JP6977491B2 - Negative electrode material for lithium ion secondary batteries, and lithium ion secondary batteries using them. - Google Patents

Negative electrode material for lithium ion secondary batteries, and lithium ion secondary batteries using them. Download PDF

Info

Publication number
JP6977491B2
JP6977491B2 JP2017217363A JP2017217363A JP6977491B2 JP 6977491 B2 JP6977491 B2 JP 6977491B2 JP 2017217363 A JP2017217363 A JP 2017217363A JP 2017217363 A JP2017217363 A JP 2017217363A JP 6977491 B2 JP6977491 B2 JP 6977491B2
Authority
JP
Japan
Prior art keywords
negative electrode
ion secondary
lithium ion
less
amorphous carbon
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2017217363A
Other languages
Japanese (ja)
Other versions
JP2019087519A (en
Inventor
浩平 山口
信幸 小林
美和 片山
明男 坂本
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toda Kogyo Corp
Original Assignee
Toda Kogyo Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toda Kogyo Corp filed Critical Toda Kogyo Corp
Priority to JP2017217363A priority Critical patent/JP6977491B2/en
Publication of JP2019087519A publication Critical patent/JP2019087519A/en
Application granted granted Critical
Publication of JP6977491B2 publication Critical patent/JP6977491B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本明細書に開示された技術は、リチウムイオン二次電池用の黒鉛系炭素負極材料に関する。 The techniques disclosed herein relate to graphite-based carbon negative electrode materials for lithium ion secondary batteries.

リチウムイオン二次電池は、従来の二次電池であるニッケルカドミウム電池、ニッケル水素電池、鉛電池に比較し、軽量で高容量を有することから、ポータブル電子機器、例えば、携帯電話、ノート型パソコンなどの駆動用電源として実用化されている。 Lithium-ion secondary batteries are lighter and have higher capacity than conventional secondary batteries such as nickel-cadmium batteries, nickel-hydrogen batteries, and lead batteries. Therefore, portable electronic devices such as mobile phones and notebook computers can be used. It has been put into practical use as a power source for driving.

さらに近年では、リチウムイオン二次電池の大容量化に伴って、家庭用や電気自動車などへも展開されつつある。 Furthermore, in recent years, with the increase in the capacity of lithium-ion secondary batteries, it is being expanded to households and electric vehicles.

特に、電気自動車などの車載用へのリチウムイオン二次電池を想定した場合、さまざまな環境下で使用されるために、低温性能や高温での寿命性能も重要となる。また、ガソリン車並の利便性を考慮すれば、短時間で充電できる急速充電性能や瞬時の加速や回生を行うために、高い入出力特性が求められている。 In particular, when assuming a lithium-ion secondary battery for an in-vehicle use such as an electric vehicle, low-temperature performance and high-temperature life performance are also important because they are used in various environments. Further, considering the convenience of a gasoline-powered vehicle, high input / output characteristics are required for quick charging performance that can be charged in a short time and for instantaneous acceleration and regeneration.

リチウムイオン二次電池の負極には、リチウムイオンがインターカレーション可能な炭素あるいは黒鉛系炭素材料が一般に用いられている。 A carbon or graphite-based carbon material capable of intercalating lithium ions is generally used for the negative electrode of the lithium ion secondary battery.

リチウムイオン二次電池では、充放電に伴って、正極活物質と負極活物質との間をリチウムイオン(Li)が行き来する。結晶としてLiを元々内包している正極活物質と違い、電池として作動した時に初めてLiを受け入れる炭素材料では、Li挿入過程における副反応が生じるため、該副反応によってLiが消費されてしまい、初期効率が低下することが知られている。 In a lithium ion secondary battery, lithium ions (Li + ) move back and forth between the positive electrode active material and the negative electrode active material as the battery is charged and discharged. Unlike the positive electrode active material that originally contains Li as a crystal, a carbon material that accepts Li for the first time when it operates as a battery causes a side reaction in the Li insertion process, so that side reaction consumes Li, which is the initial stage. It is known to reduce efficiency.

一方、負極活物質/電解液界面の抵抗が低いほど、Liが負極活物質に入るために必要なエネルギーが低くなり、入出力特性が良くなる傾向にある。また、負極活物質/電解液界面の抵抗が低いと低温環境下でもLiを挿入しやすくなるために、低温特性の改善も可能となる。さらに、抵抗による発熱は電解液の劣化などに繋がり、サイクル特性を悪化させるため、負極活物質/電解液界面の抵抗が低い負極活物質を用いることで、サイクル特性の改善が可能となる。 On the other hand, the lower the resistance of the negative electrode active material / electrolytic solution interface, the lower the energy required for Li to enter the negative electrode active material, and the better the input / output characteristics tend to be. Further, if the resistance of the negative electrode active material / electrolyte interface is low, Li can be easily inserted even in a low temperature environment, so that the low temperature characteristics can be improved. Further, heat generation due to resistance leads to deterioration of the electrolytic solution and deteriorates the cycle characteristics. Therefore, by using a negative electrode active material having a low resistance at the negative electrode active material / electrolytic solution interface, it is possible to improve the cycle characteristics.

一方、Li拡散速度は、負極活物質内部全体へのLi拡散経路の通りやすさを反映し、Liが拡散しやすいほど、Liが負極活物質全体を満たすまでの時間が短くなるため、Liが拡散しやすい負極活物質を用いることで更なる入出力特性の改善が期待できる。 On the other hand, the Li diffusion rate reflects the ease of passage of the Li diffusion path into the entire negative electrode active material, and the easier it is for Li to diffuse, the shorter the time it takes for Li to fill the entire negative electrode active material. Further improvement of input / output characteristics can be expected by using a negative electrode active material that easily diffuses.

これまでに、入出力特性に優れる材料として難黒鉛化炭素材料(ハードカーボン)や非晶質炭素材料が知られている(例えば、特許文献1参照)。 So far, graphitized carbon materials (hard carbon) and amorphous carbon materials have been known as materials having excellent input / output characteristics (see, for example, Patent Document 1).

また、高い放電容量と低い不可逆容量を両立させるとの観点から、黒鉛粒子に炭素質が被覆された炭素質黒鉛粒子からなるリチウムイオン二次電池用の負極材料が提案されている。より具体的には、黒鉛材料に、ピッチなどの炭素材料を被覆した後、不活性ガス雰囲気下において、700〜1500℃の温度で焼成して表層に炭素質物を形成した炭素質被覆黒鉛粒子からなり、炭素質被覆黒鉛粒子の窒素による吸着等温線をもとに、HK法により求めた1nm以下の細孔容積が0.0010〜0.0020cm/gであり、かつBJH法により求めた1〜100nmの細孔容積が0.020〜0.040cm/gであるリチウムイオン二次電池用の負極材料が開示されている。そして、このような負極材料を使用することにより、容量、初回充放電効率およびサイクル特性を損ねることなく、ハイレート特性を向上できると記載されている(例えば、特許文献2参照)。 Further, from the viewpoint of achieving both a high discharge capacity and a low irreversible capacity, a negative electrode material for a lithium ion secondary battery made of carbonic graphite particles in which graphite particles are coated with carbonaceous material has been proposed. More specifically, from carbonaceous coated graphite particles in which a graphite material is coated with a carbon material such as pitch and then fired at a temperature of 700 to 1500 ° C. in an inert gas atmosphere to form a carbonaceous substance on the surface layer. The pore volume of 1 nm or less determined by the HK method was 0.0010 to 0.0020 cm 3 / g based on the adsorption isotherm of carbonaceous coated graphite particles by the nitrogen method, and 1 was determined by the BJH method. A negative electrode material for a lithium ion secondary battery having a pore volume of about 100 nm of 0.020 to 0.040 cm 3 / g is disclosed. It is described that the use of such a negative electrode material can improve high rate characteristics without impairing capacity, initial charge / discharge efficiency, and cycle characteristics (see, for example, Patent Document 2).

特許第4877568号Patent No. 4877568 特開2014−170724公報Japanese Unexamined Patent Publication No. 2014-170724

しかしながら、上記特許文献1に記載の難黒鉛化炭素材料(ハードカーボン)や非晶質炭素材料には電解液との副反応を起こす表面官能基が多く、該副反応によってLiが消費されてしまうために初期効率が非常に悪いことが知られている。また、ハードカーボンや非晶質炭素材料は、層状の黒鉛結晶が発達していないために硬く、併せてグラファイト網面間距離が狭まらないために真密度が低く、負極としての体積あたりのエネルギー密度も低くなるため、充填密度を上げて高容量化を図る車載用などの用途には適さない。 However, the graphitized carbon material (hard carbon) and the amorphous carbon material described in Patent Document 1 have many surface functional groups that cause a side reaction with the electrolytic solution, and Li is consumed by the side reaction. Therefore, it is known that the initial efficiency is very poor. In addition, hard carbon and amorphous carbon materials are hard because layered graphite crystals are not developed, and at the same time, the true density is low because the distance between graphite mesh surfaces is not narrowed, and per volume as a negative electrode. Since the energy density is also low, it is not suitable for in-vehicle applications where the filling density is increased to increase the capacity.

また、上記特許文献2に記載のリチウムイオン二次電池用の負極材料は、ハイレート特性として、1Cにおける充電特性が60.1〜65.7%程度であり、十分な急速充電特性を有しているとは言いがたいレベルである。 Further, the negative electrode material for the lithium ion secondary battery described in Patent Document 2 has a high rate characteristic of about 60 to 65.7% in 1C and has a sufficient quick charging characteristic. It is hard to say that there is.

そこで、本発明は、上述の問題に鑑み、リチウムイオン二次電池の入出力特性、特に、入力特性(急速充電特性)が格段に優れたリチウムイオン二次電池を得ることのできる黒鉛系炭素負極材料を提供することを目的とする。 Therefore, in view of the above-mentioned problems, the present invention is a graphite-based carbon negative electrode capable of obtaining a lithium ion secondary battery having significantly excellent input / output characteristics, particularly input characteristics (quick charging characteristics) of the lithium ion secondary battery. The purpose is to provide the material.

上記目的を達成するために、本発明に係るリチウムイオン二次電池用の負極材料は、黒鉛質粒子の表面に非晶質炭素が被覆された非晶質炭素被覆黒鉛材料からなり、明度L値が35.0以下であり、タップ密度が0.3g/mL以上0.75g/mL以下であることを特徴とする。 In order to achieve the above object, the negative electrode material for a lithium ion secondary battery according to the present invention is made of an amorphous carbon-coated graphite material in which the surface of graphitic particles is coated with amorphous carbon, and has a brightness of L *. The value is 35.0 or less, and the tap density is 0.3 g / mL or more and 0.75 g / mL or less.

