JP4802595B2 - Carbon powder suitable for negative electrode materials for non-aqueous secondary batteries - Google Patents

Carbon powder suitable for negative electrode materials for non-aqueous secondary batteries Download PDF

Info

Publication number
JP4802595B2
JP4802595B2 JP2005226830A JP2005226830A JP4802595B2 JP 4802595 B2 JP4802595 B2 JP 4802595B2 JP 2005226830 A JP2005226830 A JP 2005226830A JP 2005226830 A JP2005226830 A JP 2005226830A JP 4802595 B2 JP4802595 B2 JP 4802595B2
Authority
JP
Japan
Prior art keywords
powder
carbon
pitch
graphite powder
pore
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005226830A
Other languages
Japanese (ja)
Other versions
JP2007039290A (en
Inventor
浩司 山本
徹 藤原
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Chuo Denki Kogyo Co Ltd
Original Assignee
Chuo Denki Kogyo Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Chuo Denki Kogyo Co Ltd filed Critical Chuo Denki Kogyo Co Ltd
Priority to JP2005226830A priority Critical patent/JP4802595B2/en
Priority to CN2006101091446A priority patent/CN1907848B/en
Publication of JP2007039290A publication Critical patent/JP2007039290A/en
Priority to KR1020080000286A priority patent/KR20080011237A/en
Application granted granted Critical
Publication of JP4802595B2 publication Critical patent/JP4802595B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/58Selection of substances as active materials, active masses, active liquids of inorganic compounds other than oxides or hydroxides, e.g. sulfides, selenides, tellurides, halogenides or LiCoFy; of polyanionic structures, e.g. phosphates, silicates or borates
    • H01M4/583Carbonaceous material, e.g. graphite-intercalation compounds or CFx
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M2004/026Electrodes composed of, or comprising, active material characterised by the polarity
    • H01M2004/027Negative electrodes
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Chemical & Material Sciences (AREA)
  • Chemical Kinetics & Catalysis (AREA)
  • Electrochemistry (AREA)
  • General Chemical & Material Sciences (AREA)
  • Inorganic Chemistry (AREA)
  • Carbon And Carbon Compounds (AREA)
  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Description

本発明は、天然黒鉛粉末の表面の一部に、黒鉛化度の低い炭素を付着させた安価な炭素粉末、特に非水系二次電池用負極材料に好適な炭素粉末に関する。   The present invention relates to an inexpensive carbon powder in which carbon having a low graphitization degree is attached to a part of the surface of a natural graphite powder, and particularly to a carbon powder suitable for a negative electrode material for a non-aqueous secondary battery.

携帯型電子機器などの電源としてリチウムイオン二次電池が急速に普及してきた。リチウムイオン二次電池で代表される非水系二次電池の負極材料は炭素粉末である。小型電池の高容量化の要求から、負極材料も高容量化が図られ、現在では黒鉛化度を発達させた人造黒鉛粉末が非水系二次電池の負極材料として主に使われている。さらに体積あたりの容量を上げるため、電極の充填性を上げる、すなわち電極の高密度化が図られている。   Lithium ion secondary batteries have rapidly spread as power sources for portable electronic devices and the like. A negative electrode material of a non-aqueous secondary battery represented by a lithium ion secondary battery is carbon powder. Due to the demand for higher capacity of small batteries, negative electrode materials have also been increased in capacity, and at present, artificial graphite powder with an increased graphitization degree is mainly used as the negative electrode material for non-aqueous secondary batteries. Furthermore, in order to raise the capacity | capacitance per volume, the filling property of an electrode is raised, ie, the densification of an electrode is achieved.

一方、非水系二次電池の負極材料には低コスト化も求められており、自動車用などの大型電池では電池内に多量の負極材料を使うため、その要求は強くなっている。そこで、高価な人造黒鉛に代わって、安価で黒鉛化度が高く、真比重の大きな天然黒鉛を使うことが試みられている。   On the other hand, the negative electrode material of the non-aqueous secondary battery is also required to be low in cost, and a large amount of negative electrode material is used in the battery for a large battery for automobiles and the like, and the demand is increasing. Therefore, in place of expensive artificial graphite, attempts have been made to use natural graphite that is inexpensive, has a high degree of graphitization, and has a large true specific gravity.

しかし、天然黒鉛は、黒鉛化度が非常に高いため、電解液との反応性が高く、電解液分解に伴う不可逆容量が大きくなる、あるいは保存特性や安全性などの電池性能が損なわれる、という問題がある。特に最近では、電気自動車やハイブリッド自動車といった自動車用途などで電池を低温で使うため、低融点液体であるプロピレンカーボネート(以下PCと略記、融点−49℃)を電解液に使う試みがなされているが、黒鉛化度の高い黒鉛粉末はPCを分解してしまうため使うことができない。   However, natural graphite has a very high degree of graphitization, so it has high reactivity with the electrolyte, increases the irreversible capacity associated with the decomposition of the electrolyte, or impairs battery performance such as storage characteristics and safety. There's a problem. In particular, recently, in order to use batteries at low temperatures for automobile applications such as electric vehicles and hybrid vehicles, attempts have been made to use propylene carbonate, which is a low melting point liquid (hereinafter abbreviated as PC, melting point −49 ° C.) as an electrolyte. A graphite powder having a high graphitization degree cannot be used because it decomposes PC.

そこで、黒鉛化度の高い黒鉛粉末の表面を黒鉛化度の低い乱層構造をもつ炭素質物質で被覆した複層構造の炭素粉末を用いることで、電解液との反応性を抑制しようという試みが盛んに行われている。   Therefore, an attempt to suppress the reactivity with the electrolyte by using a carbon powder with a multi-layer structure in which the surface of a graphite powder with a high degree of graphitization is coated with a carbonaceous material with a low-graphite degree turbulent structure. Has been actively conducted.

下記特許文献1には、ピッチなどの炭素前駆体を加熱して溶融状態にし、これを黒鉛粉末と混練した後、低温で加熱処理して、黒鉛粉末の表面を乱層構造の黒鉛化度の低い炭素(低温焼成炭素)で被覆した炭素粉末を得ることが記載されている。   In Patent Document 1 below, a carbon precursor such as pitch is heated to a molten state, kneaded with graphite powder, and then heat-treated at a low temperature so that the surface of the graphite powder has a graphitization degree of a turbulent structure. It is described to obtain carbon powder coated with low carbon (low temperature calcined carbon).

下記特許文献2には、化学気相析出(CVD)法により、黒鉛粉末表面に乱層構造をもった黒鉛化度の低い炭素を堆積させて被覆した炭素粉末が開示されている。
これらはいずれも、黒鉛粉末を核としてその全面を黒鉛化度の低い炭素で被覆して電解液との反応を抑制するという発想に基づいている。そのため、多量の黒鉛化度の低い炭素が必要となる。
Patent Document 2 listed below discloses a carbon powder that is coated by depositing carbon having a turbulent layer structure and having a low graphitization degree on the surface of the graphite powder by a chemical vapor deposition (CVD) method.
All of these are based on the idea of suppressing the reaction with the electrolytic solution by covering the entire surface with graphite having a low degree of graphitization using graphite powder as a core. Therefore, a large amount of carbon with a low graphitization degree is required.

低温焼成炭素のような黒鉛化度の低い炭素は、なだらかな電位変化を示し、対リチウムに対して、黒鉛より高い電位で充放電が起こるため、現状の黒鉛負極を用いた電池に比べて電池電圧が下がる。従って、実質的な使用条件では、放電容量が低下し、充放電効率も低下する。また低温焼成炭素のような黒鉛化度の低い炭素は、黒鉛に比べて比重が小さく、非常に硬いため、電極密度が上がらないので、体積当たりの放電容量は黒鉛より小さくなる。さらに、加熱により溶融するピッチを用いる場合、その添加量が多いと、加熱時に液相が増加し、熱処理後に粉末が凝集してしまう。そのため、粉砕工程が新たに必要になり、コストが高くなるという問題がある。   Carbon with a low degree of graphitization, such as low-temperature calcined carbon, shows a gentle potential change, and charging / discharging occurs at a higher potential than lithium for lithium. Therefore, compared with batteries using current graphite negative electrodes, The voltage drops. Therefore, under substantial use conditions, the discharge capacity is reduced and the charge / discharge efficiency is also reduced. Further, carbon having a low graphitization degree, such as low-temperature calcined carbon, has a specific gravity smaller than that of graphite and is extremely hard, so that the electrode density does not increase, so that the discharge capacity per volume is smaller than that of graphite. Furthermore, when using the pitch which melts | melts by heating, when there are many addition amounts, a liquid phase will increase at the time of a heating, and powder will aggregate after heat processing. Therefore, there is a problem that a pulverization process is newly required and the cost is increased.

そこで、低温焼成炭素のような黒鉛化度の低い炭素の量を抑制しようという試みもなされている。
下記特許文献3には、液体状態にしたピッチなどの炭素前駆体に黒鉛粉末を浸漬した後、溶剤で洗浄して余分な炭素前駆体を除去してから、炭化する炭素材の製造方法が開示されている。下記特許文献4にも、液体状態にしたピッチなどの炭素前駆体と黒鉛粉末を混合し、攪拌しながら加熱した後、炭化することが記載されている。
Therefore, attempts have been made to suppress the amount of carbon having a low degree of graphitization such as low-temperature calcined carbon.
Patent Document 3 below discloses a method for producing a carbon material that is carbonized after graphite powder is immersed in a carbon precursor such as pitch in a liquid state and then washed with a solvent to remove excess carbon precursor. Has been. The following Patent Document 4 also describes that carbon precursors such as pitch in a liquid state and graphite powder are mixed, heated with stirring, and then carbonized.

いずれも、やはり黒鉛粉末を核としてその全面を黒鉛化度の低い炭素で被覆して電解液との反応を抑制するという発想に基づいている。この場合は、炭素前駆体であるピッチを液体状態にして黒鉛粉末と接触させるため、ピッチの一部は黒鉛の比較的大きな細孔の充填に使用されてしまい、かなり多量のピッチが必要となる。ピッチの添加量が少ないと、黒鉛粉末を完全に被覆することができず、被覆の薄い部分で黒鉛表面が露出し、必要な耐PC電解液性が得られない。   Both are based on the idea that the graphite powder is the core and the entire surface is covered with carbon having a low graphitization degree to suppress the reaction with the electrolytic solution. In this case, since the pitch of the carbon precursor is brought into a liquid state and brought into contact with the graphite powder, a part of the pitch is used for filling relatively large pores of graphite, and a considerably large amount of pitch is required. . If the added amount of pitch is small, the graphite powder cannot be completely coated, and the graphite surface is exposed at a thin portion of the coating, and the required PC electrolyte solution resistance cannot be obtained.

