JP5809200B2 - Silicon-based negative electrode active material - Google Patents

Silicon-based negative electrode active material

Info

Publication number
JP5809200B2
JP5809200B2 JP2013130675A JP2013130675A JP5809200B2 JP 5809200 B2 JP5809200 B2 JP 5809200B2 JP 2013130675 A JP2013130675 A JP 2013130675A JP 2013130675 A JP2013130675 A JP 2013130675A JP 5809200 B2 JP5809200 B2 JP 5809200B2
Authority
JP
Japan
Prior art keywords
silicon
negative electrode
active material
electrode active
silicon compound
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2013130675A
Other languages
Japanese (ja)
Other versions
JP2015005445A (en
Inventor
弘樹 山下
弘樹 山下
大神 剛章
剛章 大神
鈴木 務
務 鈴木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Taiheiyo Cement Corp
Original Assignee
Taiheiyo Cement Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Taiheiyo Cement Corp filed Critical Taiheiyo Cement Corp
Priority to JP2013130675A priority Critical patent/JP5809200B2/en
Publication of JP2015005445A publication Critical patent/JP2015005445A/en
Application granted granted Critical
Publication of JP5809200B2 publication Critical patent/JP5809200B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、良好な電池特性を発現できるシリコン系負極活物質に関する。   The present invention relates to a silicon-based negative electrode active material that can exhibit good battery characteristics.

従来より、電池の性能を高めるべく、正極材料や負極材料として導電性の高い物質が用いられる。近年では、リチウムイオン電池等の次世代電池が益々台頭してきているが、かかる電池における負極材料としては、カーボン系材料を用いるのが主流ではあるものの、例えば非特許文献1に記載されるシリコン系負極材料を用いることも検討されつつある。   Conventionally, a highly conductive substance is used as a positive electrode material or a negative electrode material in order to improve battery performance. In recent years, next-generation batteries such as lithium ion batteries have been increasingly used. As a negative electrode material in such batteries, carbon-based materials are mainly used, but for example, silicon-based materials described in Non-Patent Document 1 are used. The use of negative electrode materials is also being studied.

Jae−hun Kim et al,Journal of Electroanalytical Chemistry 661(2011),p245−249Jae-hun Kim et al, Journal of Electroanalytical Chemistry 661 (2011), p245-249.

しかしながら、シリコン系負極材料は充放電時の体積変化が大きく、充放電を繰り返すにつれ粒子構造が崩壊してサイクル寿命が低下する可能性が高いため、所望の電池特性を十分に発現できないおそれがある。   However, silicon-based negative electrode materials have a large volume change during charge / discharge, and as the charge / discharge is repeated, the particle structure collapses and the cycle life is likely to decrease, so that the desired battery characteristics may not be sufficiently exhibited. .

したがって、本発明の課題は、リチウムイオン電池の負極材料として、優れた電池物性を発現し得るシリコン系負極活物質を提供することにある。   Therefore, the subject of this invention is providing the silicon type negative electrode active material which can express the outstanding battery physical property as a negative electrode material of a lithium ion battery.

そこで本発明者らは、種々検討したところ、特定の処理を施すことにより得られるシリコン系負極活物質であれば、良好なサイクル特性を示し、優れた電池物性を発現できることを見出し、本発明を完成させるに至った。   Accordingly, the present inventors have made various studies and found that a silicon-based negative electrode active material obtained by performing a specific treatment exhibits good cycle characteristics and can exhibit excellent battery properties. It came to complete.

すなわち、本発明は、ケイ素化合物及び導電性炭素を混合した後、さらに圧縮力及びせん断力を付加しながら混合する処理を経ることにより得られるシリコン系負極活物質を提供するものである。   That is, the present invention provides a silicon-based negative electrode active material obtained by mixing a silicon compound and conductive carbon and then mixing them while adding compressive force and shearing force.

本発明のシリコン系負極活物質は、ケイ素化合物と導電性炭素とが極めて均一に分散されてなり、かつ空隙が低減された粒子であるため、充放電時の体積変化を効果的に抑制してサイクル特性の向上を図ることができる。   Since the silicon-based negative electrode active material of the present invention is a particle in which a silicon compound and conductive carbon are dispersed extremely uniformly and the voids are reduced, the volume change during charge / discharge is effectively suppressed. The cycle characteristics can be improved.

実施例1で得られたシリコン系負極活物質の粒子を示すSEM像である。2 is a SEM image showing particles of a silicon-based negative electrode active material obtained in Example 1.