本発明のリチウムイオン二次電池用の負極材料によれば、負極活物質/電解液界面の低抵抗化を図ることにより、リチウムイオン二次電池の入出力特性を向上させることができる。 According to the negative electrode material for a lithium ion secondary battery of the present invention, the input / output characteristics of the lithium ion secondary battery can be improved by reducing the resistance of the negative electrode active material / electrolytic solution interface.

本発明の実施形態に係る非晶質炭素被覆黒鉛材料を用いた負極を備えたリチウムイオン二次電池の一例を示す図である。It is a figure which shows an example of the lithium ion secondary battery provided with the negative electrode using the amorphous carbon-coated graphite material which concerns on embodiment of this invention.

本実施形態に係るリチウムイオン二次電池用の負極材料、及びそれを用いたリチウムイオン二次電池並びにリチウムイオン二次電池用の負極材料の製造方法について以下に説明する。なお、以下で説明するのは実施形態の一例であって、構成材料、構成材料又は部材の形状、加工や熱処理の条件等は本発明の趣旨を逸脱しない範囲において適宜変更可能である。 The negative electrode material for the lithium ion secondary battery according to the present embodiment, and the method for manufacturing the negative electrode material for the lithium ion secondary battery and the lithium ion secondary battery using the same will be described below. It should be noted that the following is an example of the embodiment, and the constituent materials, the shapes of the constituent materials or members, the conditions for processing and heat treatment, and the like can be appropriately changed as long as the gist of the present invention is not deviated.

本実施形態のリチウムイオン二次電池用の負極材料は、母材として用いる黒鉛質粒子の表面に非晶質炭素が被覆された非晶質炭素被覆黒鉛材料であって、明度L値が35.0以下であり、タップ密度が0.3g/mL以上0.75g/mL以下である点に特徴がある。 The negative electrode material for the lithium ion secondary battery of the present embodiment is an amorphous carbon-coated graphite material in which the surface of graphitic particles used as a base material is coated with amorphous carbon, and has a lightness L * value of 35. It is characterized in that it is 0.0 or less and the tap density is 0.3 g / mL or more and 0.75 g / mL or less.

以下に、本実施形態の非晶質炭素被覆黒鉛材料について、詳細に説明する。 The amorphous carbon-coated graphite material of the present embodiment will be described in detail below.

<非晶質炭素被覆黒鉛材料>
本実施形態の非晶質炭素被覆黒鉛材料の明度L値は35.0以下である。一般に、カーボンブラックや黒鉛をはじめとする炭素材料は、Liの出入り口となる炭素材料のグラファイト網面の端(いわゆる「エッジ部」)が多いほど黒くなる(即ち、明度L値が小さくなる)と言われている。従って、L値が35.0以下である非晶質炭素被覆黒鉛材料は、Liの出入り口となる炭素材料のエッジ部が多くなるため、電解液との接触面から効率よくLiが挿入脱離でき、負極活物質/電解液界面抵抗、即ち、交流インピーダンスが低くなる。そして、交流インピーダンスが低い低抵抗の非晶質炭素被覆黒鉛材料をリチウムイオン二次電池の負極材料として用いることにより、Liを挿入するために必要なエネルギーが低くなるため、低温環境下においてもLiを挿入脱離することが可能になり、抵抗に起因する電解液の劣化を抑制しつつ、一度に多くのLiを挿入脱離することが可能になる。従って、リチウムイオン二次電池の入出力特性のみならず、低温特性、およびサイクル特性の改善を図ることが可能になる。
<Amorphous carbon-coated graphite material>
The lightness L * value of the amorphous carbon-coated graphite material of this embodiment is 35.0 or less. In general, carbon materials such as carbon black and graphite become blacker (that is, the brightness L * value becomes smaller) as the number of edges (so-called “edges”) of the graphite mesh surface of the carbon material that serves as the entrance / exit of Li increases. Is said to be. Therefore, the amorphous carbon-coated graphite material having an L * value of 35.0 or less has many edges of the carbon material that serves as the entrance and exit of Li, so that Li is efficiently inserted and removed from the contact surface with the electrolytic solution. The negative electrode active material / electrolytic solution interface resistance, that is, the AC impedance is lowered. By using a low-resistance amorphous carbon-coated graphite material having a low AC impedance as a negative electrode material for a lithium ion secondary battery, the energy required for inserting Li is reduced, so that Li can be used even in a low temperature environment. Can be inserted and removed, and a large amount of Li can be inserted and removed at one time while suppressing deterioration of the electrolytic solution due to resistance. Therefore, it is possible to improve not only the input / output characteristics of the lithium ion secondary battery but also the low temperature characteristics and the cycle characteristics.

なお、更なる負極活物質/電解液界面の低抵抗化を図るとの観点から、明度L値は、34.6以下が好ましく、34.2以下がより好ましい。 From the viewpoint of further reducing the resistance of the negative electrode active material / electrolytic solution interface, the brightness L * value is preferably 34.6 or less, and more preferably 34.2 or less.

また、ここで言う「明度L値」とは、JIS Z 8729に準拠して測定された値を言い、試料及びヒマシ油をフーバー式マーラーで練ってペースト状とし、このペーストにクリアラッカーを加えて混練し、塗布したシートについて、JIS Z 8729に準拠して求めた表色指数のことである。 The "brightness L * value" referred to here is a value measured in accordance with JIS Z 8729, and the sample and castor oil are kneaded with a Hoover type marler to form a paste, and clear lacquer is added to this paste. It is a color index obtained in accordance with JIS Z 8729 for the sheets that have been kneaded and applied.

また、本実施形態の非晶質炭素被覆黒鉛材料のタップ密度は0.3g/mL以上0.75g/mL以下である。これは、タップ密度が0.3g/mL未満の場合は、リチウムイオン二次電池の負極材料として用いた際に活物質密度が上がりにくく、体積あたりのエネルギー密度が低くなるので好ましくないためである。また、タップ密度が0.75g/mLを超える場合は、粒子間の空隙が少ないためにリチウムイオン二次電池の負極材料として用いた際に活物質と電解液の接触面積が少なくなり、Liが直接挿入脱離できる炭素材料のエッジ部が少なくなる。従って、一度に多くのLiを炭素材料が受け入れることができず、負極活物質/電解液界面抵抗、即ち、交流インピーダンスが高くなるため、入出力特性が低下し、好ましくないためである。 The tap density of the amorphous carbon-coated graphite material of the present embodiment is 0.3 g / mL or more and 0.75 g / mL or less. This is because when the tap density is less than 0.3 g / mL, the active material density does not easily increase when used as a negative electrode material for a lithium ion secondary battery, and the energy density per volume decreases, which is not preferable. .. When the tap density exceeds 0.75 g / mL, the contact area between the active material and the electrolytic solution becomes small when used as a negative electrode material for a lithium ion secondary battery because there are few voids between particles, and Li becomes The number of edges of the carbon material that can be directly inserted and removed is reduced. Therefore, the carbon material cannot accept a large amount of Li at one time, and the negative electrode active material / electrolytic solution interface resistance, that is, the AC impedance becomes high, so that the input / output characteristics deteriorate, which is not preferable.

即ち、本実施形態においては、タップ密度が0.3g/mL以上0.75g/mL以下である非晶質炭素被覆黒鉛材料をリチウムイオン二次電池の負極材料として用いることにより、電極と電解液との界面において、活物質と電解液の接触面積が充分に確保できるため、リチウムイオン二次電池の入出力特性を向上させることが可能になる。 That is, in the present embodiment, the electrode and the electrolytic solution are obtained by using an amorphous carbon-coated graphite material having a tap density of 0.3 g / mL or more and 0.75 g / mL or less as a negative electrode material of a lithium ion secondary battery. Since a sufficient contact area between the active material and the electrolytic solution can be secured at the interface with the lithium ion secondary battery, it is possible to improve the input / output characteristics of the lithium ion secondary battery.

なお、更なる負極活物質/電解液界面の低抵抗化を図るとの観点から、タップ密度は0.35g/mL以上0.7g/mL以下が好ましく、0.4g/mL以上0.65g/mL以下がより好ましい。 From the viewpoint of further reducing the resistance of the negative electrode active material / electrolyte interface, the tap density is preferably 0.35 g / mL or more and 0.7 g / mL or less, and 0.4 g / mL or more and 0.65 g / mL. More preferably, it is mL or less.

また、本実施形態の非晶質炭素被覆黒鉛材料は、X線広角回折線から算出される結晶子サイズLaが400nm以下であることが好ましい。これは、Laが400nmを超える非晶質炭素被覆黒鉛材料をリチウムイオン二次電池の負極材料として用いると、黒鉛粒子内部の中核までのLiの挿入距離が長くなり、充放電時のLiの挿入脱離の拡散速度が悪くなるため、入出力特性が低下するためである。 Further, in the amorphous carbon-coated graphite material of the present embodiment, it is preferable that the crystallite size La calculated from the X-ray wide-angle diffraction line is 400 nm or less. This is because when an amorphous carbon-coated graphite material having a La of more than 400 nm is used as a negative electrode material for a lithium ion secondary battery, the Li insertion distance to the core inside the graphite particles becomes long, and Li is inserted during charging and discharging. This is because the diffusion rate of desorption becomes worse and the input / output characteristics deteriorate.

なお、結晶子サイズLaは300nm以下が好ましく、250nm以下がより好ましい。 The crystallite size La is preferably 300 nm or less, more preferably 250 nm or less.

また、本実施形態の非晶質炭素被覆黒鉛材料におけるジブチルフタレート(DBP)吸収量は、57mL/100g以上120mL/100g以下であることが好ましい。DBP吸収量は、炭素材料表面における電解液との接触面積の多さを反映していると考えられる。従って、DBP吸収量が56ml/100g未満の場合には、電解液との接触面積が少ないため、Liの出入り口が少なくなり、リチウムイオン二次電池の活物質として用いた場合に入出力特性が低下するため好ましくない。また、DBP吸収量が120mL/100gを超える場合には、粒子の凝集を解すために溶媒が多く必要となり、分散性が低下するため、好ましくない。 Further, the absorption amount of dibutyl phthalate (DBP) in the amorphous carbon-coated graphite material of the present embodiment is preferably 57 mL / 100 g or more and 120 mL / 100 g or less. The amount of DBP absorbed is considered to reflect the large contact area with the electrolytic solution on the surface of the carbon material. Therefore, when the amount of DBP absorbed is less than 56 ml / 100 g, the contact area with the electrolytic solution is small, so that the number of entrances and exits of Li is small, and the input / output characteristics are deteriorated when used as an active material of a lithium ion secondary battery. Therefore, it is not preferable. Further, when the amount of DBP absorbed exceeds 120 mL / 100 g, a large amount of solvent is required to disaggregate the particles, and the dispersibility is lowered, which is not preferable.