さらに、以上の特許文献1〜4に共通する問題点として、黒鉛粉末の表面全面が黒鉛化度の低い炭素で被覆されると、粉体間の接触抵抗が増加するため、レート特性が低下するという問題がある。   Furthermore, as a problem common to the above Patent Documents 1 to 4, when the entire surface of the graphite powder is coated with carbon having a low graphitization degree, the contact resistance between the powders increases, and the rate characteristics deteriorate. There is a problem.

一方、下記特許文献5にはピッチ粉末と黒鉛粉末を単に固相混合し、その後600℃から800℃で熱処理する方法が提案されている。この提案は、黒鉛の理論容量372mAh/gを上回る容量をもつ材料を得ることを目的とするため、多量のピッチが添加されている。電気化学的特性はPCを含有しない電解液を用いて試験しているので、耐PC電解液性は不明である。いずれにしても、多量のピッチに由来する低黒鉛化度の低温焼成炭素を含有するため、電池電圧が下がる、電極密度が上がらないため体積当たりの放電容量は下がるという問題は避けられない。   On the other hand, Patent Document 5 below proposes a method in which pitch powder and graphite powder are simply solid-phase mixed and then heat-treated at 600 ° C. to 800 ° C. This proposal aims to obtain a material having a capacity exceeding the theoretical capacity of 372 mAh / g of graphite, so that a large amount of pitch is added. Since the electrochemical characteristics are tested using an electrolyte containing no PC, the PC electrolyte resistance is unknown. In any case, the low graphitized low-temperature calcined carbon derived from a large amount of pitch contains the problems that the battery voltage decreases and the electrode density does not increase, so that the discharge capacity per volume decreases.

特許文献6には、細孔容積を規定した材料が提案されている。具体的には、細孔直径4〜10nmの細孔容積をV1、30〜100nmの細孔容積をV2としたとき、V2/V1=2.2〜3.0となる黒鉛材料である。V2/V1がこの範囲より大きいと充電負荷特性が低下し、この範囲を下回ると、比表面積が大きくなりすぎて初期効率が低下すると説明されている。この特許文献における細孔容積は、窒素吸着法を用いてBJH法により吸着側の細孔分布を測定したものである。この黒鉛材料は、黒鉛粒子を500〜1500℃で表面酸化処理することにより調製される。電極密度や耐PC電解液性についてはこの特許文献には記載がない。
特開平08−50897号公報 特開平04−368778号公報 特開2000−58052号公報 特開平09−213328号公報 特開2003−100292号公報 特開2003−272625号公報
Patent Document 6 proposes a material that defines the pore volume. Specifically, it is a graphite material in which V2 / V1 = 2.2 to 3.0, where V1 is a pore volume having a pore diameter of 4 to 10 nm and V2 is a pore volume having a diameter of 30 to 100 nm. It is described that when V2 / V1 is larger than this range, the charging load characteristic is lowered, and when the V2 / V1 is smaller than this range, the specific surface area becomes too large and the initial efficiency is lowered. The pore volume in this patent document is obtained by measuring the pore distribution on the adsorption side by the BJH method using the nitrogen adsorption method. This graphite material is prepared by subjecting graphite particles to surface oxidation treatment at 500 to 1500 ° C. The electrode density and PC electrolyte resistance are not described in this patent document.
Japanese Patent Laid-Open No. 08-50897 Japanese Patent Laid-Open No. 04-368778 JP 2000-58052 A JP 09-213328 A Japanese Patent Laid-Open No. 2003-1000029 JP 2003-272625 A

本発明は、非水系二次電池用負極材料として用いた場合、PC(プロピレンカーボネート)が含まれる電解液中で使用でき、かつ黒鉛粉末に比べて電極密度やレート特性の低下が抑制された、安価な炭素粉末を提供することを課題とする。   The present invention, when used as a negative electrode material for a non-aqueous secondary battery, can be used in an electrolyte containing PC (propylene carbonate), and the decrease in electrode density and rate characteristics is suppressed compared to graphite powder. It is an object to provide an inexpensive carbon powder.

本発明によれば、天然黒鉛粉末と粉砕したピッチ粉末を単純に混合し、その後熱処理することにより得られる特定の細孔容積を持つ炭素粉末により上記課題を解決することができる。   According to the present invention, the above-mentioned problems can be solved by carbon powder having a specific pore volume obtained by simply mixing natural graphite powder and pulverized pitch powder, and then heat-treating.

本発明は、広義には、窒素脱着側等温線をBJH法(Barrett-Joyner-Halenda法)により解析して求めた細孔分布曲線における細孔直径2〜50nmの細孔容積V1に対する細孔直径50〜200nmの細孔容積V2の比であるV2/V1が1以上であることを特徴とする、黒鉛を基材とする炭素粉末である。   In a broad sense, the present invention broadly relates to a pore diameter with respect to a pore volume V1 having a pore diameter of 2 to 50 nm in a pore distribution curve obtained by analyzing a nitrogen desorption side isotherm by the BJH method (Barrett-Joyner-Halenda method). A carbon powder based on graphite, wherein V2 / V1, which is a ratio of pore volume V2 of 50 to 200 nm, is 1 or more.

好適態様において、本発明は、天然黒鉛粉末の表面の一部に、炭素前駆体が黒鉛化温度より低温で熱処理を受けて炭化することにより生成した炭素が付着した炭素粉末であって、窒素脱着側等温線をBJH法により解析して求めた細孔分布曲線における細孔直径2〜50nmの細孔容積V1に対する細孔直径50〜200nmの細孔容積V2の比であるV2/V1が1以上であることを特徴とする炭素粉末である。 In a preferred embodiment, the present invention is a carbon powder in which carbon produced by carbonization of a carbon precursor by heat treatment at a temperature lower than the graphitization temperature is attached to a part of the surface of the natural graphite powder, V2 / V1, which is the ratio of the pore volume V2 having a pore diameter of 50 to 200 nm to the pore volume V1 having a pore diameter of 2 to 50 nm in the pore distribution curve obtained by analyzing the side isotherm by the BJH method, is 1 or more. It is the carbon powder characterized by being.

炭素前駆体の熱処理により生成した炭素は、平均粒径500μm以下のピッチ粉末を黒鉛粉末と固相混合した後、混合物を非酸化性雰囲気下900℃〜1500℃の温度で熱処理することにより生成したものであることが好ましい。また、V2/V1の値は、好ましくは1.3以上、2.0以下である。   Carbon produced by heat treatment of the carbon precursor was produced by solid-phase mixing pitch powder having an average particle size of 500 μm or less and graphite powder, and then heat-treating the mixture at a temperature of 900 ° C. to 1500 ° C. in a non-oxidizing atmosphere. It is preferable. The value of V2 / V1 is preferably 1.3 or more and 2.0 or less.

本発明の炭素粉末では、基材である天然黒鉛粉末の表面の全面が被覆されておらず、表面の一部だけが、そこに付着したピッチなどの炭素前駆体が黒鉛化温度より低温での熱処理を受けて炭化することにより生成した炭素(以下、これを低温焼成炭素と称することがある)で被覆されている。この低温焼成炭素は粉末表面のエッジ面に選択的に付着するため、エッジ面にあった微小な細孔(ミクロ孔と称する)は炭素分で埋まって消失する結果、その数が著しく少なくなる。その原因はよくわからないが、おそらく次のように推定される。   In the carbon powder of the present invention, the entire surface of the natural graphite powder that is the base material is not covered, and only a part of the surface has a carbon precursor such as pitch attached thereto at a temperature lower than the graphitization temperature. It is coated with carbon produced by carbonization by heat treatment (hereinafter, this may be referred to as low-temperature calcined carbon). Since this low-temperature calcined carbon selectively adheres to the edge surface of the powder surface, the minute pores (referred to as micropores) on the edge surface are buried with the carbon component and disappear, resulting in a significantly reduced number. The cause is not well understood, but is probably estimated as follows.

天然黒鉛粉末は、黒鉛を機械的に粉砕した粒子からなり、その表面はベーサル面(へき開面に平行な面)とエッジ面(へき開面に垂直な面)とを含んでいる。凹凸の大きなエッジ面は活性が高く、溶融ピッチによる濡れ性が高い。したがって、ピッチ粉末を黒鉛粉末と固相混合した後、混合物を熱処理すると、少量ずつに分離して存在するピッチが熱処理時の加熱により溶融して液相状態になって周囲の天然黒鉛粉末と接触した時に、粉末表面のエッジ面が選択的に溶融ピッチで濡れ、エッジ面に主に存在するミクロ孔が溶融ピッチによって埋められるのではないかと考えられる。エッジ面に付着したピッチは、熱処理中に炭化して、低温焼成炭素となる。   Natural graphite powder consists of particles obtained by mechanically pulverizing graphite, and its surface includes a basal plane (a plane parallel to the cleavage plane) and an edge plane (a plane perpendicular to the cleavage plane). Edge surfaces with large irregularities are highly active and have high wettability due to melt pitch. Therefore, after the pitch powder is solid-phase mixed with the graphite powder, when the mixture is heat-treated, the pitch that is separated in small portions is melted by the heating during the heat treatment and becomes a liquid phase to contact the surrounding natural graphite powder. In this case, it is considered that the edge surface of the powder surface is selectively wetted by the molten pitch, and the micropores mainly existing on the edge surface are filled with the molten pitch. The pitch adhering to the edge surface is carbonized during the heat treatment to become low-temperature calcined carbon.

一方、主に黒鉛粉末内部に存在する比較的大きな細孔(マクロ孔と称する)は、溶融したピッチと単に接触しても、ピッチで埋まらずにそのまま残る。こうして、ミクロ孔はかなりが消失する一方で、マクロ孔はほとんどが残ることにより、処理前の黒鉛粉末に比べて、ミクロ孔に対するマクロ孔の割合が著しく増大する。   On the other hand, relatively large pores (referred to as macropores) present mainly in the graphite powder remain as they are without being filled with the pitch even if they are simply brought into contact with the molten pitch. Thus, while the micropores are considerably disappeared, most of the macropores remain so that the ratio of the macropores to the micropores is remarkably increased as compared with the graphite powder before the treatment.

本発明では、ミクロ孔を細孔直径が2〜50nmの細孔、マクロ孔を細孔直径が50〜200nmの細孔であると規定し、ミクロ孔の細孔容積に対するマクロ孔の細孔容積の割合が一定以上になるようにすることにより、耐PC電解液性が著しく改善されるのみならず、電極密度を高くすることができ、電池放電容量が高く、かつレート特性も良好な安価な炭素粉末を提供することができる。   In the present invention, the micropore is defined as a pore having a pore diameter of 2 to 50 nm, and the macropore is defined as a pore having a pore diameter of 50 to 200 nm. By making the ratio of a certain value or more, not only the resistance to PC electrolyte is remarkably improved, but also the electrode density can be increased, the battery discharge capacity is high, and the rate characteristics are also good and inexpensive. Carbon powder can be provided.

なお、後述するが、細孔直径2〜50nmの細孔は、学術的にはメソ孔と呼ばれているが、本発明においては、細孔直径50〜200nmのマクロ孔と対比させる意味で、ミクロ孔と称する。   As will be described later, pores having a pore diameter of 2 to 50 nm are academically called mesopores, but in the present invention, in the sense of contrasting with macropores having a pore diameter of 50 to 200 nm, This is called a micropore.