以下、本発明について詳細に説明する。
本発明のシリコン系負極活物質は、ケイ素化合物及び導電性炭素を混合した後、さらに圧縮力及びせん断力を付加しながら混合する処理を経ることにより得られる。かかる処理を経ることにより、ケイ素化合物と導電性炭素とが均一に分散したまま堅固に凝集して粒子(以下、「複合体粒子」ともいう)を形成することにより、空隙が低減された複合体粒子を得ることができる。そのため、負極材料として用いた際に充放電時の体積変化を効果的に抑制するものと考えられ、得られる電池のサイクル特性を効果的に向上させることができる。また、導電性炭素を変形又は延展させながらケイ素化合物が呈する粒子(以下、「一次粒子」ともいう)の表面に付着させ、導電性炭素の層を形成させることもできる。圧縮力及びせん断力を付加しながら混合する処理は、周速25〜40m/sで回転するインペラを備える密閉容器を用いるのが好ましい。かかる容器内にケイ素化合物及び導電性炭素を投入し、容器を稼動させることにより、圧縮力及びせん断力を付加しながら混合する処理が可能となる。かかるインペラを備える密閉容器内では、インペラの回転によってこれらケイ素化合物及び導電性炭素が均一に混合されるとともに、インペラと容器内壁との間で圧縮力を付加されながらせん断力も付加されることとなる。インペラの周速は、得られる複合体粒子の空隙を低減して効果的にサイクル特性の向上を図る観点から、好ましくは25〜40m/sであり、より好ましくは27〜35m/sである。
Hereinafter, the present invention will be described in detail.
The silicon-based negative electrode active material of the present invention can be obtained by mixing a silicon compound and conductive carbon and then mixing them while applying compressive force and shearing force. Through this treatment, the silicon compound and the conductive carbon are uniformly agglomerated while being uniformly dispersed to form particles (hereinafter also referred to as “composite particles”), thereby reducing the voids. Particles can be obtained. Therefore, when used as a negative electrode material, it is considered that the volume change at the time of charging and discharging is effectively suppressed, and the cycle characteristics of the obtained battery can be effectively improved. Alternatively, a conductive carbon layer can be formed by adhering to the surface of particles (hereinafter also referred to as “primary particles”) exhibited by a silicon compound while deforming or extending the conductive carbon. It is preferable to use an airtight container provided with an impeller that rotates at a peripheral speed of 25 to 40 m / s for the process of mixing while applying a compressive force and a shearing force. By introducing a silicon compound and conductive carbon into such a container and operating the container, it is possible to perform a mixing process while applying a compressive force and a shearing force. In a closed container equipped with such an impeller, the silicon compound and conductive carbon are uniformly mixed by the rotation of the impeller, and a shearing force is also applied while a compressive force is applied between the impeller and the inner wall of the container. . The peripheral speed of the impeller is preferably 25 to 40 m / s, more preferably 27 to 35 m / s, from the viewpoint of effectively improving the cycle characteristics by reducing the voids of the obtained composite particles.

なお、得られる複合体粒子の均一性を高める観点、およびインペラを備える密閉容器内での処理時間を短縮化する観点から、かかる密閉容器内へケイ素化合物及び導電性炭素を投入する前に、予めこれらを混合してもよい。   In addition, from the viewpoint of increasing the uniformity of the obtained composite particles, and from the viewpoint of shortening the processing time in the closed container equipped with the impeller, before introducing the silicon compound and the conductive carbon into the closed container, These may be mixed.

このような圧縮力及びせん断力を付加しながら混合することのできる密閉容器を備える装置としては、高速せん断ミル、ブレード型混練機等が挙げられ、具体的には、例えば、微粒子複合化装置 ノビルタ(ホソカワミクロン社製)を好適に用いることができる。かかる装置を用いることにより、容易に所定の圧縮力とせん断力を付加しながらの混合処理を行うことができ、このような処理を施すのみで本発明のシリコン系負極活物質を得ることができる。
上記混合の処理条件としては、処理温度が、好ましくは5〜80℃、より好ましくは10〜50℃であり、処理時間が、好ましくは5〜90分、より好ましくは10〜60分である。処理雰囲気としては、特に限定されないが、不活性ガス雰囲気下、または還元ガス雰囲気下が好ましい。
Examples of the apparatus provided with a closed container that can be mixed while applying such compressive force and shearing force include a high-speed shear mill, a blade-type kneader, and the like. (Manufactured by Hosokawa Micron Corporation) can be preferably used. By using such an apparatus, it is possible to easily perform a mixing process while applying a predetermined compressive force and shearing force, and the silicon-based negative electrode active material of the present invention can be obtained only by performing such a process. .
As the processing conditions for the mixing, the processing temperature is preferably 5 to 80 ° C., more preferably 10 to 50 ° C., and the processing time is preferably 5 to 90 minutes, more preferably 10 to 60 minutes. The treatment atmosphere is not particularly limited, but is preferably an inert gas atmosphere or a reducing gas atmosphere.

