JP2014235856A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery Download PDF

Info

Publication number
JP2014235856A
JP2014235856A JP2013116108A JP2013116108A JP2014235856A JP 2014235856 A JP2014235856 A JP 2014235856A JP 2013116108 A JP2013116108 A JP 2013116108A JP 2013116108 A JP2013116108 A JP 2013116108A JP 2014235856 A JP2014235856 A JP 2014235856A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
material layer
thickener
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2013116108A
Other languages
Japanese (ja)
Inventor
智彦 石田
Tomohiko Ishida
智彦 石田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toyota Motor Corp
Original Assignee
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toyota Motor Corp filed Critical Toyota Motor Corp
Priority to JP2013116108A priority Critical patent/JP2014235856A/en
Publication of JP2014235856A publication Critical patent/JP2014235856A/en
Withdrawn legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary battery which can achieve high levels in both of input/output density and durability (especially, superior high-rate pulse charge and discharge cycle characteristics).SOLUTION: A nonaqueous electrolyte secondary battery comprises: a positive electrode having a positive electrode active material layer; a negative electrode having a negative electrode active material layer; and a nonaqueous electrolyte. The negative electrode active material layer includes a negative electrode active material, and a resin component including at least a thickener. The percentage of the resin component to the whole negative electrode active material layer is 0.8-1.6% by mass. The negative electrode active material consists of a graphite material, and has a DEP oil absorption of 35-50 mL/100 g. In addition, the thickener includes secondary particles having an average particle diameter of 5-50 μm. A 1%-aqueous solution prepared by dissolving or distributing the thickener in water at a rate of 1 mass% has a viscosity of 1000-5000 mPa s.

Description

本発明は、非水電解質二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery.

リチウムイオン電池等の非水電解質二次電池は、既存の電池に比べて軽量かつエネルギー密度が高いことから、近年、車両搭載用高出力電源等に好ましく利用されている。この種の電池では、入出力密度と耐久性とを高いレベルで両立することが求められる。かかる目的のために負極を改良した例として、特許文献1,2が挙げられる。例えば特許文献1には、負極活物質として所定の性状の黒鉛粒子を用いることで、ハイレートパルス充放電サイクル特性に優れた電池を実現し得ることが記載されている。   Nonaqueous electrolyte secondary batteries such as lithium-ion batteries are lighter and have higher energy density than existing batteries, and thus have been preferably used in recent years for high-output power supplies mounted on vehicles. This type of battery is required to have both high input / output density and durability at a high level. Patent Documents 1 and 2 are examples of improved negative electrodes for this purpose. For example, Patent Document 1 describes that a battery having excellent high-rate pulse charge / discharge cycle characteristics can be realized by using graphite particles having a predetermined property as a negative electrode active material.

特開2013−030441号公報JP 2013-030441 A 特開2012−216537号公報JP 2012-216537 A

上記電池の負極は、一般に負極活物質と樹脂成分とを適当な水系溶媒(例えば水)とともに混練してなるペースト(スラリー、インクを包含する。)を負極集電体の表面に塗工して乾燥させることによって作製される。しかしながら、本発明者の検討によれば、特許文献1に記載の負極活物質を用いる場合、塗工に適した粘度のペーストを調製することが難しく、混練時に高シェア(例えば剪断力)の付与が必要となったり、或いはペーストを安定化させるために多くの樹脂成分(典型的には増粘剤やバインダ)が必要となる場合があった。混練時に高シェアを付与するとペースト中で黒鉛粒子同士が激しく衝突し、該粒子に割れや欠け等を生じることがある。かかる場合、反応活性点が増加して電池の耐久性が低下する虞がある。また、樹脂成分の占める割合が増えると、負極活物質層の保液性が低下したり抵抗が増大したりして、入出力密度が悪化する虞がある。   The negative electrode of the battery is generally formed by applying a paste (including slurry and ink) obtained by kneading a negative electrode active material and a resin component together with an appropriate aqueous solvent (for example, water) onto the surface of the negative electrode current collector. It is made by drying. However, according to the study of the present inventor, when using the negative electrode active material described in Patent Document 1, it is difficult to prepare a paste having a viscosity suitable for coating, and high shear (for example, shearing force) is imparted during kneading. In some cases, many resin components (typically thickeners and binders) are required to stabilize the paste. When a high shear is imparted during kneading, graphite particles may collide violently in the paste, and the particles may be cracked or chipped. In such a case, there is a possibility that the reaction active point increases and the durability of the battery decreases. In addition, when the proportion of the resin component increases, the liquid retention property of the negative electrode active material layer may decrease or the resistance may increase, and the input / output density may deteriorate.

本発明は、かかる事情に鑑みてなされたものであり、その目的は、入出力密度と耐久性とを高いレベルで両立可能な(例えば、ハイレートパルス充放電サイクル特性に優れた)非水電解質二次電池を提供することである。また、関連する他の目的は、かかる電池を安定的に製造する方法を提供することである。   The present invention has been made in view of such circumstances, and an object of the present invention is to provide a non-aqueous electrolyte that can achieve both high input / output density and durability (for example, excellent high-rate pulse charge / discharge cycle characteristics). The next battery is to provide. Another related object is to provide a method for stably manufacturing such a battery.

上記目的を実現すべく、本発明により、正極活物質層を有する正極と、負極活物質層を有する負極と、非水電解質と、を備えた非水電解質二次電池が提供される。上記負極活物質層は、負極活物質と、少なくとも増粘剤を含む樹脂成分と、を備え、且つ、以下の(1)〜(3)の条件を全て満たしている。
(1)上記樹脂成分の含有割合は、負極活物質層全体の0.8〜1.6質量%である。
(2)上記負極活物質は、黒鉛材料からなり、且つ、DEP吸油量が35〜50mL/100gである。
(3)上記増粘剤は、二次粒子の平均粒径が5〜50μmであり、且つ、該増粘剤を1質量%の比率で水中に溶解または分散させた1%水溶液の粘度は1000〜5000mPa・sである。
In order to achieve the above object, the present invention provides a nonaqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a nonaqueous electrolyte. The negative electrode active material layer includes a negative electrode active material and a resin component including at least a thickener, and satisfies all the following conditions (1) to (3).
(1) The content rate of the said resin component is 0.8-1.6 mass% of the whole negative electrode active material layer.
(2) The negative electrode active material is made of a graphite material and has a DEP oil absorption of 35 to 50 mL / 100 g.
(3) The viscosity of a 1% aqueous solution obtained by dissolving or dispersing the thickener in water at a ratio of 1 mass% is 1000, in which the average particle diameter of secondary particles is 5 to 50 μm. ˜5000 mPa · s.