電解液の分解は黒鉛粉末の表面全体で起こりうるが、特にエッジ面で顕著に起こる。本発明の炭素粉末では、黒鉛粉末表面のエッジ面が、低温焼成炭素で被覆されて、ミクロ孔が消失するように選択的に改質される結果、電解液、特にPCの分解に対する耐性(耐PC電解液性)が大きく改善されると考えられる。一方、粉末内部に存在する大きなマクロ孔は、電極にする時の加圧で容易につぶれるため、加圧により電極密度が上がりやすく、一定容積での電池の放電容量を高くすることができる。   The decomposition of the electrolytic solution can occur on the entire surface of the graphite powder, but particularly occurs on the edge surface. In the carbon powder of the present invention, the edge surface of the graphite powder surface is coated with low-temperature calcined carbon and selectively modified so that the micropores disappear. It is thought that (PC electrolyte property) is greatly improved. On the other hand, since the large macropores existing inside the powder are easily crushed by pressurization when forming the electrode, the electrode density is easily increased by pressurization, and the discharge capacity of the battery at a constant volume can be increased.

尚、マクロ孔壁面にも一部エッジ面が存在しており、電極作製時の加圧が弱い場合、電解液がマクロ孔内部まで入り、PC電解液を分解することもあるが、高容量が求められる場合には電極密度を大きくするため、加圧力を上げて電極を作製するので、加圧時にマクロ孔がつぶれ粉末内部に存在するエッジ面は電解液に触れなくなる。従って、例えマクロ孔が充填されなくても耐PC電解液性が著しく改善されると考えられる。   Note that there are some edge surfaces on the wall surface of the macro hole, and when the pressure during electrode fabrication is weak, the electrolyte may enter the macro hole and decompose the PC electrolyte. In order to increase the electrode density when required, the electrode is produced by increasing the pressure, so that the macropores are crushed during pressurization and the edge surface existing inside the powder does not come into contact with the electrolyte. Therefore, it is considered that the PC electrolyte resistance is remarkably improved even if the macropores are not filled.

また、黒鉛粉末表面のエッジ面だけが選択的に低温焼成炭素で被覆されて改質され、ベーサル面は被覆されずに露出したままである。そのため、黒鉛粉末表面が導電性に劣る低温焼成炭素で被覆されているにもかかわらず、被覆による粉体間の接触抵抗の増大が避けられ、接触抵抗は黒鉛と同様に低いままであり、レート特性の低下が避けられる。また、硬い低温焼成炭素の量が少ないため、低温焼成炭素に起因する比重低下も抑制され、電極密度の低下が抑制される。   In addition, only the edge surface of the graphite powder surface is selectively coated with low-temperature calcined carbon to be modified, and the basal surface remains exposed without being coated. Therefore, despite the fact that the surface of the graphite powder is coated with low-temperature calcined carbon, which is inferior in conductivity, an increase in the contact resistance between the powders due to the coating is avoided, and the contact resistance remains low as in the case of graphite. Degradation of characteristics can be avoided. Further, since the amount of hard low-temperature calcined carbon is small, a decrease in specific gravity due to low-temperature calcined carbon is also suppressed, and a decrease in electrode density is suppressed.

一方、ピッチを予め加熱溶融させて液相状態にしてから黒鉛粉末と混合した場合には、固相混合した場合とは違って、溶融ピッチがばらばらには存在せず、連続して存在し、混合時にせん断力が付与されるため、溶融ピッチが黒鉛粉末表面のベーサル面の被覆やマクロ孔の充填にも消費されてしまい、それが熱処理後に炭化して低温焼成炭素となる。したがって、上述したミクロ孔だけが選択的に充填されて消失することが起こらないので、細孔容積の分布は、処理前の黒鉛粉末と大きくは異ならず、上記に比べて、ミクロ孔に対するマクロ孔の割合はずっと小さくなる。また、被覆厚みが薄くなるため、ピッチ量が少ない場合、炭化時の収縮で一部皮膜に欠損ができてしまう。そのため、同一量のピッチを固相混合した場合と較べて、電極密度は上がりにくく、PC電解液の分解も起こりやすくなる。また、黒鉛粉末の表面が黒鉛より導電性に劣る低温焼成炭素で均一に被覆されるため、レート特性が低下する。   On the other hand, when the pitch is preheated and melted and mixed with the graphite powder after being in a liquid phase state, unlike the case of solid phase mixing, the melt pitch does not exist separately but exists continuously, Since a shearing force is applied during mixing, the molten pitch is also consumed for covering the basal surface of the graphite powder surface and filling the macropores, which are carbonized after heat treatment to become low-temperature calcined carbon. Therefore, since only the above-mentioned micropores are not selectively filled and disappear, the pore volume distribution is not significantly different from the graphite powder before treatment, and compared with the above, the macropores with respect to the micropores The proportion of is much smaller. In addition, since the coating thickness is reduced, if the pitch amount is small, the coating may be partially damaged by shrinkage during carbonization. Therefore, compared with the case where the same amount of pitch is solid-phase mixed, the electrode density is less likely to increase, and the PC electrolyte solution is likely to be decomposed. Moreover, since the surface of the graphite powder is uniformly coated with low-temperature calcined carbon that is inferior in conductivity to graphite, the rate characteristics are lowered.

本発明において固相混合とは、液体成分を含まない状態での混合、すなわち、混合されるどの成分も混合中に液体にならず、さらに混合を助長するための液体媒体も存在させない状態での混合を意味する。   In the present invention, solid-phase mixing means mixing in a state in which no liquid component is contained, that is, in a state in which any component to be mixed does not become liquid during mixing, and there is no liquid medium for promoting mixing. Means mixing.

本発明により、耐PC電解液性に優れ、かつレート特性と電極密度(したがって、電池の放電容量)も良好な非水系二次電池用負極材料となる炭素粉末を安価に提供することができる。本発明の炭素粉末から作製された負極材料を備える非水系二次電池は、自動車のように低温で使用される可能性のある用途にも搭載可能である。   According to the present invention, it is possible to provide, at a low cost, carbon powder that is a negative electrode material for a non-aqueous secondary battery that has excellent PC electrolyte resistance and good rate characteristics and electrode density (and therefore battery discharge capacity). A non-aqueous secondary battery comprising a negative electrode material produced from the carbon powder of the present invention can be mounted in applications that may be used at low temperatures, such as automobiles.

本発明の炭素粉末は、窒素脱着側等温線をBJH法により解析して求めた細孔分布曲線における細孔直径2〜50nmの細孔容積V1に対する細孔直径50〜200nmの細孔容積V2の比であるV2/V1が1以上であることを特徴とする。   The carbon powder of the present invention has a pore volume V2 having a pore diameter of 50 to 200 nm with respect to a pore volume V1 having a pore diameter of 2 to 50 nm in a pore distribution curve obtained by analyzing a nitrogen desorption side isotherm by the BJH method. The ratio V2 / V1 is 1 or more.

細孔直径2〜50nmの細孔がミクロ孔であり、細孔直径50〜200nmの細孔がマクロ孔である。したがって、本発明の炭素粉末は、マクロ孔の細孔容積(V2)がミクロ孔の細孔容積(V1)に等しいか、それより大きいことを意味する。   A pore having a pore diameter of 2 to 50 nm is a micropore, and a pore having a pore diameter of 50 to 200 nm is a macropore. Therefore, the carbon powder of the present invention means that the pore volume (V2) of the macropores is equal to or larger than the pore volume (V1) of the micropores.

天然黒鉛粉末を機械的に粉砕して得た黒鉛粉末では、ミクロ孔の細孔容積V1の方がマクロ孔の細孔容積V2より大きいため、V2/V1の値は1よりかなり小さくなる(例、0.65〜0.85の範囲内)。したがって、本発明の炭素粉末は、マクロ孔の細孔容積の割合が高いという特徴を有する。   In the graphite powder obtained by mechanically pulverizing natural graphite powder, the value of V2 / V1 is considerably smaller than 1 because the pore volume V1 of the micropores is larger than the pore volume V2 of the macropores (example) Within the range of 0.65 to 0.85). Therefore, the carbon powder of the present invention has a feature that the ratio of the pore volume of macropores is high.

直径2〜50nmの細孔は学術的にはメソ孔と分類され、メソ孔以上の細孔容積の測定法として最も一般的に用いられているのは水銀圧入法である。しかし、この方法は天然黒鉛のような柔らかい粒子に適用した場合、重い水銀を圧入することにより粒子が変形し、正確な測定ができないという問題がある。   The pores having a diameter of 2 to 50 nm are classified as mesopores academically, and the mercury intrusion method is most commonly used as a method for measuring the pore volume larger than the mesopores. However, when this method is applied to soft particles such as natural graphite, there is a problem that the particles are deformed by press-fitting heavy mercury and accurate measurement cannot be performed.

そこで、本発明では窒素脱着側等温線をBJH法により解析する方法で細孔容積を求める。この方法もメソ孔以上の細孔分布の測定に適した方法であることが知られている。窒素ガス脱着−BJH法解析による細孔分布は、島津製作所他から市販されている自動比表面積/細孔分布測定装置により比表面積と同時に測定することができ、その細孔分布から特定細孔直径範囲の細孔容積を求めることができる。   Therefore, in the present invention, the pore volume is obtained by a method of analyzing the nitrogen desorption side isotherm by the BJH method. This method is also known to be a method suitable for measurement of pore distribution over mesopores. The pore distribution by nitrogen gas desorption-BJH method analysis can be measured simultaneously with the specific surface area by an automatic specific surface area / pore distribution measuring device commercially available from Shimadzu Corporation et al. A range of pore volumes can be determined.

V2/V1の値が1より小さいと、予めピッチを溶融して黒鉛粉末と混合する場合について上に述べた通り、耐PC電解液性が劣るだけでなく、レート特性と電極密度(電池の放電容量)も悪くなる。V2/V1の値は好ましくは1.3以上、2.0以下である。V2/V1の値が1.3以上であると、電極密度と耐PC電解液性の改善効果が一層大きくなる。一方、工業的に利用可能な方法でV2/V1比を2.0より大きくすることは実現が困難である。   When the value of V2 / V1 is smaller than 1, as described above in the case where the pitch is previously melted and mixed with the graphite powder, not only the PC electrolyte resistance is inferior, but also the rate characteristics and electrode density (battery discharge) Capacity) also gets worse. The value of V2 / V1 is preferably 1.3 or more and 2.0 or less. When the value of V2 / V1 is 1.3 or more, the effect of improving the electrode density and PC electrolyte resistance is further increased. On the other hand, it is difficult to realize a V2 / V1 ratio larger than 2.0 by an industrially available method.

V2/V1の値が1以上である本発明の炭素粉末は、黒鉛を基材とし、より具体的には、天然黒鉛粉末が、その表面の一部に炭素前駆体の熱処理により生成した炭素(低温焼成炭素)が付着することにより表面改質された炭素粉末である。前述したように、低温焼成炭素は黒鉛粉末表面のエッジ面に選択的に付着してエッジ面に主に存在するミクロ孔を充填する。そのため、本発明の炭素粉末はミクロ孔の割合が少なくなり、V2/V1の比が1以上となる。   The carbon powder of the present invention in which the value of V2 / V1 is 1 or more is based on graphite, and more specifically, natural graphite powder is produced by heat treatment of a carbon precursor on a part of its surface ( This is a carbon powder whose surface has been modified by adhering low-temperature calcined carbon). As described above, the low-temperature calcined carbon selectively adheres to the edge surface of the graphite powder surface and fills micropores mainly present on the edge surface. Therefore, the carbon powder of the present invention has a small proportion of micropores, and the ratio V2 / V1 is 1 or more.

この炭素粉末は、天然黒鉛粉末に炭素前駆体粉末、好ましくは平均粒径500μm以下のピッチ粉末を固相混合し、得られた混合物を非酸化性雰囲気下900℃〜1500℃の温度で熱処理することにより製造することができる。以下では、この方法により製造される炭素粉末を例にとって本発明を説明する。   This carbon powder is obtained by solid-phase mixing natural graphite powder with a carbon precursor powder, preferably a pitch powder having an average particle size of 500 μm or less, and heat-treating the resulting mixture at a temperature of 900 ° C. to 1500 ° C. in a non-oxidizing atmosphere. Can be manufactured. In the following, the present invention will be described taking carbon powder produced by this method as an example.

本発明の炭素粉末の基材は天然黒鉛粉末である。黒鉛は、非晶質炭素に比べて、対リチウムに対する理論容量が、質量当たりの容量では低くなるが、体積当たりの容量では高くなり、かつリチウムイオンの出入りする電圧範囲が狭いため、実用電池においては非晶質炭素より高い放電容量を示す。   The base material of the carbon powder of the present invention is natural graphite powder. Compared to amorphous carbon, graphite has a lower theoretical capacity with respect to lithium, but a higher capacity per volume, and a smaller voltage range for the entry and exit of lithium ions. Indicates a higher discharge capacity than amorphous carbon.

黒鉛には、天然黒鉛、人造黒鉛、キッシュ黒鉛があるが、実用電池において放電容量を高くするには、黒鉛化度が高いほうが有利である。そこで、黒鉛化度が高く、安価な天然黒鉛の粉末を本発明では基材に用いる。但し、少量(黒鉛粉末全体の30質量%以下、好ましくは10質量%以下)であれば、人造黒鉛やキッシュ黒鉛の粉末を天然黒鉛粉末と併用することができる。   The graphite includes natural graphite, artificial graphite, and quiche graphite, but in order to increase the discharge capacity in a practical battery, it is advantageous that the degree of graphitization is high. Therefore, in the present invention, an inexpensive natural graphite powder having a high degree of graphitization is used for the substrate. However, if it is a small amount (30% by mass or less, preferably 10% by mass or less of the entire graphite powder), artificial graphite or quiche graphite powder can be used in combination with natural graphite powder.

天然黒鉛粉末は天然黒鉛の粉砕により製造される。本発明で使用する天然黒鉛粉末としては球状化黒鉛粉末が好ましい。球状化黒鉛粉末とは、鱗片状の黒鉛粒子が折り畳まれ、球に近い形状となったものであり、粉砕の工夫(球状化粉砕)により製造されたものが市販されている。黒鉛粉末の粒子形状が球状に近いと、電極配向が抑制され、サイクル特性が向上する。また、電極に適度な空隙が形成され、電解液含浸性が良くなり、電解液が均一に回り込み、低温特性やレート特性が向上する。   Natural graphite powder is produced by grinding natural graphite. The natural graphite powder used in the present invention is preferably spheroidized graphite powder. The spheroidized graphite powder is one in which scaly graphite particles are folded into a shape close to a sphere, and a product produced by pulverization (spheroidization pulverization) is commercially available. When the particle shape of the graphite powder is nearly spherical, electrode orientation is suppressed and cycle characteristics are improved. Further, an appropriate gap is formed in the electrode, the electrolyte solution impregnation property is improved, the electrolyte solution is uniformly wrapped, and the low temperature characteristics and rate characteristics are improved.

使用する天然黒鉛粉末は、その細孔直径50〜200nmの細孔容積(すなわち、マクロ孔の細孔容積)が0.005cm3/g以上であることが好ましい。マクロ孔の細孔容積がこれより小さいと、表面処理後の電極密度が上がりにくくなる。 The natural graphite powder to be used preferably has a pore volume of 50 to 200 nm in pore diameter (that is, macropore pore volume) of 0.005 cm 3 / g or more. If the pore volume of the macropores is smaller than this, the electrode density after the surface treatment is difficult to increase.

天然黒鉛粉末の平均粒径は5〜30μmの範囲が好ましい。平均粒径が小さすぎると、表面改質に多量のピッチが必要となる。逆に、平均粒径が大きすぎると、電極表面に凹凸が発生しやすくなり、電池短絡の原因となる。本発明において、平均粒径とは、累積粒径分布において体積分率50%時の粒子径D50を意味する。   The average particle size of the natural graphite powder is preferably in the range of 5 to 30 μm. If the average particle size is too small, a large amount of pitch is required for surface modification. Conversely, if the average particle size is too large, irregularities are likely to occur on the electrode surface, causing a battery short circuit. In the present invention, the average particle diameter means the particle diameter D50 when the volume fraction is 50% in the cumulative particle diameter distribution.

天然黒鉛粉末の比表面積は、20m2/g以下であることが好ましく、より好ましくは10m2/g以下である。比表面積が大きすぎると、表面改質するために必要なピッチ量が多くなってしまう。なお、ピッチを固相混合した後に熱処理して得られる本発明の炭素粉末の比表面積は、後述するように、基材の天然黒鉛粉末に比べて大きく減少する。 The specific surface area of the natural graphite powder is preferably 20 m 2 / g or less, more preferably 10 m 2 / g or less. If the specific surface area is too large, the amount of pitch required for surface modification will increase. The specific surface area of the carbon powder of the present invention obtained by heat treatment after solid phase mixing of the pitch is greatly reduced as compared with the natural graphite powder of the base material, as will be described later.

天然黒鉛粉末の表面改質に使用する炭素前駆体は、室温では固体で、熱処理により溶融するものが好ましい。したがって、各種の固体の炭化水素を使用することができるが、コストと性能の両面からピッチを使用することが好ましい。   The carbon precursor used for the surface modification of natural graphite powder is preferably a solid that is solid at room temperature and melts by heat treatment. Therefore, various kinds of solid hydrocarbons can be used, but it is preferable to use pitch in terms of both cost and performance.

ピッチは石油系と石炭系のものがあるが、いずれであってもよい。ピッチは天然黒鉛粉末と固相混合するため、粉末状で使用する。ピッチ粉末の平均粒径は500μm以下であることが好ましく、より好ましくは100μm以下である。ピッチ粉末の平均粒径が大きすぎると、単純な固相混合とその後の熱処理により黒鉛粉末を十分に表面改質できず、耐PC電解液性が低下する。一方、ピッチ粉末の平均粒径が小さいのは、黒鉛粉末との接触点が増える点では有利であるが、ピッチの種類によっては、平均粒径が小さすぎると凝集するものがある。したがって、生産性との兼ね合いで使用ピッチ粉末の平均粒径を適宜決定すればよい。   There are two types of pitches, petroleum and coal. Pitch is used in powder form because it is solid-phase mixed with natural graphite powder. The average particle diameter of the pitch powder is preferably 500 μm or less, and more preferably 100 μm or less. If the average particle size of the pitch powder is too large, the graphite powder cannot be sufficiently surface-modified by simple solid phase mixing and subsequent heat treatment, and the PC electrolyte resistance is reduced. On the other hand, the small average particle size of the pitch powder is advantageous in that the number of contact points with the graphite powder increases, but depending on the type of pitch, there are some that aggregate when the average particle size is too small. Therefore, what is necessary is just to determine the average particle diameter of use pitch powder suitably in balance with productivity.

天然黒鉛粉末とピッチ粉末との混合は単純な固相混合により行う。ピッチ粉末の配合量は、固相混合と熱処理の後に、黒鉛粉末の表面の一部だけがピッチ由来の低温焼成炭素で被覆されることにより、V2/V1の値が1以上となるように決定すればよい。ピッチ粉末の配合量が少なすぎても、多すぎても、V2/V1の値が1以上の炭素粉末を得ることができなくなる。   Natural graphite powder and pitch powder are mixed by simple solid phase mixing. The blending amount of the pitch powder is determined so that the value of V2 / V1 becomes 1 or more when only a part of the surface of the graphite powder is coated with the low-temperature calcined carbon derived from the pitch after solid phase mixing and heat treatment. do it. If the blending amount of the pitch powder is too small or too large, it becomes impossible to obtain a carbon powder having a V2 / V1 value of 1 or more.

ピッチ粉末の配合量は、黒鉛粉末の比表面積をS1(m2/g)、黒鉛粉末100質量部に対するピッチ粉末の量をW(質量部)として、0.5<W/S1<2.0の範囲内とすることが好ましい。ピッチ粉末の配合量がこの範囲より少ないと、表面改質が不十分で耐PC電解液性が低下することがある。一方、この範囲より多量のピッチ粉末を配合すると、生成する低温焼成炭素の量が多くなり、電極密度が上がらなくなって、レート特性も低下する。 The blending amount of the pitch powder is 0.5 <W / S1 <2.0, where the specific surface area of the graphite powder is S1 (m 2 / g) and the amount of the pitch powder with respect to 100 parts by mass of the graphite powder is W (parts by mass). It is preferable to be within the range. If the blending amount of the pitch powder is less than this range, the surface modification may be insufficient and the PC electrolyte resistance may decrease. On the other hand, when a larger amount of pitch powder than this range is blended, the amount of low-temperature calcined carbon produced increases, the electrode density cannot be increased, and the rate characteristics also deteriorate.

天然黒鉛粉末とピッチの固相混合は、適当な乾式混合装置(ブレンダー、ミキサー等)を用いて、単純混合により行えばよい。
固相混合で得られた混合物を熱処理して、ピッチを、液状化を経て炭化させる。前述したように、その間に天然黒鉛粉末のエッジ面が融解した液相状態のピッチで優先的に濡れるため、このエッジ面にピッチが付着し、そこに存在するミクロ孔を充填するため、ミクロ孔は熱処理後に低温焼成炭素で充填され、消失する。それにより、マクロ孔の細孔容積V2がミクロ孔の細孔容積V1と等しいか、それより大きい、本発明の炭素粉末が得られる。
Solid phase mixing of natural graphite powder and pitch may be performed by simple mixing using an appropriate dry mixing apparatus (blender, mixer, etc.).
The mixture obtained by solid phase mixing is heat-treated, and the pitch is carbonized through liquefaction. As described above, the edge surface of the natural graphite powder is preferentially wetted by the liquid phase pitch during which it melts, so that the pitch adheres to the edge surface and fills the micropores existing there. Fills with low-temperature calcined carbon after heat treatment and disappears. As a result, the carbon powder of the present invention in which the pore volume V2 of the macropores is equal to or larger than the pore volume V1 of the micropores is obtained.

熱処理温度は900〜1500℃の範囲が好ましい。これより低温であると、ピッチが炭化して生成した低温焼成炭素部分の充放電効率が低くなるので、得られた炭素粉末の充放電効率が低くなる。また、炭化物の導電性が低く、レート特性やサイクル特性も不十分となる。一方、熱処理温度が1500℃より高くなると、炭素の結晶化が進み、PCの分解を生じやすくなり、耐PC電解液性が低下する。熱処理は、炭素の燃焼を避けるため不活性雰囲気下で行う。コスト面から窒素雰囲気が好ましい。熱処理時間は、温度やピッチ粉末の配合量にもよるが、通常は数十分ないし数百時間の範囲である。   The heat treatment temperature is preferably in the range of 900 to 1500 ° C. When the temperature is lower than this, the charge / discharge efficiency of the low-temperature calcined carbon portion generated by carbonization of the pitch is lowered, and thus the charge / discharge efficiency of the obtained carbon powder is lowered. Further, the conductivity of the carbide is low, and the rate characteristics and cycle characteristics become insufficient. On the other hand, when the heat treatment temperature is higher than 1500 ° C., the crystallization of carbon proceeds, the PC tends to be decomposed, and the PC electrolyte resistance is lowered. The heat treatment is performed in an inert atmosphere to avoid carbon combustion. A nitrogen atmosphere is preferable from the viewpoint of cost. The heat treatment time is usually in the range of several tens of minutes to several hundred hours although it depends on the temperature and the amount of pitch powder.

熱処理中に、融解したピッチが黒鉛粉末表面のミクロ孔を充填するため、黒鉛粉末の比表面積が低下する。また、熱処理中の熱によって黒鉛粉末の表面の結晶の欠陥が解消することでも、比表面積の低下が起こる。従って、熱処理により得られた炭素粉末の比表面積は、原料の天然黒鉛粉末の比表面積に比べて著しく減少する。一方、平均粒径の方は、ピッチに由来する低温焼成炭素による被覆量が少ないので、ほとんど変化しない。   During the heat treatment, the melted pitch fills the micropores on the surface of the graphite powder, thereby reducing the specific surface area of the graphite powder. Moreover, the specific surface area is also reduced by eliminating crystal defects on the surface of the graphite powder by heat during the heat treatment. Therefore, the specific surface area of the carbon powder obtained by the heat treatment is remarkably reduced as compared with the specific surface area of the raw natural graphite powder. On the other hand, the average particle diameter hardly changes because the coating amount by the low-temperature calcined carbon derived from the pitch is small.

熱処理後に得られた本発明の炭素粉末は、ミクロ孔の細孔容積V1に対するマクロ孔の細孔容積V2の比であるV2/V1が1以上であるという細孔分布を有する。この炭素粉末の平均粒径は、原料の黒鉛粉末と同様に5〜30μmの範囲内であることが好ましい。平均粒径が小さすぎると、凝集が起こり易く、電極作製時の塗工が難しくなる。逆に平均粒径が大きすぎると、電極表面に凹凸が発生しやすくなり、電池短絡の原因となる。本発明の炭素粉末の比表面積は、4.0m2/g以下であることが好ましい。これより比表面積が大きい粉末は、電極作製時に多量の溶剤が必要となり、電極作製が難しくなる上、充放電効率も低下する。 The carbon powder of the present invention obtained after the heat treatment has a pore distribution in which V2 / V1, which is the ratio of the macropore pore volume V2 to the micropore pore volume V1, is 1 or more. The average particle diameter of the carbon powder is preferably in the range of 5 to 30 μm, like the raw graphite powder. If the average particle size is too small, aggregation tends to occur and coating during electrode production becomes difficult. Conversely, if the average particle size is too large, irregularities are likely to occur on the electrode surface, causing a battery short circuit. The specific surface area of the carbon powder of the present invention is preferably 4.0 m 2 / g or less. If the powder has a larger specific surface area than this, a large amount of solvent is required at the time of producing the electrode, making it difficult to produce the electrode and reducing the charge / discharge efficiency.

本発明では、ピッチの配合量が少ないので、熱処理中にピッチが融液状態になっても、黒鉛粉末の凝集や融着はほとんど起こらない。従って、熱処理後に粉砕する必要はないので、コスト面で有利である。しかし、場合によっては、軽い解砕を実施してもよい。   In the present invention, since the blending amount of the pitch is small, even if the pitch is in a molten state during the heat treatment, the graphite powder hardly aggregates or is fused. Therefore, there is no need to grind after the heat treatment, which is advantageous in terms of cost. However, in some cases, light crushing may be performed.

本発明の炭素粉末を負極材料として用いた非水系二次電池の負極の製造や二次電池の作成は、従来公知のように実施すればよい。以下に、この点についても簡単に説明するが、この説明は例示にすぎず、他の方法や構成も可能である。   Production of the negative electrode of a non-aqueous secondary battery using the carbon powder of the present invention as a negative electrode material and preparation of the secondary battery may be carried out as conventionally known. Although this point will be briefly described below, this description is only an example, and other methods and configurations are possible.

負極材料の炭素粉末に適当な結着剤とその溶媒を混合し、必要に応じて導電性向上のために適当な導電剤を混合して、塗工用のスラリーを形成する。混合は、必要であれば、ホモジナイザーあるいはガラスビーズを用いて行うことができる。このスラリーを適当な集電体(圧延銅箔、銅電析銅箔など)にドクターブレード法等を用いて塗工し、乾燥した後、ロール圧延等で圧密化させると、負極が製造される。前述したように、この圧密化時にマクロ孔は容易に潰れるため、電極密度が上がる。   An appropriate binder and its solvent are mixed with the carbon powder of the negative electrode material, and an appropriate conductive agent is mixed as necessary to improve conductivity, thereby forming a slurry for coating. If necessary, mixing can be performed using a homogenizer or glass beads. When this slurry is applied to a suitable current collector (rolled copper foil, copper electrodeposited copper foil, etc.) using a doctor blade method or the like, dried, and then consolidated by roll rolling or the like, a negative electrode is produced. . As described above, since the macropores are easily crushed during the consolidation, the electrode density is increased.

結着剤としてはポリフッ化ビニリデン、ポリテトラフルオロエチレン等のフッ素系高分子、カルボキシメチルセルロース等の樹脂系高分子、スチレンーブタジエンゴム等のゴム状高分子などが使用できる。結着剤の溶媒はN−メチルピロリドン、水などでよい。導電剤は炭素材料、金属(Ni等)であり、このときの炭素材料には人造黒鉛、天然黒鉛、カーボンブラック、アセチレンブラック等が包含され、粉末だけでなく繊維状のものを用いても良い。   As the binder, a fluorine polymer such as polyvinylidene fluoride and polytetrafluoroethylene, a resin polymer such as carboxymethyl cellulose, and a rubbery polymer such as styrene-butadiene rubber can be used. The binder solvent may be N-methylpyrrolidone, water or the like. The conductive agent is a carbon material, metal (Ni, etc.), and the carbon material at this time includes artificial graphite, natural graphite, carbon black, acetylene black, etc., and not only powder but also fibrous material may be used. .

電池は、その基本構造として、負極、正極、セパレーター、非水系の電解質を含んでいる。本発明にあっても、そのような構成に特に制限はされず、また、電池の形状も特に制限されず、円筒型、角形、コイン型、シート型等何れでも良い。   The battery includes a negative electrode, a positive electrode, a separator, and a non-aqueous electrolyte as its basic structure. Even in the present invention, such a configuration is not particularly limited, and the shape of the battery is not particularly limited, and may be any of a cylindrical shape, a square shape, a coin shape, a sheet shape, and the like.

次に、実施例によって本発明の作用効果を具体的に説明する。実施例において、部は特に指定しない限り質量部である。また、平均粒径は体積分率50%時の粒径である。
(実施例1)
基材として、平均粒径が20μm、比表面積が5.2m2/g、窒素脱着側等温線をBJH法により解析して求めた細孔分布曲線における細孔直径50〜200nmの細孔容積が0.0110cm3/g、アルゴンイオンレーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度の比Rの値が0.19である球状化粉砕された天然黒鉛粉末を使用した。
Next, the function and effect of the present invention will be specifically described with reference to examples. In the examples, parts are parts by weight unless otherwise specified. The average particle diameter is the particle diameter when the volume fraction is 50%.
Example 1
As a substrate, an average particle diameter of 20 μm, a specific surface area of 5.2 m 2 / g, and a pore volume having a pore diameter of 50 to 200 nm in a pore distribution curve obtained by analyzing a nitrogen desorption side isotherm by a BJH method. Spherical pulverized natural graphite powder having a ratio R of a peak intensity near 1360 cm −1 to a peak intensity near 1580 cm −1 in an argon ion laser Raman spectrum of 0.110 cm 3 / g was 0.19 was used. .

この天然黒鉛粉末100部を、平均粒径35μm、軟化温度80℃の石炭系ピッチ粉末5部と、Vブレンダーを用いた単純混合により固相で混合した。得られた混合粉末を黒鉛るつぼに入れ、窒素気流下1000℃で1時間熱処理して、炭素粉末を得た。   100 parts of this natural graphite powder was mixed in a solid phase with 5 parts of a coal-based pitch powder having an average particle size of 35 μm and a softening temperature of 80 ° C. by simple mixing using a V blender. The obtained mixed powder was put into a graphite crucible and heat-treated at 1000 ° C. for 1 hour under a nitrogen stream to obtain a carbon powder.

得られた炭素粉末の細孔分布と比表面積を、島津製作所製の比表面積/細孔分布測定装置マイクロメリティクス・アサップ2010を用いて、窒素脱着側等温線のBJH法解析により測定し、細孔直径2〜50nmの細孔容積V1に対する細孔直径50〜200nmの細孔溶液V2の比を求めた。本例でのV2/V1の比は1.60であり、本発明で規定する1以上の値であった。この測定では、試料の前処理温度と時間を200℃×3時間とした。   The pore distribution and specific surface area of the obtained carbon powder were measured by BJH method analysis of the nitrogen desorption side isotherm using a specific surface area / pore distribution measuring device Micromeritics Asap 2010 manufactured by Shimadzu Corporation. The ratio of the pore solution V2 having a pore diameter of 50 to 200 nm to the pore volume V1 having a pore diameter of 2 to 50 nm was determined. In this example, the ratio V2 / V1 was 1.60, which was a value of 1 or more as defined in the present invention. In this measurement, the sample pretreatment temperature and time were set to 200 ° C. × 3 hours.

上記特許文献6に記載の発明を検証するため、吸着側で得られた細孔分布曲線から、特許文献6で規定する細孔直径4〜10nmの細孔容積V3に対する細孔直径30〜100nmの細孔容積V4の比(V3/V4)も同時に求めたところ、4.84であった。   In order to verify the invention described in Patent Document 6, the pore distribution curve obtained on the adsorption side has a pore diameter of 30 to 100 nm with respect to a pore volume V3 having a pore diameter of 4 to 10 nm specified in Patent Document 6. The ratio (V3 / V4) of the pore volume V4 was also obtained at the same time and was 4.84.

(実施例2)
ピッチ粉末の量を9部に変更した以外は実施例1と同様にして炭素粉末を得た。得られた炭素粉末のV2/V1の値は1.11、V4/V3の値は1.87であった。
(Example 2)
Carbon powder was obtained in the same manner as in Example 1 except that the amount of pitch powder was changed to 9 parts. The obtained carbon powder had a V2 / V1 value of 1.11, and a V4 / V3 value of 1.87.

実施例2で得られた炭素粉末の試料をTEM(透過型電子顕微鏡)観察した。粉末表面の一部に明らかにエッジ面とベーサル面の区別できる箇所で、エッジ面に乱層構造をもつ炭素(結晶構造が発達していないピッチ由来の低温焼成炭素)が付着した構造が観察された。   A sample of the carbon powder obtained in Example 2 was observed with a TEM (transmission electron microscope). A structure in which carbon with a turbulent layer structure (low-temperature-fired carbon derived from pitch with no developed crystal structure) attached to the edge surface was observed at a part of the powder surface where the edge surface and basal surface could be clearly distinguished. It was.

(比較例1)
ピッチ粉末の量を13部に変更した以外は実施例1と同様にして炭素粉末を得た。得られた炭素粉末のV2/V1の値は0.62、V4/V3の値は1.89であった。ピッチの配合量が多すぎたため、ミクロ孔のみならず、マクロ孔まで低温焼成炭素で充填されてしまったため、マクロ孔の細孔容積を高くすることができず、V2/V1の値が1より小さくなったと考えられる。
(Comparative Example 1)
Carbon powder was obtained in the same manner as in Example 1 except that the amount of pitch powder was changed to 13 parts. The obtained carbon powder had a V2 / V1 value of 0.62 and a V4 / V3 value of 1.89. Since the blending amount of the pitch was too large, not only the micropores but also the macropores were filled with the low-temperature calcined carbon. Therefore, the pore volume of the macropores could not be increased, and the value of V2 / V1 was more than 1. It seems that it has become smaller.

(実施例3)
基材として、平均粒径が29μm、比表面積が3.5m2/g、窒素脱着側等温線をBJH法により解析して求めた細孔分布曲線における細孔直径50〜200nmの細孔容積が0.0072cm3/g、アルゴンイオンレーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度の比Rの値が0.16である、球状化粉砕された天然黒鉛粉末を使用した。
(Example 3)
As a substrate, an average particle size of 29 μm, a specific surface area of 3.5 m 2 / g, and a pore volume having a pore diameter of 50 to 200 nm in a pore distribution curve obtained by analyzing a nitrogen desorption side isotherm by a BJH method. Spherical pulverized natural graphite powder having a ratio R of a peak intensity near 1360 cm −1 to a peak intensity near 1580 cm −1 in an argon ion laser Raman spectrum of 0.16 cm 3 / g is 0.16. did.

この黒鉛粉末100部を、平均粒径35μm、軟化温度80℃の石炭系ピッチ5部と、Vブレンダーを用いた単純混合により固相で混合した。この混合粉末を黒鉛るつぼに入れ、窒素気流下950℃で1時間熱処理して、炭素粉末を得た。得られた炭素粉末のV2/V1の値は1.40、V4/V3の値は2.15であった。   100 parts of this graphite powder was mixed with 5 parts of a coal-based pitch having an average particle size of 35 μm and a softening temperature of 80 ° C. in a solid phase by simple mixing using a V blender. This mixed powder was put into a graphite crucible and heat-treated at 950 ° C. for 1 hour under a nitrogen stream to obtain a carbon powder. The resulting carbon powder had a V2 / V1 value of 1.40 and a V4 / V3 value of 2.15.

(比較例2)
本例は、実施例1で使用したのと同じ天然黒鉛粉末およびピッチ粉末を同じ割合で混合するが、但し混合方法が固相混合ではなく、ピッチの融解温度以上で、かつ希釈溶剤を用いた液相加熱混合である例を示す。
(Comparative Example 2)
In this example, the same natural graphite powder and pitch powder as used in Example 1 were mixed at the same ratio, except that the mixing method was not solid phase mixing, but higher than the melting temperature of the pitch, and a dilution solvent was used. The example which is liquid phase heating mixing is shown.

平均粒径が20μm、比表面積が5.2m2/g、窒素脱着側等温線をBJH法により解析して求めた細孔分布曲線における細孔直径50〜200nmの細孔容積が0.0110cm3/g、アルゴンイオンレーザーラマンスペクトルにおける1580cm-1付近のピーク強度に対する1360cm-1付近のピーク強度の比Rの値が0.19である、球状化粉砕された天然黒鉛粉末100部を、軟化温度80℃の石炭系ピッチ5部および希釈溶剤としてのピリジン100部と混合し、110℃に加熱しながら攪拌混合した。その後、減圧して、溶剤を回収した。この液相混合により得られた混合粉末を黒鉛るつぼに入れ、窒素気流下1000℃で1時間熱処理した。得られた炭素粉末のV2/V1の値は0.95、V4/V3の値は2.01であった。 The average particle size is 20 μm, the specific surface area is 5.2 m 2 / g, and the pore volume with a pore diameter of 50 to 200 nm in the pore distribution curve obtained by analyzing the nitrogen desorption side isotherm by the BJH method is 0.0110 cm 3 / g, 100 parts of spheroidized and ground natural graphite powder having a ratio R of the peak intensity near 1360 cm −1 to the peak intensity near 1580 cm −1 in the argon ion laser Raman spectrum is 0.19. The mixture was mixed with 5 parts of a coal-based pitch at 100 ° C. and 100 parts of pyridine as a diluent solvent, and stirred and mixed while heating to 110 ° C. Thereafter, the pressure was reduced to recover the solvent. The mixed powder obtained by this liquid phase mixing was placed in a graphite crucible and heat-treated at 1000 ° C. for 1 hour under a nitrogen stream. The obtained carbon powder had a V2 / V1 value of 0.95 and a V4 / V3 value of 2.01.

(比較例3)
ピッチ粉末の量を9部に変更した以外は比較例2と同様にして炭素粉末を得た。この炭素粉末のV2/V1の値は0.81、V4/V3の値は1.70であった。
(Comparative Example 3)
Carbon powder was obtained in the same manner as in Comparative Example 2 except that the amount of pitch powder was changed to 9 parts. The carbon powder had a V2 / V1 value of 0.81 and a V4 / V3 value of 1.70.

(比較例4)
ピッチ粉末の量を13部に変更した以外は比較例2と同様にして炭素粉末を得た。この炭素粉末のV2/V1の値は0.59、V4/V3の値は1.62であった。
(Comparative Example 4)
Carbon powder was obtained in the same manner as in Comparative Example 2 except that the amount of pitch powder was changed to 13 parts. The carbon powder had a V2 / V1 value of 0.59 and a V4 / V3 value of 1.62.

(比較例5)
実施例1〜2及び比較例1〜4で基材として使用した球状化粉砕天然黒鉛粉末のV2/V1の値を調べたところ、0.72、V4/V3の値は4.05であった。
(Comparative Example 5)
When V2 / V1 values of the spheroidized pulverized natural graphite powder used as the base material in Examples 1-2 and Comparative Examples 1-4 were examined, the values of 0.72 and V4 / V3 were 4.05. .

(比較例6)
実施例3で基材として使用した球状化粉砕天然黒鉛粉末のV2/V1の値を調べたところ、0.80、V4/V3の値は4.09であった。
(Comparative Example 6)
When the V2 / V1 value of the spheroidized pulverized natural graphite powder used as the base material in Example 3 was examined, the values of 0.80 and V4 / V3 were 4.09.

これらの炭素粉末の細孔容積のデータを比表面積(窒素ガス吸着BET法)と一緒に表1に示す。
[電極作成]
上述のようにして製造した炭素粉末97部に結着剤としてカルボキシメチルセルロース(CMC)粉末を混合したあと、スチレンーブタジエンラバー(SBR)を水に分散させた液を加え、攪拌しスラリーを得た。配合比は、炭素:CMC:SBR=97:1:2(質量比)とした。このスラリーを17μm厚みのCu箔上にドクターブレード法により塗布し、乾燥後直径13mmに打ち抜き、プレス成形機にて加圧して電極を得た。
The pore volume data of these carbon powders are shown in Table 1 together with the specific surface area (nitrogen gas adsorption BET method).
[Electrode creation]
After mixing carboxymethylcellulose (CMC) powder as a binder with 97 parts of the carbon powder produced as described above, a liquid in which styrene-butadiene rubber (SBR) was dispersed in water was added and stirred to obtain a slurry. . The compounding ratio was carbon: CMC: SBR = 97: 1: 2 (mass ratio). This slurry was applied onto a 17 μm-thick Cu foil by a doctor blade method, dried, punched out to a diameter of 13 mm, and pressed with a press molding machine to obtain an electrode.

電極密度はマイクロメータによる厚み測定と質量測定により求めた(予めCu箔の厚みと質量を測定し、これを差し引くことにより、Cu箔部分を除いた密度)。評価には、電極密度1.75g/cm3を得るのに必要なプレス加圧力を用いた。ただし、150MPa加圧でも1.75g/cm3に達しなかった場合には、150MPaで加圧した電極の密度を用いた。 The electrode density was determined by thickness measurement and mass measurement with a micrometer (the thickness excluding the Cu foil portion by measuring the thickness and mass of the Cu foil in advance and subtracting it). For the evaluation, a pressing force required to obtain an electrode density of 1.75 g / cm 3 was used. However, when the pressure did not reach 1.75 g / cm 3 even at 150 MPa, the density of the electrode pressurized at 150 MPa was used.

[電極特性]
(1)耐PC電解液性
ポリオレフィン製セパレーターを用い、Li金属箔を上記電極に対する対極とし、電解液には、エチレンカーボネート(EC):プロピレンカーボネート(PC):ジメチルカーボネート(DMC)=1:2:1(体積比)の混合溶媒に支持電解質LiPF6を1M濃度で溶解した溶液を用いてコイン電池を作製した。試験電極の塗布量は10〜11mg/cm2であった。こうして製作したコイン電池について、次の要領でその電極特性を評価した。
[Electrode characteristics]
(1) Resistance to PC electrolyte solution Using a polyolefin separator and a Li metal foil as the counter electrode with respect to the above electrode, the electrolyte solution was ethylene carbonate (EC): propylene carbonate (PC): dimethyl carbonate (DMC) = 1: 2. A coin battery was manufactured using a solution of the supporting electrolyte LiPF 6 dissolved at a concentration of 1 M in a mixed solvent of 1 (volume ratio). The application amount of the test electrode was 10 to 11 mg / cm 2 . The electrode characteristics of the manufactured coin battery were evaluated in the following manner.

25mA/gの電流値で対極に対して電位差0(ゼロ)Vになるまで定電流でドープし(充電に相当)、さらに0(ゼロ)Vを保持したまま5μA/cm2になるまで定電圧でドープを続けた。次に、25mA/gの定電流で電位差1.5Vになるまで脱ドープ(放電に相当)を行った。脱ドープ容量は負極として用いた時の放電容量に相当するので、これを放電容量とした。放電容量を充電容量(ドープ容量)で割った値の100分率を充放電効率(%)とした。試験はすべて23℃で実施した。 Doped with a constant current until the potential difference becomes 0 (zero) V with respect to the counter electrode at a current value of 25 mA / g (corresponding to charging), and further maintains a constant voltage until 5 μA / cm 2 while maintaining 0 (zero) V. I continued to dope. Next, dedoping (corresponding to discharge) was performed at a constant current of 25 mA / g until the potential difference became 1.5V. Since the dedope capacity corresponds to the discharge capacity when used as the negative electrode, this was used as the discharge capacity. The 100 percent of the value obtained by dividing the discharge capacity by the charge capacity (dope capacity) was defined as the charge / discharge efficiency (%). All tests were performed at 23 ° C.

(2)レート特性
電解液にエチレンカーボネート(EC):エチルメチルカーボネート(EMC)=1:3(体積比)の混合溶媒に支持電解質LiPF6を1M濃度で溶解した溶液、試験電極の塗布量を5〜6mg/cm2とした以外は(1)と同様にコイン電池を作製した。
(2) Rate characteristics A solution obtained by dissolving the supporting electrolyte LiPF 6 at a concentration of 1M in a mixed solvent of ethylene carbonate (EC): ethyl methyl carbonate (EMC) = 1: 3 (volume ratio) in the electrolytic solution, and the coating amount of the test electrode. A coin battery was prepared in the same manner as (1) except that the amount was 5 to 6 mg / cm 2 .

1サイクル目:25mA/gの電流値で対極に対して電位差0(ゼロ)Vになるまで定電流でドープし、さらに0(ゼロ)Vを保持したまま5μA/cm2になるまで定電圧でドープを続けた。次に、25mA/gの定電流で電位差1.5Vになるまで脱ドープを行った。 First cycle: Doped with a constant current until the potential difference becomes 0 (zero) V with respect to the counter electrode at a current value of 25 mA / g, and at a constant voltage until 5 μA / cm 2 while maintaining 0 (zero) V Continued dope. Next, undoping was performed until the potential difference became 1.5 V at a constant current of 25 mA / g.

2サイクル目:0.05Cにて対極に対して電位差5mVになるまで定電流でドープし、さらに5mVを保持したまま10μA/cm2になるまで定電圧でドープを続けた。次に、0.05Cの定電流で電位差1.5Vになるまで脱ドープを行った。 Second cycle: Doping was performed at a constant current until the potential difference became 5 mV with respect to the counter electrode at 0.05 C, and further, doping was continued at a constant voltage until 10 μA / cm 2 while maintaining 5 mV. Next, undoping was performed at a constant current of 0.05 C until the potential difference became 1.5 V.

3サイクル目:0.05Cにて対極に対して電位差5mVになるまで定電流でドープし、さらに5mVを保持したまま10μA/cm2になるまで定電圧でドープを続けた。次に、1.5Cの定電流で電位差1.5Vになるまで脱ドープを行った。 Third cycle: Doping was carried out at a constant current until the potential difference became 5 mV with respect to the counter electrode at 0.05 C, and further, doping was continued at a constant voltage until 10 μA / cm 2 while maintaining 5 mV. Next, dedoping was performed at a constant current of 1.5 C until the potential difference became 1.5 V.

3サイクル目と2サイクル目の放電容量の比を求めて、レート特性を評価した。
以上の試験結果も表1に併記する。
The ratio of the discharge capacity at the third cycle and the second cycle was determined to evaluate the rate characteristics.
The above test results are also shown in Table 1.

Figure 0004802595
Figure 0004802595

表1からわかるように、比較例5、6に示した未処理の天然黒鉛粉末は、1.75g/cm3の電極密度を得るのに必要なプレス加圧力が非常に低く、電極密度の点では優れている。しかし、耐PC電解液性は非常に悪く、PCを含有する電解液中では使用することができない。天然黒鉛粉末のままでは、球状化粉砕されたものであっても、V2/V1の値は1よりかなり小さくなった。 As can be seen from Table 1, the untreated natural graphite powders shown in Comparative Examples 5 and 6 have a very low pressing force necessary to obtain an electrode density of 1.75 g / cm 3 , and the electrode density is low. Is excellent. However, the resistance to PC electrolyte is very poor and cannot be used in an electrolyte containing PC. With the natural graphite powder, the value of V2 / V1 was considerably smaller than 1 even when spheroidized and pulverized.

これに対し、本発明にしたがってV2/V1の値が1以上となる細孔分布を有する炭素粉末は、150MPa以下のプレス加圧力で1.75g/cm3の電極密度を得ることができるので、電極密度はなお良好でありながら、耐PC電解液性が著しく改善され、PCを含有する電解液中で十分に使用でき、レート特性(放電容量比)も良好である。したがって、例えば、自動車用の電池のように低温に耐える必要がある非水系二次電池の負極材料として使用できる。 In contrast, a carbon powder having a pore distribution with a V2 / V1 value of 1 or more according to the present invention can obtain an electrode density of 1.75 g / cm 3 with a pressing force of 150 MPa or less. Although the electrode density is still good, the PC electrolyte resistance is remarkably improved, it can be used sufficiently in an electrolyte containing PC, and the rate characteristic (discharge capacity ratio) is also good. Therefore, for example, it can be used as a negative electrode material of a non-aqueous secondary battery that needs to withstand a low temperature like a battery for an automobile.

しかし、天然黒鉛粉末に同じような表面改質処理を施しても、ピッチの配合量が多すぎた比較例1では、V2/V1の比が1を下回り、さらに原料である比較例5の未処理黒鉛粉末でのV2/V1値よりも小さくなった。これは、マクロ孔の多くが充填されてしまったことを意味する。この場合、マクロ孔が加圧によりつぶれないため、150MPaでの加圧でも電極密度は1.67g/cm3にしかならず、電極密度の点で劣り、したがって電池の放電容量が低下する。また、レート特性もやや悪くなった。表には示していないが、ピッチの配合量が少なすぎる場合は、未処理の比較例5、6から推測されるように、やはりV2/V1の値が1を下回り、この場合には電極密度はよいものの、耐PC電解液性が悪くなる。 However, even if the same surface modification treatment is applied to the natural graphite powder, the ratio of V2 / V1 is less than 1 in Comparative Example 1 in which the amount of pitch is too much, and the raw material of Comparative Example 5 which is a raw material is not yet. It became smaller than the V2 / V1 value in the treated graphite powder. This means that many of the macropores have been filled. In this case, since the macropores are not crushed by pressurization, the electrode density is only 1.67 g / cm 3 even at 150 MPa, which is inferior in terms of electrode density, and therefore the discharge capacity of the battery is lowered. In addition, the rate characteristics were slightly deteriorated. Although not shown in the table, when the blending amount of the pitch is too small, as estimated from untreated comparative examples 5 and 6, the value of V2 / V1 is still less than 1, and in this case, the electrode density However, the PC electrolyte resistance is deteriorated.

一方、比較例2〜4に示すように、同じ天然黒鉛粉末とピッチ粉末を使用しても、混合方法が固相混合ではなく、ピッチを液相状態にして混合すると、1以上のV2/V1比を有する炭素粉末を得ることは困難である。これは、ピッチが天然黒鉛粉末の表面に均一に薄く付着するためである。その結果、ピッチの量が少なめの比較例2、3では、黒鉛粉末表面のエッジ部が十分に表面改質されないため、耐PC電解液性は未処理のものと同レベル以下に低下し、電極密度もピッチ配合量が同じ固相混合法の場合に比べて低くなった。一方、ピッチの量が多い比較例4では、エッジ部に十分な低温焼成炭素が付着して表面改質されたためか、耐PC電解液性は改善されたが、電極密度は非常に低くなった。   On the other hand, as shown in Comparative Examples 2 to 4, even when the same natural graphite powder and pitch powder are used, if the mixing method is not solid phase mixing, but the pitch is in the liquid phase and mixed, one or more V2 / V1 It is difficult to obtain a carbon powder having a ratio. This is because the pitch adheres uniformly and thinly to the surface of the natural graphite powder. As a result, in Comparative Examples 2 and 3 where the amount of pitch is small, the edge portion of the graphite powder surface is not sufficiently surface-modified, so that the PC electrolyte resistance decreases to the same level or lower as that of the untreated electrode. The density was also lower than in the case of the solid phase mixing method with the same pitch blending amount. On the other hand, in Comparative Example 4 where the amount of pitch is large, the PC electrolyte solution resistance was improved, but the electrode density was very low, probably because sufficient low-temperature calcined carbon adhered to the edge portion to modify the surface. .

参考までに、比較例3の炭素粉末をTEM観察したところ、実施例2の粉末で見られたような、乱層構造をもつ炭素がエッジ面だけに付着した構造は、観察できなかった。
以上より、V2/V1の値が1以上であるという基準を満たす炭素粉末は、電極密度が高く、かつ耐PC電解液性に優れ、レート特性も良好な負極材料となることがわかる。
For reference, when the carbon powder of Comparative Example 3 was observed with a TEM, a structure in which carbon having a disordered layer structure adhered to only the edge surface as seen in the powder of Example 2 could not be observed.
From the above, it can be seen that carbon powder satisfying the criterion that the value of V2 / V1 is 1 or more is a negative electrode material having high electrode density, excellent PC electrolyte resistance, and good rate characteristics.

これに対して、V4/V3の値は、非常にバラツキが大きく、この比が大きいものほど電極密度が高くなるという傾向は見られるものの、耐PC電解液性との相関関係は明らかでなく、またV2/V1の比との対応関係も特には見出せない。   On the other hand, the value of V4 / V3 varies greatly, and although the tendency that the electrode density increases as the ratio increases, the correlation with the PC electrolyte resistance is not clear, In addition, the correspondence with the ratio of V2 / V1 is not particularly found.

比較例5、6に示すように、未処理の黒鉛粉末はV4/V3の値が大きいが、本発明にしたがって表面改質しても、V4/V3の値は、実施例1のように増大する場合と、実施例2、3のように減少する場合がある。そして、V4/V3の値が大きかったり、小さかったりする実施例1〜3では、V4/V3の値とは無関係に、耐PC電解液性が改善された。   As shown in Comparative Examples 5 and 6, untreated graphite powder has a large value of V4 / V3. However, even when surface modification is performed according to the present invention, the value of V4 / V3 increases as in Example 1. And may decrease as in the second and third embodiments. In Examples 1 to 3 in which the value of V4 / V3 was large or small, the PC electrolyte resistance was improved regardless of the value of V4 / V3.

Claims (3)

天然黒鉛粉末の表面の一部に、炭素前駆体が黒鉛化温度より低温で熱処理を受けて炭化することにより生成した炭素が付着した炭素粉末であって、窒素脱着側等温線をBJH法により解析して求めた細孔分布曲線における細孔直径2〜50nmの細孔容積V1に対する細孔直径50〜200nmの細孔容積V2の比であるV2/V1が1以上であることを特徴とする炭素粉末。 A carbon powder in which carbon produced by carbonization of a carbon precursor subjected to heat treatment at a temperature lower than the graphitization temperature is attached to a part of the surface of the natural graphite powder. The nitrogen desorption side isotherm is analyzed by the BJH method. V2 / V1, which is the ratio of the pore volume V2 having a pore diameter of 50 to 200 nm to the pore volume V1 having a pore diameter of 2 to 50 nm in the pore distribution curve determined in this manner, is 1 or more. Powder. 前記炭素前駆体熱処理を受けて生成した炭素が、平均粒径500μm以下のピッチ粉末を黒鉛粉末と固相混合した後、混合物を非酸化性雰囲気下900℃〜1500℃の温度で熱処理することによりピッチ粉末から生成したものである請求項に記載の炭素粉末。 The carbon carbon precursor has generated undergoing heat treatment, after a mean particle diameter 500μm or less of the pitch powder was mixed graphite powder and solid phase, heat treating the mixture at a temperature of a non-oxidizing atmosphere at 900 ° C. to 1500 ° C. The carbon powder according to claim 1 , wherein the carbon powder is produced from pitch powder. V2/V1が1.3以上、2.0以下である請求項1又は2に記載の炭素粉末。 The carbon powder according to claim 1 or 2 , wherein V2 / V1 is 1.3 or more and 2.0 or less.
JP2005226830A 2005-08-04 2005-08-04 Carbon powder suitable for negative electrode materials for non-aqueous secondary batteries Expired - Fee Related JP4802595B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2005226830A JP4802595B2 (en) 2005-08-04 2005-08-04 Carbon powder suitable for negative electrode materials for non-aqueous secondary batteries
CN2006101091446A CN1907848B (en) 2005-08-04 2006-08-03 Carbon powder for use in cathode materials of non-aqueous secondary battery
KR1020080000286A KR20080011237A (en) 2005-08-04 2008-01-02 Carbon powder suitable to negative electrode material for non-aqueous secondary cell

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005226830A JP4802595B2 (en) 2005-08-04 2005-08-04 Carbon powder suitable for negative electrode materials for non-aqueous secondary batteries

Publications (2)

Publication Number Publication Date
JP2007039290A JP2007039290A (en) 2007-02-15
JP4802595B2 true JP4802595B2 (en) 2011-10-26

Family

ID=37699109

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005226830A Expired - Fee Related JP4802595B2 (en) 2005-08-04 2005-08-04 Carbon powder suitable for negative electrode materials for non-aqueous secondary batteries

Country Status (3)

Country Link
JP (1) JP4802595B2 (en)
KR (1) KR20080011237A (en)
CN (1) CN1907848B (en)

Families Citing this family (20)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4560076B2 (en) * 2007-11-08 2010-10-13 大阪ガスケミカル株式会社 Negative electrode carbon material and lithium secondary battery including the same
KR101215227B1 (en) * 2007-11-16 2012-12-24 아사히 가세이 가부시키가이샤 Nonaqueous lithium-type storage element
JP5233314B2 (en) * 2008-02-25 2013-07-10 住友ベークライト株式会社 Carbon material for secondary battery, electrode for secondary battery, and secondary battery
JP5219571B2 (en) * 2008-03-24 2013-06-26 三洋電機株式会社 Membrane electrode assembly and fuel cell
KR20090111129A (en) * 2008-04-21 2009-10-26 엘에스엠트론 주식회사 Negative active material used for secondary battery, electrode of secondary battery and secondary battery including the same, and method thereof
JP5458689B2 (en) 2008-06-25 2014-04-02 三菱化学株式会社 Non-aqueous secondary battery composite graphite particles, negative electrode material containing the same, negative electrode and non-aqueous secondary battery
JP4670908B2 (en) 2008-07-11 2011-04-13 日立化成工業株式会社 Negative electrode material for lithium secondary battery and lithium secondary battery
JP6011906B2 (en) * 2011-01-19 2016-10-25 株式会社Gsユアサ Negative electrode, electrode body, power storage element, and method for manufacturing power storage element
CN102290567A (en) * 2011-07-20 2011-12-21 彩虹集团公司 Preparation method for polyacrylonitrile pyrolytic carbon-clad lithium iron phosphate
JP6161328B2 (en) * 2012-05-18 2017-07-12 Jsr株式会社 Electrode active material, electrode and power storage device
JP6002475B2 (en) * 2012-07-02 2016-10-05 株式会社日立製作所 Negative electrode material, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and production method thereof
JP5986035B2 (en) * 2013-02-05 2016-09-06 Jfeケミカル株式会社 Lithium ion secondary battery negative electrode material and method for producing the same, lithium ion secondary battery negative electrode and lithium ion secondary battery
JP6828551B2 (en) * 2017-03-27 2021-02-10 三菱ケミカル株式会社 Negative electrode material for non-aqueous secondary batteries, negative electrode for non-aqueous secondary batteries and non-aqueous secondary batteries
JP6897507B2 (en) * 2017-11-09 2021-06-30 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and its manufacturing method
JP6977491B2 (en) * 2017-11-10 2021-12-08 戸田工業株式会社 Negative electrode material for lithium ion secondary batteries, and lithium ion secondary batteries using them.
US12113218B2 (en) 2018-10-10 2024-10-08 Hunan Jinye High-tech Co., Ltd. Lithium-ion battery negative electrode active material, lithium-ion battery negative electrode, lithium ion battery, battery pack and battery-powered vehicle
KR20210040810A (en) * 2019-10-04 2021-04-14 주식회사 엘지화학 Globular Carbon type Anode Active Material, Method for preparing the same, Anode Comprising the same, and Lithium Secondary Battery Comprising the same
CN112701288A (en) * 2020-12-29 2021-04-23 宁波杉杉新材料科技有限公司 Coated modified graphite material, preparation method and application thereof, and lithium ion battery
CN113086978B (en) * 2021-03-30 2023-08-15 宁德新能源科技有限公司 Negative electrode material, electrochemical device and electronic device comprising same
CN115995597B (en) * 2023-03-22 2023-06-20 宁德新能源科技有限公司 Secondary battery and electronic device

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000268878A (en) * 1999-03-17 2000-09-29 Toyota Central Res & Dev Lab Inc Lithium ion secondary battery
JP3841611B2 (en) * 1999-03-31 2006-11-01 日立粉末冶金株式会社 Graphite particles for negative electrode of non-aqueous secondary battery
KR100722646B1 (en) * 2002-01-25 2007-05-28 도요탄소 가부시키가이샤 Negative electrode material for lithium ion secondary battery
CN1228880C (en) * 2002-07-22 2005-11-23 新神户电机株式会社 Non-aqueous electrolytic solution secondary cell
CN1624955A (en) * 2003-12-01 2005-06-08 上海杉杉科技有限公司 Method for manufacturing carbon nagtive electrode material of lithium ion cell
JP2005174630A (en) * 2003-12-09 2005-06-30 Matsushita Electric Ind Co Ltd High output type non-aqueous electrolyte secondary battery
CN1547278A (en) * 2003-12-12 2004-11-17 天津大学 Putamen type carbon cathode material for lithium ion secondary battery and preparation method thereof
CN1314150C (en) * 2004-01-19 2007-05-02 陈闻杰 Modified natural graphite cell negative polar material and preparing method

Also Published As

Publication number Publication date
CN1907848B (en) 2010-11-10
CN1907848A (en) 2007-02-07
JP2007039290A (en) 2007-02-15
KR20080011237A (en) 2008-01-31

Similar Documents

Publication Publication Date Title
JP4802595B2 (en) Carbon powder suitable for negative electrode materials for non-aqueous secondary batteries
US8038977B2 (en) Carbon powder suitable as a negative electrode material for nonaqueous secondary batteries
US20200227747A1 (en) Carbonaceous composite materials with snowball-like morphology
US9368796B2 (en) Graphite material, carbon material for battery electrode, and battery
JP4840449B2 (en) Carbon material and manufacturing method thereof
KR101522911B1 (en) Negative electrode for lithium secondary battery, method for producing carbon-based negative electrode active material, lithium secondary battery and use thereof
KR20080073706A (en) Graphite material, carbon material for battery electrode and battery
KR20200042015A (en) Carbon material for non-aqueous secondary battery, anode using said carbon material, and non-aqueous secondary battery
KR20110033134A (en) Composite graphite particle for nonaqueous secondary battery, and negative electrode material, negative electrode, and nonaqueous secondary battery containing the same
KR102299254B1 (en) Negative electrode active material for rechargeable lithium battery and the method for manufacturing the same, and rechargeable lithium battery including negative electrode prepared from the same
WO2014156098A1 (en) Amorphous carbon material and graphite carbon material for negative electrodes of lithium ion secondary batteries, lithium ion secondary battery using same, and method for producing carbon material for negative electrodes of lithium ion secondary batteries
JP6957127B1 (en) Carbon material for negative electrode of lithium ion secondary battery and its manufacturing method, and negative electrode and lithium ion secondary battery using it
JP5061718B2 (en) Carbon material powder and method for producing the same
JP5196365B2 (en) Carbon particle powder for negative electrode material of lithium ion secondary battery, method for producing the same, and negative electrode material of lithium ion secondary battery
JP2018006271A (en) Carbon material for lithium ion secondary battery negative electrode, intermediate thereof, method for manufacturing the same, and negative electrode or battery arranged by use thereof
KR100808757B1 (en) Carbon powder suitable to negative electrode material for non-aqueous secondary cell
JP4604599B2 (en) Carbon powder and manufacturing method thereof
JP6924917B1 (en) Carbon material for negative electrode of lithium ion secondary battery and its manufacturing method, and negative electrode and lithium ion secondary battery using it
JP2016181405A (en) Composite hardly graphitizable carbonaceous material for nonaqueous electrolyte secondary battery negative electrode, and manufacturing method thereof
KR20240104034A (en) Silicon-carbon composite particle and manufacturing method thereof
JP2016181406A (en) Composite easily graphitizable carbonaceous material for nonaqueous electrolyte secondary battery negative electrode, and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070821

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100528

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101122

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20101214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110214

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110712

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110725

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140819

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees