy oil,
That is, it can be determined within a range having a lower degree of graphitization than the carbonaceous material (N). Therefore, the upper limit temperature of the heat treatment is usually 2500 ° C. or lower, preferably 2000 ° C. or lower, and more preferably 1500 ° C. or lower. Under such heat treatment conditions, the temperature rising rate, the cooling rate, the heat treatment time, etc. can be arbitrarily set according to the purpose. In addition, after heat treatment in a relatively low temperature region, the temperature can be raised to a predetermined temperature.

【0024】なお、第3工程に用いる反応機は回分式加
熱炉でも連続式加熱炉でもよく、又一基でも複数基を接
続した構成でもよい。更に、反応機に投入する第2工程
生成物は、反応機の種類に応じてあらかじめ必要な前処
理、即ち形状の加工、具体的には粉砕、解砕あるいは更
に造粒を伴う粒度の調整を行っても良い。
The reactor used in the third step may be a batch heating furnace or a continuous heating furnace, and may have a single reactor or a plurality of reactors connected to each other. Further, the product of the second step to be charged into the reactor is subjected to necessary pretreatment depending on the type of the reactor, that is, processing of the shape, specifically, crushing, crushing or further adjusting the particle size with granulation. You can go.

【0025】(5)第4工程:粉体加工工程 第3工程において重質油の残留分が炭素化し、核となる
炭素質物粒子表面の一部あるいは全体を被覆した状態で
複合化した生成物は第4工程において、必要に応じて粉
砕、解砕、分級処理など粉体加工処理を施され、非水溶
媒二次電池用電極材料とする。電池においては、一定容
積にできるだけ多くの電極材を充填することが必要であ
る。負極用電極材は集電体である金属箔に塗布、圧延し
てシート電極化して用いられるため、一定以下の粒子径
を持つことが望ましい。具体的には体積平均粒径が、1
μm以上45μm以下、好ましくは1μm以上35μm
以下、さらに好ましくは1μm以上25μm以下、特に
好ましくは1μm以上15μm以下である。なお、粉体
加工工程は、前述したとおり、場合により第2、第3工
程の間に挿入することもできる。
(5) Fourth step: powder processing step In the third step, the residue of the heavy oil is carbonized, and a product is obtained by complexing the surface of the carbonaceous material particles, which is the core, partially or entirely. In the fourth step, powder processing such as pulverization, crushing, and classification treatment is performed as necessary to obtain a non-aqueous solvent secondary battery electrode material. In batteries, it is necessary to fill as much electrode material as possible into a given volume. Since the negative electrode material is used by applying it to a metal foil as a current collector and rolling it into a sheet electrode, it is preferable that the negative electrode material has a particle diameter of a certain value or less. Specifically, the volume average particle size is 1
μm or more and 45 μm or less, preferably 1 μm or more and 35 μm
The thickness is more preferably 1 μm or more and 25 μm or less, and particularly preferably 1 μm or more and 15 μm or less. The powder processing step may be inserted between the second and third steps as the case may be, as described above.

【0026】第1〜第4工程を経た結果、 1.BET法比表面積が30m2 以下、 2.体積基準平均粒径が35μm以下、 3.真密度が1.80g/cm3 以上、 4.X線回折測定で炭素質物(N)に由来する、(00
2)面の面間隔d002が0.345nm以下、Lcが15
nm以上であり、炭素質物(S)に由来するd002が0.
345nmより大きい、 5.波長514.5nmのアルゴンイオンレーザー光を
用いたラマンスペクトル分析による1580cm-1付近
のピークPA 、1360cm-1付近のピークPBのピー
ク強度の比R(=IA /IB )値が、炭素質物(N)単
独のR値よりも大きく、より好ましくは0.3以上、 である様な非水溶媒二次電池の電極材として好適な炭素
系複合材料が得られる。
As a result of passing through the first to fourth steps, 1. BET specific surface area of 30 m 2 or less, Volume-based average particle diameter is 35 μm or less, 3. The true density is 1.80 g / cm 3 or more, 4. Derived from carbonaceous material (N) by X-ray diffraction measurement, (00
2) The surface spacing d 002 is 0.345 nm or less, and Lc is 15
nm or more, and d 002 derived from the carbonaceous material (S) is 0.
4. Larger than 345 nm. Peak P A around 1580 cm -1 by Raman spectrum analysis using an argon ion laser beam having a wavelength of 514.5 nm, the ratio R (= I A / I B ) value of the peak intensity of a peak P B in the vicinity of 1360 cm -1 is, It is possible to obtain a carbon-based composite material which is larger than the R value of the carbonaceous material (N) alone, and more preferably 0.3 or more, which is suitable as an electrode material for a non-aqueous solvent secondary battery.