上記密閉容器内に投入するケイ素化合物と導電性炭素との質量比は、体積変化を効果的に抑制してサイクル特性の向上を図る観点から、好ましくは97:3〜85:15であり、より好ましくは95:5〜88:12であり、さらに好ましくは93:7〜90:10である。   The mass ratio of the silicon compound and the conductive carbon charged into the closed container is preferably 97: 3 to 85:15 from the viewpoint of effectively suppressing the volume change and improving the cycle characteristics. Preferably it is 95: 5-88: 12, More preferably, it is 93: 7-90: 10.

なお、サイクル特性をより高める観点から、得られた複合体粒子を焼成してもよい。焼成条件は、不活性ガス雰囲気下又は還元条件下に400℃以上、好ましくは400〜800℃で10分〜3時間、好ましくは0.5〜1.5時間行うのが好ましい。   In addition, you may bake the obtained composite particle from a viewpoint of improving cycling characteristics more. The firing conditions are 400 ° C. or higher, preferably 400 to 800 ° C. for 10 minutes to 3 hours, preferably 0.5 to 1.5 hours under an inert gas atmosphere or reducing conditions.

上記ケイ素化合物は、予め原料を粉砕して得られる一次粒子であるのが好ましい。
用い得るケイ素化合物としては、一酸化ケイ素、二酸化ケイ素、マグネシウム等を含むケイ酸塩が挙げられる。これらは1種単独で用いてもよく、2種以上組み合わせて用いてもよい。なかでも、サイクル特性の向上を図る観点から、一酸化ケイ素が好ましい。なお、Aldrich Chemical社の市販品を用いることもできる。
The silicon compound is preferably primary particles obtained by pulverizing raw materials in advance.
Examples of silicon compounds that can be used include silicates containing silicon monoxide, silicon dioxide, magnesium and the like. These may be used alone or in combination of two or more. Of these, silicon monoxide is preferable from the viewpoint of improving cycle characteristics. A commercial product of Aldrich Chemical Co. can also be used.

また、原料を粉砕してケイ素化合物の一次粒子を得る方法としては、例えばJournal of Electroanalytical Chemistry 661((2011),p245−249)に記載の方法を用いることができる。   Moreover, as a method of pulverizing the raw material to obtain primary particles of the silicon compound, for example, the method described in Journal of Electrochemical Chemistry 661 ((2011), p245-249) can be used.

具体的には、例えば、まずAldrich Chemical社の市販品(325 mesh,99%)を粉体のまま混合・粉砕し、或いは水やエタノール等のアルコールを溶媒として用いて混合・粉砕すればよい。混合・粉砕する処理には、例えばボールミルやビーズミル等を用いることができる。次いで、乾燥することにより、原料となるケイ素化合物を得ることができる。   Specifically, for example, a commercially available product (325 mesh, 99%) of Aldrich Chemical may be first mixed and pulverized as it is, or mixed and pulverized using an alcohol such as water or ethanol as a solvent. For the mixing / pulverization treatment, for example, a ball mill or a bead mill can be used. Subsequently, the silicon compound used as a raw material can be obtained by drying.

ケイ素化合物が有する平均粒径Xは、複合体粒子としての均一性を高めてサイクル特定の向上を図る観点から、好ましくは20〜200nmであり、より好ましくは20〜150nmであり、さらに好ましくは20〜100nmである。なお、かかる平均粒径Xは、試料を溶媒によって均一分散させ、動的光散乱法の粒度分析計(ナノトラックUPA-EX150、日機装株式会社製)により測定される値を意味する。   The average particle diameter X of the silicon compound is preferably 20 to 200 nm, more preferably 20 to 150 nm, and still more preferably 20 from the viewpoint of improving uniformity as a composite particle to improve the cycle specification. ~ 100 nm. The average particle diameter X means a value measured by a dynamic light scattering particle size analyzer (Nanotrack UPA-EX150, manufactured by Nikkiso Co., Ltd.) after uniformly dispersing the sample with a solvent.

上記導電性炭素としては、カーボンブラックが好ましく、具体的には、例えば、アセチレンブラック、ケッチェンブラック、チャンネルブラック、ファーネスブラック、ランプブラック、サーマルブラック等が挙げられる。なかでも、良好な導電性を付与しつつサイクル特定の向上を図る観点から、アセチレンブラック、ケッチェンブラックが好ましい。また、これら導電性炭素の形状としては、ケイ素化合物の一次粒子の少なくとも一部の表面を導電性炭素からなる層で被覆させて得られる電池物性をより高める観点から、中空形状を呈するもの、又は空隙を含む形状を呈するものであるのが好ましい。   Carbon black is preferable as the conductive carbon, and specific examples include acetylene black, ketjen black, channel black, furnace black, lamp black, and thermal black. Of these, acetylene black and ketjen black are preferable from the viewpoint of improving the cycle specification while imparting good conductivity. Further, as the shape of these conductive carbons, from the viewpoint of further improving the physical properties of the battery obtained by coating at least a part of the surface of the primary particles of the silicon compound with a layer made of conductive carbon, It preferably exhibits a shape including voids.