上記構成の電池では、負極活物質層における樹脂成分(典型的には増粘剤とバインダ)の割合が0.8〜1.6質量%と低く抑えられている。このため、負極活物質の表面が該樹脂成分によって覆われることが少なく、電荷担体の吸蔵および放出に必要な細孔をより多く確保することができる。したがって、負極の抵抗を低く抑えることができ、優れた高入出力特性を実現することができる。また、上記性状を満たす負極活物質を用いることで、高い充放電容量と保液性とを実現することができる。さらに、上記性状を満たす増粘剤を用いることで、従来に比べて低シェアで混練を行うことができる。このため、負極活物質に割れや欠けが生じ難く、高い耐久性を実現することができる。
したがって、本発明によれば、高入出力密度と高耐久性とを両立可能な非水電解質二次電池を実現することができる。
In the battery having the above configuration, the ratio of the resin component (typically thickener and binder) in the negative electrode active material layer is suppressed to a low value of 0.8 to 1.6 mass%. For this reason, the surface of the negative electrode active material is hardly covered with the resin component, and more pores necessary for insertion and extraction of charge carriers can be secured. Therefore, the resistance of the negative electrode can be kept low, and excellent high input / output characteristics can be realized. Moreover, a high charge / discharge capacity and liquid retention can be realized by using a negative electrode active material that satisfies the above properties. Furthermore, by using a thickener that satisfies the above properties, kneading can be performed with a lower share than in the past. For this reason, it is hard to produce a crack and a chip | tip in a negative electrode active material, and high durability is realizable.
Therefore, according to the present invention, it is possible to realize a non-aqueous electrolyte secondary battery that can achieve both high input / output density and high durability.

なお、ここで「DBP(ジブチルフタレート)吸油量」とは、JIS K6217−4(2001)に規定される測定法による測定量をいう。また、「平均粒径」とは、レーザー回折・光散乱法に基づく粒度分布測定により測定した体積基準の粒度分布において、微粒子側からの累積50%に相当する粒径(D50粒径、メジアン径ともいう。)をいう。また、「粘度」とは、一般的なB型粘度計を用いて、25℃において、回転数60rpmの条件で測定した値をいう。 Here, “DBP (dibutyl phthalate) oil absorption” refers to the amount measured by the measuring method defined in JIS K6217-4 (2001). Further, the "average particle size", the volume-based particle size distribution measured by a particle size distribution measurement based on laser diffraction light scattering method, a particle diameter corresponding to cumulative 50% from fine particle side (D 50 particle size, median Also called diameter). The “viscosity” refers to a value measured using a general B-type viscometer at 25 ° C. under the condition of a rotational speed of 60 rpm.

一実施形態に係る負極ペースト調製方法のフローチャートである。It is a flowchart of the negative electrode paste preparation method which concerns on one Embodiment. 固練り混練工程のトルク率(%)とサイクル試験の容量維持率(%)との関係を示すグラフである。It is a graph which shows the relationship between the torque rate (%) of a solid kneading process, and the capacity | capacitance maintenance rate (%) of a cycle test. 負極活物質のDEP吸油量(ml/g)とサイクル試験の容量維持率(%)の関係を示すグラフである。It is a graph which shows the relationship between the DEP oil absorption amount (ml / g) of a negative electrode active material, and the capacity | capacitance maintenance factor (%) of a cycle test. 負極活物質のDEP吸油量(ml/g)とハイレートパルス充放電サイクル試験後の抵抗上昇率(%)との関係を示すグラフである。It is a graph which shows the relationship between the DEP oil absorption amount (ml / g) of a negative electrode active material, and the resistance increase rate (%) after a high-rate pulse charging / discharging cycle test.

以下、本発明の好適な実施形態を説明する。なお、本明細書において特に言及している事項以外の事柄であって実施に必要な事柄は、当該分野における従来技術に基づく当業者の設計事項として把握され得る。本発明は、本明細書に開示されている内容と当該分野における技術常識とに基づいて実施することができる。   Hereinafter, preferred embodiments of the present invention will be described. Note that matters other than matters specifically mentioned in the present specification and necessary for implementation can be grasped as design matters of those skilled in the art based on the prior art in this field. The present invention can be carried out based on the contents disclosed in this specification and common technical knowledge in the field.

ここで開示される非水電解質二次電池は、上述の(1)〜(3)の条件を満たす負極活物質層を備えていることにより特徴づけられる。
負極活物質は、黒鉛(グラファイト)からなる。黒鉛は、他の材料に比べて炭素六角網面構造が発達しており、優れたエネルギー密度を実現し得る。その一方、層間の結合が弱く、混練時に割れたり欠けたりし易い。このため、ここに開示される技術の適用意義が特に大きい。なかでも、コアとしての黒鉛粒子の表面が非晶質(アモルファス)な炭素材料で被覆された形態のアモルファスコートグラファイトを好適に採用し得る。これにより、非水電解質との反応性をより低く抑えることができ、不可逆容量や抵抗を一層抑制し得る。負極活物質(黒鉛)のDEP吸油量は、35〜50mL/100g(特には35〜40mL/100g)である。一般に負極活物質は、DEP吸油量の値が大きいほど非水電解質と馴染みやすい傾向がある。すなわち、電荷担体の吸蔵および放出がより容易となり、高入出力密度を実現し得る。一方、DEP吸油量の値があまりに大きいと、混練時の粘度が高くなりすぎ、ペーストの塗工性や保存性が低下する(例えば、沈降しやすくなる)場合がある。上記範囲とすることで、高エネルギー密度と高出力密度を実現し得る。
The non-aqueous electrolyte secondary battery disclosed herein is characterized by including a negative electrode active material layer that satisfies the above conditions (1) to (3).
The negative electrode active material is made of graphite (graphite). Graphite has a carbon hexagonal network structure developed compared to other materials, and can achieve an excellent energy density. On the other hand, the bond between the layers is weak and it is easy to crack or chip during kneading. For this reason, the significance of application of the technology disclosed herein is particularly great. Among these, amorphous coated graphite in a form in which the surface of graphite particles as a core is coated with an amorphous carbon material can be suitably used. Thereby, the reactivity with a nonaqueous electrolyte can be suppressed lower, and an irreversible capacity | capacitance and resistance can be suppressed further. The DEP oil absorption of the negative electrode active material (graphite) is 35 to 50 mL / 100 g (particularly 35 to 40 mL / 100 g). In general, the negative electrode active material tends to become more familiar with the non-aqueous electrolyte as the DEP oil absorption value increases. That is, it becomes easier to occlude and release charge carriers, and a high input / output density can be realized. On the other hand, if the value of the DEP oil absorption is too large, the viscosity at the time of kneading becomes too high, and the applicability and storage stability of the paste may be reduced (for example, it tends to settle). By setting it as the said range, a high energy density and a high output density can be implement | achieved.

ここで開示される技術において、樹脂成分は必須構成成分として増粘剤を含んでいる。増粘剤としては、カルボキシメチルセルロース(CMC)、メチルセルロース、エチルセルロース等の各種のポリマー材料を用いることができ、なかでもCMC(典型的にはナトリウム塩)を好ましく採用し得る。増粘剤の使用量を低減する観点から、重量平均分子量は10万〜100万程度の比較的高分子量のものが好適である。また、増粘剤の二次粒子の平均粒径は、5〜50μmである。一般に増粘剤は、その分子量の大きさから凝集を生じ易く、二次粒子径が比較的大きくなりがちである。しかしながら、平均粒径が上記範囲あるものを用いることで、従来に比べて低シェアで混練を行うことができる。また、このような増粘剤の1%粘度、すなわち該増粘剤を1質量%の比率で水中に溶解または分散させた1%水溶液の粘度は、1000〜5000mPa・sである。   In the technique disclosed here, the resin component contains a thickener as an essential component. As the thickener, various polymer materials such as carboxymethylcellulose (CMC), methylcellulose, and ethylcellulose can be used, and among them, CMC (typically a sodium salt) can be preferably used. From the viewpoint of reducing the amount of thickener used, a relatively high molecular weight having a weight average molecular weight of about 100,000 to 1,000,000 is suitable. Moreover, the average particle diameter of the secondary particle of a thickener is 5-50 micrometers. In general, thickeners tend to agglomerate due to their molecular weight, and the secondary particle size tends to be relatively large. However, kneading can be carried out with a lower share compared to the prior art by using one having an average particle size within the above range. Further, the 1% viscosity of such a thickener, that is, the viscosity of a 1% aqueous solution in which the thickener is dissolved or dispersed in water at a ratio of 1% by mass is 1000 to 5000 mPa · s.

好適な一態様では、樹脂成分として上記増粘剤に加え更にバインダを含む。バインダとしては、スチレンブタジエンゴム(SBR)、ポリテトラフルオロエチレン(PTFE)ポリフッ化ビニリデン(PVdF)等の各種のポリマー材料を用いることができ、なかでもSBRを好ましく採用し得る。   In a preferred embodiment, the resin component further contains a binder in addition to the thickener. As the binder, various polymer materials such as styrene butadiene rubber (SBR), polytetrafluoroethylene (PTFE) and polyvinylidene fluoride (PVdF) can be used, and among them, SBR can be preferably used.

ここで開示される技術において、負極活物質層全体に占める樹脂成分の割合は0.8〜1.6質量%である。樹脂成分の割合を低く抑えることで、負極活物質層の抵抗を低減することができる。また、負極活物質層の保液性を高めることができ、高入出力密度を実現し得る。換言すれば、負極活物質層全体に占める負極活物質の割合は98.4〜99.2質量%とすることが好適である。また、単位面積当たりの負極活物質層の質量は、負極集電体の片面当たり3〜20mg/cm程度とすることができる。負極活物質層の密度は、1.1〜1.6g/cm程度とすることができる。 In the technique disclosed here, the ratio of the resin component in the entire negative electrode active material layer is 0.8 to 1.6 mass%. The resistance of the negative electrode active material layer can be reduced by keeping the ratio of the resin component low. In addition, the liquid retention of the negative electrode active material layer can be improved, and a high input / output density can be realized. In other words, the ratio of the negative electrode active material to the whole negative electrode active material layer is preferably 98.4 to 99.2% by mass. The mass of the negative electrode active material layer per unit area can be about 3 to 20 mg / cm 2 per one side of the negative electrode current collector. The density of the negative electrode active material layer can be about 1.1 to 1.6 g / cm 3 .

このような負極活物質層は、負極活物質および樹脂成分を含む負極ペーストを負極集電体上に塗工、乾燥させることによって形成し得る。負極集電体としては、導電性の良好な金属(例えば銅)からなる導電性材料を好適に採用し得る。
負極ペーストの調製は、例えば、図1のフローチャートに示す(S10)〜(S40)の工程、具体的には(S10)粉砕工程;(S20)固練り混練工程;(S30)希釈混練工程;(S40)仕上げ混練工程;を包含する方法によって好適に行うことができる。
Such a negative electrode active material layer can be formed by applying and drying a negative electrode paste containing a negative electrode active material and a resin component on a negative electrode current collector. As the negative electrode current collector, a conductive material made of a metal having good conductivity (for example, copper) can be suitably used.
The negative electrode paste is prepared, for example, in steps (S10) to (S40) shown in the flowchart of FIG. 1, specifically (S10) grinding step; (S20) solid kneading step; (S30) dilution kneading step; S40) A finish kneading step can be suitably performed.

粉砕工程(S10)では、先ず、粉砕機を用いて、増粘剤の二次粒子の平均粒径を5〜50μmに粉砕、調整する。分散機としては、例えば、ジェットミル、プラネタリミキサー、ディスパー等を使用し得る。増粘剤の二次粒子径を上記範囲とすることで、後の混練工程において溶け残りや凝集が発生し難く、混練物中に増粘剤を均質に溶解または分散させることができる。これによって、負極活物質層にスケ(ピンホール)等の塗工欠陥が発生することを抑制することができる。
次に、固練り混練工程(S20)では、上記粉砕した増粘剤に負極活物質と水とを加えて混練(固練り)する。混練には、プラネタリミキサー、ロールミル等を使用し得る。また、混練時間は、上記材料が水中に均等に分散するまでの時間とすればよい。固練り混練時の固形分率は、最大トルクとなる固形分率を100%とした時に、50%以下(典型的には10〜50%、例えば10〜30%)のトルクになる固形分率とすることが好ましい。換言すれば、固練り混練は、従来に比べて比較的低いシェアで行うことが好ましい。これにより、負極活物質粒子に割れや欠けが生じ難く、より一層耐久性に優れた電池を実現することができる。
次に、希釈混練工程(S30)では、上記固練り混練後の混練物に水系溶媒を添加して希釈し、更に混練する。これにより、ペーストを塗工に適した流動性に調製する。
次に、仕上げ混練工程(S40)では、上記希釈混練後の混練物にバインダを添加して、更に混練する。これにより、負極活物質層の機械的強度(形状保持性)を確保することができ、より優れた耐久性を実現することができる。
In the pulverization step (S10), first, the average particle diameter of the secondary particles of the thickener is pulverized and adjusted to 5 to 50 μm using a pulverizer. As the disperser, for example, a jet mill, a planetary mixer, a disper, or the like can be used. By setting the secondary particle diameter of the thickener within the above range, it is difficult for undissolved matter or aggregation to occur in the subsequent kneading step, and the thickener can be uniformly dissolved or dispersed in the kneaded product. Thereby, it is possible to suppress the occurrence of coating defects such as scales (pinholes) in the negative electrode active material layer.
Next, in the kneading and kneading step (S20), the negative active material and water are added to the pulverized thickener and kneaded (kneaded). For kneading, a planetary mixer, a roll mill or the like can be used. Moreover, what is necessary is just to let the kneading | mixing time be time until the said material disperse | distributes uniformly in water. The solid content ratio at the time of the kneading and kneading is a solid content ratio at which the torque is 50% or less (typically 10 to 50%, for example, 10 to 30%) when the solid content ratio that is the maximum torque is 100%. It is preferable that In other words, the kneading and kneading is preferably performed with a relatively low share as compared with the conventional case. Thereby, the negative electrode active material particles are hardly cracked or chipped, and a battery having further excellent durability can be realized.
Next, in the dilution kneading step (S30), an aqueous solvent is added to the kneaded product after the kneading and kneading to dilute, and further kneading. Thereby, the paste is prepared to have fluidity suitable for coating.
Next, in the final kneading step (S40), a binder is added to the kneaded material after the dilution kneading and further kneading. Thereby, the mechanical strength (shape retainability) of the negative electrode active material layer can be ensured, and more excellent durability can be realized.

ここで開示される非水電解質二次電池は、上述のような負極活物質層を備えること以外は従来と同様でよい。
正極としては、正極活物質を導電材やバインダ等とともにペーストとして正極集電体上に付着させ、正極活物質層を形成した形態のものを用いることができる。正極集電体としては、導電性の良好な金属(例えばアルミニウム)からなる導電性部材を好適に採用し得る。正極活物質としては、層状系、スピネル系等のリチウム複合金属酸化物(例えば、LiNiO、LiCoO、LiFeO、LiMn、LiNi1/3Co1/3Mn1/3、LiNi0.5Mn1.5,LiCrMnO、LiFePO等)を好適に採用し得る。導電材としては、カーボンブラック(例えば、アセチレンブラックやケッチェンブラック)等の炭素材料を採用し得る。バインダとしては、ポリフッ化ビニリデン(PVdF)やポリエチレンオキサイド(PEO)等の各種のポリマー材料を採用し得る。
The nonaqueous electrolyte secondary battery disclosed here may be the same as the conventional one except that it includes the negative electrode active material layer as described above.
As the positive electrode, a positive electrode active material can be used in which a positive electrode active material layer is formed by adhering a positive electrode active material as a paste together with a conductive material, a binder, or the like onto a positive electrode current collector. As the positive electrode current collector, a conductive member made of a metal having good conductivity (for example, aluminum) can be suitably employed. Examples of the positive electrode active material include lithium composite metal oxides such as layered and spinel (for example, LiNiO 2 , LiCoO 2 , LiFeO 2 , LiMn 2 O 4 , LiNi 1/3 Co 1/3 Mn 1/3 O 2 , LiNi 0.5 Mn 1.5 O 4 , LiCrMnO 4 , LiFePO 4, etc.) can be suitably employed. As the conductive material, a carbon material such as carbon black (for example, acetylene black or ketjen black) can be adopted. As the binder, various polymer materials such as polyvinylidene fluoride (PVdF) and polyethylene oxide (PEO) can be adopted.

正極と負極の間に介在させる絶縁層には、典型的にはセパレータを用いる。セパレータとしては、ポリエチレン(PE)、ポリプロピレン(PP)等の樹脂から成る多孔質樹脂シートを好適に採用し得る。なお、固体状の電解質を用いた電池(リチウムポリマー電池)では、上記電解質がセパレータを兼ねる構成とし得る。   A separator is typically used for the insulating layer interposed between the positive electrode and the negative electrode. As the separator, a porous resin sheet made of a resin such as polyethylene (PE) or polypropylene (PP) can be suitably used. Note that in a battery using a solid electrolyte (lithium polymer battery), the electrolyte can also serve as a separator.