なお、DBP吸収量は59mL/100g以上110mL/100g以下が好ましく、61mL/100g以上100mL/100g以下がより好ましい。 The amount of DBP absorbed is preferably 59 mL / 100 g or more and 110 mL / 100 g or less, and more preferably 61 mL / 100 g or more and 100 mL / 100 g or less.

また、ここで言う「ジブチルフタレート(DBP)吸収量」とは、JIS K 6217−4に準拠して測定した値をいう。 Further, the “dibutyl phthalate (DBP) absorption amount” referred to here means a value measured in accordance with JIS K 6217-4.

また、本実施形態の非晶質炭素被覆黒鉛材料の平均粒子径(以下、「D50」とも表記)は、1μm以上25μm以下が好ましい。これは、平均粒子径が1μm以上の非晶質炭素被覆黒鉛材料を得るためには、母材となる黒鉛質粒子の平均粒子径を1μm未満に調整する必要があるが、黒鉛質粒子の平均粒子径を1μm未満に粉砕するためには莫大なエネルギーが必要となるためコストが増大し、工業的には不利となる。また、平均粒子径が25μmを超えると、黒鉛粒子内部の中核までのLiの挿入距離が長くなり、充放電時のLiの挿入脱離の拡散速度が悪くなるため、入出力特性が低下し好ましくないためである。なお、平均粒子径は2μm以上20μm以下が好ましく、3μm以上15μm以下がより好ましい。 The average particle size of the amorphous carbon-coated graphite material of the present embodiment (hereinafter, also referred to as “D50”) is preferably 1 μm or more and 25 μm or less. This is because in order to obtain an amorphous carbon-coated graphite material having an average particle size of 1 μm or more, it is necessary to adjust the average particle size of the graphite particles as a base material to less than 1 μm, but the average of the graphite particles is Since enormous energy is required to pulverize the particle size to less than 1 μm, the cost increases and it is industrially disadvantageous. Further, when the average particle size exceeds 25 μm, the Li insertion distance to the core inside the graphite particles becomes long, and the diffusion rate of Li insertion / desorption during charging / discharging deteriorates, so that the input / output characteristics deteriorate, which is preferable. Because there is no such thing. The average particle size is preferably 2 μm or more and 20 μm or less, and more preferably 3 μm or more and 15 μm or less.

また、ここで言う「平均粒子径(D50)」とは、レーザー回折式粒度分布計による体積基準累積粒度分布における50%粒子径のことを言う。 Further, the "average particle size (D50)" referred to here means a 50% particle size in the volume-based cumulative particle size distribution by a laser diffraction type particle size distribution meter.

本実施形態の非晶質炭素被覆黒鉛材料の体積基準累積粒度分布における10%粒子径(以下、「D10」とも表記)は、0.5μm以上10μm以下が好ましい。これは、D10が0.5μm未満の場合は、リチウムイオン二次電池の負極材料として用いる際に電解液との副反応を起こしやすく、電池セル内のLiを不可逆容量として消費してしまうため好ましくない。また、D10が10μmを超えると、粒度分布がシャープな状態となり、リチウムイオン二次電池の負極材料としての活物質密度が高くなり難いので好ましくない。 The 10% particle size (hereinafter, also referred to as “D10”) in the volume-based cumulative particle size distribution of the amorphous carbon-coated graphite material of the present embodiment is preferably 0.5 μm or more and 10 μm or less. This is preferable because when D10 is less than 0.5 μm, a side reaction with the electrolytic solution is likely to occur when used as a negative electrode material for a lithium ion secondary battery, and Li in the battery cell is consumed as an irreversible capacity. No. Further, when D10 exceeds 10 μm, the particle size distribution becomes sharp and the density of the active material as the negative electrode material of the lithium ion secondary battery is difficult to increase, which is not preferable.

なお、D10は0.75μm以上7.5μm以下が好ましく、1μm以上5μm以下がより好ましい。 The D10 is preferably 0.75 μm or more and 7.5 μm or less, and more preferably 1 μm or more and 5 μm or less.

本実施形態の非晶質炭素被覆黒鉛材料のBET比表面積は、1.0m/g以上10m/g以下が好ましい。これは、BET比表面積が1.0m/g未満の場合、リチウムイオン二次電池の負極材料として用いた際に電解液との接触面積が少ないため、Liの出入り口が少なくなり、入出力特性が低下し、好ましくないためである。また、BET比表面積が10m/gを超えると、リチウムイオン二次電池の負極材料として用いた場合に電解液との副反応を起こしやすく、電池セル内のLiを不可逆容量として消費してしまい、好ましくないためである。 The BET specific surface area of the amorphous carbon-coated graphite material of the present embodiment is preferably 1.0 m 2 / g or more and 10 m 2 / g or less. This is because when the BET specific surface area is less than 1.0 m 2 / g, the contact area with the electrolytic solution is small when used as the negative electrode material of the lithium ion secondary battery, so the number of entrances and exits of Li is reduced, and the input / output characteristics are reduced. This is because it is not preferable. Further, when the BET specific surface area exceeds 10 m 2 / g, a side reaction with the electrolytic solution is likely to occur when used as a negative electrode material for a lithium ion secondary battery, and Li in the battery cell is consumed as an irreversible capacity. This is because it is not preferable.

なお、BET比表面積は1.5m/g以上9m/g以下が好ましく、2.0m/g以上8m/g以下がより好ましい。 The BET specific surface area is preferably 1.5 m 2 / g or more and 9 m 2 / g or less, and more preferably 2.0 m 2 / g or more and 8 m 2 / g or less.

本実施形態の非晶質炭素被覆黒鉛材料は、彩度c値が0.60以下であるものが好ましい。これは、炭素材料では、π結合が広く共鳴するに従って、波長の長い可視光線領域の光を吸収するため、π結合の共鳴可能範囲が広い(結晶子サイズが大きい)ものは色が発現しやすく、π結合の共鳴可能範囲が狭い(結晶子サイズが小さい)ものは色が発現し難いためである。 The amorphous carbon-coated graphite material of the present embodiment preferably has a saturation c * value of 0.60 or less. This is because carbon materials absorb light in the visible light region with a long wavelength as the π bond resonates widely, so colors are more likely to appear in those with a wide π bond resonance range (large crystallite size). , The π bond with a narrow resonable range (small crystallite size) is difficult to develop color.

なお、彩度c値は、0.50以下が好ましく、0.40以下がより好ましい。 The saturation c * value is preferably 0.50 or less, more preferably 0.40 or less.

また、ここで言う「彩度c値」とは、上述の明度L値と同様に、JIS Z 8729に準拠して測定した値である。 Further, the “saturation c * value” referred to here is a value measured in accordance with JIS Z 8729, similarly to the above-mentioned brightness L * value.

本実施形態の非晶質炭素被覆黒鉛材料における、ゆるみかさ密度は、0.10g/mL以上0.50g/mL以下が好ましい。これは、ゆるみかさ密度が0.10g/mL未満の場合は、リチウムイオン二次電池の負極材料として用いた際に、活物質密度が上がりにくく、また密度を上げるために圧縮すると粒子が破損して非晶質炭素被覆による効果が発揮できないため好ましくない。また、ゆるみかさ密度が0.50g/mLを超える場合は、リチウムイオン二次電池の負極材料として用いた際に、粒子間の空隙が少ないために活物質と電解液の接触面積が少なくなり、Liが直接挿入脱離できる炭素材料のエッジ部が少なくなる。これにより一度に多くのLiを炭素材料が受け入れることができず、負極活物質/電解液界面抵抗、即ち交流インピーダンスが高くなり、入出力特性が低下するため、好ましくない。 The looseness density of the amorphous carbon-coated graphite material of the present embodiment is preferably 0.10 g / mL or more and 0.50 g / mL or less. This is because when the bulk density is less than 0.10 g / mL, the active material density does not easily increase when used as a negative electrode material for lithium-ion secondary batteries, and the particles are damaged when compressed to increase the density. It is not preferable because the effect of the amorphous carbon coating cannot be exhibited. When the looseness density exceeds 0.50 g / mL, when used as a negative electrode material for a lithium ion secondary battery, the contact area between the active material and the electrolytic solution becomes small due to the small number of voids between the particles. The number of edges of the carbon material from which Li can be directly inserted and removed is reduced. As a result, the carbon material cannot accept a large amount of Li at one time, the negative electrode active material / electrolytic solution interface resistance, that is, the AC impedance becomes high, and the input / output characteristics deteriorate, which is not preferable.

なお、ゆるみかさ密度は、0.15g/mL以上0.45g/mL以下が好ましく、0.20g/mL以上0.40g/mL以下がより好ましい。 The looseness density is preferably 0.15 g / mL or more and 0.45 g / mL or less, and more preferably 0.20 g / mL or more and 0.40 g / mL or less.

また、ここで言う「ゆるみかさ密度」とは、タップしない(ゆるみ)状態での粉体試料の重量と粒子間空隙容積の因子を含んだ粉体の体積との比により測定した値である。 Further, the "looseness density" referred to here is a value measured by the ratio of the weight of the powder sample in the untapped (loose) state to the volume of the powder containing the factor of the interparticle void volume.

本実施形態の非晶質炭素被覆黒鉛材料の交流インピーダンスは、後述する評価方法により得られた値が360Ω以下であることが好ましい。交流インピーダンスの値が低いほど、負極活物質/電解液界面抵抗は低くなり、入出力特性が向上する。より好ましくは340Ω以下であり、更に好ましくは320Ω以下である。 The AC impedance of the amorphous carbon-coated graphite material of the present embodiment is preferably a value of 360 Ω or less obtained by the evaluation method described later. The lower the AC impedance value, the lower the negative electrode active material / electrolyte interfacial resistance and the better the input / output characteristics. It is more preferably 340 Ω or less, and further preferably 320 Ω or less.