【0027】[0027]

【実施例】次に実施例により本発明を更に詳細に説明す
る。以下の実施例・比較例において各パラメータの測定
は以下のように行った。 (a)(002)面の面間隔(d002)、結晶子の大きさ
LC 炭素質材料が粉末の場合にはそのまま、微小片状の場合
にはメノウ乳鉢で粉末化し、試料に対して約15wt%
のX線標準高純度シリコン粉末を加えて混合し、試料セ
ルに詰め、グラファイトモノクロメーターで単色化した
CuKα線を線源とし、反射式ディフラクトメーター法
によって広角X線回折曲線を測定した。本発明の製造方
法による炭素系複合材料は、黒鉛化度の異なる炭素質物
(N)および炭素質物(S)から構成されるため、X線
回折曲線は異なる結晶化度に由来するふたつのピークが
重なりあった形状を有する。具体的には、低角側に被覆
相である炭素質物(S)に由来する比較的ブロードなピ
ーク、高角側には核を構成する炭素質物(N)に由来す
る比較的シャープなピークを有している。この回折曲線
に対して、ピークの分離を行った後、それぞれのピーク
に対してd002とLcを算出した。
The present invention will be described in more detail with reference to Examples. In the following examples and comparative examples, each parameter was measured as follows. (A) Interplanar spacing (d 002 ) of (002) plane, crystallite size LC If the carbonaceous material is a powder, it is pulverized as it is in an agate mortar if it is in the form of small pieces, and it is approx. 15 wt%
The X-ray standard high-purity silicon powder of 1 was added and mixed, packed in a sample cell, and a wide-angle X-ray diffraction curve was measured by a reflection diffractometer method using CuKα rays monochromatized with a graphite monochromator as a radiation source. Since the carbon-based composite material according to the production method of the present invention is composed of carbonaceous material (N) and carbonaceous material (S) having different graphitization degrees, the X-ray diffraction curve has two peaks derived from different crystallinity. It has overlapping shapes. Specifically, the low-angle side has a relatively broad peak derived from the carbonaceous material (S) that is the coating phase, and the high-angle side has a relatively sharp peak derived from the carbonaceous material (N) constituting the nucleus. are doing. After separating peaks from this diffraction curve, d 002 and Lc were calculated for each peak.

【0028】(b)ラマンスペクトル分析:波長51
4.5nmのアルゴンイオンレーザー光を用いたラマン
スペクトル分析において、1580cm-1の付近のピー
クPA の強度IA 、1360cm-1の付近のピークPB
の強度IB を測定し、その強度の比R=IB /IA を測
定した。
(B) Raman spectrum analysis: wavelength 51
In Raman spectrum analysis using an argon ion laser beam of 4.5 nm, the intensity I A of the peak P A in the vicinity of 1580 cm -1, a peak P B in the vicinity of 1360 cm -1
The intensity I B were measured, and measurement results of the specific R = I B / I A of the intensity.

【0029】(c)真密度 ピクノメーターを用い、ヘリウムガスによるガス置換法
によって測定した。 (d)比表面積 比表面積を用い、窒素ガス吸着によるBET1点法によ
って測定した。 (e)体積基準平均粒径 レーザー回折式粒度分布計を用い、分散媒にエタノール
を使用して体積基準平均粒径(メジアン径)を測定し
た。
(C) True Density Using a pycnometer, it was measured by a gas replacement method with helium gas. (D) Specific surface area Using the specific surface area, it was measured by the BET one-point method by nitrogen gas adsorption. (E) Volume-based average particle diameter Using a laser diffraction particle size distribution meter, ethanol was used as the dispersion medium to measure the volume-based average particle diameter (median diameter).

【0030】(実施例1) (1)第1工程 炭素質物(N)として、人造黒鉛粉末(LONZA社製
KS−44:d002=0.336m,Lc=100nm以
上,平均体積粒径19μm)5Kg、重質油としてエチ
レンヘビーエンドタール(三菱油化(株)製:50℃に
おける粘度50cp)30Kgを50リットル混合槽に
投入し、(株)井上製作所製のDHC−P−005可搬
式ディゾルバーを用い、1200rpmで攪拌した。
Example 1 (1) First Step As a carbonaceous material (N), artificial graphite powder (KS-44 manufactured by LONZA: d 002 = 0.336 m, Lc = 100 nm or more, average volume particle size 19 μm). 5 kg, 30 kg of ethylene heavy end tar (manufactured by Mitsubishi Petrochemical Co., Ltd .: viscosity of 50 cp at 50 ° C.) as a heavy oil was put into a 50 liter mixing tank, and a DHC-P-005 portable dissolver manufactured by Inoue Seisakusho Co., Ltd. And stirred at 1200 rpm.

【0031】混合は、液温が50℃となるように混合槽
を加温しながら、攪拌開始より30分間行った。30分
後、混合液は非常になめらかなスラリーとなって、ほぼ
仕込量全量が回収された。スラリーの分散度をグライン
ドゲージにて調べたところ、人造黒鉛粉末の一次粒子の
最大粒径とほぼ一致した軌跡が得られた。
Mixing was carried out for 30 minutes from the start of stirring while heating the mixing tank so that the liquid temperature became 50 ° C. After 30 minutes, the mixed solution became a very smooth slurry, and almost all the charged amount was recovered. When the degree of dispersion of the slurry was examined by a grind gauge, a locus that was almost the same as the maximum particle size of the primary particles of the artificial graphite powder was obtained.