非水電解質としては、典型的には非水溶媒中に支持塩を含有させたものを用いる。あるいは、液状の非水電解質にポリマーが添加され固体状(典型的には、いわゆるゲル状)となったものでもよい。支持塩としては、リチウム塩、ナトリウム塩、マグネシウム塩等を用いることができ、なかでもLiPF、LiBF等のリチウム塩を好適に採用し得る。非水溶媒としては、カーボネート類、エステル類、エーテル類、ニトリル類、スルホン類、ラクトン類等の非プロトン性溶媒を用いることができる。なかでも、カーボネート類、例えば、エチレンカーボネート(EC)、ジエチルカーボネート(DEC)、ジメチルカーボネート(DMC)、エチルメチルカーボネート(EMC)等を好適に採用し得る。 As the nonaqueous electrolyte, typically, a nonaqueous solvent containing a supporting salt is used. Alternatively, the liquid non-aqueous electrolyte may be added with a polymer to form a solid (typically a so-called gel). As the supporting salt, lithium salt, sodium salt, magnesium salt and the like can be used, and among them, lithium salts such as LiPF 6 and LiBF 4 can be preferably used. As the non-aqueous solvent, aprotic solvents such as carbonates, esters, ethers, nitriles, sulfones and lactones can be used. Of these, carbonates such as ethylene carbonate (EC), diethyl carbonate (DEC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) can be preferably used.

ここで開示される非水電解質二次電池は、入出力密度と耐久性とを高いレベルで両立可能である。したがって、プラグインハイブリッド自動車(PHV)やハイブリッド自動車(HV)等の車両に搭載されるモーター用の動力源(駆動用電源)として好適に用いることができる。   The nonaqueous electrolyte secondary battery disclosed herein can achieve both high input / output density and durability at a high level. Therefore, it can be suitably used as a power source (drive power source) for a motor mounted on a vehicle such as a plug-in hybrid vehicle (PHV) or a hybrid vehicle (HV).

以下、ここで開示される電池について、一実施形態としてのリチウムイオン電池を例に、より詳細に説明を行う。   Hereinafter, the battery disclosed herein will be described in more detail by taking a lithium ion battery as an embodiment as an example.

<検討I:増粘剤の二次粒子径および固練り混練時のトルク率の検討>
(実施例1〜10)
先ず、増粘剤としてのカルボキシメチルセルロース(CMC、重量平均分子量33万)をジェットミルで粉砕し、二次粒子の平均粒径が50μmのものと20μmのものとをそれぞれ作製した。次に、負極活物質としてのアモルファスコートグラファイト粉末(C、平均粒径20μm)と、上記粉砕したCMC(実施例1〜5では平均粒径が50μmのものを、実施例6〜10では平均粒径が20μmのものをそれぞれ用いた。)とを、質量比率が98.4:0.8となるようにイオン交換水とともに混合し、それぞれ5L容器の2軸プラネタリ混練機で固練り混練を行った。固練り時のトルクは、最大トルクとなる固形分率を100としたときの相対値(トルク率)で規定し、ここではトルク率15%〜100%の5種類のトルク率について検討した。すなわち、実施例1〜5(または実施例6〜10)では、トルク率のみが相互に異なっている。なお、トルク率の調整は、添加する水の量を調整することで行った。
この混練物に水を添加して更に希釈混練を行った後、バインダとしてのスチレンブタジエンゴム(SBR)を上記CMCと同量添加して仕上げ混練を行うことで、負極ペースト(質量基準の組成比が、C:CMC:SBR=98.4:0.8:0.8)を調製した。この負極ペーストを、厚み凡そ10μmの長尺状銅箔(負極集電体)に、目付10mg/cmで塗工して負極活物質層を形成した。これを乾燥した後、3Tプレス機(宝泉)でプレスして、電極密度が1.5g/cmのシート状の負極(負極シート)を作製した。
<Examination I: Examination of secondary particle diameter of thickener and torque ratio during kneading>
(Examples 1 to 10)
First, carboxymethylcellulose (CMC, weight average molecular weight 330,000) as a thickener was pulverized by a jet mill to prepare secondary particles having an average particle size of 50 μm and 20 μm, respectively. Next, amorphous coated graphite powder (C, average particle size of 20 μm) as a negative electrode active material and the above-mentioned pulverized CMC (Examples 1 to 5 having an average particle size of 50 μm), Examples 6 to 10 having an average particle size Were mixed together with ion-exchanged water so that the mass ratio was 98.4: 0.8, and each was kneaded and kneaded with a biaxial planetary kneader in a 5 L container. It was. The torque at the time of kneading is defined by a relative value (torque ratio) when the solid content ratio that is the maximum torque is 100, and here, five types of torque ratios of 15% to 100% are examined. That is, in Examples 1 to 5 (or Examples 6 to 10), only the torque rates are different from each other. The torque rate was adjusted by adjusting the amount of water to be added.
After adding water to this kneaded material and further diluting and kneading, the same amount of styrene butadiene rubber (SBR) as a binder is added to the above CMC and finishing kneading to obtain a negative electrode paste (composition ratio on a mass basis). However, C: CMC: SBR = 98.4: 0.8: 0.8) was prepared. This negative electrode paste was applied to a long copper foil (negative electrode current collector) having a thickness of about 10 μm with a basis weight of 10 mg / cm 2 to form a negative electrode active material layer. This was dried and then pressed with a 3T press (Hosen) to produce a sheet-like negative electrode (negative electrode sheet) having an electrode density of 1.5 g / cm 3 .

次に、正極活物質粉末としてのLi1.00Ni0.33Co0.33Mn0.33粉末と、導電材としてのアセチレンブラック(AB)と、バインダとしてのポリフッ化ビニリデン(PVdF)とを、質量比率が90:5:5となるようにN−メチルピロリドン(NMP)とともに混合し、ペーストを調製した。このペーストを、厚み凡そ15μmの長尺状アルミニウム箔(正極集電体)に塗工して正極活物質層を形成した。得られた正極を乾燥およびプレスし、シート状の正極(正極シート)を作製した。 Next, Li 1.00 Ni 0.33 Co 0.33 Mn 0.33 O 2 powder as the positive electrode active material powder, acetylene black (AB) as the conductive material, and polyvinylidene fluoride (PVdF) as the binder in a mass ratio of 90: A paste was prepared by mixing with N-methylpyrrolidone (NMP) so as to be 5: 5. This paste was applied to a long aluminum foil (positive electrode current collector) having a thickness of about 15 μm to form a positive electrode active material layer. The obtained positive electrode was dried and pressed to produce a sheet-like positive electrode (positive electrode sheet).

次に、上記で作製した正極シートと負極シートとを、セパレータ(ここでは、ポリエチレン(PE)層の両面にポリプロピレン(PP)層が積層された三層構造であって厚みが20μmのものを用いた。)を介して重ね合わせて積層した。そして、かかる積層体(電極体)の正極集電体の端部に正極端子を、負極集電体の端部に負極端子を溶接によりそれぞれ接合した。
この電極体をラミネート製の電池ケースに収容し、非水電解液を注入した。なお、非水電解液としては、エチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)とを3:3:4の体積比率で含む混合溶媒に、電解質としてのLiPFを凡そ1mol/Lの濃度で溶解したものを用いた。そして、ラミネートを熱圧着により封止して、リチウムイオン電池を構築した。
Next, the positive electrode sheet and the negative electrode sheet prepared above are used as a separator (here, a three-layer structure in which a polypropylene (PP) layer is laminated on both sides of a polyethylene (PE) layer and having a thickness of 20 μm). And then stacked on top of each other. And the positive electrode terminal was joined to the edge part of the positive electrode electrical power collector of this laminated body (electrode body), and the negative electrode terminal was joined to the edge part of the negative electrode electrical power collector, respectively.
This electrode body was accommodated in a battery case made of laminate, and a non-aqueous electrolyte was injected. As the non-aqueous electrolyte, a mixed solvent containing ethylene carbonate (EC), dimethyl carbonate (DMC), and ethyl methyl carbonate (EMC) at a volume ratio of 3: 3: 4, and LiPF 6 as an electrolyte are approximately. Those dissolved at a concentration of 1 mol / L were used. Then, the laminate was sealed by thermocompression bonding to construct a lithium ion battery.

(比較例1〜5)
上記実施例において、負極ペーストの調製時に増粘剤を粉砕せずそのまま用いたこと以外は同様に、リチウムイオン電池(比較例1〜5)を構築した。比較例1〜5では、添加する水の量を調整することで、固練り混練時のトルク率のみを相互に異ならせた。
(Comparative Examples 1-5)
In the above Examples, lithium ion batteries (Comparative Examples 1 to 5) were similarly constructed except that the thickener was used as it was without being pulverized during the preparation of the negative electrode paste. In Comparative Examples 1 to 5, only the torque rate during kneading and kneading was made different from each other by adjusting the amount of water to be added.

(電気特性評価)
構築した電池について、25℃において、正極が0V(vs. Li/Li+)から4.1V(vs. Li/Li+)になるまで、1Cの定電流で初期充電処理を行った。次に、この電池を1Cの定電流で3Vまで放電させ、この放電時の容量を初期容量とした。初期容量測定後の電池を60℃の恒温槽に移し、2Cの定電流でSOC0%〜100%の電圧範囲において1000サイクルの耐久性試験を行った。試験後の電池を25℃に降温した後、上記と同様の方法で電池容量を測定した。そして、サイクル試験後の電池容量を初期容量で除して100を掛けることにより、容量維持率(%)を算出した。結果を、図2に示す。
(Electrical characteristics evaluation)
The battery thus constructed was subjected to an initial charging process at a constant current of 1 C at 25 ° C. until the positive electrode was changed from 0 V (vs. Li / Li + ) to 4.1 V (vs. Li / Li + ). Next, this battery was discharged to 3 V with a constant current of 1 C, and the capacity at the time of discharge was defined as the initial capacity. The battery after the initial capacity measurement was transferred to a constant temperature bath of 60 ° C., and a durability test of 1000 cycles was performed in a voltage range of SOC 0% to 100% at a constant current of 2C. After the temperature of the battery after the test was lowered to 25 ° C., the battery capacity was measured by the same method as described above. Then, the capacity retention rate (%) was calculated by dividing the battery capacity after the cycle test by the initial capacity and multiplying by 100. The results are shown in FIG.

図2に示すように、粉砕によって予め増粘剤の二次粒子径を細かくすることで、従来に比べて相対的に容量維持率を向上させることができた。特に、実施例において、固練り混練時のトルク率を50%以下とした場合には、1000サイクル後の容量維持率を85%以上とすることができた。この理由としては、トルク率を低くすることで負極活物質の割れが抑制され、非水電解質の分解等の副反応が低減したことが考えられる。なお、比較例において、固練り混練時のトルク率を50%未満とした場合には、負極活物質層にスケ(ピンホール)等の塗工欠陥が多く認められた。この原因としては、固練り混練時のシェアを低くしたことで、増粘剤の溶け残りや凝集が発生したことが考えられる。   As shown in FIG. 2, the capacity retention rate was able to be relatively improved as compared with the prior art by reducing the secondary particle diameter of the thickener in advance by pulverization. In particular, in the examples, when the torque rate during kneading and kneading was 50% or less, the capacity retention rate after 1000 cycles could be 85% or more. The reason for this is considered that cracking of the negative electrode active material was suppressed by reducing the torque rate, and side reactions such as decomposition of the nonaqueous electrolyte were reduced. In the comparative example, when the torque rate during kneading and kneading was less than 50%, many coating defects such as skeins (pinholes) were observed in the negative electrode active material layer. The cause of this is thought to be that the thickener did not melt or aggregated due to the low share during kneading and kneading.

<検討II:負極活物質のDEP吸油量および樹脂成分の含有割合の検討>
(実施例11〜15)
上記検討Iの実施例において、負極活物質として所定の吸油量のアモルファスコートカーボンを用い、負極ペースト中の組成比率をC:CMC:SBR=99.2:0.4:0.4(すなわち樹脂成分の合計を0.8質量%)とし、固練り時のトルク率を30%に固定したこと以外は同様に、リチウムイオン電池(実施例11〜15)を構築した。実施例11〜15では、アモルファスコートカーボンのDEP吸油量のみが相互に異なっている。
(実施例16,17)
上記検討IIの実施例において、負極ペースト中の組成比率をC:CMC:SBR=98.4:0.8:0.8(すなわち樹脂成分の合計を1.6質量%)としたこと以外は同様に、リチウムイオン電池(実施例11〜15)を構築した。実施例16,17では、アモルファスコートカーボンのDEP吸油量のみが相互に異なっている。
(比較例11〜15)
上記検討IIの実施例において、負極ペースト中の組成比率をC:CMC:SBR=98:1.0:1.0(すなわち樹脂成分の合計を2.0質量%)としたこと以外は同様に、リチウムイオン電池(実施例11〜15)を構築した。比較例11〜15では、アモルファスコートカーボンのDEP吸油量のみが相互に異なっている。
<Examination II: Examination of DEP oil absorption amount and resin component content of negative electrode active material>
(Examples 11 to 15)
In the Example of Study I, amorphous coated carbon having a predetermined oil absorption amount was used as the negative electrode active material, and the composition ratio in the negative electrode paste was C: CMC: SBR = 99.2: 0.4: 0.4 (that is, resin Lithium ion batteries (Examples 11 to 15) were constructed in the same manner except that the total amount of components was 0.8% by mass) and the torque rate during kneading was fixed at 30%. In Examples 11 to 15, only the DEP oil absorption amount of the amorphous coated carbon is different from each other.
(Examples 16 and 17)
In the example of the examination II, except that the composition ratio in the negative electrode paste was C: CMC: SBR = 98.4: 0.8: 0.8 (that is, the total of the resin components was 1.6% by mass). Similarly, lithium ion batteries (Examples 11 to 15) were constructed. In Examples 16 and 17, only the DEP oil absorption of the amorphous coated carbon is different from each other.
(Comparative Examples 11-15)
In the example of the study II, the composition ratio in the negative electrode paste was C: CMC: SBR = 98: 1.0: 1.0 (that is, the total of the resin components was 2.0% by mass). Lithium ion batteries (Examples 11 to 15) were constructed. In Comparative Examples 11 to 15, only the DEP oil absorption amount of the amorphous coated carbon is different from each other.

(電気特性評価)
上記検討Iと同様に1000サイクル後の容量維持率を測定した。実施例11〜15および比較例11〜15に係る結果を、図3に示す。また、別途作成した電池を用いて、ハイレートパルス充放電サイクル試験を行った。具体的には、先ず、上記と同様に初期充電処理した後、初期抵抗を測定した。次いで、電池電圧をSOC30%の状態に調整し、10Cの定電流で10秒間充電した後、2Cの定電流で50秒間放電することを1サイクルとして、30000サイクルの耐久性試験を行った。試験後の電池について、上記と同様に電池抵抗を測定した。そして、ハイレートパルス充放電サイクル試験後の電池抵抗を初期抵抗で除して100を掛けることにより、抵抗上昇率(%)を算出した。実施例11〜14,16,17および比較例11〜15に係る結果を、図4に示す。
(Electrical characteristics evaluation)
The capacity retention rate after 1000 cycles was measured as in Study I above. The result which concerns on Examples 11-15 and Comparative Examples 11-15 is shown in FIG. Moreover, the high rate pulse charging / discharging cycle test was done using the battery produced separately. Specifically, first, after the initial charging process as described above, the initial resistance was measured. Next, the battery voltage was adjusted to a SOC of 30%, charged for 10 seconds at a constant current of 10 C, and then discharged for 50 seconds at a constant current of 2 C, and a durability test of 30000 cycles was performed. About the battery after a test, battery resistance was measured similarly to the above. Then, the resistance increase rate (%) was calculated by dividing the battery resistance after the high-rate pulse charge / discharge cycle test by the initial resistance and multiplying by 100. The result which concerns on Examples 11-14, 16, 17 and Comparative Examples 11-15 is shown in FIG.

図3および図4に示すように、負極活物質のDEP吸油量を35〜50mL/100gとし、且つ、負極活物質層中の樹脂成分の割合を低減することで、耐久性を大幅に向上することができた。例えば、樹脂成分の含有割合を1.6質量%以下(典型的には0.8〜1.6質量%)とすることで、1000サイクルの充放電後も91%以上の容量維持率を実現し得、さらには、ハイレートパルス充放電サイクル試験後の抵抗上昇率を140%以下(特には130%以下)に抑制することができた。   As shown in FIGS. 3 and 4, the DEP oil absorption amount of the negative electrode active material is set to 35 to 50 mL / 100 g, and the ratio of the resin component in the negative electrode active material layer is reduced, thereby greatly improving the durability. I was able to. For example, by setting the content ratio of the resin component to 1.6% by mass or less (typically 0.8 to 1.6% by mass), a capacity maintenance rate of 91% or more is realized even after 1000 cycles of charge and discharge. In addition, the rate of increase in resistance after the high-rate pulse charge / discharge cycle test could be suppressed to 140% or less (particularly 130% or less).

上述の通り、本発明に係る非水電解質二次電池(例えばリチウムイオン電池)は、大電流入出力が可能であり、ハイレートパルス充放電サイクルや耐久性にも優れる。このため、ハイレート充放電について極めて高い性能が要求される車両駆動用電池として好適に使用することができる。   As described above, the nonaqueous electrolyte secondary battery (for example, lithium ion battery) according to the present invention can input and output a large current, and is excellent in a high-rate pulse charge / discharge cycle and durability. For this reason, it can be suitably used as a vehicle drive battery that requires extremely high performance for high-rate charge / discharge.

以上、本発明の具体例を詳細に説明したが、これらは例示にすぎず、請求の範囲を限定するものではない。請求の範囲に記載の技術には、以上に例示した具体例を様々に変形、変更したものが含まれる。   As mentioned above, although the specific example of this invention was demonstrated in detail, these are only illustrations and do not limit a claim. The technology described in the claims includes various modifications and changes of the specific examples illustrated above.

Claims (1)

正極活物質層を有する正極と、負極活物質層を有する負極と、非水電解質と、を備えた非水電解質二次電池であって、
前記負極活物質層は、負極活物質と、少なくとも増粘剤を含む樹脂成分と、を備え、該樹脂成分の含有割合は前記負極活物質層全体の0.8〜1.6質量%であり、
前記負極活物質は、黒鉛材料からなり、且つ、DEP吸油量が35〜50mL/100gであり、
前記増粘剤は、二次粒子の平均粒径が5〜50μmであり、且つ、該増粘剤を1質量%の比率で水中に溶解または分散させた1%水溶液の粘度が1000〜5000mPa・sである、非水電解質二次電池。
A non-aqueous electrolyte secondary battery comprising a positive electrode having a positive electrode active material layer, a negative electrode having a negative electrode active material layer, and a non-aqueous electrolyte,
The negative electrode active material layer includes a negative electrode active material and a resin component including at least a thickener, and the content ratio of the resin component is 0.8 to 1.6% by mass of the entire negative electrode active material layer. ,
The negative electrode active material is made of a graphite material, and has a DEP oil absorption of 35 to 50 mL / 100 g.
The thickener has an average particle diameter of secondary particles of 5 to 50 μm, and a viscosity of 1% aqueous solution in which the thickener is dissolved or dispersed in water at a ratio of 1% by mass is 1000 to 5000 mPa · s. s, a non-aqueous electrolyte secondary battery.
JP2013116108A 2013-05-31 2013-05-31 Nonaqueous electrolyte secondary battery Withdrawn JP2014235856A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013116108A JP2014235856A (en) 2013-05-31 2013-05-31 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013116108A JP2014235856A (en) 2013-05-31 2013-05-31 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2014235856A true JP2014235856A (en) 2014-12-15

Family

ID=52138417

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013116108A Withdrawn JP2014235856A (en) 2013-05-31 2013-05-31 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2014235856A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2019029264A (en) * 2017-08-01 2019-02-21 トヨタ自動車株式会社 Method for manufacturing negative electrode for secondary battery
JP2019087519A (en) * 2017-11-10 2019-06-06 戸田工業株式会社 Negative electrode material for lithium ion secondary battery, and lithium ion secondary battery using the same
JP7444520B2 (en) 2016-04-04 2024-03-06 エルジー エナジー ソリューション リミテッド Manufacturing method and manufacturing device for slurry for secondary batteries

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7444520B2 (en) 2016-04-04 2024-03-06 エルジー エナジー ソリューション リミテッド Manufacturing method and manufacturing device for slurry for secondary batteries
JP2019029264A (en) * 2017-08-01 2019-02-21 トヨタ自動車株式会社 Method for manufacturing negative electrode for secondary battery
JP2019087519A (en) * 2017-11-10 2019-06-06 戸田工業株式会社 Negative electrode material for lithium ion secondary battery, and lithium ion secondary battery using the same

Similar Documents

Publication Publication Date Title
JP5561559B2 (en) Method for manufacturing lithium secondary battery
JP5839221B2 (en) Lithium secondary battery
US9853282B2 (en) Electrode paste production method
JP2009048921A (en) Positive electrode for nonaqueous electrolyte battery and its manufacturing method, nonaqueous electrolyte battery, and its manufacturing method
WO2013179924A1 (en) Electrode for lithium-ion secondary battery, and lithium-ion secondary battery using said electrode
JP2013114747A (en) Lithium ion secondary battery manufacturing method
JP5652666B2 (en) Method for manufacturing electrode for secondary battery
KR101687100B1 (en) Positive electrode for nonaqueous electrolyte secondary battery and production method thereof
JP2004134304A (en) Nonaqueous secondary battery and positive electrode paint manufacturing method
JP5807807B2 (en) Method for producing positive electrode plate of lithium ion secondary battery
JP5682793B2 (en) Lithium secondary battery and manufacturing method thereof
JP6361928B2 (en) Method for producing positive electrode for non-aqueous electrolyte secondary battery
JP6156406B2 (en) Electrode manufacturing method
JP2011238494A (en) Battery, electrode for battery and method for manufacturing the same
JP2017062960A (en) Method for manufacturing positive electrode mixture paste for nonaqueous electrolyte secondary battery, and method for manufacturing positive electrode for nonaqueous electrolyte secondary battery
JP2014235856A (en) Nonaqueous electrolyte secondary battery
JP2012221568A (en) Method for manufacturing positive electrode plate
JP2018073602A (en) Lithium ion secondary battery
JP2015176744A (en) Method of manufacturing secondary battery
JP2014143064A (en) Secondary battery and method for manufacturing the same
JP2014143109A (en) Nonaqueous electrolyte secondary battery and method for manufacturing the battery
JP2017084648A (en) Method for manufacturing composition for positive electrode active material layer formation
JP5827193B2 (en) Method for producing negative electrode for non-aqueous electrolyte secondary battery
JP2016126900A (en) Manufacturing method for secondary battery
JP6487369B2 (en) Conductive paste for preparing positive electrode of lithium ion secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150701

A761 Written withdrawal of application

Free format text: JAPANESE INTERMEDIATE CODE: A761

Effective date: 20151103