<リチウムイオン二次電池>
次に、本実施形態に係るリチウムイオン二次電池について説明する。図1は、本実施形態の炭素材料を用いた負極を備えたリチウムイオン二次電池の一例を示す図である。
<Lithium-ion secondary battery>
Next, the lithium ion secondary battery according to this embodiment will be described. FIG. 1 is a diagram showing an example of a lithium ion secondary battery provided with a negative electrode using the carbon material of the present embodiment.

図1に示すように、本実施形態に係るリチウムイオン二次電池10は、負極11と、負極集電体12と、正極13と、正極集電体14と、負極11と正極13との間に介在するセパレータ15と、アルミニウムラミネートフィルム等で構成された外装16とを備えている。 As shown in FIG. 1, the lithium ion secondary battery 10 according to the present embodiment has a negative electrode 11, a negative electrode current collector 12, a positive electrode 13, a positive electrode current collector 14, and a negative electrode 11 and a positive electrode 13. It is provided with a separator 15 interposed therebetween and an exterior 16 made of an aluminum laminated film or the like.

負極11としては、本実施形態の非晶質炭素被覆黒鉛材料を負極材料として用いたものが使用される。また、負極集電体12、正極13、正極集電体14、セパレータ15及び外装16等、負極11以外の部材の形状や構成材料については一般的なものを適用することができる。 As the negative electrode 11, a material using the amorphous carbon-coated graphite material of the present embodiment as the negative electrode material is used. Further, general materials such as the negative electrode current collector 12, the positive electrode 13, the positive electrode current collector 14, the separator 15, and the exterior 16 can be applied to the shapes and constituent materials of the members other than the negative electrode 11.

本実施形態に係るリチウムイオン二次電池は、上述の非晶質炭素被覆黒鉛材料からなる負極材料を有しているため、入出力特性、殊に、格段に優れた入力特性(急速充電特性)を実現することができる。 Since the lithium ion secondary battery according to the present embodiment has a negative electrode material made of the above-mentioned amorphous carbon-coated graphite material, it has input / output characteristics, particularly excellent input characteristics (quick charging characteristics). Can be realized.

なお、これはリチウムイオン二次電池の一例であって、各部材の形状や電極数、大きさ等は適宜変更してもよい。 This is an example of a lithium ion secondary battery, and the shape, the number of electrodes, the size, and the like of each member may be appropriately changed.

<非晶質炭素被覆黒鉛材料の製造方法>
次に、本実施形態に係る非晶質炭素被覆黒鉛材料の製造方法について説明する。
<Manufacturing method of amorphous carbon-coated graphite material>
Next, a method for producing the amorphous carbon-coated graphite material according to the present embodiment will be described.

まず、母材として用いる黒鉛質粒子と、非晶質炭素被覆層の前駆体(以下、「非晶質炭素前駆体」とも表記)とを混合する。 First, the graphitic particles used as the base material and the precursor of the amorphous carbon coating layer (hereinafter, also referred to as “amorphous carbon precursor”) are mixed.

母材として用いる黒鉛質粒子としては、結晶子サイズLaが400nm以下のものを用いることが好ましい。結晶子サイズLaが400nmを超える黒鉛質粒子を母材として用いた非晶質炭素被覆黒鉛材料は、リチウムイオン二次電池の負極材料として用いた場合に入出力特性が低下し、好ましくないためである。 As the graphitic particles used as the base material, those having a crystallite size La of 400 nm or less are preferably used. This is because an amorphous carbon-coated graphite material using graphite particles having a crystallite size La of more than 400 nm as a base material is not preferable because the input / output characteristics deteriorate when used as a negative electrode material for a lithium ion secondary battery. be.

また、母材として用いる黒鉛質粒子の平均粒子径(D50G)は、1μm以上20μm以下が好ましい。これは、母材となる黒鉛質粒子の平均粒子径を1μm未満に調整することは、黒鉛質粒子を粉砕するために莫大なエネルギーが必要となるため、コストが増大し、また、平均粒子径が20μmを超えると、黒鉛粒子内部の中核までのLiの挿入距離が長くなり、充放電時のLiの挿入脱離の拡散速度が悪くなるため、入出力特性が低下し好ましくないためである。 The average particle size (D50G) of the graphitic particles used as the base material is preferably 1 μm or more and 20 μm or less. This is because adjusting the average particle size of the graphite particles as the base material to less than 1 μm requires enormous energy to crush the graphite particles, which increases the cost and also increases the average particle size. If it exceeds 20 μm, the Li insertion distance to the core inside the graphite particles becomes long, and the diffusion rate of Li insertion / desorption during charging / discharging deteriorates, which is not preferable because the input / output characteristics deteriorate.

ここで、非晶質炭素前駆体としては、石炭系原料油、石油系原料油、樹脂由来の有機化合物が挙げられる。このうち、ピッチ類や分解重油が好ましく、バインダーピッチ、エチレンボトムオイルを好適に用いることができ、バインダーピッチを使用することが特に好ましい。 Here, examples of the amorphous carbon precursor include coal-based raw material oils, petroleum-based raw material oils, and resin-derived organic compounds. Of these, pitches and cracked heavy oil are preferable, binder pitch and ethylene bottom oil can be preferably used, and binder pitch is particularly preferable.

特に、ピッチ類を非晶質炭素前駆体として用いる場合、軟化点が50℃以上300℃未満、固定炭素が50%以上、揮発分が15%以上60%以下、灰分が5%未満のものを用いることが好ましい。軟化点が50℃未満であると、黒鉛質粒子と混合する際にピッチが軟化してハンドリング性が悪くなるため好ましくない。また、固定炭素が50%未満であると、所望の非晶質炭素量を被覆するために必要な前駆体の量が多くなるため好ましくない。また、揮発分が15%未満であると、熱処理時に発生する揮発ガス及び熱分解生成ガスの量が少なくなるため好ましくない。また、灰分が5%を超える場合、非晶質炭素被覆層に含まれる不純物が副反応を起こす可能性があるため好ましくない。 In particular, when pitches are used as amorphous carbon precursors, those having a softening point of 50 ° C. or higher and lower than 300 ° C., fixed carbon of 50% or higher, volatile content of 15% or higher and 60% or lower, and ash content of less than 5% are used. It is preferable to use it. If the softening point is less than 50 ° C., the pitch is softened when mixed with the graphitic particles, and the handling property is deteriorated, which is not preferable. Further, if the amount of fixed carbon is less than 50%, the amount of precursor required for coating the desired amount of amorphous carbon increases, which is not preferable. Further, if the volatile content is less than 15%, the amount of volatile gas and pyrolysis generated gas generated during the heat treatment is small, which is not preferable. Further, when the ash content exceeds 5%, impurities contained in the amorphous carbon coating layer may cause a side reaction, which is not preferable.

なお、ここで言う「軟化点温度」は、JIS K 2425に準拠して測定した値である。 The "softening point temperature" referred to here is a value measured in accordance with JIS K 2425.

非晶質炭素被覆層の前駆体が常温で固体である場合、平均粒子径(D50P)は、黒鉛質粒子よりも大きいことが好ましく、20μm以上50μm以下が好ましい。D50が20μm未満では、熱処理時に揮発成分が短時間に大量に発生して、結果として揮発ガス及びその熱分解生成ガスを系内に留めることが難しいため好ましくない。また、D50が50μmを超えると、非晶質炭素が偏析する場合があるため好ましくない。 When the precursor of the amorphous carbon coating layer is solid at room temperature, the average particle size (D50P) is preferably larger than that of graphitic particles, and preferably 20 μm or more and 50 μm or less. If D50 is less than 20 μm, a large amount of volatile components are generated in a short time during heat treatment, and as a result, it is difficult to retain the volatile gas and its thermal decomposition product gas in the system, which is not preferable. Further, if D50 exceeds 50 μm, amorphous carbon may segregate, which is not preferable.

なお、非晶質炭素前駆体の平均粒子径(D50P)と黒鉛質粒子の平均粒子径(D50G)との比(D50P/D50G)は2以上であることが好ましく、より好ましくは3以上である。D50P/D50Gが2未満の場合、短時間で前駆体粒子が液状になった後熱分解して固形炭素化してしまい、また、狭い範囲にしか拡散できない。そのため、用いる前駆体の量が少ないと黒鉛質粒子表面を“島状”に覆うことしかできず、また、被覆を均一にするために前駆体の量を多くすると、エネルギー密度が黒鉛よりも低い非晶質炭素成分が占める割合が多くなるため好ましくない。また、D50P/D50Gをこの範囲に設定することにより、後述する熱処理工程における前駆体の拡散及び熱分解速度を遅くして、黒鉛質粒子上での非晶質炭素被覆層の偏析を防ぐことができる。 The ratio (D50P / D50G) of the average particle size (D50P) of the amorphous carbon precursor and the average particle size (D50G) of the graphitic particles is preferably 2 or more, more preferably 3 or more. .. When D50P / D50G is less than 2, the precursor particles become liquid in a short time and then thermally decompose to solid carbon, and can be diffused only in a narrow range. Therefore, if the amount of precursor used is small, the surface of the graphite particles can only be covered in an "island" shape, and if the amount of precursor is large to make the coating uniform, the energy density is lower than that of graphite. It is not preferable because the proportion of the amorphous carbon component increases. Further, by setting D50P / D50G in this range, it is possible to slow down the diffusion and thermal decomposition rate of the precursor in the heat treatment step described later and prevent segregation of the amorphous carbon coating layer on the graphitic particles. can.

また、黒鉛質粒子に対する非晶質炭素被覆層の割合は、1重量部以上20重量部以下であることが好ましく、より好ましくは2重量部以上15重量部以下である。黒鉛質粒子に対する非晶質炭素被覆層の割合が20重量部を超える場合には、得られる非晶質炭素被覆黒鉛材料のDBP吸収量が高くなるため好ましくない。 The ratio of the amorphous carbon coating layer to the graphitic particles is preferably 1 part by weight or more and 20 parts by weight or less, and more preferably 2 parts by weight or more and 15 parts by weight or less. When the ratio of the amorphous carbon-coated layer to the graphitic particles exceeds 20 parts by weight, the amount of DBP absorbed by the obtained amorphous carbon-coated graphite material is high, which is not preferable.

そして、非晶質炭素被覆層の前駆体が固体である場合、非晶質炭素前駆体に熱が加わることによって揮発分由来の粘着性が発生し、粉が融着してハンドリング性が悪くなるため、混合は前駆体の軟化点温度よりも少なくとも30℃以上低い温度で行うことが好ましく、特に、室温で行うことが好ましい。 When the precursor of the amorphous carbon coating layer is a solid, heat is applied to the amorphous carbon precursor to generate adhesiveness derived from volatile components, and the powder is fused to deteriorate the handling property. Therefore, the mixing is preferably performed at a temperature at least 30 ° C. or higher lower than the softening point temperature of the precursor, and particularly preferably at room temperature.

また、混合に用いる装置としては、例えば、縦型公自転タイプ混合機(セイシン企業(株)製)等が挙げられ、混合条件としては、例えば、公転5rpm、自転100rpmで混合すればよい。 Examples of the apparatus used for mixing include a vertical revolution type mixer (manufactured by Seishin Enterprise Co., Ltd.), and examples of the mixing conditions may be mixing at a revolution of 5 rpm and a rotation of 100 rpm.

次いで、黒鉛質粒子と非晶質炭素前駆体との混合物を炭化する。炭化の方法は特に限定されないが、例えば、窒素、アルゴンなどの不活性ガス雰囲気下で最高到達温度900℃以上1500℃以下、最高到達温度での保持時間は10時間以下にして熱処理する方法が挙げられる。最高到達温度が900℃を下回る温度では、非晶質炭素被覆層中に残った低分子炭化水素や官能基などによって不可逆容量が増大するので好ましくない。また、1500℃を超える温度では、表面の炭素の結晶化が進行しすぎるため、結晶子サイズが増大するとともにエッジ部が少なくなる。従って、リチウムイオン二次電池の負極材料として用いた場合に活物質/電解液界面抵抗が高くなり、入出力特性が低下するため好ましくない。 The mixture of graphitic particles and amorphous carbon precursor is then carbonized. The method of carbonization is not particularly limited, and examples thereof include a method of heat treatment in an atmosphere of an inert gas such as nitrogen or argon with a maximum ultimate temperature of 900 ° C. or higher and 1500 ° C. or lower and a holding time of 10 hours or lower at the maximum ultimate temperature. Be done. When the maximum temperature reached is lower than 900 ° C., the irreversible capacity increases due to the low molecular weight hydrocarbons and functional groups remaining in the amorphous carbon coating layer, which is not preferable. Further, at a temperature exceeding 1500 ° C., crystallization of carbon on the surface proceeds too much, so that the crystallite size increases and the edge portion decreases. Therefore, when used as a negative electrode material for a lithium ion secondary battery, the active material / electrolyte interfacial resistance increases and the input / output characteristics deteriorate, which is not preferable.

また、本発明の目的を達成するためには、非晶質炭素前駆体の炭化前における軟化及び熱分解の速度を遅くすることが重要である。非晶質炭素前駆体に熱を加えると、低分子の揮発分がガスとして抜けながら流動化し、更に高温になると熱分解及び熱重合に伴って粘度が上昇し、最後に残炭分のみが固体炭素として残る。そして、揮発ガス及び熱分解ガスを堆積させるためには、該ガスを系内に長く留める必要があり、そのためにはガスの発生を一度に起こすのではなく、少しずつ長時間に渡って発生させることが望ましいため、不活性ガス流量はできるだけ低くすることが好ましい。また、上記と同様の理由により、昇温速度は遅いことが好ましい。具体的には650℃までの昇温速度を200℃/hr以下、好ましくは180℃/hr以下、より好ましくは160℃/hr以下とし、系内に導入する不活性ガスの流量は10cm/min以下、好ましくは9cm/min以下、より好ましくは8cm/min以下に設定する。 Further, in order to achieve the object of the present invention, it is important to slow down the rate of softening and thermal decomposition of the amorphous carbon precursor before carbonization. When heat is applied to the amorphous carbon precursor, low-molecular-weight volatile components are released as gas and fluidized, and when the temperature rises further, the viscosity increases with thermal decomposition and thermal polymerization, and finally only the residual carbon content is solid. Remains as carbon. Then, in order to deposit the volatile gas and the pyrolysis gas, it is necessary to keep the gas in the system for a long time, and for that purpose, the gas is not generated all at once but gradually generated over a long period of time. Therefore, it is preferable that the flow rate of the inert gas is as low as possible. Further, for the same reason as described above, it is preferable that the rate of temperature rise is slow. Specifically, the heating rate up to 650 ° C. is set to 200 ° C./hr or less, preferably 180 ° C./hr or less, more preferably 160 ° C./hr or less, and the flow rate of the inert gas introduced into the system is 10 cm / min. Hereinafter, the setting is preferably 9 cm / min or less, more preferably 8 cm / min or less.

また、熱処理後の処理について、凝集状態を解消するための軽度の解砕処理程度であれば問題はないが、新たな粉砕面が出る程の強度な力を粉体に加える処理は、非晶質炭素による被覆の効果が薄れてしまうので好ましくない。 Further, regarding the treatment after the heat treatment, there is no problem as long as it is a light crushing treatment for eliminating the agglutination state, but the treatment of applying a strong force to the powder so as to generate a new crushed surface is amorphous. It is not preferable because the effect of coating with quality carbon is diminished.

以上の方法により、本実施形態における非晶質炭素被覆黒鉛材料を得ることができる。 By the above method, the amorphous carbon-coated graphite material according to the present embodiment can be obtained.

そして、本実施形態における非晶質炭素被覆黒鉛材料は、各種機器用のリチウムイオン二次電池の負極材料、あるいはリチウムイオンキャパシタ用の負極材料として用いられ、ハイブリッド電気自動車(HEV)、あるいは、プラグインハイブリッド電気自動車(PHEV)のリチウムイオン二次電池等、充放電レートが高く、かつ大容量が必要とされる電池の負極材料として特に好ましく用いられる。 The amorphous carbon-coated graphite material in the present embodiment is used as a negative electrode material for a lithium ion secondary battery for various devices or a negative electrode material for a lithium ion capacitor, and is used as a hybrid electric vehicle (HEV) or a plug. It is particularly preferably used as a negative electrode material for a battery such as a lithium ion secondary battery of an in-hybrid electric vehicle (PHEV), which has a high charge / discharge rate and requires a large capacity.

以下、実施例及び比較例に基づき本出願に係る発明をさらに具体的に説明するが、本発明は以下の実施例に何ら限定されるものではない。 Hereinafter, the invention according to the present application will be described in more detail based on Examples and Comparative Examples, but the present invention is not limited to the following Examples.

−測定方法の説明−
(a)結晶子サイズLaの測定
試料粉末に、内部標準としてSi標準試料を20重量%混合し、X線回折装置(ブルカー・エイエックスエス(株)製、商品名:NEW D8 ADVANCE)を用いて測定した。そして、下記(1)〜(4)の文献に記載の方法に基づき、Carbon Analyzer Version5.0Aを用いて解析を行うことにより、黒鉛質粒子の結晶子サイズLaを算出した。
(1)藤本宏之、炭素No.206(2003)、1−6頁
(2)稲垣道夫、炭素No.36(1963)、25−34頁
(3)N.Iwashita,C.R.Park,H.Fujimoto,M.Shiraishi,M.Inagaki,Carbon 42(2004)、701−714頁
(4)日本学術振興会第117委員会、炭素No.221(2006)、52−60頁
-Explanation of measurement method-
(A) Measurement of crystallite size La 20% by weight of Si standard sample is mixed with the sample powder as an internal standard, and an X-ray diffractometer (manufactured by Bruker AXS Co., Ltd., trade name: NEW D8 ADVANCE) is used. Was measured. Then, the crystallite size La of the graphitic particles was calculated by performing analysis using Carbon Analyzer Version 5.0A based on the methods described in the documents (1) to (4) below.
(1) Hiroyuki Fujimoto, Carbon No. 206 (2003), pp. 1-6 (2) Michio Inagaki, Carbon No. 36 (1963), pp. 25-34 (3) N.M. Iwashita, C.I. R. Park, H. et al. Fujimoto, M.D. Shiraishi, M.D. Inagaki, Carbon 42 (2004), pp. 701-714 (4) Japan Society for the Promotion of Science 117 Committee, Carbon No. 221 (2006), pp. 52-60

(b)平均粒子径D50、D50G、D50P及び10%粒子径D10の測定
レーザー回折散乱式粒度分布測定器の湿式測定ユニット(セイシン企業(株)製、商品名:SKレーザーマイクロンサイザー LMS−2000e)にて測定を行った。なお、測定にあたり、予め試料を界面活性剤で濡らした後、純水で分散させ評価した。
(B) Measurement of average particle size D50, D50G, D50P and 10% particle size D10 Wet measurement unit of laser diffraction scattering type particle size distribution measuring device (manufactured by Seishin Enterprise Co., Ltd., trade name: SK Laser Micronsizer LMS-2000e) The measurement was performed at. In the measurement, the sample was previously wetted with a surfactant and then dispersed in pure water for evaluation.

(c)明度L値、彩度c値の測定
明度L値および彩度c値は、まず、試料0.25g及びヒマシ油0.5mlをフーバー式マーラーで練ってペースト状とし、このペーストにクリアラッカー6.5gを加え、混練、塗料化してキャストコート紙上に127μm(5mil)のアプリケーターを用いて塗布したシートを作製した。次に、作製したシートについて、色彩色差計(コニカミノルタセンシング(株)製、商品名:CR?300)を用いて測定を行い、JIS Z 8729に定めるところに従って、表色指数(L値、c値)で示した。
(C) the lightness L * value, measured lightness L * value and chroma c * value of chroma c * value, first, a paste by kneading a sample 0.25g and castor oil 0.5ml Hoover muller, 6.5 g of clear lacquer was added to this paste, kneaded and made into a paint, and applied on cast-coated paper using a 127 μm (5 mil) applicator to prepare a sheet. Next, the produced sheet was measured using a color difference meter (manufactured by Konica Minolta Sensing Co., Ltd., trade name: CR? 300), and the color index (L * value,) was specified in accordance with JIS Z 8729. It is shown by c * value).

(d)ゆるみかさ密度の測定
漏斗台に漏斗を取り付け、漏斗上に目開き0.5mmのフルイを載せ、受器を受器台に正しく載せた。次に、試料1さじをフルイの上に載せ、フルイを通った試料を受器に受け、処理した試料が受器に山盛りとなるまでこの操作を繰り返した。 次に、へらを用いて山の部分を削り取り、その後、受器の内容物の重量を測定した。そして、下記数式(1)により、ゆるみかさ密度を算出した。受器は、30mLの容積のものを用いた。
(D) Measurement of loose bulk density A funnel was attached to the funnel stand, a funnel with an opening of 0.5 mm was placed on the funnel, and the receiver was correctly placed on the receiver stand. Next, 1 scoop of sample was placed on the flue, the sample passed through the flue was received by the receiver, and this operation was repeated until the processed sample was piled up in the receiver. Next, the mountain part was scraped off with a spatula, and then the weight of the contents of the receiver was measured. Then, the bulk density was calculated by the following mathematical formula (1). The receiver used was one with a volume of 30 mL.

(数1)
ゆるみかさ密度(g/ml)= 受器内の処理した試料の重量(g) ÷ 30 (1)
(Number 1)
Looseness density (g / ml) = Weight of processed sample in receiver (g) ÷ 30 (1)

(e)タップ密度の測定
試料10g程度を32メッシュのフルイに通し、フルイを通した試料10.0g(ゆるみかさ密度が0.4g/ml以下の場合は5.0g)を上皿天秤で秤取し、容積が25mlのメスシリンダーに静かに入れた。次に、試料の入ったメスシリンダーをタップテスター((株)蔵持科学器械製作所製、商品名:KRS−406)にセットし、600回タップした後、メスシリンダー中の試料の容積を0.1mlの精度で読み取ることによって測定した。そして、下記数式(2)により、ゆるみかさ密度を算出した。
(E) Measurement of tap density Pass about 10 g of a sample through a 32 mesh flue, and weigh 10.0 g of the sample (5.0 g when the loose bulk density is 0.4 g / ml or less) through the flue with a precision balance. It was taken and gently placed in a graduated cylinder with a volume of 25 ml. Next, set the measuring cylinder containing the sample in a tap tester (manufactured by Kuramochi Kagaku Kikai Seisakusho Co., Ltd., trade name: KRS-406), tap it 600 times, and then increase the volume of the sample in the measuring cylinder to 0.1 ml. Measured by reading with the accuracy of. Then, the bulk density was calculated by the following mathematical formula (2).

(数2)
タップ密度(g/ml)=試料重量(g)÷ 試料容積(ml) (2)
(Number 2)
Tap density (g / ml) = sample weight (g) ÷ sample volume (ml) (2)

(f)ジブチルフタレート(DBP)吸収量の測定
JIS K6217−4に準拠して測定した。
(F) Measurement of dibutyl phthalate (DBP) absorption amount The measurement was performed in accordance with JIS K6217-4.

(g)交流インピーダンス評価用の電極作製と評価試験
交流インピーダンスの評価は、同一組成の負極を対にした対称セルを用いて行った。
(G) Electrode fabrication and evaluation test for AC impedance evaluation AC impedance was evaluated using symmetric cells with a pair of negative electrodes of the same composition.

(負極シートの作製)
まず、試料97重量%、1.5%のカルボキシメチルセルロース水溶液(CMC、ダイセル(株)製)1.5重量%、及び51.7%のスチレンブタジエンゴム(SBR)水溶液1.5重量%を加え、自転・公転ミキサー(シンキー(株)製)にて混練したスラリーを高純度銅箔上に自動塗工装置(テスター産業(株)製)を用いて塗布した。次に、塗布後のシートを乾燥させた後、ロールプレス(宝泉(株)製)を用いて線圧0.07〜0.10kN/mmでプレスした。次に、プレス後、電極打ち抜き機Φ15(宝泉(株)製)を用いて目付量35mg/1.77cm(Φ15)になる電極を12枚打ち抜き、これを真空乾燥機中で120℃、12時間、乾燥を行った。
(Preparation of negative electrode sheet)
First, 97% by weight of the sample, 1.5% by weight of a 1.5% carboxymethyl cellulose aqueous solution (CMC, manufactured by Daicel Co., Ltd.), and 1.5% by weight of a 51.7% styrene butadiene rubber (SBR) aqueous solution are added. , The slurry kneaded with a rotation / revolution mixer (manufactured by Shinky Co., Ltd.) was applied onto a high-purity copper foil using an automatic coating device (manufactured by Tester Sangyo Co., Ltd.). Next, after the coated sheet was dried, it was pressed at a linear pressure of 0.07 to 0.10 kN / mm using a roll press (manufactured by Hosen Co., Ltd.). Next, after pressing, 12 electrodes having a basis weight of 35 mg / 1.77 cm 2 (Φ15) were punched using an electrode punching machine Φ15 (manufactured by Hosen Co., Ltd.), and these were punched in a vacuum dryer at 120 ° C. Drying was performed for 12 hours.

(前処理用ハーフセルの作製)
まず、露点−80℃以下の乾燥アルゴン雰囲気下で、コインセル用キャップとケースの間に作製した負極シートと金属リチウム箔とをセパレータ(ポリプロピレン製、マイクロポーラスフィルム(セルガード2400))を介して積層させた。次に、この積層体に、電解液(EC(エチレンカーボネート)とDMC(ジメチルカーボネート)を1:2の割合で混合したものを溶媒とし、これに電解質としてLiPFを1mol/Lの濃度で溶解したもの)を適量加えて、自動コインカシメ機(宝泉(株)製)を用いてかしめることにより、前処理用ハーフセルとした。なお、この前処理用ハーフセルを実施例及び比較例の各1水準につき12セル作製した。
(Preparation of half cell for pretreatment)
First, in a dry argon atmosphere with a dew point of -80 ° C or less, a negative electrode sheet prepared between a coin cell cap and a case and a metallic lithium foil are laminated via a separator (polypropylene, microporous film (Cellguard 2400)). rice field. Next, in this laminate, a mixture of an electrolytic solution (EC (ethylene carbonate) and DMC (dimethyl carbonate) at a ratio of 1: 2 was used as a solvent, and LiPF 6 was dissolved as an electrolyte at a concentration of 1 mol / L. An appropriate amount was added and crimped using an automatic coin caulking machine (manufactured by Hosen Co., Ltd.) to obtain a pretreatment half cell. In addition, 12 cells for each level of this pretreatment half cell were prepared in Example and Comparative Example.

(交流インピーダンス評価用の負極の作製)
作製した前処理用ハーフセルを充放電装置にセットし、25℃で負極へのLi挿入脱離を行った。充電は0.2Cで10mVまで定電流充電(CC充電)を行い、0.05Cまで電流が減衰した時点で充電完了とした。なお、放電は0.2Cで定電流放電(CC放電)を行い、1.5Vでカットオフした。
(Manufacturing of negative electrode for AC impedance evaluation)
The prepared half cell for pretreatment was set in a charging / discharging device, and Li was inserted into and detached from the negative electrode at 25 ° C. For charging, constant current charging (CC charging) was performed at 0.2 C to 10 mV, and charging was completed when the current decreased to 0.05 C. The discharge was a constant current discharge (CC discharge) at 0.2 C and cut off at 1.5 V.

そして、この充放電を6回繰り返し、7回目に0.2Cで充電深度50%になる電位まで充電した時点で充電を停止した。次に、露点−80℃以下の乾燥アルゴン雰囲気下で前処理用ハーフセルを解体して負極を取り出し、炭酸ジメチルで洗浄を行うことによって、交流インピーダンス評価用の負極シートを得た。なお、この負極シートを実施例及び比較例の各1水準につき6枚用意した。 Then, this charging / discharging was repeated 6 times, and charging was stopped at the 7th time when the battery was charged to a potential where the charging depth was 50% at 0.2 C. Next, the pretreatment half cell was disassembled under a dry argon atmosphere having a dew point of −80 ° C. or lower, the negative electrode was taken out, and the negative electrode was washed with dimethyl carbonate to obtain a negative electrode sheet for AC impedance evaluation. Six negative electrode sheets were prepared for each level of Examples and Comparative Examples.

(対称セルの作製)
まず、同一の負極シートから作製した交流インピーダンス評価用の負極を2枚用意し、コインセル内でセパレータを介して積層させた。次に、この積層体に、電解液(EC(エチレンカーボネート)とDMC(ジメチルカーボネート)を1:2の割合で混合したものを溶媒とし、これに電解質としてLiPFを1mol/Lの濃度で溶解したもの)を加えて、かしめることにより、対称セルを作製した。なお、この対称セルを実施例及び比較例の各1水準につき3セル作製した。
(Making a symmetric cell)
First, two negative electrodes for AC impedance evaluation prepared from the same negative electrode sheet were prepared and laminated in a coin cell via a separator. Next, in this laminate, a mixture of an electrolytic solution (EC (ethylene carbonate) and DMC (dimethyl carbonate) at a ratio of 1: 2 was used as a solvent, and LiPF 6 was dissolved as an electrolyte at a concentration of 1 mol / L. A symmetric cell was prepared by adding and caulking. In addition, three symmetric cells were prepared for each level of Examples and Comparative Examples.

(交流インピーダンス評価)
交流インピーダンス測定装置(電源;1470E、FRA;1255B)(ソーラートロン社製))により測定を行った。より具体的には、−10℃に調整した恒温槽内に対称セルを60分保温し、測定周波数を0.01Hz〜1,000,000Hzに設定後、測定を開始した。そして、測定終了後、0.1Hzの抵抗値を読み取り評価した。
(AC impedance evaluation)
The measurement was performed by an AC impedance measuring device (power supply; 1470E, FRA; 1255B) (manufactured by Solartron). More specifically, the symmetrical cell was kept warm for 60 minutes in a constant temperature bath adjusted to −10 ° C., the measurement frequency was set to 0.01 Hz to 1,000,000 Hz, and then the measurement was started. Then, after the measurement was completed, the resistance value of 0.1 Hz was read and evaluated.

−実施例及び比較例に係る炭素材料の作製−
下記の実施例及び比較例における母材として用いた黒鉛質粒子の結晶子サイズLa、D10及びD50Gを表1に示す。
-Preparation of carbon materials according to Examples and Comparative Examples-
Table 1 shows the crystallite sizes La, D10 and D50G of the graphitic particles used as the base material in the following Examples and Comparative Examples.

Figure 0006977491
Figure 0006977491

下記の実施例1〜8及び比較例1〜5における非晶質炭素被覆層の前駆体として、軟化点が80℃(前駆体a)、110℃(前駆体b,e)、250℃のバインダーピッチ(前駆体c)、及びエチレンボトムオイル(EBO、前駆体d)を用いた。各前駆体a〜c及びeのD50P、軟化点、固定炭素(前駆体dを含む)、揮発分(前駆体dを含む)、及び灰分を表2に示す。 As a precursor of the amorphous carbon coating layer in Examples 1 to 8 and Comparative Examples 1 to 5 below, a binder having a softening point of 80 ° C. (precursor a), 110 ° C. (precursors b, e), and 250 ° C. Pitch (precursor c) and ethylene bottom oil (EBO, precursor d) were used. Table 2 shows D50P, softening points, fixed carbon (including precursor d), volatile matter (including precursor d), and ash content of each precursors a to c and e.

Figure 0006977491
Figure 0006977491

<実施例1>
黒鉛質粒子Aと、非晶質炭素被覆層の前駆体bとを、黒鉛質粒子A100重量部に対する非晶質炭素被覆層の割合が、2.5重量部になるように室温で混合した。この時の非晶質炭素前駆体D50P/黒鉛質粒子D50Gは5.2であった。
<Example 1>
The graphite particles A and the precursor b of the amorphous carbon coating layer were mixed at room temperature so that the ratio of the amorphous carbon coating layer to 100 parts by weight of the graphite particles A was 2.5 parts by weight. At this time, the amorphous carbon precursor D50P / graphitic particles D50G was 5.2.

上記で得られた混合粉体を雰囲気対応小型ローラーハースキルン(ノリタケカンパニーリミテッド(株)製)を用いて窒素ガスの流量6.2cm/min、炉内温度650℃までの昇温速度を180℃/hrとし、650℃から1000℃までの昇温速度が350℃/hrになるように昇温し、1000℃における保持時間を4時間に設定して炭化処理を行った。 Using the atmosphere-compatible small roller Hers Kirn (manufactured by Noritake Company Limited Co., Ltd.), the mixed powder obtained above was used to increase the flow rate of nitrogen gas to 6.2 cm / min and the temperature inside the furnace to 650 ° C at 180 ° C. The temperature was set to / hr, the temperature was raised so that the heating rate from 650 ° C to 1000 ° C was 350 ° C / hr, and the holding time at 1000 ° C was set to 4 hours for carbonization.

次に、目開き45μmの篩で分級することにより、実施例1の非晶質炭素被覆黒鉛材料を得た。この時の製造条件を表3に示すとともに、得られた非晶質炭素被覆黒鉛材料の特性を表4に示す。 Next, the amorphous carbon-coated graphite material of Example 1 was obtained by classifying with a sieve having an opening of 45 μm. The production conditions at this time are shown in Table 3, and the characteristics of the obtained amorphous carbon-coated graphite material are shown in Table 4.

<実施例2〜8>
表3に示すように、黒鉛質粒子A,Bと、非晶質炭素被覆層の前駆体a,b,c,dとを、各黒鉛質粒子100重量部に対する非晶質炭素被覆層の割合が、それぞれ5重量部、10重量部、及び20重量部になるように室温で混合し、雰囲気対応小型ローラーハースキルン(ノリタケカンパニーリミテッド(株)製)を用いて窒素ガス流量と炉内温度650℃までの昇温速度を種々変化させたこと以外は、上述の実施例1と同様に、650℃から1000℃までの昇温速度が350℃/hrになるように昇温し、1000℃における保持時間を4時間に設定して炭化処理を行った。
<Examples 2 to 8>
As shown in Table 3, the graphite particles A and B and the precursors a, b, c and d of the amorphous carbon coating layer are contained in the ratio of the amorphous carbon coating layer to 100 parts by weight of each graphite particle. However, the particles are mixed at room temperature so that they are 5 parts by weight, 10 parts by weight, and 20 parts by weight, respectively. Similar to Example 1 described above, the temperature was raised so that the temperature rising rate from 650 ° C. to 1000 ° C. was 350 ° C./hr, and the temperature was raised at 1000 ° C. The carbonization treatment was performed with the holding time set to 4 hours.

次に、目開き45μmの篩で分級することにより、実施例2〜8の非晶質炭素被覆黒鉛材料を得た。実施例2〜8の製造条件を表3に示すとともに、得られた非晶質炭素被覆黒鉛材料の特性を表4に示す。 Next, the amorphous carbon-coated graphite material of Examples 2 to 8 was obtained by classifying with a sieve having an opening of 45 μm. The production conditions of Examples 2 to 8 are shown in Table 3, and the characteristics of the obtained amorphous carbon-coated graphite material are shown in Table 4.

また、実施例2の非晶質炭素被覆黒鉛材料を用いて、コイン型リチウムイオン二次電池を作製し、電池評価を行った。作製条件ならびに評価方法、評価結果について以下に示す。 Further, a coin-type lithium ion secondary battery was produced using the amorphous carbon-coated graphite material of Example 2, and the battery was evaluated. The production conditions, evaluation method, and evaluation results are shown below.

(入出力特性評価用の電極作製と評価試験)
入出力特性の評価は、金属Liを対極にしたコインセルを用いて行った。
(Electrode fabrication and evaluation test for input / output characteristic evaluation)
The input / output characteristics were evaluated using a coin cell having a metal Li as a counter electrode.

また、入出力特性評価用の負極シートと前処理用ハーフセルは、前述の交流インピーダンス評価用の前処理用ハーフセルを用いた。 Further, as the negative electrode sheet for input / output characteristic evaluation and the pretreatment half cell, the above-mentioned pretreatment half cell for AC impedance evaluation was used.

(入出力特性評価前の充放電処理)
前述の(g)交流インピーダンス評価用の電極作製と評価試験で作製した前処理用ハーフセルを充放電装置にセットし、25℃で負極へのLi挿入脱離を行った。充電は0.1Cで5mVまで定電流充電(CC充電)を行い、0.01Cまで電流が減衰した時点で充電完了とし、放電は0.1Cで定電流放電(CC放電)を行い、1.5Vでカットオフした。そして、この充放電を6回繰り返し、7回目から充電レートもしくは放電レートを変更して評価を行った。
(Charging / discharging processing before input / output characteristic evaluation)
The pretreatment half cell prepared in the above-mentioned (g) AC impedance evaluation electrode preparation and evaluation test was set in a charging / discharging device, and Li was inserted into and detached from the negative electrode at 25 ° C. For charging, constant current charging (CC charging) is performed up to 5 mV at 0.1 C, charging is completed when the current is attenuated to 0.01 C, and constant current discharge (CC discharge) is performed at 0.1 C for discharging. It was cut off at 5V. Then, this charging / discharging was repeated 6 times, and the evaluation was performed by changing the charging rate or the discharging rate from the 7th time.

(ハイレート充電特性の評価)
充電はそれぞれ0.2C、0.5C、1C、2C、3Cで5mVまで定電流充電(CC充電)を行い、0.01Cまで電流が減衰した時点で充電完了とし、放電は0.2Cで定電流放電(CC放電)を行い、1.5Vでカットオフした。これらの各レートにおける充電容量を0.2Cでの充電容量で割ることによって、充電容量維持率を算出した。
(Evaluation of high rate charging characteristics)
For charging, constant current charging (CC charging) is performed up to 5 mV at 0.2C, 0.5C, 1C, 2C, and 3C, and charging is completed when the current decreases to 0.01C, and discharge is fixed at 0.2C. Current discharge (CC discharge) was performed and cut off at 1.5 V. The charge capacity retention rate was calculated by dividing the charge capacity at each of these rates by the charge capacity at 0.2 C.

(ハイレート放電特性の評価)
充電は0.2Cで5mVまで定電流充電(CC充電)を行い、0.01Cまで電流が減衰した時点で充電完了とし、放電はそれぞれ0.2C、0.5C、1C、2C、3C、4Cで定電流放電(CC放電)を行い、1.5Vでカットオフした。これらの各レートにおける放電容量を0.2Cでの放電容量で割ることによって、放電容量維持率を算出した。
(Evaluation of high-rate discharge characteristics)
Charging is performed at 0.2C with constant current charging (CC charging) up to 5mV, charging is completed when the current decreases to 0.01C, and discharging is 0.2C, 0.5C, 1C, 2C, 3C, 4C, respectively. A constant current discharge (CC discharge) was performed at 1.5V, and the cutoff was performed at 1.5V. The discharge capacity retention rate was calculated by dividing the discharge capacity at each of these rates by the discharge capacity at 0.2C.

そして、実施例2を上記方法で測定した結果、充電容量維持率は0.5Cで97%、1Cで93%、2Cで85%、3Cで83%と高い値を示した。また、放電容量維持率は0.5Cで96%、1Cで92%、2Cで83%、3Cで82%、4Cで79%、5Cで78%であった。 As a result of measuring Example 2 by the above method, the charge capacity retention rate showed a high value of 97% at 0.5C, 93% at 1C, 85% at 2C, and 83% at 3C. The discharge capacity retention rate was 96% at 0.5C, 92% at 1C, 83% at 2C, 82% at 3C, 79% at 4C, and 78% at 5C.

<比較例1〜2>
未加工の黒鉛質粒子A,Cを、そのまま黒鉛材料として使用し、雰囲気対応小型ローラーハースキルン(ノリタケカンパニーリミテド(株)製)を用いて窒素ガスの流速6.2cm/min、炉内温度650℃までの昇温速度が180℃/hr、650℃から1000℃までの昇温速度が350℃/hrになるように昇温し、1000℃における保持時間を4時間に設定して炭化処理を行った。
<Comparative Examples 1 and 2>
The unprocessed graphite particles A and C are used as they are as the graphite material, and the atmosphere-compatible small roller Herskilln (manufactured by Noritake Company Limited) is used to flow the nitrogen gas at a flow rate of 6.2 cm / min and the temperature inside the furnace to 650. The temperature is raised so that the heating rate to ° C. is 180 ° C./hr and the heating rate from 650 ° C. to 1000 ° C. is 350 ° C./hr, and the holding time at 1000 ° C. is set to 4 hours for carbonization. gone.

次に、目開き45μmの篩で分級することにより、比較例1および2の黒鉛材料を得た。比較例1および2の製造条件を表3に示すとともに、得られた黒鉛材料の特性を表4に示す。 Next, the graphite materials of Comparative Examples 1 and 2 were obtained by classifying with a sieve having an opening of 45 μm. The production conditions of Comparative Examples 1 and 2 are shown in Table 3, and the characteristics of the obtained graphite material are shown in Table 4.

<比較例3〜5>
表3に示すように、黒鉛質粒子B,Cと、非晶質炭素被覆層の前駆体b,eとを、黒鉛質粒子100重量部に対する非晶質炭素被覆層の割合が、それぞれ5重量部、及び10重量部になるように室温で混合し、雰囲気対応小型ローラーハースキルン(ノリタケカンパニーリミテド(株)製)を用いて窒素ガスの流速3.2cm/min、炉内温度650℃までの昇温速度が150℃/hr、650℃から1000℃までの昇温速度が350℃/hrになるように昇温し、1000℃における保持時間を4時間に設定して炭化処理を行った。
<Comparative Examples 3 to 5>
As shown in Table 3, the ratio of the amorphous carbon coating layer to 100 parts by weight of the graphite particles B and C and the precursors b and e of the amorphous carbon coating layer is 5% by weight, respectively. Mix at room temperature so that the parts and parts are 10 parts by weight, and use a small roller harskirun (manufactured by Noritake Company Limited Co., Ltd.) for atmosphere, the flow velocity of nitrogen gas is 3.2 cm / min, and the temperature in the furnace is up to 650 ° C. The temperature was raised so that the rate of temperature rise was 150 ° C./hr and the rate of temperature rise from 650 ° C. to 1000 ° C. was 350 ° C./hr, and the holding time at 1000 ° C. was set to 4 hours for carbonization.

次に、目開き45μmの篩で分級することにより、比較例3〜5の非晶質炭素被覆黒鉛材料を得た。比較例3〜5の製造条件を表3に示すとともに、得られた非晶質炭素被覆黒鉛材料の特性を表4に示す。 Next, the amorphous carbon-coated graphite materials of Comparative Examples 3 to 5 were obtained by classifying with a sieve having an opening of 45 μm. Table 3 shows the production conditions of Comparative Examples 3 to 5, and Table 4 shows the characteristics of the obtained amorphous carbon-coated graphite material.

Figure 0006977491
Figure 0006977491

Figure 0006977491
Figure 0006977491

表4に示すように、明度L値が35.0以下であり、タップ密度が0.3g/mL以上0.75g/mL以下である実施例1〜8の非晶質炭素被覆黒鉛材料は、比較例1〜5に比し、交流インピーダンスの値が低く、低抵抗化が実現できることが立証された。 As shown in Table 4, the amorphous carbon-coated graphite materials of Examples 1 to 8 having a lightness L * value of 35.0 or less and a tap density of 0.3 g / mL or more and 0.75 g / mL or less It was proved that the value of AC impedance was lower than that of Comparative Examples 1 to 5 and that low resistance could be realized.

特に、明度L値が34.0以下である実施例3〜6においては、交流インピーダンスの値が極めて低く、低抵抗化が実現できることが分かる。 In particular, in Examples 3 to 6 in which the brightness L * value is 34.0 or less, the AC impedance value is extremely low, and it can be seen that low resistance can be realized.

本実施形態のリチウムイオン二次電池用の負極材料は、例えば、電気自動車用、住宅向けなどの定置用リチウムイオン電池などに有効に利用できる。 The negative electrode material for the lithium ion secondary battery of the present embodiment can be effectively used for, for example, a stationary lithium ion battery for an electric vehicle, a house, or the like.

10 リチウムイオン二次電池
11 負極
12 負極集電体
13 正極
14 正極集電体
15 セパレータ
16 外装
10 Lithium-ion secondary battery 11 Negative electrode 12 Negative electrode current collector 13 Positive electrode 14 Positive electrode current collector 15 Separator 16 Exterior

Claims (5)

黒鉛質粒子の表面に非晶質炭素が被覆された非晶質炭素被覆黒鉛材料からなるリチウムイオン二次電池用の負極材料であって、明度L値が35.0以下であり、タップ密度が0.3g/mL以上0.75g/mL以下であることを特徴とするリチウムイオン二次電池用の負極材料。 A negative electrode material for a lithium ion secondary battery made of an amorphous carbon-coated graphite material in which the surface of graphitic particles is coated with amorphous carbon, and has a lightness L * value of 35.0 or less and a tap density. A negative electrode material for a lithium ion secondary battery, characterized in that the amount is 0.3 g / mL or more and 0.75 g / mL or less. X線広角回折線から算出される結晶子サイズLaが400nm以下であることを特徴とする請求項1に記載のリチウムイオン二次電池用の負極材料。 The negative electrode material for a lithium ion secondary battery according to claim 1, wherein the crystallite size La calculated from the X-ray wide-angle diffraction line is 400 nm or less. ジブチルフタレート(DBP)吸収量が57mL/100g以上120mL/100g以下であることを特徴とする請求項1または請求項2に記載のリチウムイオン二次電池用の負極材料。 The negative electrode material for a lithium ion secondary battery according to claim 1 or 2, wherein the absorption amount of dibutylphthalate (DBP) is 57 mL / 100 g or more and 120 mL / 100 g or less. 平均粒子径(D50)が1μm以上25μm以下であることを特徴とする請求項1〜請求項3のいずれか1項に記載のリチウムイオン二次電池用の負極材料。 The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the average particle size (D50) is 1 μm or more and 25 μm or less. リチウムイオン二次電池用の負極材料として、請求項1〜請求項4のいずれか1項に記載の負極材料を用いたことを特徴とするリチウムイオン二次電池。 A lithium ion secondary battery, wherein the negative electrode material according to any one of claims 1 to 4 is used as the negative electrode material for the lithium ion secondary battery.
JP2017217363A 2017-11-10 2017-11-10 Negative electrode material for lithium ion secondary batteries, and lithium ion secondary batteries using them. Active JP6977491B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2017217363A JP6977491B2 (en) 2017-11-10 2017-11-10 Negative electrode material for lithium ion secondary batteries, and lithium ion secondary batteries using them.

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2017217363A JP6977491B2 (en) 2017-11-10 2017-11-10 Negative electrode material for lithium ion secondary batteries, and lithium ion secondary batteries using them.

Publications (2)

Publication Number Publication Date
JP2019087519A JP2019087519A (en) 2019-06-06
JP6977491B2 true JP6977491B2 (en) 2021-12-08

Family

ID=66763349

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2017217363A Active JP6977491B2 (en) 2017-11-10 2017-11-10 Negative electrode material for lithium ion secondary batteries, and lithium ion secondary batteries using them.

Country Status (1)

Country Link
JP (1) JP6977491B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113161514A (en) * 2020-01-07 2021-07-23 珠海冠宇电池股份有限公司 Graphite composition, battery cathode and lithium ion battery
JP7185650B2 (en) * 2020-02-14 2022-12-07 Jfeケミカル株式会社 Coating pitch for lithium ion secondary battery negative electrode material and method for producing the same
EP3965201B1 (en) * 2020-03-27 2023-04-19 Contemporary Amperex Technology Co., Limited Secondary battery and device containing same
KR102436898B1 (en) * 2020-04-21 2022-08-25 에스케이온 주식회사 Anode for lithium secondary battery and methode of manufacturing the same

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4802595B2 (en) * 2005-08-04 2011-10-26 中央電気工業株式会社 Carbon powder suitable for negative electrode materials for non-aqueous secondary batteries
WO2008093724A1 (en) * 2007-01-31 2008-08-07 Sumitomo Metal Industries, Ltd. Carbon material and process for producing the carbon material
JP4560076B2 (en) * 2007-11-08 2010-10-13 大阪ガスケミカル株式会社 Negative electrode carbon material and lithium secondary battery including the same
KR101970023B1 (en) * 2011-05-13 2019-04-17 미쯔비시 케미컬 주식회사 Carbon material for non-aqueous secondary battery, anode using said carbon material, and non-aqueous secondary battery
JP2014235856A (en) * 2013-05-31 2014-12-15 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery
JP6412520B2 (en) * 2015-06-01 2018-10-24 Jfeケミカル株式会社 Carbonaceous coated graphite particles for lithium ion secondary battery anode material, lithium ion secondary battery anode and lithium ion secondary battery

Also Published As

Publication number Publication date
JP2019087519A (en) 2019-06-06

Similar Documents

Publication Publication Date Title
JP4448279B2 (en) Artificial graphite particles and production method thereof, nonaqueous electrolyte secondary battery negative electrode and production method thereof, and lithium secondary battery
TWI750373B (en) Negative electrode material for lithium ion secondary battery, method for producing negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
KR20210089723A (en) Electroactive Materials for Metal Ion Batteries
EP3506402B1 (en) Carbon black for batteries, conductive composition for electrodes, electrode for batteries, and battery
JP6977491B2 (en) Negative electrode material for lithium ion secondary batteries, and lithium ion secondary batteries using them.
US9537176B2 (en) Material for non-aqueous electrolyte secondary battery negative electrode
CA3011539C (en) Carbonaceous materials and methods of use thereof
KR20210089720A (en) Electroactive Materials for Metal Ion Batteries
US11264616B2 (en) Conductive composition for electrodes, and electrode and battery using same
JP5783029B2 (en) Negative electrode for non-aqueous electrolyte secondary battery, method for producing the same, and non-aqueous electrolyte secondary battery
JP6719329B2 (en) Method for producing carbonaceous material
KR20220009962A (en) Electroactive materials for metal-ion batteries
JP2009004304A (en) Negative electrode active material for lithium secondary battery and negative electrode using it
EP4160727A1 (en) Composite carbon particles and use thereof
JP6170795B2 (en) Electrode active material, method for producing electrode active material, electrode material, electrode paste, electrode and battery
JP5573559B2 (en) Carbon material for lithium ion secondary battery
TW201822394A (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2016136450A (en) Composite secondary particles for nonaqueous electrolyte secondary battery
JP5567232B1 (en) Composite carbon particles and lithium ion secondary battery using the same
JP5809200B2 (en) Silicon-based negative electrode active material
US20240030411A1 (en) Silica-coated sulfur-carbon composite and lithium-sulfur battery comprising the same
JP6570413B2 (en) Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery including the same
WO2024029213A1 (en) Carbon material, method for producing carbon material, negative electrode, and secondary battery
JP2022055362A (en) Lithium titanate powder, electrode using the same, and power storage device
CN117321797A (en) Composite particle, negative electrode mixture layer, and lithium ion secondary battery

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7426

Effective date: 20171121

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20171121

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20201005

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20211012

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20211013

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20211025

R150 Certificate of patent or registration of utility model

Ref document number: 6977491

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150