【0032】(2)第2工程 第1工程にて得られたスラリーを減圧濾過した。濾過物
は乾いたケーキ状となっており、手に取ると粉末状に押
しつぶすことができた。この粉末は混合前の炭素質物
(N)が有する金属光沢は全く有しておらず、褐色の粉
末であった。
(2) Second Step The slurry obtained in the first step was filtered under reduced pressure. The filtered product was in the form of a dry cake and could be crushed into a powder when picked up by hand. This powder had no metallic luster of the carbonaceous material (N) before mixing, and was a brown powder.

【0033】(3)第3工程 第2工程で得られた、炭素質物(N)と重質油の残留分
との複合粉体からなるケーキを回分式加熱炉で熱処理し
た。ケーキを黒鉛容器にいれた状態で内熱式加熱炉に入
れ、窒素ガス5リットル/分の流量下、1100℃まで
2時間30分かけて昇温したのち、さらに30分かけて
1200℃まで昇温し、1200℃で1時間保持した。
その後、室温まで自然冷却して重質油の残留分が炭素化
した熱処理物を得た。熱処理物は、黒鉛容器の中で熱処
理前のケーキの形状を保っていたが、手に取ると簡単に
解砕することができた。
(3) Third Step The cake made of the composite powder of carbonaceous material (N) and the residue of heavy oil obtained in the second step was heat-treated in a batch heating furnace. The cake was placed in a graphite container and placed in an internal heating furnace, the temperature was raised to 1100 ° C over 2 hours and 30 minutes under a flow rate of nitrogen gas of 5 l / min, and then the temperature was raised to 1200 ° C over 30 minutes. Warmed and held at 1200 ° C for 1 hour.
Then, it was naturally cooled to room temperature to obtain a heat-treated product in which the residue of heavy oil was carbonized. The heat-treated product retained the shape of the cake before the heat treatment in the graphite container, but it could be easily crushed when taken by hand.

【0034】(4)粉体処理工程 炭素質物粒子と炭素質被覆相からなる複合物となった熱
処理物は、粒子間で若干の融着を起こしていた部分もあ
った為、ロールクラッシャーにて一次粒子に解砕し、平
均体積粒径21μmの炭素系複合材料粉末を得た。
(4) Powder Treatment Step The heat-treated product, which was a composite of carbonaceous material particles and carbonaceous coating phase, had some fusion between the particles, so a roll crusher was used. The particles were crushed into primary particles to obtain a carbon-based composite material powder having an average volume particle size of 21 μm.

【0035】(5)炭素系複合材料粉末の分析 分析結果は以下のとおりだった。 広角X線回折分析:低角側ピークから算出されるd002
0.346nm LC =3.3nm 高角側ピークから算出されるd002=0.336nm LC =100nm以上 ラマンスペクトル:R=0.48 炭素質物(N)のR値は0.1であるため、この測定結
果から、表面が炭素化度の低い炭素質物(S)で被覆さ
れていることが判る。 真密度 :2.20g/cm3 比表面積 :3.5m2 /g 平均体積粒径:21μm
(5) Analysis of carbon-based composite material powder The analysis results were as follows. Wide-angle X-ray diffraction analysis: d 002 = calculated from the low-angle peak
0.346 nm LC = 3.3 nm d 002 = 0.336 nm calculated from the high-angle side peak = 100 nm or more Raman spectrum: R = 0.48 Since the R value of the carbonaceous material (N) is 0.1, this From the measurement results, it can be seen that the surface is covered with the carbonaceous material (S) having a low carbonization degree. True density: 2.20 g / cm 3 Specific surface area: 3.5 m 2 / g Average volume particle size: 21 μm

【0036】(6)電極性能評価 (6−1)電極成形体の作成 実施例1で得られた炭素系複合材料93重量%、熱可塑
性エラストマー(スチレン・エチレン・ブチレン・スチ
レン・ブロックコポリマー)のトルエン溶液4重量%
(固形分)およびポリエチレン粉末3重量%を加えてか
くはんし、スラリーを得た。このスラリーを銅箔上に塗
布し、80℃で予備乾燥を行った。さらに銅箔に圧着さ
せたのち、直径20mmの円盤上に打ち抜き、110℃
で減圧乾燥をして電極とした。
(6) Evaluation of Electrode Performance (6-1) Preparation of Electrode Molded Body 93% by weight of the carbon-based composite material obtained in Example 1 of thermoplastic elastomer (styrene / ethylene / butylene / styrene / block copolymer) Toluene solution 4% by weight
(Solid content) and 3% by weight of polyethylene powder were added and stirred to obtain a slurry. This slurry was applied on a copper foil and pre-dried at 80 ° C. After further crimping it to the copper foil, punch it out on a disk with a diameter of 20 mm, 110 ° C
It was dried under reduced pressure to obtain an electrode.

【0037】(6−2)半電池による電極評価 上記電極に対し、電解液を含浸させたセパレーター(ポ
リエチレン製多孔性フィルム)をはさみ、リチウム金属
電極に対向させたコイン型セルを作成し、充放電試験を
行った。電解液には、エチレンカーボネートとジエチル
カーボネートを重量比1:1の比率で混合した溶媒に過
塩素酸リチウムを1.5モル/リットルの割合で溶解さ
せたものを用いた。
(6-2) Electrode Evaluation by Half-Battery A separator (polyethylene porous film) impregnated with an electrolytic solution is sandwiched between the above electrodes to prepare a coin-shaped cell facing a lithium metal electrode and charged. A discharge test was conducted. The electrolyte used was a solvent in which ethylene carbonate and diethyl carbonate were mixed at a weight ratio of 1: 1 and lithium perchlorate was dissolved at a ratio of 1.5 mol / liter.

【0038】充放電試験は電流値を1.54mAとし、
両電極間の電位差が0Vになるまで充電を行い、1.5
Vまで放電を行った。その結果、充電容量は255mA
h/g、放電容量は253mAh/gであった。又、各
容量から充放電効率は99%と算出された。
In the charge / discharge test, the current value was 1.54 mA,
Charge until the potential difference between both electrodes becomes 0V, then 1.5
Discharged to V. As a result, the charging capacity is 255 mA
The h / g and discharge capacity were 253 mAh / g. The charge / discharge efficiency was calculated to be 99% from each capacity.

【0039】(実施例2) (1)第1工程 炭素質物(N)として、人造黒鉛粉末(LONZA社製
KS−44:d002=0.336m,Lc=100nm以
上,平均体積粒径19μm)5Kg、重質油としてコー
ルタールピッチ(川崎製鉄(株)社製のPKQL:50
℃において固体)10kgを用いた実験を行った。この
コールタールピッチはキノリン不溶分が0.01%以下
と極めて少ないため、キノリンで30cpに希釈して使
用した。これを実施例1と同様に(株)井上製作所製の
DHC−P−005可搬式ディゾルバーを用い、120
0rpmで攪拌した。混合は、常温で行い、攪拌開始よ
り30分間行った。30分後、混合液はスラリーとなっ
て、ほぼ仕込量全量が回収された。スラリーの分散度を
グラインドゲージにて調べたところ、人造黒鉛粉末の一
次粒子の最大粒径とほぼ一致した軌跡が得られた。
Example 2 (1) First Step As a carbonaceous material (N), artificial graphite powder (KS-44 manufactured by LONZA: d 002 = 0.336 m, Lc = 100 nm or more, average volume particle size 19 μm). 5 kg, coal tar pitch as heavy oil (Kawasaki Steel Co., Ltd. PKQL: 50
Experiments were carried out with 10 kg (solid at ° C). Since this coal tar pitch had a quinoline insoluble content of 0.01% or less, it was diluted to 30 cp with quinoline before use. Using a DHC-P-005 portable dissolver manufactured by Inoue Manufacturing Co., Ltd.
Stirred at 0 rpm. The mixing was performed at room temperature and was performed for 30 minutes from the start of stirring. After 30 minutes, the mixed solution became a slurry, and almost all the charged amount was recovered. When the degree of dispersion of the slurry was examined by a grind gauge, a locus that was almost the same as the maximum particle size of the primary particles of the artificial graphite powder was obtained.

【0040】(2)第2〜第4工程 こうして得られた複合物を実施例1と同様に固液分離処
理ののち、1200℃で熱処理を行い、その後、粉体加
工処理を施して炭素系複合材料を得た。
(2) Second to Fourth Steps The composite material thus obtained is subjected to solid-liquid separation treatment in the same manner as in Example 1, followed by heat treatment at 1200 ° C., and then powder processing treatment to obtain a carbonaceous material. A composite material was obtained.

【0041】(3)炭素系複合材料の分析 分析結果は以下のとおりだった。 広角X線回折分析:低角側ピークから算出されるd002
0.348nm LC =3.3nm 高角側ピークから算出されるd002=0.336nm LC =100nm以上 ラマンスペクトル:R=0.47 炭素質物(N)のR値は0.1であるため、この測定結
果から、表面が炭素化度の低い炭素質物(S)で被覆さ
れていることが判る。 真密度 :2.20g/cm3 比表面積 :3.6m2 /g 平均体積粒径:20μm
(3) Analysis of carbon composite material The analysis results were as follows. Wide-angle X-ray diffraction analysis: d 002 = calculated from the low-angle peak
0.348 nm LC = 3.3 nm d 002 = 0.336 nm calculated from the high-angle side peak = 100 nm or more Raman spectrum: R = 0.47 Since the R value of the carbonaceous material (N) is 0.1, this From the measurement results, it can be seen that the surface is covered with the carbonaceous material (S) having a low carbonization degree. True density: 2.20 g / cm 3 Specific surface area: 3.6 m 2 / g Average volume particle size: 20 μm

【0042】(5)電極性能評価 実施例1と同様に半電池を製造し、充放電特性を測定し
た。充電容量は267mAh/g、放電容量が263m
Ah/g、充放電効率が99%であった。
(5) Evaluation of Electrode Performance A half battery was manufactured in the same manner as in Example 1 and the charge / discharge characteristics were measured. Charge capacity is 267mAh / g, discharge capacity is 263m
Ah / g and charge / discharge efficiency were 99%.

【0043】(比較例1)1ミクロン位の黒鉛粒子と石
油系バインダーピッチの混合物を加熱処理してピッチバ
インダーをコークスか部分的に黒鉛化された炭素に変換
する方法で作成された炭素質物の評価を行った。この様
な炭素質物として、アメリカ、オハイオ、チャングリン
グフォールのグラファイトセールス社のHNOGSI−
EC110(等方性黒鉛)を用いた。
(Comparative Example 1) A carbonaceous material prepared by a method of converting a pitch binder into coke or partially graphitized carbon by heating a mixture of graphite particles of about 1 micron and petroleum-based binder pitch. An evaluation was made. As such a carbonaceous material, HNOGSI-of Graphite Sales Co. of Changling Falls, Ohio, USA
EC110 (isotropic graphite) was used.

【0044】得られた電極材料について、実施例1と同
様に分析、電極性能評価を行った。その結果、広角X線
回折測定ではピーク分離が行えず、d002は、0.3
37nm、Lcは73nmであった。ラマンスペクトル
分析では、ピークのR値は0.25であった。更に真密
度は2.17g/cm3 、比表面積は5.2m2 /g、平
均粒径は24μmであった。
The obtained electrode material was analyzed and the electrode performance was evaluated in the same manner as in Example 1. As a result, peak separation was not possible in wide-angle X-ray diffraction measurement, and d002 was 0.3.
37 nm and Lc were 73 nm. In the Raman spectrum analysis, the R value of the peak was 0.25. Furthermore, the true density was 2.17 g / cm 3 , the specific surface area was 5.2 m 2 / g, and the average particle size was 24 μm.

【0045】一方、電極性能評価結果については、充電
容量が81mAh/g、放電容量が76mAh/g、充
放電効率が94%であった。
On the other hand, regarding the evaluation results of the electrode performance, the charge capacity was 81 mAh / g, the discharge capacity was 76 mAh / g, and the charge / discharge efficiency was 94%.

【0046】(比較例2)液化コークスの滴を炉中に噴
射することで得られる黒鉛域顆粒とその粒界に黒鉛化の
少ない部分を含んだ黒鉛化相を有する球状黒鉛について
評価を行った。この様な球状黒鉛として、アメリカ、イ
リノイ、シカゴのシューペリオアグラファイト社の#9
400を用いた。
(Comparative Example 2) Spherical graphite having a graphitized phase granule obtained by injecting liquefied coke droplets into a furnace and a graphitized phase containing a portion with less graphitization at the grain boundary was evaluated. . An example of such spherical graphite is # 9 manufactured by Shuperiore Graphite of Chicago, Illinois, USA.
400 was used.

【0047】実施例1と同様に分析、電極性能評価を行
った。その結果、広角X線回折測定ではピーク分離が行
えず、d002は、0.338nm、Lcは29nmで
あった。ラマンスペクトル分析では、ピークのR値は
0.22であった。また真密度は1.73g/cm3 、比
表面積は0.49m2 /gであった。なお、粒子がかな
り粗く、レーザー式の粒度分布計の測定範囲以上の粒子
も存在し、平均粒径を算出することができなかった。一
方、実施例1と同条件で行った電極性能評価結果につい
ては、充電容量、放電容量がそれぞれ、62mAh/
g、57mAh/gであり、充放電効率は92%であっ
た。なお、#9400は電極成形性がきわめて悪く、実
際に電極として使用するのには困難な点が多かった。
Analysis and electrode performance evaluation were performed in the same manner as in Example 1. As a result, peak separation could not be performed by wide-angle X-ray diffraction measurement, and d002 was 0.338 nm and Lc was 29 nm. In the Raman spectrum analysis, the R value of the peak was 0.22. The true density was 1.73 g / cm 3 , and the specific surface area was 0.49 m 2 / g. Incidentally, the particles were considerably coarse, and there were particles that were in the measurement range of the laser type particle size distribution meter, and the average particle size could not be calculated. On the other hand, regarding the electrode performance evaluation results performed under the same conditions as in Example 1, the charge capacity and the discharge capacity were 62 mAh /
g, 57 mAh / g, and the charge / discharge efficiency was 92%. In addition, # 9400 had extremely poor electrode moldability, and there were many difficulties in actually using it as an electrode.

【0048】実施例1〜2および比較例1〜2の、広角
X線回折測定結果を表1に、電極性能評価結果を表2に
それぞれ示す。
Table 1 shows the wide-angle X-ray diffraction measurement results and Table 2 shows the electrode performance evaluation results of Examples 1-2 and Comparative Examples 1-2.

【0049】[0049]

【表1】 [Table 1]

【0050】[0050]

【表2】 [Table 2]

【0051】[0051]

【発明の効果】以上説明したように、本願の炭素系複合
電極材料の製造方法は、炭素質物粒子と重質油を原料と
し、含浸処理、固液分離処理、炭素化処理、粉体加工処
理を組み合わせることで高性能炭素系複合電極材料を製
造する方法であって、第1、2工程において、炭素質物
粒子に被覆炭素質物の出発物質である重質油を表面のみ
ならず細孔内にまで含浸した後、熱処理を行うことによ
って、均一な複合炭素材料を得ることができ、より完全
な被覆相の薄膜化を図ることができる。従って本発明に
より、性能が均一で品質の良好な高性能炭素材料を安定
的に効率よく製造することができる。
As described above, the method for producing a carbon-based composite electrode material of the present invention uses carbonaceous material particles and heavy oil as raw materials, and impregnation treatment, solid-liquid separation treatment, carbonization treatment, and powder processing treatment. A method of producing a high performance carbon-based composite electrode material by combining A uniform composite carbon material can be obtained by performing heat treatment after impregnation up to the point, and a more complete thinning of the coating phase can be achieved. Therefore, according to the present invention, a high-performance carbon material having uniform performance and good quality can be stably and efficiently manufactured.

【0052】本発明方法で得られた炭素系複合材料は、
電解液に安定で、電極容量が大きく、充放電サイクル特
性に優れ、急速充放電にも対応可能な非水溶媒2次電池
用電極材料として好適である。
The carbon-based composite material obtained by the method of the present invention is
It is suitable as an electrode material for a non-aqueous solvent secondary battery, which is stable in an electrolytic solution, has a large electrode capacity, is excellent in charge / discharge cycle characteristics, and is compatible with rapid charge / discharge.

フロントページの続き (72)発明者 菅原 圭子 茨城県稲敷郡阿見町中央8丁目3番1号 三菱油化株式会社筑波総合研究所内 (72)発明者 森 彰一郎 茨城県稲敷郡阿見町中央8丁目3番1号 三菱油化株式会社筑波総合研究所内Front page continued (72) Inventor Keiko Sugawara 8-3-1 Chuo, Ami-cho, Inashiki-gun, Ibaraki Mitsubishi Petrochemical Co., Ltd. Tsukuba Research Laboratory (72) Inventor Shoichiro Mori 8-chome, Ami-cho, Inashiki-gun, Ibaraki No. 1 in Mitsubishi Petrochemical Co., Ltd. Tsukuba Research Institute

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 X線回折におけるd002が0.345
nm以下である炭素質物粒子の全体あるいはその一部
を、d002が0.345より大きい被覆炭素材で複合
化した多相構造を有する炭素系複合材料で、真密度が
1.80g/cm3 以上であり、BET法比表面積が30
2 /g以下、体積基準平均粒径が35μm以下であ
り、波長514.5nmのアルゴンイオンレーザー光を
用いたラマンスペクトル分析において、1580cm-1
の付近のピークPA 、1360cm-1の付近のピークP
B を有し、上記PA の強度IA に対するPB の強度IB
の比R(=IA /IB )値が、核となる炭素質物粒子の
R値を上限とし、より好ましくはR値が0.3以上であ
る炭素系複合材料の製造方法であって、少なくとも (A)d002が0.345nm以下で、Lcが15n
m以上、好ましくは50nm以上の炭素質物粒子を重質
油中に分散し、接触させ、重質油に含まれる多環芳香族
分子あるいはオリゴマーを炭素質物粒子の表面及び細孔
中に含侵、吸着する第1工程 (B)前記第1工程の生成物を不活性雰囲気下で熱処理
し、炭素質物粒子の表面及び細孔中に含浸された多環芳
香族成分に対し、重縮合等の熱化学反応を進行させる第
2工程 から構成されることを特徴とする炭素系複合材料の製造
方法。
1. The d002 in X-ray diffraction is 0.345.
A carbon-based composite material having a multi-phase structure in which all or part of carbonaceous material particles having a particle diameter of nm or less is coated with a coated carbon material having a d002 of greater than 0.345, and a true density of 1.80 g / cm 3 or more. And the BET specific surface area is 30
m 2 / g or less, volume-based average particle diameter of 35 μm or less, and 1580 cm −1 in Raman spectrum analysis using an argon ion laser beam having a wavelength of 514.5 nm.
Peak P A near the and P peak near 1360 cm -1
Has a B, the strength of P B with respect to the intensity I A of the P A I B
The ratio R (= I A / I B ) values, the R value of the carbonaceous material particles as a core and an upper limit, and more preferably a method of producing a carbon-based composite material R value is 0.3 or more, At least (A) d002 is 0.345 nm or less and Lc is 15 n
m or more, preferably 50 nm or more carbonaceous material particles are dispersed in heavy oil and brought into contact with each other to impregnate polycyclic aromatic molecules or oligomers contained in the heavy oil on the surface and pores of the carbonaceous material particles, First step of adsorbing (B) The product of the first step is heat-treated in an inert atmosphere, and the polycyclic aromatic component impregnated on the surface and pores of the carbonaceous material particles is subjected to heat such as polycondensation. A method for producing a carbon-based composite material, comprising a second step of advancing a chemical reaction.
【請求項2】 前記第1工程の生成物を過剰な重質油と
分離した後、前記第2工程を行うことを特徴とする請求
項1記載の炭素系複合材料の製造方法
2. The method for producing a carbon-based composite material according to claim 1, wherein the second step is performed after separating the product of the first step from excess heavy oil.
【請求項3】 前記第2工程の生成物を解砕あるいは粉
砕し、分級して粒子径を体積平均粒径にして35μm以
下に調製し、炭素系複合粉体とする第3工程をを有する
ことを特徴とする請求項1記載の炭素系複合材料の製造
方法。
3. The method further comprises a third step of crushing or crushing the product of the second step and classifying the product to have a volume average particle size of 35 μm or less to obtain a carbon-based composite powder. The method for producing a carbon-based composite material according to claim 1, wherein
【請求項4】 前記炭素質物粒子が、予め芳香族系ある
いは複素環式化合物からなる溶媒を表面及び細孔中に含
浸させた炭素質物粒子であることを特徴とする請求項1
記載の炭素系複合材料の製造方法。
4. The carbonaceous material particles, wherein the surface and the pores of the carbonaceous material particles are previously impregnated with a solvent composed of an aromatic compound or a heterocyclic compound.
A method for producing the carbon-based composite material as described above.
JP23795994A 1994-09-30 1994-09-30 Method for producing carbon-based composite material Expired - Fee Related JP3666032B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP23795994A JP3666032B2 (en) 1994-09-30 1994-09-30 Method for producing carbon-based composite material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP23795994A JP3666032B2 (en) 1994-09-30 1994-09-30 Method for producing carbon-based composite material

Publications (2)

Publication Number Publication Date
JPH08104510A true JPH08104510A (en) 1996-04-23
JP3666032B2 JP3666032B2 (en) 2005-06-29

Family

ID=17023007

Family Applications (1)

Application Number Title Priority Date Filing Date
JP23795994A Expired - Fee Related JP3666032B2 (en) 1994-09-30 1994-09-30 Method for producing carbon-based composite material

Country Status (1)

Country Link
JP (1) JP3666032B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO1997018160A1 (en) * 1995-11-14 1997-05-22 Osaka Gas Company Limited Cathode material for lithium secondary battery, process for manufacturing the same, and secondary battery using the same
WO1998004497A1 (en) * 1996-07-25 1998-02-05 Osaka Gas Company Limited Carbon material for negative electrode of secondary lithium battery, process for preparing the same, and secondary lithium battery prepared from said carbon material
JPH11246209A (en) * 1998-03-05 1999-09-14 Osaka Gas Co Ltd Negative electrode carbon material for lithium secondary cell and lithium secondary cell
WO2003034518A1 (en) * 2001-10-10 2003-04-24 Ngk Insulators, Ltd. Lithium secondary cell and method for manufacturing negative plate active material used therefor
JP2005019397A (en) * 2003-06-05 2005-01-20 Showa Denko Kk Carbon material for battery electrode, its manufacturing method, and use
JP2006114280A (en) * 2004-10-13 2006-04-27 Sharp Corp Lithium secondary battery
WO2009038093A1 (en) * 2007-09-18 2009-03-26 Nippon Oil Corporation Amorphous carbon material for negative electrode of lithium ion secondary battery and method for producing the same
JP2010165580A (en) * 2009-01-16 2010-07-29 Mitsubishi Chemicals Corp Manufacturing method of negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode, and non-aqueous electrolyte secondary battery
JP2012059708A (en) * 2003-06-05 2012-03-22 Showa Denko Kk Lithium secondary battery
JP2015207412A (en) * 2014-04-18 2015-11-19 Jfeケミカル株式会社 Manufacturing method of composite graphite particle for lithium ion secondary battery negative electrode
WO2018093092A1 (en) * 2016-11-18 2018-05-24 삼성에스디아이주식회사 Anode active material and preparation method therefor

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100722071B1 (en) * 1995-11-14 2007-08-16 오사까 가스 가부시키가이샤 Cathode material for lithium secondary battery, process for manufacturing the same, and secondary battery using the same
EP0861804A4 (en) * 1995-11-14 2000-07-19 Osaka Gas Co Ltd Cathode material for lithium secondary battery, process for manufacturing the same, and secondary battery using the same
WO1997018160A1 (en) * 1995-11-14 1997-05-22 Osaka Gas Company Limited Cathode material for lithium secondary battery, process for manufacturing the same, and secondary battery using the same
WO1998004497A1 (en) * 1996-07-25 1998-02-05 Osaka Gas Company Limited Carbon material for negative electrode of secondary lithium battery, process for preparing the same, and secondary lithium battery prepared from said carbon material
US6156432A (en) * 1996-07-25 2000-12-05 Osaka Gas Company Limited Carbon material for negative electrode of secondary lithium battery, process for preparing the same, and secondary lithium battery prepared from said carbon material
CN1069088C (en) * 1996-07-25 2001-08-01 大阪瓦斯株式会社 Carbon material for negative electrode of lithium accumulator, process for preparing same, and lithium accumulator made from same
JPH11246209A (en) * 1998-03-05 1999-09-14 Osaka Gas Co Ltd Negative electrode carbon material for lithium secondary cell and lithium secondary cell
WO2003034518A1 (en) * 2001-10-10 2003-04-24 Ngk Insulators, Ltd. Lithium secondary cell and method for manufacturing negative plate active material used therefor
JP2012059708A (en) * 2003-06-05 2012-03-22 Showa Denko Kk Lithium secondary battery
JP2005019397A (en) * 2003-06-05 2005-01-20 Showa Denko Kk Carbon material for battery electrode, its manufacturing method, and use
JP2006114280A (en) * 2004-10-13 2006-04-27 Sharp Corp Lithium secondary battery
WO2009038093A1 (en) * 2007-09-18 2009-03-26 Nippon Oil Corporation Amorphous carbon material for negative electrode of lithium ion secondary battery and method for producing the same
JP2010165580A (en) * 2009-01-16 2010-07-29 Mitsubishi Chemicals Corp Manufacturing method of negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode active material for non-aqueous electrolyte secondary battery, negative electrode, and non-aqueous electrolyte secondary battery
JP2015207412A (en) * 2014-04-18 2015-11-19 Jfeケミカル株式会社 Manufacturing method of composite graphite particle for lithium ion secondary battery negative electrode
WO2018093092A1 (en) * 2016-11-18 2018-05-24 삼성에스디아이주식회사 Anode active material and preparation method therefor
KR20180056312A (en) * 2016-11-18 2018-05-28 삼성에스디아이 주식회사 Negative active material and preparation method thereof
US11476465B2 (en) 2016-11-18 2022-10-18 Samsung Sdi Co., Ltd. Anode active material and preparation method therefor

Also Published As

Publication number Publication date
JP3666032B2 (en) 2005-06-29

Similar Documents

Publication Publication Date Title
US20220123311A1 (en) Carbon material, method for producing carbon material, and non-aqueous secondary battery using carbon material
EP2892096B1 (en) Method for manufacturing a carbon material for nonaqueous electrolyte secondary battery
KR101341695B1 (en) 2 2 graphite composite particle for nonaqueous secondary battery negative electrode active material comprising the same negative electrode and nonaqueous secondary battery
KR101441712B1 (en) Composite graphite particles for non-aqueous secondary batteries, negative electrode material containing the same, negative electrodes, and non-aqueous secondary batteries
JP3534391B2 (en) Carbon material for electrode and non-aqueous secondary battery using the same
JP4802595B2 (en) Carbon powder suitable for negative electrode materials for non-aqueous secondary batteries
JP3916012B2 (en) Non-aqueous secondary battery electrode
EP0723306B1 (en) Electrode material for nonaqueous solvent secondary cell and method of manufacturing the same
KR20110033134A (en) Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
US20150024277A1 (en) Carbonaceous material for non-aqueous electrolyte secondary battery
WO1997018160A1 (en) Cathode material for lithium secondary battery, process for manufacturing the same, and secondary battery using the same
JPWO2006109497A1 (en) Method for producing mesocarbon microbeads
JP3945928B2 (en) Method for producing carbon material for negative electrode of lithium ion secondary battery
JP3666032B2 (en) Method for producing carbon-based composite material
JP5772939B2 (en) Carbon material for electrodes
JP3106129B2 (en) Anode material for lithium secondary battery, method for producing the same, and lithium secondary battery
CN113666368A (en) Artificial graphite negative electrode material and preparation method thereof
EP3179541B1 (en) Carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
JP3712288B2 (en) Nonaqueous solvent secondary battery electrode material and method for producing the same
JP3540085B2 (en) Carbonaceous material for battery electrode, method for producing the same, electrode structure, and battery
CN110518203A (en) Compound soft carbon negative electrode material and preparation method thereof, lithium ion battery
JP2000003708A (en) Coated carbon material, manufacture thereof and lithium secondary battery using the material
JP4973247B2 (en) Carbon material for electrodes
JPH08339805A (en) Manufacture of nonaqueous solvent secondary battery electrode material
JP5668661B2 (en) Carbon material for electrodes

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20041124

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20050121

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20050315

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20050328

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090415

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100415

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110415

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130415

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140415

Year of fee payment: 9

LAPS Cancellation because of no payment of annual fees