また、本発明で用いる導電性炭素は、ケイ素化合物の一次粒子が有する平均粒径X以下の平均粒径Yを有するのが好ましい。導電性炭素がこのような平均粒径を有することにより、かかる導電性炭素がケイ素化合物の粒子と粒子の間隙に効率的に配置されて、空隙が低減された均一性の高い複合体粒子を得ることができ、体積変化を効果的に抑制することができる。   In addition, the conductive carbon used in the present invention preferably has an average particle size Y that is equal to or less than the average particle size X of the primary particles of the silicon compound. When the conductive carbon has such an average particle size, the conductive carbon is efficiently arranged in the gap between the silicon compound particles and the particles, and a highly uniform composite particle with reduced voids is obtained. And volume change can be effectively suppressed.

ケイ素化合物が有する平均粒径Xと導電性炭素が有する平均粒径Yとの比(X/Y)は、より効率的にケイ素化合物の粒子と粒子の間隙に配置される観点、及びサイクル特性の向上を図る観点から、好ましくは1〜20であり、より好ましくは1.5〜10である。また、導電性炭素が有する平均粒径Yは、同様の観点から、好ましくは10〜100nmであり、より好ましくは10〜50nmである。なお、かかる平均粒径Yは、上記ケイ素化合物の平均粒径Xと同様の方法により測定される値を意味する。   The ratio (X / Y) of the average particle diameter X possessed by the silicon compound and the average particle diameter Y possessed by the conductive carbon is such that it is more efficiently disposed in the gap between the silicon compound particles and the cycle characteristics. From the viewpoint of improving, it is preferably 1 to 20, and more preferably 1.5 to 10. Moreover, the average particle diameter Y which electroconductive carbon has becomes like this. Preferably it is 10-100 nm, More preferably, it is 10-50 nm. In addition, this average particle diameter Y means the value measured by the method similar to the average particle diameter X of the said silicon compound.

また、本発明のシリコン系負極活物質におけるケイ素化合物及び導電性炭素は、これらの均一性及び分散性を高める観点、及びサイクル特性の向上をより効果的に図る観点から、ケイ素化合物の一次粒子の少なくとも一部の表面を、導電性炭素からなる層が被覆してなるのが好ましい。導電性炭素からなる層は、一次粒子の少なくとも一部の表面を被覆していてもよく、一次粒子のほぼ全表面を被覆していてもよい。これにより、ケイ素化合物の一次粒子及び導電性炭素の各々が凝集するのを抑制することができ、導電性炭素がより緻密かつ均一に分散した複合体粒子であるシリコン系負極活物質が得られ、効果的に体積変化を抑制してサイクル特性の向上を図りつつ導電性をも高めることが可能となる。   Further, the silicon compound and the conductive carbon in the silicon-based negative electrode active material of the present invention are the primary particles of the silicon compound from the viewpoint of enhancing the uniformity and dispersibility thereof and improving the cycle characteristics more effectively. It is preferable that at least a part of the surface is covered with a layer made of conductive carbon. The layer made of conductive carbon may cover at least a part of the surface of the primary particles, or may cover almost the entire surface of the primary particles. Thereby, it is possible to suppress aggregation of the primary particles of the silicon compound and the conductive carbon, and a silicon-based negative electrode active material that is a composite particle in which the conductive carbon is more densely and uniformly dispersed is obtained. It is possible to increase the conductivity while effectively suppressing the volume change and improving the cycle characteristics.

導電性炭素からなる層の厚みは、好ましくは0.1〜5.0nmであり、より好ましくは0.5〜3.0nmである。   The thickness of the layer made of conductive carbon is preferably 0.1 to 5.0 nm, more preferably 0.5 to 3.0 nm.

また、本発明のシリコン系負極活物質が有する平均粒径Zは、得られるリチウムイオン電池において優れた電池物性を保持しつつ軽量化を図る観点から、5〜50μmであって、好ましくは5〜30μmであり、より好ましくは5〜20μmである。このように、本発明のシリコン系負極活物質は、均一に分散したケイ素化合物と導電性炭素とを含有しつつも微細な複合体粒子であるため、これを用いて負極を形成することにより、体積変化を有効に抑制してサイクル特性に優れたリチウムイオン電池を得ることができる。なお、かかる平均粒径Zは、上記平均粒径X及びYと同様の方法により測定される値を意味する。   Moreover, the average particle diameter Z which the silicon-type negative electrode active material of this invention has is 5-50 micrometers from a viewpoint which aims at weight reduction, maintaining the battery physical property which was excellent in the lithium ion battery obtained, Preferably it is 5-5. It is 30 micrometers, More preferably, it is 5-20 micrometers. Thus, since the silicon-based negative electrode active material of the present invention is a fine composite particle containing a uniformly dispersed silicon compound and conductive carbon, by using this to form a negative electrode, A lithium ion battery excellent in cycle characteristics can be obtained by effectively suppressing volume change. In addition, this average particle diameter Z means the value measured by the method similar to the said average particle diameter X and Y.

このようにして得られた本発明のシリコン系負極活物質を用いてリチウムイオン電池を製造する方法は特に限定されず、公知の方法をいずれも使用できる。例えば、かかるシリコン系負極活物質を結着剤や溶剤等の添加剤とともに混合して塗工液を得る。この際、必要に応じて、さらに導電助剤を添加して混合してもよい。かかる結着剤としては、特に限定されず、公知の剤をいずれも使用できる。具体的には、ポリテトラフルオロエチレン、ポリビニリデンフルオライド、ポリビニルクロライド、エチレンプロピレンジエンポリマー等が挙げられる。また、かかる導電助剤としては、特に限定されず、公知の剤をいずれも使用できる。具体的には、アセチレンブラック、ケッチェンブラック、天然黒鉛、人工黒鉛、繊維状炭素等が挙げられる。次いで、かかる塗工液をアルミ箔等の負極集電体上に塗布し、乾燥させて負極とする。   The method for producing a lithium ion battery using the silicon-based negative electrode active material of the present invention thus obtained is not particularly limited, and any known method can be used. For example, such a silicon-based negative electrode active material is mixed with additives such as a binder and a solvent to obtain a coating liquid. At this time, if necessary, a conductive additive may be further added and mixed. The binder is not particularly limited, and any known agent can be used. Specific examples include polytetrafluoroethylene, polyvinylidene fluoride, polyvinyl chloride, and ethylene propylene diene polymer. Moreover, it does not specifically limit as this conductive support agent, Any well-known agent can be used. Specific examples include acetylene black, ketjen black, natural graphite, artificial graphite, and fibrous carbon. Next, this coating solution is applied onto a negative electrode current collector such as an aluminum foil and dried to form a negative electrode.

本発明のシリコン系負極活物質は、リチウムイオン電池の負極として非常に優れた放電容量を発揮する点で有用である。かかる負極を適用できるリチウム電池としては、正極と負極と電解液とセパレータを必須構成とするものであれば特に限定されない。   The silicon-based negative electrode active material of the present invention is useful in that it exhibits a very excellent discharge capacity as a negative electrode of a lithium ion battery. A lithium battery to which such a negative electrode can be applied is not particularly limited as long as it has a positive electrode, a negative electrode, an electrolytic solution, and a separator as essential components.

ここで、正極については、リチウムイオンを充電時には放出し、かつ放電時には吸蔵することができれば、その材料構成で特に限定されるものではなく、公知の材料構成のものを用いることができる。例えば、原料を水熱反応させることにより得られる各種オリビン型化合物を好適に用いることが好ましい。   Here, as for the positive electrode, as long as lithium ions can be released during charging and occluded during discharging, the material configuration is not particularly limited, and a known material configuration can be used. For example, it is preferable to suitably use various olivine compounds obtained by hydrothermal reaction of the raw materials.

電解液は、有機溶媒に支持塩を溶解させたものである。有機溶媒は、通常リチウムイオン二次電池の電解液の用いられる有機溶媒であれば特に限定されるものではなく、例えば、カーボネート類、ハロゲン化炭化水素、エーテル類、ケトン類、ニトリル類、ラクトン類、オキソラン化合物等を用いることができる。   The electrolytic solution is obtained by dissolving a supporting salt in an organic solvent. The organic solvent is not particularly limited as long as it is an organic solvent that is usually used for an electrolyte solution of a lithium ion secondary battery. For example, carbonates, halogenated hydrocarbons, ethers, ketones, nitriles, lactones An oxolane compound or the like can be used.

支持塩は、その種類が特に限定されるものではないが、LiPF6、LiBF4、LiClO4及びLiAsF6から選ばれる無機塩、該無機塩の誘導体、LiSO3CF3、LiC(SO3CF32及びLiN(SO3CF32、LiN(SO2252及びLiN(SO2CF3)(SO249)から選ばれる有機塩、並びに該有機塩の誘導体の少なくとも1種であることが好ましい。 The type of the supporting salt is not particularly limited, but an inorganic salt selected from LiPF 6 , LiBF 4 , LiClO 4 and LiAsF 6 , a derivative of the inorganic salt, LiSO 3 CF 3 , LiC (SO 3 CF 3 ) 2 and LiN (SO 3 CF 3 ) 2 , LiN (SO 2 C 2 F 5 ) 2 and LiN (SO 2 CF 3 ) (SO 2 C 4 F 9 ), and organic salt derivatives It is preferable that it is at least 1 sort of.

セパレータは、正極及び負極を電気的に絶縁し、電解液を保持する役割を果たすものである。たとえば、多孔性合成樹脂膜、特にポリオレフィン系高分子(ポリエチレン、ポリプロピレン)の多孔膜を用いればよい。   The separator plays a role of electrically insulating the positive electrode and the negative electrode and holding the electrolytic solution. For example, a porous synthetic resin film, particularly a polyolefin polymer (polyethylene, polypropylene) porous film may be used.

以下、本発明について、実施例に基づき具体的に説明するが、本発明はこれら実施例に限定されるものではない。
[実施例1]
ケイ素化合物の一次粒子として、SiO(Alrdich Chemical社製)を用い、これを93.0gとケッチェンブラック(ライオン社製、平均粒径30nm)7.0gとを予め混合して混合物を得て、得られた混合物を微粒子複合化装置 ノビルタ(ホソカワミクロン社製)に投入し、25〜35℃で30分間混合して、複合体粒子Aを得た。得られた複合体粒子Aの平均粒径は20μmであった。
得られた複合体粒子AのSEM像を図1に示す。
EXAMPLES Hereinafter, although this invention is demonstrated concretely based on an Example, this invention is not limited to these Examples.
[Example 1]
As the primary particles of the silicon compound, SiO (manufactured by Alrdich Chemical) was used, and 93.0 g of this was mixed with 7.0 g of Ketjen Black (manufactured by Lion Corporation, average particle size of 30 nm) to obtain a mixture, The obtained mixture was put into a fine particle composite apparatus Nobilta (manufactured by Hosokawa Micron Corporation) and mixed at 25 to 35 ° C. for 30 minutes to obtain composite particles A. The average particle size of the obtained composite particles A was 20 μm.
The SEM image of the obtained composite particle A is shown in FIG.

[比較例1]
実施例1と同様のケイ素化合物を用い、これを2.63g、ケッチェンブラック(ライオン社製、平均粒径30nm)0.09g及び分散安定化剤(カルボキシメチルセルロース、ダイセルファインケム社製)を加えた水30gを、遊星ボールミル(遊星型ボールミルP−5、フリッチュ社製)のジルコニア製ポットにジルコニア製ボールとともに投入し、25〜70℃で240分間混合して乾燥し、複合体粒子Bを得た。得られた複合体粒子Bの平均粒径は、2μmであった。
[Comparative Example 1]
Using the same silicon compound as in Example 1, 2.63 g of this, Ketjen Black (manufactured by Lion, average particle size 30 nm) 0.09 g, and a dispersion stabilizer (carboxymethylcellulose, manufactured by Daicel Finechem) were added. 30 g of water was put into a zirconia pot of a planetary ball mill (planet type ball mill P-5, manufactured by Fritsch) together with zirconia balls, mixed for 240 minutes at 25 to 70 ° C., and dried to obtain composite particles B . The average particle size of the obtained composite particles B was 2 μm.

[試験例1]
実施例1及び比較例1で得られた複合体粒子を用い、リチウムイオン二次電池の負極を作製した。実施例1及び比較例1で得られた複合体、ケッチェンブラック(導電剤)、ポリフッ化ビニリデン(粘結剤)を重量比70:15:15の配合割合で混合し、これにN−メチル−2−ピロリドンを加えて充分混練し、負極スラリーを調製した。負極スラリーを厚さ20μmの銅箔からなる集電体に塗工機を用いて塗布し、80℃で12時間の真空乾燥を行った。その後、φ14mmの円盤状に打ち抜いてハンドプレスを用いて16MPaで2分間プレスし、負極とした。
[Test Example 1]
Using the composite particles obtained in Example 1 and Comparative Example 1, a negative electrode of a lithium ion secondary battery was produced. The composite obtained in Example 1 and Comparative Example 1, ketjen black (conductive agent), and polyvinylidene fluoride (binding agent) were mixed at a weight ratio of 70:15:15, and this was mixed with N-methyl. -2-Pyrrolidone was added and sufficiently kneaded to prepare a negative electrode slurry. The negative electrode slurry was applied to a current collector made of a copper foil having a thickness of 20 μm using a coating machine, and vacuum dried at 80 ° C. for 12 hours. Thereafter, it was punched into a disk shape of φ14 mm and pressed at 16 MPa for 2 minutes using a hand press to obtain a negative electrode.

次いで、上記の負極を用いてコイン型リチウムイオン二次電池を構築した。正極には、リチウム箔を用いた。電解液には、エチレンカーボネート及びエチルメチルカーボネートを体積比1:1の割合で混合した混合溶媒に、LIPF6を1mol/lの濃度で溶解したものを用いた。セパレータには、ポリプロピレンなどの高分子多孔フィルムなど、公知のものを用いた。これらの電池部品を露点が−50℃以下の雰囲気で常法により組み込み収容し、コイン型リチウム二次電池(CR−2032)を製造した。 Next, a coin-type lithium ion secondary battery was constructed using the negative electrode. Lithium foil was used for the positive electrode. As the electrolytic solution, a solution obtained by dissolving LIPF 6 at a concentration of 1 mol / l in a mixed solvent in which ethylene carbonate and ethyl methyl carbonate were mixed at a volume ratio of 1: 1 was used. As the separator, a known one such as a polymer porous film such as polypropylene was used. These battery components were assembled and housed in a conventional manner in an atmosphere with a dew point of −50 ° C. or lower to produce a coin-type lithium secondary battery (CR-2032).

製造したリチウムイオン二次電池を用いて定電流密度での充放電試験を行い、充放電容量を測定した。このときの充電条件は電流0.1CA(360mA/g)、電圧3.0Vの定電流定電圧充電とし、放電条件は電流0.1CA、終止電圧0.005Vの定電流放電とした。温度は全て30℃とした。かかる充放電試験を2サイクルから100サイクルまで行い、2サイクル目及び100サイクル目の充放電容量を測定し、下記式(A)にしたがって容量維持率(%)を求めた。
容量維持率(%)
=(100サイクル目の充放電容量/2サイクル目の充放電容量)×100・・(A)
容量維持率の算出結果を表1に示す。
A charge / discharge test at a constant current density was performed using the manufactured lithium ion secondary battery, and a charge / discharge capacity was measured. The charging conditions at this time were constant current and constant voltage charging with a current of 0.1 CA (360 mA / g) and a voltage of 3.0 V, and the discharging conditions were constant current discharging with a current of 0.1 CA and a final voltage of 0.005 V. All temperatures were 30 ° C. This charge / discharge test was performed from 2 cycles to 100 cycles, the charge / discharge capacities of the second and 100th cycles were measured, and the capacity retention rate (%) was determined according to the following formula (A).
Capacity maintenance rate (%)
= (100th cycle charge / discharge capacity / second cycle charge / discharge capacity) x 100 (A)
Table 1 shows the calculation results of the capacity retention rate.

上記結果より、実施例1で得られた複合体粒子Aは、比較例1で得られた複合体粒子Bに比して、極めて均一性が高い上に空隙が低減されてなるため、体積変化を効果的に抑制して優れたサイクル特性を示すことがわかる。一方、比較例1で得られた複合体粒子Bは、微細な粒子ではあるものの、十分な量の導電性炭素を含有していない上に空隙が多いために体積変化を十分に抑制できず、サイクル特性の低下を招いたものと考えられる。   From the above results, the composite particle A obtained in Example 1 has a very high uniformity and reduced voids compared to the composite particle B obtained in Comparative Example 1, and thus the volume change. It can be seen that excellent cycle characteristics are exhibited by effectively suppressing the above. On the other hand, although the composite particle B obtained in Comparative Example 1 is a fine particle, it does not contain a sufficient amount of conductive carbon, and because there are many voids, the volume change cannot be sufficiently suppressed, It is thought that the cycle characteristics were degraded.

Claims (2)

一酸化ケイ素及びカーボンブラックを93:7〜90:10の質量比で混合した後、さらに圧縮力及びせん断力を付加しながら混合する処理を、温度10〜50℃及び時間10〜60分にて、周速25〜40m/sで回転するインペラを備える密閉容器内で行うシリコン系負極活物質の製造方法。   After mixing silicon monoxide and carbon black at a mass ratio of 93: 7 to 90:10, a process of mixing while further applying compressive force and shearing force is performed at a temperature of 10 to 50 ° C. and a time of 10 to 60 minutes. The manufacturing method of the silicon-type negative electrode active material performed in an airtight container provided with the impeller rotated with a peripheral speed of 25-40 m / s. 一酸化ケイ素及びカーボンブラックを混合する前に、予めケイ素化合物を粉砕する請求項に記載のシリコン系負極活物質の製造方法。 The method for producing a silicon-based negative electrode active material according to claim 1 , wherein the silicon compound is pulverized in advance before mixing silicon monoxide and carbon black.
JP2013130675A 2013-06-21 2013-06-21 Silicon-based negative electrode active material Expired - Fee Related JP5809200B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2013130675A JP5809200B2 (en) 2013-06-21 2013-06-21 Silicon-based negative electrode active material

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2013130675A JP5809200B2 (en) 2013-06-21 2013-06-21 Silicon-based negative electrode active material

Publications (2)

Publication Number Publication Date
JP2015005445A JP2015005445A (en) 2015-01-08
JP5809200B2 true JP5809200B2 (en) 2015-11-10

Family

ID=52301175

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2013130675A Expired - Fee Related JP5809200B2 (en) 2013-06-21 2013-06-21 Silicon-based negative electrode active material

Country Status (1)

Country Link
JP (1) JP5809200B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088248A1 (en) 2016-11-11 2018-05-17 昭和電工株式会社 Negative electrode material and lithium-ion battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4752992B2 (en) * 2001-06-15 2011-08-17 信越化学工業株式会社 Anode material for non-aqueous electrolyte secondary battery
JP2004055505A (en) * 2002-07-18 2004-02-19 Masayuki Yoshio Lithium secondary battery and negative electrode material therefor
JP2004103405A (en) * 2002-09-10 2004-04-02 Sumitomo Bakelite Co Ltd Raw material for carbonaceous material, silicon-containing carbonaceous material, negative electrode material of secondary battery, and lithium secondary battery
JP2004185975A (en) * 2002-12-03 2004-07-02 Samsung Yokohama Research Institute Co Ltd Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method
JP4747607B2 (en) * 2004-02-24 2011-08-17 住友金属工業株式会社 Anode material for non-aqueous secondary battery and method of manufacturing

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018088248A1 (en) 2016-11-11 2018-05-17 昭和電工株式会社 Negative electrode material and lithium-ion battery

Also Published As

Publication number Publication date
JP2015005445A (en) 2015-01-08

Similar Documents

Publication Publication Date Title
Xu et al. Graphite-based lithium ion battery with ultrafast charging and discharging and excellent low temperature performance
Wu et al. Solution‐Based Processing of Graphene–Li 2 S Composite Cathodes for Lithium‐Ion and Lithium–Sulfur Batteries
US9673449B2 (en) Silicon slurry for anode active materials and carbon-silicon complex
US20130337334A1 (en) Electrode material having a high capacity
JP6511726B2 (en) Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery and lithium ion secondary battery
Shi et al. Si nanoparticles adhering to a nitrogen-rich porous carbon framework and its application as a lithium-ion battery anode material
JP5478693B2 (en) Positive electrode active material for secondary battery and method for producing the same
JP2014232728A (en) Negative electrode active material for lithium secondary battery, process of manufacturing the same, and lithium secondary battery containing the same
US20180062167A1 (en) Negative electrode material for secondary battery, method for preparing the same, and battery containing the same
TWI644859B (en) Manufacturing method of carbonaceous material for non-aqueous electrolyte secondary battery
EP3179543B1 (en) Carbonaceous material for negative electrode of non-aqueous electrolyte secondary battery
JP2015155366A (en) Mechanical modification method by ball milling with natural graphite and modified natural graphite-based negative electrode material
KR20190061013A (en) Anode slurry for lithium ion battery
JP2013131366A (en) Anode active material for metal ion battery
KR101705234B1 (en) Negative electrode active material for rechargeable lithium battery, method for manufacturing the same, and rechargeable lithium battery including the same
JP5386802B2 (en) Graphite powder and method for producing the same
JP6042511B2 (en) Positive electrode active material for secondary battery and method for producing the same
KR102241403B1 (en) Electrode for an electric energy storage battery comprising a graphite/silicon/carbon fibre composite material
Ponnada et al. Improved performance of lithium–sulfur batteries by employing a sulfonated carbon nanoparticle-modified glass fiber separator
JPWO2016140368A1 (en) Method for producing mixed negative electrode material for nonaqueous electrolyte secondary battery and mixed negative electrode material for nonaqueous electrolyte secondary battery obtained by the production method
JP5836461B1 (en) Positive electrode material for lithium secondary battery
WO2015141288A1 (en) Positive electrode for lithium ion secondary batteries, and lithium ion secondary battery
KR102176590B1 (en) Method of preparing anode active material for rechargeable lithium battery and rechargeable lithium battery
JP6297285B2 (en) Activated carbon for hybrid capacitor and method for producing the same
JP6026359B2 (en) Lithium titanate negative electrode active material

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20150312

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20150312

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20150402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150512

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150623

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150728

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150819

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150908

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20150910

R150 Certificate of patent or registration of utility model

Ref document number: 5809200

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees