JP2004185975A - Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method - Google Patents

Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method Download PDF

Info

Publication number
JP2004185975A
JP2004185975A JP2002351278A JP2002351278A JP2004185975A JP 2004185975 A JP2004185975 A JP 2004185975A JP 2002351278 A JP2002351278 A JP 2002351278A JP 2002351278 A JP2002351278 A JP 2002351278A JP 2004185975 A JP2004185975 A JP 2004185975A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
metal
ion secondary
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2002351278A
Other languages
Japanese (ja)
Inventor
Norimune Yamazaki
崎 典 宗 山
Hisafumi Kawamura
村 寿 文 河
Toshio Tamaki
木 敏 夫 玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung R&D Institute Japan Co Ltd
Original Assignee
Samsung Yokohama Research Institute
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung Yokohama Research Institute filed Critical Samsung Yokohama Research Institute
Priority to JP2002351278A priority Critical patent/JP2004185975A/en
Publication of JP2004185975A publication Critical patent/JP2004185975A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a compound carbon material for a lithium secondary battery negative electrode and its manufacturing method having a large charge and discharge capacity, high initial charge and discharge efficiency and an excellent charge and discharge cycle property, and also, provide a lithium secondary battery negative electrode and a lithium secondary battery equipped with the above negative electrode material. <P>SOLUTION: The compound carbon material for a lithium ion secondary battery negative electrode has a three-layer structure composed of metal or metal compound particles, capable of storing and discharging lithium on a graphite particle surface by a mechanochemical treatment, fixed on the surface of graphite particles, and a carbon layer formed on the surface of the above. By the manufacturing method of the above, the lithium secondary battery negative electrode equipped with the compound carbon material for the lithium ion secondary battery, and the lithium secondary battery can be obtained. By this, the contact between a low-conductivity metal or metal compound and graphite particles can be maintained in a good condition. Since the graphite particles and the metal or the metal compound are difficult to be separated, the conductivity can be stably kept. <P>COPYRIGHT: (C)2004,JPO&NCIPI

Description

【0001】
【発明の属する技術分野】
本発明は、リチウムイオン二次電池負極用複合炭素材料およびその製造方法に関し、さらに詳しくは、黒鉛粒子表面に、リチウムを吸蔵・放出可能な金属もしくは金属化合物粒子をメカノケミカル処理により固定化し、さらにその表面に炭素層を形成してなる3層構造を有するリチウムイオン二次電池負極用複合炭素材料およびその製造方法に関する。
【0002】
【従来の技術】
近年、小型軽量化および高性能化が進行している携帯電子機器のニーズに応えるため、リチウムイオン二次電池の高容量化が急務となっている。ところで、リチウムイオン二次電池の負極活物質の一つである黒鉛は、372mAh/gの理論電気容量を有するが、これよりも高容量である負極活物質を得ようとするためには、非晶質炭素材料や、あるいは炭素材料に代わる新規材料の開発を進める必要がある。黒鉛に代わる新規材料としては、従来からケイ素やその化合物が検討されている。ケイ素やその化合物は、ケイ素自体がリチウムと合金を形成し、黒鉛よりも大きな電気容量が得られることが知られている。そこで最近では、黒鉛にケイ素化合物の粉末を単に混合したものや、シランカップリング剤などを用いて黒鉛表面にケイ素化合物などを化学的に固定したものが提案されている。
【0003】
しかしながら、黒鉛にケイ素化合物などを単に混合したものを負極用材料として用いた場合には、黒鉛とケイ素化合物とが必ずしも密着していないため、充放電サイクルの進行によりケイ素化合物が膨張・収縮した際にケイ素化合物が黒鉛から遊離してしまい、このケイ素化合物自体の電子伝導性が低いため、ケイ素化合物が負極活物質として十分に利用されないという問題点があった。また、黒鉛にケイ素化合物をシランカップリング剤などで化学的に結合させたものでは、充放電サイクルが進行してもケイ素化合物と黒鉛とが密着したままであるため、ケイ素化合物も負極活物質として十分に機能するが、負極用材料の製造の際にシランカップリング処理が必要であり、このため安定した品質の負極用材料が容易に得られるまでには至っていないという問題点を有していた。
【0004】
また、リチウムイオン二次電池の負極用材料としては、黒鉛の理論容量を超えるものとして、炭素材料と、上記ケイ素またはケイ素以外のリチウムと合金化可能な金属または合金との複合材料も検討されている。これらのリチウムと合金化可能な金属または合金を含む炭素負極用材料としては、(1)金属または合金と炭素材または黒鉛材とを単に混合したもの、(2)その改良法として炭素前駆体となるピッチ・樹脂などと金属または合金とを溶融混練した後、粉砕・炭化して用いる方法などが提案されているが、上記と同様、充放電に伴いリチウム合金化金属が大きく膨張するため粒子の破壊が起き易く、サイクル劣化が起きるという問題点を有する。
【0005】
さらに、黒鉛粒子にケイ素微粒子と樹脂とを湿式にて混合し、黒鉛粒子の表面にケイ素微粒子と樹脂被膜とが付着した負極用材料が提案されている。(たとえば、特開2002−8652号公報(特許文献1)など)
しかしながら、このような方法で製造された負極用材料は、ケイ素粒子が核となる黒鉛粒子に必ずしも均一に付着しない;樹脂から形成される炭素層の厚みが必ずしも十分ではなく充放電に伴うケイ素粒子の膨張・収縮によりケイ素粒子が黒鉛粒子から剥離もしくは遊離してサイクル劣化を生ずる;湿式混合を行うため溶剤の除去・乾燥などのコストがかかるなどの問題点を有していた。
【0006】
【特許文献1】
特開2002−8652号公報
【0007】
【発明が解決しようとする課題】
本発明は、上記事情に鑑みてなされたものであって、充放電容量が大きく、初期充放電効率が高く、かつ充放電サイクル特性に優れたリチウム二次電池負極用複合炭素材料およびその製造方法を提供し、また、このような負極用材料を具備してなるリチウム二次電池負極およびリチウム二次電池を提供することを課題とする。
【0008】
【課題を解決するための手段】
本発明者らは、上記課題を解決するために、種々の研究を重ねた結果、黒鉛粒子表面に、リチウムを吸蔵・放出可能な金属もしくは金属化合物粒子をメカノケミカル処理により固定化し、さらにその表面に炭素層を形成してなる3層構造とすることにより、充放電容量が大きく、初期充放電効率が高く、かつ充放電サイクル特性に優れるリチウム二次電池負極用複合炭素材料が得られることを見出し、本発明を完成するに至ったものである。
【0009】
すなわち、本発明の第1の発明によれば、黒鉛粒子表面に、リチウムを吸蔵・放出可能な金属もしくは金属化合物粒子をメカノケミカル処理により固定化し、さらにその表面に炭素層を形成してなる3層構造を有するリチウムイオン二次電池負極用複合炭素材料が提供される。
また、本発明の第2の発明によれば、第1の発明において、上記黒鉛粒子が、異方性(メソフェーズ)ピッチを原料とした炭素繊維ミルドまたは石油系コークスを黒鉛化した黒鉛粒子であるリチウムイオン二次電池負極用複合炭素材料が提供される。
【0010】
また、本発明の第3の発明によれば、第1または第2の発明において、上記メカノケミカル処理により固定化される金属もしくは金属化合物粒子の平均粒径が、上記黒鉛粒子の平均粒径に対し、10分の1以下であるリチウムイオン二次電池負極用複合炭素材料が提供される。
また、本発明の第4の発明によれば、第1ないし第3のいずれかの発明において、上記炭素層が、異方性(メソフェーズ)ピッチまたは等方性ピッチを原料とした炭化物層であるリチウムイオン二次電池負極用複合炭素材料が提供される。
【0011】
また、本発明の第5の発明によれば、第1ないし第4のいずれかの発明において、上記金属もしくは金属化合物が、ケイ素もしくはスズまたはそれらと他の金属との混合物あるいは合金を含む金属化合物であるリチウムイオン二次電池負極用複合炭素材料が提供される。
さらに、本発明の第6の発明によれば、黒鉛粒子表面に、リチウムを吸蔵・放出可能な金属もしくは金属化合物粒子を、乾式法にて機械的衝撃力を用いるメカノケミカル処理により固定化し、さらにその表面に炭素層を形成するリチウムイオン二次電池負極用複合炭素材料の製造方法が提供される。
【0012】
また、本発明の第7の発明によれば、第1ないし第5のいずれかの発明におけるリチウムイオン二次電池負極用複合炭素材料を用いるリチウムイオン二次電池負極が提供される。
さらに、本発明の第8の発明によれば、第7の発明におけるリチウムイオン二次電池負極を用いるリチウムイオン二次電池が提供される。
【0013】
【発明の実施の形態】
以下に本発明のリチウムイオン二次電池負極用複合炭素材料およびその製造方法について詳細に説明する。
(I)リチウムイオン二次電池負極用複合炭素材料
(1)黒鉛粒子
本発明のリチウムイオン二次電池負極用複合炭素材料の核として使用する黒鉛粒子としては、天然黒鉛、人造黒鉛などを挙げることができる。また、該黒鉛粒子として、ピッチ系炭素繊維、コークスなどを黒鉛化したものを用いてもよく、さらに、ホウ素化合物などの黒鉛化触媒の存在下にて黒鉛化した黒鉛粒子を用いることもできる。
【0014】
この中、特に、異方性(メソフェーズ)ピッチ系炭素繊維ミルドまたは石油系コークスをホウ素化合物などの黒鉛化触媒の存在下にて、黒鉛化した黒鉛粒子を使用することが好ましい。
本発明の黒鉛粒子として好ましく用いられる異方性(メソフェーズ)ピッチ系炭素繊維ミルドについて説明する。
【0015】
異方性(メソフェーズ)ピッチ系炭素繊維ミルド
本発明において用いられる異方性(メソフェーズ)ピッチ系炭素繊維ミルドは、以下のようにして製造される。
炭素繊維ミルドの原料は、石油系ピッチまたは石炭系ピッチであって、光学的異方性ピッチ、すなわちメソフェーズピッチを用いる。メソフェーズピッチとしては、メソフェーズ含有量100%のものを用いるのが好ましいが、紡糸可能であるならば、特に限定されるものではない。
【0016】
原料ピッチを溶融紡糸する方法としては、特に限定されるものではなく、メルトスピニング、メルトブロー、遠心紡糸、過流紡糸など種々の方法を使用することができるが、紡糸時の生産性や得られる繊維の品質から、メルトブロー法を用いることが好ましい。メルトブロー時の紡糸孔の直径は、0.1mm以上0.5mm以下、好ましくは0.15mm以上0.3mm以下である。紡糸孔の直径が上記範囲であれば、紡糸孔の目詰まりが生じ難く、加えて、紡糸ノズルの製作が容易である。
【0017】
また、上記直径範囲の紡糸孔にて紡糸を行うと、繊維径が4μm以上25μm以下の繊維が得られ、繊維径のバラツキが少ないため品質管理上好ましい。さらに、繊維径がこの範囲であれば、後述の炭素繊維のミルド化時および黒鉛化処理時の体積減少によっても、所望の平均粒径を有する炭素繊維ミルドを得ることができる。なお、炭素繊維ミルドとは、一般的に、繊維長が1mm以下の長さに粉砕されたものの集合体を指し、たとえば長さが1〜25mmである炭素繊維チョップドストランドとは区別されるものである。
【0018】
紡糸速度は、生産性の面から毎分500m以上、好ましくは毎分2000m以上である。
紡糸温度は、原料ピッチにより幾分変化するが、原料ピッチの軟化点以上でピッチが変質しない温度以下であればよく、通常、300℃以上400℃以下、好ましくは300℃以上380℃以下である。
【0019】
また、メルトブロー法は、数十ポイズ以下の低粘度で紡糸し、かつ高速冷却することにより黒鉛層面が繊維軸に平行に配列し易くなる利点も有する。原料ピッチは、上記紡糸温度との関係から軟化点が低く、また不融化反応速度の大きいものが、製造コストおよび安定性の面から有利である。このことから、原料ピッチの軟化点は、230℃以上350℃以下、好ましくは250℃以上310℃以下であることが望ましい。
【0020】
紡糸後のピッチ繊維は、常法により不融化処理を行う。不融化処理方法としては、特に限定されるものではないが、たとえば二酸化窒素や酸素などの酸化性ガス雰囲気中で加熱処理する方法、硝酸やクロム酸などの酸化性水溶液中で処理する方法、さらには、光やγ線などにより処理する方法などを使用することが可能である。より簡便な不融化方法は、空気中で加熱する方法であり、原料により若干異なるものの平均昇温速度3℃/分以上、好ましくは5℃/分以上にて、350℃程度まで昇温させながら加熱処理を行う。
【0021】
不融化処理後のピッチ繊維は、次いで粉砕処理(ミルド化)を行う。この際、不融化処理後のピッチ繊維を、1,500℃以下、好ましくは250℃以上1,500℃以下、より好ましくは500℃以上900℃以下の温度で、不活性ガス中、軽度に炭化した後、ミルド化することも可能である。
このような温度で軽度に炭化した後ミルド化すると、ミルド化後の繊維の縦割れが比較的防げることと、ミルド化時に、新たに表面に露出した黒鉛層面が、より高温での黒鉛化処理時に縮重合・環化反応が進み易くなる傾向があり、その表面の活性度が低下し電解液の分解を阻止する効果があることにより有利である。
【0022】
該ミルド化方法としては、ビクトリーミル、ジェットミル、高速回転ミルなどを用いることが有効である。また、ミルド化には、ヘンシェルミキサーやボールミル、擂潰機などを用いる方法もあるが、これらの方法によると繊維の直径方向への加圧力が働き、繊維軸方向への縦割れの発生が多くなるので好ましくない。また、ミルド化に長時間を要し適切なミルド化方法とは言い難い。ミルド化を効率よく行うためには、たとえばブレードを取付けたローターを高速で回転することにより、繊維を寸断する方法が適切である。繊維長は、ローターの回転数、ブレードの角度などを調整することによりコントロールすることが可能である。
【0023】
ミルド化においては、レーザー回折方式の測定による平均粒径にて、10〜100μm程度となるように粉砕する。
本発明の黒鉛粒子は、上記で得られた炭素繊維ミルドまたは石油系コークスを用いて、好ましくはホウ素化合物の存在下で黒鉛化処理を行う。以下に黒鉛化処理について説明する。
【0024】
黒鉛化処理
本発明の黒鉛粒子は、異方性(メソフェーズ)ピッチ系炭素繊維ミルドまたは石油系コークスとホウ素化合物とを混合し、窒素雰囲気下にて黒鉛化処理を行って製造することが望ましい。
ホウ素化合物の添加方法としては、通常、固体のホウ素化合物を直接添加し必要に応じて均一に混合する方法、ホウ素化合物を溶媒溶液として浸漬する方法などが挙げられるが、特に限定されるものではない。また、原料ピッチの段階で、ホウ素化合物を添加することも可能である。ホウ素化合物の添加量は、黒鉛化処理される材料に対し、ホウ素として15重量%以下、好ましくは0.5〜5重量%である。この範囲の添加量で黒鉛化処理を行うと、黒鉛化の効率が高くコスト面からも好ましい。
【0025】
ホウ素化合物としては、ホウ素単体の他に、炭化ホウ素(BC)、塩化ホウ素、ホウ酸、酸化ホウ素、ホウ酸ナトリウム、ホウ酸カリウム、ホウ酸銅、ホウ酸ニッケルなどが挙げられるが、特に限定されるものではない。
溶媒溶液とするための溶媒としては、特に限定されるものではないが、たとえば、水、メタノール、グリセリン、アセトンなどが挙げられ、使用するホウ素化合物に合わせて、適宜選択すればよい。また、ホウ素化合物を固体で使用する場合には、ミルドなどと均一に混合するために、平均粒径500μm以下、好ましくは200μm以下のホウ素化合物を用いることが好ましい。
【0026】
本発明の黒鉛粒子は、炭素繊維ミルドなどを高度に黒鉛化することが重要である。このためには、炭素繊維ミルドなどをホウ素化合物と混合し、窒素雰囲気下にて2,200℃以上、好ましくは2,400℃以上の温度にて黒鉛化処理を行うことが望ましい。
また、黒鉛化処理時間は、1〜20時間程度である。
【0027】
ホウ素化合物の作用原理は不明であるが、ホウ素化合物の融点(ホウ素の融点は、2,080℃、炭化ホウ素の融点は、2,450℃)近辺以上の温度で炭素繊維ミルドなどの黒鉛化処理を行うと、黒鉛化をより促進させることができ、さらに得られた黒鉛化炭素繊維ミルドなどを電池負極用材料として用いると、充放電容量を増加させるなどの効果を得ることができる。
【0028】
また、黒鉛化処理は、商業ベースでの黒鉛材の大量生産に好ましい黒鉛化方法を適宜選択して行うことができ、たとえばアチソン炉を用いて行うことができる。
黒鉛粒子性状
上記のようにして製造された黒鉛粒子は、レーザー回折方式による測定にて、5〜50μm、好ましくは10〜50μm、より好ましくは10〜30μmの平均粒径を有する。本発明の黒鉛粒子が、上記範囲の平均粒径であると、工業的に要求される負極塗工電極の性状(塗工性、塗工電極の厚み均一性、塗工電極密度など)のバランスの観点より好ましい。
【0029】
また、上記のようにして製造された本発明の黒鉛粒子の構造は、X線回折による黒鉛層間距離(d002)が0.338nm以下、好ましくは0.336nm以下、かつ(101)面の回折ピークと(100)面の回折ピークとの比(P101/P100)が1.2以上である。これらは、それぞれ黒鉛材における黒鉛化の度合いを表す指標であり、これらを満足することにより電池の性能が向上する。
【0030】
本発明においてX線回折は、CukαをX線源、標準物質に高純度シリコンを使用し、黒鉛粒子に対し、回折パターンを測定するものである。そして、その(002)面の回折パターンのピーク位置、半値幅から、黒鉛層間距離(d002)を学振法に基づいて算出する。
また、ピーク比(P101/P100)は、得られた回折線図にベースラインを引き、このベースラインから(101)面(2θ≒44.5)および(100)面(2θ≒42.5)の各ピークの高さを測定し、(101)面の回折ピーク高さを(100)面の回折ピーク高さで除して求める。
(2)金属もしくは金属化合物粒子
本発明のリチウムイオン二次電池負極用複合炭素材料においては、上記のようにして製造された黒鉛粒子表面に、リチウムを吸蔵・放出可能な金属もしくは金属化合物粒子をメカノケミカル処理により固定化する。
【0031】
上記金属としては、Ag,Zn,Al,Ga,In,Si,Ge,Sn,Pbなどが挙げられ、また金属化合物としては、たとえば、SnO,SnO,SiO,SiOなどの金属酸化物およびSiとB,C,Mg,Al,Fe,Co,Ni,In,Snなどとの金属ケイ素化合物などが挙げられる。
この中、好ましくはAg,Zn,Al,Si,Ge,Sn,Pbもしくはその合金を含む金属化合物、より好ましくはSi,Snもしくはその合金を含む金属化合物、特に好ましくはSiもしくはその合金を含む金属化合物である。
【0032】
これらの金属もしくは合金を含む金属化合物は、混合物として用いてもよい。本発明において、メカノケミカル処理により黒鉛粒子表面に固定化される上記金属もしくは金属化合物粒子の平均粒径は、黒鉛粒子の平均粒径に対し、10分の1以下、好ましくは50分の1以下であることが望ましい。該平均粒径が黒鉛粒子の平均粒径の10分の1を超えると、黒鉛粒子表面に均一に固定化し難く、かつ充放電における金属もしくは金属化合物の膨張・収縮により炭素層の崩壊を招くので好ましくない。
(3)炭素層
本発明のリチウムイオン二次電池負極用複合炭素材料においては、黒鉛粒子表面に、リチウムを吸蔵・放出可能な金属もしくは金属化合物粒子をメカノケミカル処理により固定化し、さらにその表面に炭素層を形成する。
【0033】
該炭素層の炭素前駆体としては、たとえば、石炭系ピッチ、石油系ピッチなどが挙げられるが、好ましくは石油系ピッチであり、特に好ましくは石油系異方性(メソフェーズ)ピッチまたは等方性ピッチが用いられる。これらの炭素前駆体を用いて溶融浸漬法、溶融噴霧法、メカノケミカル処理法など、好ましくはメカノケミカル処理法により金属もしくは金属化合物粒子表面上に炭素前駆体の被膜を形成し、さらに不活性ガス雰囲気下にて熱処理を行うことにより炭素層を形成する。
【0034】
該炭素層の厚さは、0.05〜1.0μm程度である。炭素層の厚さが0.05μm未満の場合には、充放電における金属もしくは金属化合物の膨張・収縮により炭素層が崩壊し、電子伝導性が保たれなくなる。また、1.0μmを超えると、相対的に炭素比率が高くなり、負極容量の低下、電子伝導性の低下を招くので好ましくない。
(II)リチウムイオン二次電池負極用複合炭素材料の製造方法
本発明のリチウムイオン二次電池負極用複合炭素材料は、前記のように、黒鉛粒子表面にリチウムを吸蔵・放出可能な金属もしくは金属化合物粒子をメカノケミカル処理により固定化し、さらにその表面に炭素層を形成することにより製造する。
【0035】
すなわち、先ず、前記のようにして製造した黒鉛粒子の表面にメカノケミカル処理によりリチウムを吸蔵・放出可能な金属もしくは金属化合物粒子を固定化する。以下にメカノケミカル処理について説明する。
メカノケミカル処理
本発明におけるメカノケミカル処理とは、乾式法にて機械的衝撃力などの機械的エネルギーを用いることにより化学的変化を誘起する処理方法を意味する。
【0036】
具体的な方法として、原料粉体を運動する気体にのせて、粉体同士をぶつける、あるいは粉体を強固な壁にぶつける方法、たとえば、ジェットミル、ハイブリダイゼーションなどが挙げられる。また、狭い空間を大きな力で通すなどの方法により、粉体にせん断力を与えて、その際のエネルギーを利用する方法を用いることができる。たとえば、ホソカワミクロン(株)製メカノフュージョンなどが挙げられ、上記せん断力を与える場合、与えるせん断速度は、10sec−1以上、好ましくは100sec−1以上、さらに好ましくは1,000sec−1以上である。また、その上限は通常50,000sec−1以下である。
【0037】
本発明においては、ハイブリダイザーを用いてメカノケミカル処理を行うことが好ましい。ハイブリダイザーは、上記のように粒子を気相中に分散させながら、衝撃力を主体とする機械的・熱的エネルギーを粒子に与え、1〜5分間で固定化または成膜処理を行うことができるものである。
該メカノケミカル処理に際して、雰囲気の温度を高くすると、黒鉛粒子と金属もしくは金属化合物粒子との反応が促進され、炭化物などの生成が多くなるので好ましくない。メカノケミカル処理時の雰囲気温度は、500℃以下、好ましくは400℃以下、さらに好ましくは300℃以下が望ましい。また、メカノケミカル処理は、大気中で行うこともできるが、不活性ガス雰囲気、たとえば、窒素ガス雰囲気が好ましく、アルゴンガスなどの不活性ガス雰囲気がさらに好ましい。
【0038】
なお、メカノケミカル処理後の平均粒径は、レーザー回折方式による測定にて3〜48μm程度である。
本発明においては、このメカノケミカル処理を行うことにより、金属もしくは金属化合物粒子を黒鉛粒子表面上に、均一かつ強固に固定化することが可能となる。
【0039】
本発明のリチウムイオン二次電池負極用複合炭素材料においては、黒鉛粒子表面に、リチウムを吸蔵・放出可能な金属もしくは金属化合物粒子をメカノケミカル処理により固定化し、さらにその表面に炭素層を形成する。
以下に炭素層の形成について説明する。
炭素層の形成
本発明においては、前記のように、好ましくは石油系異方性(メソフェーズ)ピッチまたは等方性ピッチなどを炭素前駆体として用い、メカノケミカル処理法などにより金属もしくは金属化合物粒子表面上にその被膜を形成し、さらに不活性ガス雰囲気下にて熱処理を行うことにより炭素層を形成する。
【0040】
該熱処理温度は、500〜1,500℃、好ましくは800〜1,200℃である。上記温度範囲で炭素層形成を行うことにより、負極用複合炭素材料の電子伝導性を高くし、かつ金属もしくは金属化合物粒子の炭化物の生成を抑制できるので好ましい。
また、熱処理は、不活性ガス雰囲気、たとえば窒素ガス雰囲気下にて行う。
【0041】
熱処理時間は、1〜10時間程度でよい。また、熱処理前に、適宜ピッチ被膜の不融化処理を行うこともできる。
このようにして製造された本発明の3層構造を有するリチウムイオン二次電池負極用複合炭素材料の平均粒径は、レーザー回折方式による測定にて、3〜50μm程度である。
(III)リチウムイオン二次電池
本発明のリチウムイオン二次電池負極用複合炭素材料は、ポリエチレンやポリフッ化ビニリデンやポリテトラフルオロエチレンなどのバインダーを添加し、負極とするに好適な形状、たとえばシート状または板状に加圧ロール成形する。
【0042】
このようにして作成された負極は、単位体積当たりの容量が大きく、電池の小型化に好適である。
また、本発明による複合炭素材料を負極に用い、リチウムイオン二次電池を製造する場合には、電解液としてはリチウム塩を溶解し得るものであればよいが、特に非プロトン性の誘電率が大きい有機溶媒が好ましい。
【0043】
上記有機溶媒としては、たとえば、プロピレンカーボネート、エチレンカーボネート、テトラヒドロフラン、2−メチルテトラヒドロフラン、ジオキソラン、4−メチル−ジオキソラン、アセトニトリル、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートなどを挙げることができる。これらの溶媒を単独、あるいは適宜混合して用いることが可能である。
【0044】
電解質としては、安定なアニオンを生成するリチウム塩、たとえば、過塩素酸リチウム、ホウフッ化リチウム、六塩化アンチモン酸リチウム、六フッ化リン酸リチウム(LiPF)などが好適である。
また、リチウムイオン二次電池の正極としては、たとえば、酸化クロム、酸化チタン、酸化コバルト、五酸化バナジウムなどの金属酸化物や、リチウムマンガン酸化物(LiMn)、リチウムコバルト酸化物(LiCoO)、リチウムニッケル酸化物(LiNiO)などのリチウム金属酸化物;硫化チタン、硫化モリブデンなどの遷移金属のカルコゲン化合物;およびポリアセチレン、ポリパラフェニレン、ポリピロールなどの導電性を有する共役系高分子物質などを用いることができる。
【0045】
これらの正極と負極との間に合成繊維製またはガラス繊維製の不織布、織布やポリオレフィン系多孔質膜、ポリテトラフルオロエチレンの不織布などのセパレータを設ける。
また、従来の電池と同様に集電体を使用することができる。
負極集電体としては、電極、電解液などに電気化学的に不活性な導体、たとえば、銅、ニッケル、チタン、ステンレス綱などの金属を板、箔、棒の形態で使用できる。
【0046】
本発明のリチウム二次電池は、前記セパレータ、集電体、ガスケット、封口板、ケースなどの電池構成要素と本発明の負極用複合炭素材料とを用いて、常法に従って円筒型、角型あるいはボタン型などの形態を有することができる。
本発明のリチウム二次電池は、各種携帯電子機器に用いられ、特にノート型パソコン,ノート型ワープロ,パームトップ(ポケット)パソコン,携帯電話,PHS,携帯ファックス,携帯プリンター,ヘッドフォンステレオ,ビデオカメラ,携帯テレビ,ポータブルCD,ポータブルMD,電動髭剃り機,電子手帳,トランシーバー,電動工具,ラジオ,テープレコーダー,デジタルカメラ,携帯コピー機,携帯ゲーム機などに用いることができる。また、さらに電気自動車,ハイブリッド自動車,自動販売機,電動カート,ロードレベリング用蓄電システム,家庭用蓄電器,分散型電力貯蔵機システム(据置型電化製品に内蔵),非常時電力供給システムなどの二次電池として用いることができる。
【0047】
【実施例】
以下本発明を実施例によりさらに具体的に説明するが、本発明はそれに限定されるものではない。
【0048】
【黒鉛粒子の製造例1】
光学的に異方性で、比重1.25の石油系メソフェーズピッチを原料として、幅3mmのスリットの中に直径0.2mmφの紡糸孔を、一列に500個有する口金を用いて該スリットから加熱空気を噴出させて、溶融ピッチを牽引し、平均直径13μmのピッチ繊維を製造した。この時の紡糸温度は360℃、吐出量は0.8g/H・分であった。
【0049】
紡出された繊維を、捕集部分が20メッシュのステンレス製金網でできたベルトの背面から吸引しつつ、該ベルト上に捕集した。
この捕集したマットを空気中、室温から300℃まで平均昇温速度6℃/分にて昇温して、不融化処理を行った。引き続き、この不融化糸を650℃にて炭化処理した後、高速回転ミルにて粉砕し、平均粒径23.0μm(レーザー回折方式による測定;以下、同様にして測定)の炭素繊維ミルドを得た。
【0050】
さらに、上記で得た炭素繊維ミルドを、大気中、アチソン炉にて3,000℃まで8時間かけて昇温して、その温度にて10時間保持して黒鉛化処理を行い、黒鉛化ミルド(黒鉛粒子A)を得た。
該黒鉛粒子Aの黒鉛化度をX線回折にて測定すると、黒鉛層間距離(d002)が0.3362nm、c軸方向の結晶子の大きさ(Lc)が60nm、a軸方向の結晶子の大きさ(La)が70nm、(101)回折ピークと(100)回折ピークとのピーク比(P101/P100)が1.38であった。また、黒鉛化処理後の平均粒径を測定した結果、16.8μmであった。
【0051】
【黒鉛粒子の製造例2】
黒鉛粒子の製造例1と同様にして得た炭素繊維ミルドに、平均粒径10μmの炭化ホウ素を3重量%添加し、均一に攪拌した後、大気中、アチソン炉にて3,000℃まで8時間かけて昇温して、その温度にて10時間保持して黒鉛化処理を行い、黒鉛化ミルド(黒鉛粒子B)を得た。
【0052】
該黒鉛粒子Bの黒鉛化度をX線回折にて測定すると、黒鉛層間距離(d002)が0.3355nm、c軸方向の結晶子の大きさ(Lc)が100nm以上、a軸方向の結晶子の大きさ(La)が100nm以上、(101)回折ピークと(100)回折ピークとのピーク比(P101/P100)が1.98であった。また、黒鉛化処理後の平均粒径を測定した結果、16.5μmであった。
【0053】
【黒鉛粒子の製造例3】
比重1.52の石油系コークスを高速回転ミルにて粉砕し、平均粒径21.0μmのコークス粉末を得た。さらに、該コークス粉末を、大気中、アチソン炉にて3,000℃まで8時間かけて昇温して、その温度にて10時間保持して黒鉛化処理を行い、黒鉛化コークス粉末(黒鉛粒子C)を得た。
【0054】
該黒鉛粒子Cの黒鉛化度をX線回折にて測定すると、黒鉛層間距離(d002)が0.3360nm、c軸方向の結晶子の大きさ(Lc)が60nm、a軸方向の結晶子の大きさ(La)が70nm、(101)回折ピークと(100)回折ピークとのピーク比(P101/P100)が1.38であった。また、黒鉛化処理後の平均粒径を測定した結果、17.5μmであった。
【0055】
【ケイ素微粉の製造例1】
ケイ素粉末(高純度化学製:平均粒径5μm、純度98.0%)10.0gをディスクミルにて10時間粉砕し、ケイ素微粉Dを得た。このケイ素微粉Dの平均粒径を測定した結果、0.03μmであった。
【0056】
【ケイ素微粉の製造例2】
ケイ素粉末(高純度化学製:平均粒径10μm、純度99.9%)10.0gをディスクミルにて10時間粉砕し、ケイ素微粉Eを得た。このケイ素微粉Eの平均粒径を測定した結果、0.04μmであった。
【0057】
【実施例1】
黒鉛粒子A(23.0g)にケイ素微粉D(2.0g)を添加して予備混合したものをハイブリダイザー(O型:奈良機械製作所製)を用いて、大気中で12,000rpm−3分の機械的衝撃力を加えることによりメカノケミカル処理を行い複合化処理粉▲1▼を得た。次いで、炭素層を形成するため該複合化処理粉▲1▼20.0gに比重1.25の石油系メソフェーズピッチ粉末5.0gを添加し、ハイブリダイザーを用いて、大気中で12,000rpm−3分の機械的衝撃力を加えることにより石油系メソフェーズピッチ粉末による被覆を行い複合化処理粉▲2▼を得た。次いで、該複合化処理粉▲2▼を窒素雰囲気下で昇温速度10℃/分にて1,000℃まで昇温して、その温度にて1時間保持して本発明の負極用複合炭素材料を得た。該負極用複合炭素材料をSEM(走査型電子顕微鏡)で観察したところ、均一に炭素層で被覆された複合炭素材料が得られたことが判明した。また、該負極用複合炭素材料の平均粒径を測定した結果、18.2μmであり、元素分析による負極用複合炭素材料中のケイ素濃度は、6.9重量%であった。
【0058】
上記で得られた負極用複合炭素材料に対し、ポリフッ化ビニリデン7重量%を添加した塗液を作成し、銅箔上に塗布・乾燥後、電極密度が1.6g/ccとなるように圧延し負極とした。
すなわち、上記負極と対極および参照極には金属リチウムを用いた三極式セルを使用し、エチレンカーボネート(EC)/メチルエチルカーボネート(MEC)を体積比にて1/2に調製した混合炭酸エステル溶媒に、電解質として六フッ化リン酸リチウム(LiPF)を1モルの濃度で溶解させた電解液中にて、充放電容量特性を測定した。
【0059】
充放電は、100mA/g−10mVの定電流−定電圧にて8時間充電し、放電は、100mA/gの定電流にて(1.5V/Li/Li)の電位まで行い、10回繰り返し測定した。
この時の、初回の放電容量は520mAh/g、充放電効率は92.0%、10回目の放電容量は520mAh/g、充放電効率は100.0%と高い放電容量および充放電効率を示し、10回目まで安定にサイクルを繰り返し得た。
【0060】
【実施例2】
黒鉛粒子B(20.0g)にケイ素微粉E(5.0g)を添加して予備混合したものをハイブリダイザー(O型:奈良機械製作所製)を用いて、窒素雰囲気下で12,000rpm−4分の機械的衝撃力を加えることによりメカノケミカル処理を行い複合化処理粉▲3▼を得た。次いで、炭素層を形成するため該複合化処理粉▲3▼20.0gに比重1.25の石油系メソフェーズピッチ粉末5.0gを添加し、ハイブリダイザーを用いて、窒素雰囲気下で12,000rpm−4分の機械的衝撃力を加えることにより石油系メソフェーズピッチ粉末による被覆を行い複合化処理粉▲4▼を得た。次いで、該複合化処理粉▲4▼を窒素雰囲気下で昇温速度10℃/分にて1,100℃まで昇温して、その温度にて1時間保持して本発明の負極用複合炭素材料を得た。該負極用複合炭素材料をSEM(走査型電子顕微鏡)で観察したところ、均一に炭素層で被覆された複合炭素材料が得られたことが判明した。また、該負極用複合炭素材料の平均粒径を測定した結果、18.5μmであり、元素分析による負極用複合炭素材料中のケイ素濃度は、17.0重量%であった。
【0061】
上記で得られた負極用複合炭素材料について、実施例1と同様にして充放電容量特性の測定を行った。
この時の、初回の放電容量は685mAh/g、充放電効率は91.5%、10回目の放電容量は683mAh/g、充放電効率は99.9%と高い放電容量および充放電効率を示し、10回目まで安定にサイクルを繰り返し得た。
【0062】
【実施例3】
黒鉛粒子C(22.0g)にケイ素微粉D(3.0g)を添加して予備混合したものをハイブリダイザー(O型:奈良機械製作所製)を用いて、大気中で11,000rpm−3分の機械的衝撃力を加えることによりメカノケミカル処理を行い複合化処理粉▲5▼を得た。次いで、炭素層を形成するため該複合化処理粉▲5▼20.0gに比重1.22の石油系等方性ピッチ粉末5.0gを添加し、ハイブリダイザーを用いて、大気中で12,000rpm−3分の機械的衝撃力を加えることにより石油系等方性ピッチ粉末による被覆を行い複合化処理粉▲6▼を得た。次いで、該複合化処理粉▲6▼を窒素雰囲気下で昇温速度10℃/分にて1,100℃まで昇温して、その温度にて1時間保持して本発明の負極用複合炭素材料を得た。該負極用複合炭素材料をSEM(走査型電子顕微鏡)で観察したところ、均一に炭素層で被覆された複合炭素材料が得られたことが判明した。また、該負極用複合炭素材料の平均粒径を測定した結果、19.4μmであり、元素分析による負極用複合炭素材料中のケイ素濃度は、10.4重量%であった。
【0063】
上記で得られた負極用複合炭素材料について、実施例1と同様にして充放電容量特性の測定を行った。
この時の、初回の放電容量は591mAh/g、充放電効率は91.5%、10回目の放電容量は590mAh/g、充放電効率は99.9%と高い放電容量および充放電効率を示し、10回目まで安定にサイクルを繰り返し得た。
【0064】
【比較例1】
黒鉛粒子A(23.0g)およびケイ素微粉D(2.0g)をテトラヒドロフラン溶媒中に加え、さらにフェノール樹脂5.0gを加えて溶解し、高速攪拌機を用いて、15,000rpm−20分の攪拌を行った後、テトラヒドロフラン溶媒を蒸発除去して複合化処理粉▲7▼を得た。次いで、該複合化処理粉▲7▼を窒素雰囲気下で昇温速度10℃/分にて1,000℃まで昇温して、その温度にて1時間保持して負極用複合炭素材料とした。また、該負極用複合炭素材料の平均粒径を測定した結果、18.5μmであり、元素分析による負極用複合炭素材料中のケイ素濃度は、7.5重量%であった。
【0065】
上記で得られた負極用複合炭素材料について、実施例1と同様にして充放電容量特性の測定を行った。
この時の、初回の放電容量は536mAh/g、充放電効率は88.0%、10回目の放電容量は475mAh/g、充放電効率は99.2%と初期効率も低く、かつ10回目までの容量劣化も顕著であった。
【0066】
【比較例2】
黒鉛粒子C(23.0g)にケイ素微粉D(3.0g)を添加し、ブレンダーにて攪拌して混合処理粉▲8▼を得た。次いで、該混合処理粉▲8▼20.0gに比重1.22の石油系等方性ピッチ粉末5.0gを添加し、ブレンダーにて攪拌することにより複合化処理粉▲9▼を得た。次いで、該複合化処理粉▲9▼を窒素雰囲気下で昇温速度10℃/分にて1,100℃まで昇温して、その温度にて1時間保持して負極用複合炭素材料とした。また、該負極用複合炭素材料の平均粒径を測定した結果、18.5μmであり、元素分析による負極用複合炭素材料中のケイ素濃度は、10.4重量%であった。
【0067】
上記で得られた負極用複合炭素材料について、実施例1と同様にして充放電容量特性の測定を行った。
この時の、初回の放電容量は515mAh/g、充放電効率は85.6%、10回目の放電容量は445mAh/g、充放電効率は99.0%と初期効率も低く、かつ10回目までの容量劣化も顕著であった。
【0068】
【発明の効果】
本発明のリチウムイオン二次電池負極用複合炭素材料は、個々の粒子が均質である上、核である黒鉛粒子の表面に金属もしくは金属化合物が強固に固定化され、さらにその表面が比較的厚い炭素層で被覆されているため、導電性が低い金属もしくは金属化合物と黒鉛粒子との接触が良好に保たれる。また、金属もしくは金属化合物と黒鉛粒子とが脱離し難いため、安定的に導電性が保たれる。
【0069】
さらに、その表面が炭素層で被覆されているため、金属もしくは金属化合物と電解液とが接触せず、従って充放電効率が向上する。また、炭素層が比較的厚いため、充放電に伴う金属もしくは金属化合物の膨張・収縮を抑制することが可能である。
さらに、本発明の負極用複合炭素材料は、均質であるため、膨張が起こったとしても、電極内にかかるストレスが均一となり電極の劣化も少ない。従って、本発明のリチウムイオン二次電池負極用複合炭素材料は、高容量で、充放電効率が高く、さらにサイクル特性に優れる。
【0070】
また、その製造方法も乾式法であるため、核となる黒鉛粒子と金属もしくは金属化合物との比率を容易に制御でき、均質な複合炭素材料を製造することが可能であるとともに、複雑な工程を要せず安価に製造可能である。
[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention relates to a composite carbon material for a negative electrode of a lithium ion secondary battery and a method for producing the same.More specifically, a metal or metal compound particle capable of occluding and releasing lithium is immobilized on a graphite particle surface by mechanochemical treatment, The present invention relates to a composite carbon material for a negative electrode of a lithium ion secondary battery having a three-layer structure in which a carbon layer is formed on the surface thereof, and a method for producing the same.
[0002]
[Prior art]
In recent years, in order to meet the needs of portable electronic devices that are becoming smaller and lighter and have higher performance, it is urgent to increase the capacity of lithium ion secondary batteries. By the way, graphite, which is one of the negative electrode active materials of a lithium ion secondary battery, has a theoretical electric capacity of 372 mAh / g. It is necessary to promote the development of crystalline carbon materials and new materials that can replace carbon materials. As a novel material replacing graphite, silicon and its compounds have been studied. It is known that silicon and its compounds form an alloy with lithium itself and can provide a larger electric capacity than graphite. Therefore, recently, a material in which a silicon compound powder is simply mixed with graphite or a material in which a silicon compound or the like is chemically fixed on the graphite surface using a silane coupling agent or the like has been proposed.
[0003]
However, when a material obtained by simply mixing a silicon compound or the like with graphite is used as the material for the negative electrode, the graphite and the silicon compound do not necessarily adhere to each other. In addition, since the silicon compound is released from the graphite and the electron conductivity of the silicon compound itself is low, there is a problem that the silicon compound is not sufficiently used as a negative electrode active material. In the case where a silicon compound is chemically bonded to graphite by a silane coupling agent or the like, the silicon compound and the graphite remain in close contact even when the charge / discharge cycle proceeds. Although it functions satisfactorily, it requires a silane coupling treatment in the production of the negative electrode material, and thus has a problem that a stable quality negative electrode material has not been easily obtained. .
[0004]
Further, as a material for a negative electrode of a lithium ion secondary battery, a composite material of a carbon material and a metal or alloy capable of being alloyed with silicon or lithium other than silicon has been studied as a material exceeding the theoretical capacity of graphite. I have. Materials for carbon anodes containing metals or alloys that can be alloyed with lithium include (1) a simple mixture of a metal or alloy and a carbon material or graphite material, and (2) a carbon precursor and a carbon precursor as an improved method. After melting and kneading a metal or alloy with a pitch / resin etc., a method of pulverizing and carbonizing and using the same has been proposed. There is a problem that breakage easily occurs and cycle deterioration occurs.
[0005]
Further, a negative electrode material has been proposed in which graphite particles are mixed with silicon fine particles and a resin by a wet method, and the surfaces of the graphite particles are adhered with silicon fine particles and a resin coating. (For example, JP-A-2002-8652 (Patent Document 1) and the like)
However, the negative electrode material manufactured by such a method does not always uniformly adhere silicon particles to graphite particles serving as nuclei; the carbon layer formed from the resin is not necessarily thick enough and silicon particles accompanying charge / discharge are not always sufficient. Expansion and shrinkage cause the silicon particles to separate or separate from the graphite particles, causing cycle deterioration; and the wet mixing involves problems such as the cost of removing and drying the solvent.
[0006]
[Patent Document 1]
JP-A-2002-8652
[0007]
[Problems to be solved by the invention]
The present invention has been made in view of the above circumstances, and has a large charge / discharge capacity, high initial charge / discharge efficiency, and excellent charge / discharge cycle characteristics, and a method for producing the same. Another object of the present invention is to provide a negative electrode for a lithium secondary battery and a lithium secondary battery comprising such a material for a negative electrode.
[0008]
[Means for Solving the Problems]
The present inventors have conducted various studies in order to solve the above problems, and as a result, immobilized metal or metal compound particles capable of occluding and releasing lithium on the surface of the graphite particles by mechanochemical treatment, and further fixed the surface thereof. By forming a three-layer structure in which a carbon layer is formed, a composite carbon material for a lithium secondary battery negative electrode having a large charge / discharge capacity, high initial charge / discharge efficiency, and excellent charge / discharge cycle characteristics can be obtained. This has led to the completion of the present invention.
[0009]
That is, according to the first aspect of the present invention, metal or metal compound particles capable of occluding and releasing lithium are immobilized on the surface of graphite particles by mechanochemical treatment, and a carbon layer is formed on the surface. A composite carbon material for a negative electrode of a lithium ion secondary battery having a layer structure is provided.
According to a second aspect of the present invention, in the first aspect, the graphite particles are graphite particles obtained by graphitizing a carbon fiber mill or petroleum coke using anisotropic (mesophase) pitch as a raw material. A composite carbon material for a negative electrode of a lithium ion secondary battery is provided.
[0010]
According to a third aspect of the present invention, in the first or second aspect, the average particle size of the metal or metal compound particles immobilized by the mechanochemical treatment is smaller than the average particle size of the graphite particles. On the other hand, a composite carbon material for a negative electrode of a lithium ion secondary battery which is 1/10 or less is provided.
Further, according to a fourth aspect of the present invention, in any one of the first to third aspects, the carbon layer is a carbide layer made of an anisotropic (mesophase) pitch or an isotropic pitch. A composite carbon material for a negative electrode of a lithium ion secondary battery is provided.
[0011]
Further, according to a fifth aspect of the present invention, in any one of the first to fourth aspects, the metal or metal compound is a metal compound containing silicon or tin or a mixture or alloy of the same with another metal. And a composite carbon material for a negative electrode of a lithium ion secondary battery.
Further, according to the sixth aspect of the present invention, metal or metal compound particles capable of occluding and releasing lithium are immobilized on the surface of the graphite particles by a mechanochemical treatment using mechanical impact force by a dry method. A method for producing a composite carbon material for a negative electrode of a lithium ion secondary battery in which a carbon layer is formed on the surface thereof is provided.
[0012]
Further, according to a seventh aspect of the present invention, there is provided a lithium ion secondary battery negative electrode using the composite carbon material for a lithium ion secondary battery negative electrode according to any of the first to fifth aspects.
Further, according to the eighth invention of the present invention, there is provided a lithium ion secondary battery using the negative electrode of the lithium ion secondary battery according to the seventh invention.
[0013]
BEST MODE FOR CARRYING OUT THE INVENTION
Hereinafter, the composite carbon material for a negative electrode of a lithium ion secondary battery of the present invention and a method for producing the same will be described in detail.
(I) Composite carbon material for negative electrode of lithium ion secondary battery
(1) Graphite particles
Examples of the graphite particles used as the core of the composite carbon material for a negative electrode of a lithium ion secondary battery of the present invention include natural graphite and artificial graphite. Further, as the graphite particles, those obtained by graphitizing pitch-based carbon fiber, coke or the like may be used, and further, graphite particles graphitized in the presence of a graphitization catalyst such as a boron compound may be used.
[0014]
Among these, it is particularly preferable to use graphite particles obtained by graphitizing anisotropic (mesophase) pitch-based carbon fiber milled or petroleum-based coke in the presence of a graphitization catalyst such as a boron compound.
An anisotropic (mesophase) pitch-based carbon fiber mill preferably used as the graphite particles of the present invention will be described.
[0015]
Anisotropic (mesophase) pitch-based carbon fiber mill
The anisotropic (mesophase) pitch-based carbon fiber mill used in the present invention is manufactured as follows.
The raw material of the carbon fiber mill is a petroleum pitch or a coal pitch, and an optically anisotropic pitch, that is, a mesophase pitch is used. It is preferable to use a mesophase pitch having a mesophase content of 100%, but is not particularly limited as long as spinning is possible.
[0016]
The method for melt-spinning the raw material pitch is not particularly limited, and various methods such as melt spinning, melt blowing, centrifugal spinning, and overflow spinning can be used. It is preferable to use the melt blow method from the viewpoint of quality. The diameter of the spinning hole at the time of melt blowing is from 0.1 mm to 0.5 mm, preferably from 0.15 mm to 0.3 mm. When the diameter of the spinning hole is in the above range, clogging of the spinning hole hardly occurs, and in addition, the spinning nozzle can be easily manufactured.
[0017]
Further, when spinning is performed in a spinning hole having the above diameter range, a fiber having a fiber diameter of 4 μm or more and 25 μm or less is obtained, and there is little variation in the fiber diameter, which is preferable in quality control. Further, when the fiber diameter is in this range, a carbon fiber mill having a desired average particle size can be obtained even by volume reduction during milling and graphitization of carbon fibers described below. In addition, the carbon fiber milled generally refers to an aggregate of those having a fiber length ground to 1 mm or less, and is distinguished from, for example, a carbon fiber chopped strand having a length of 1 to 25 mm. is there.
[0018]
The spinning speed is 500 m / min or more, preferably 2000 m / min or more in terms of productivity.
The spinning temperature varies somewhat depending on the raw material pitch, but may be any temperature not lower than the softening point of the raw material pitch but not lower than the softening point of the raw material pitch, and is usually from 300 ° C to 400 ° C, preferably from 300 ° C to 380 ° C. .
[0019]
The melt blow method also has an advantage that the graphite layer surface can be easily arranged in parallel to the fiber axis by spinning at a low viscosity of several tens of poise or less and cooling at a high speed. A raw material pitch having a low softening point in relation to the spinning temperature and a high infusibilization reaction rate is advantageous in terms of production cost and stability. For this reason, the softening point of the raw material pitch is desirably 230 ° C to 350 ° C, preferably 250 ° C to 310 ° C.
[0020]
The pitch fiber after spinning is subjected to an infusibilization treatment by an ordinary method. The method of infusibilization is not particularly limited, for example, a method of performing heat treatment in an oxidizing gas atmosphere such as nitrogen dioxide or oxygen, a method of performing treatment in an oxidizing aqueous solution such as nitric acid or chromic acid, For example, a method of processing with light, γ-rays, or the like can be used. A simpler infusibilizing method is a method of heating in air, which differs slightly depending on the raw material, but is heated to about 350 ° C. at an average rate of 3 ° C./min or more, preferably 5 ° C./min or more. A heat treatment is performed.
[0021]
The pitch fiber after the infusibilization treatment is then subjected to a pulverization treatment (milling). At this time, the pitch fiber after the infusibilization treatment is slightly carbonized in an inert gas at a temperature of 1,500 ° C. or less, preferably 250 ° C. to 1,500 ° C., more preferably 500 ° C. to 900 ° C. After that, it is also possible to mill.
Milling after mild carbonization at such a temperature can relatively prevent longitudinal cracking of the fiber after milling, and the graphite layer surface newly exposed to the surface during milling can be graphitized at higher temperatures. Occasionally, the condensation polymerization / cyclization reaction tends to proceed easily, which is advantageous because the activity of the surface is reduced and the effect of inhibiting the decomposition of the electrolytic solution is obtained.
[0022]
As the milling method, it is effective to use a Victory mill, a jet mill, a high-speed rotation mill, or the like. Milling can also be performed using a Henschel mixer, a ball mill, a crusher, or the like.However, according to these methods, pressure is applied in the diameter direction of the fiber, and longitudinal cracks are often generated in the fiber axis direction. Is not preferred. In addition, milling takes a long time, and is not an appropriate milling method. For efficient milling, it is appropriate to, for example, rotate the rotor with the blade attached thereto at high speed to cut the fibers. The fiber length can be controlled by adjusting the number of rotations of the rotor, the angle of the blade, and the like.
[0023]
In the milling, pulverization is performed so that the average particle diameter measured by a laser diffraction method is about 10 to 100 μm.
The graphite particles of the present invention are subjected to graphitization using the carbon fiber mill or petroleum coke obtained above, preferably in the presence of a boron compound. Hereinafter, the graphitization treatment will be described.
[0024]
Graphitization treatment
The graphite particles of the present invention are desirably produced by mixing anisotropic (mesophase) pitch-based carbon fiber milled or petroleum-based coke with a boron compound and performing a graphitization treatment in a nitrogen atmosphere.
Examples of the method for adding the boron compound include, but are not particularly limited to, a method in which a solid boron compound is directly added and uniformly mixed as necessary, and a method in which the boron compound is immersed in a solvent solution. . It is also possible to add a boron compound at the stage of the raw material pitch. The amount of the boron compound to be added is 15% by weight or less, preferably 0.5 to 5% by weight of boron based on the material to be graphitized. If the graphitization treatment is performed with the addition amount in this range, the graphitization efficiency is high and it is preferable from the viewpoint of cost.
[0025]
As the boron compound, besides boron alone, boron carbide (B4C), boron chloride, boric acid, boron oxide, sodium borate, potassium borate, copper borate, nickel borate and the like, but are not particularly limited.
The solvent for forming the solvent solution is not particularly limited, but includes, for example, water, methanol, glycerin, acetone and the like, and may be appropriately selected according to the boron compound to be used. When the boron compound is used as a solid, it is preferable to use a boron compound having an average particle diameter of 500 μm or less, preferably 200 μm or less, in order to uniformly mix the boron compound and the like.
[0026]
It is important that the graphite particles of the present invention highly graphitize carbon fiber mills and the like. For this purpose, it is desirable to mix a carbon fiber mill or the like with a boron compound and to perform a graphitization treatment in a nitrogen atmosphere at a temperature of 2,200 ° C. or more, preferably 2,400 ° C. or more.
The graphitization time is about 1 to 20 hours.
[0027]
Although the principle of action of the boron compound is unknown, the graphitization treatment of carbon fiber milled or the like at a temperature close to or higher than the melting point of the boron compound (the melting point of boron is 2,080 ° C. and the melting point of boron carbide is 2,450 ° C.) Is carried out, graphitization can be further promoted, and when the obtained graphitized carbon fiber mill or the like is used as a material for a battery negative electrode, effects such as an increase in charge / discharge capacity can be obtained.
[0028]
The graphitization treatment can be performed by appropriately selecting a graphitization method suitable for mass production of a graphite material on a commercial basis, for example, using an Acheson furnace.
Graphite particle properties
The graphite particles produced as described above have an average particle size of 5 to 50 μm, preferably 10 to 50 μm, more preferably 10 to 30 μm, as measured by a laser diffraction method. When the graphite particles of the present invention have an average particle size in the above range, the balance of the properties (coating properties, coating electrode thickness uniformity, coating electrode density, etc.) of the industrially required negative electrode coating electrode is required. Is preferable from the viewpoint of
[0029]
Further, the structure of the graphite particles of the present invention produced as described above has a graphite interlayer distance (d002) Is 0.338 nm or less, preferably 0.336 nm or less, and the ratio of the diffraction peak of the (101) plane to the diffraction peak of the (100) plane (P101/ P100) Is 1.2 or more. These are indices indicating the degree of graphitization of the graphite material, and satisfying these will improve the performance of the battery.
[0030]
In the present invention, the X-ray diffraction measures the diffraction pattern of graphite particles using Cukα as an X-ray source and high-purity silicon as a standard substance. Then, based on the peak position and half width of the diffraction pattern of the (002) plane, the graphite interlayer distance (d002) Is calculated based on the Gakushin method.
Also, the peak ratio (P101/ P100) Draws a baseline on the obtained diffraction diagram and measures the height of each peak of the (101) plane (2θ ≒ 44.5) and the (100) plane (2θ ≒ 42.5) from this baseline. Then, the height is obtained by dividing the diffraction peak height of the (101) plane by the diffraction peak height of the (100) plane.
(2) Metal or metal compound particles
In the composite carbon material for a negative electrode of a lithium ion secondary battery of the present invention, metal or metal compound particles capable of occluding and releasing lithium are immobilized on the surface of the graphite particles produced as described above by mechanochemical treatment.
[0031]
Examples of the metal include Ag, Zn, Al, Ga, In, Si, Ge, Sn, and Pb. Examples of the metal compound include SnO and SnO.2, SiO, SiO2And metal silicon compounds of Si with B, C, Mg, Al, Fe, Co, Ni, In, Sn and the like.
Among them, preferably, a metal compound containing Ag, Zn, Al, Si, Ge, Sn, Pb or an alloy thereof, more preferably a metal compound containing Si, Sn or an alloy thereof, and particularly preferably a metal compound containing Si or an alloy thereof Compound.
[0032]
The metal compounds containing these metals or alloys may be used as a mixture. In the present invention, the average particle size of the metal or metal compound particles immobilized on the graphite particle surface by the mechanochemical treatment is 1/10 or less, preferably 1/50 or less of the average particle size of the graphite particles. It is desirable that When the average particle size exceeds one-tenth of the average particle size of the graphite particles, it is difficult to uniformly fix the graphite particles on the surface of the graphite particles, and the carbon layer collapses due to expansion and contraction of the metal or metal compound during charging and discharging. Not preferred.
(3) Carbon layer
In the composite carbon material for a negative electrode of a lithium ion secondary battery of the present invention, a metal or metal compound particle capable of occluding and releasing lithium is immobilized on a graphite particle surface by mechanochemical treatment, and a carbon layer is further formed on the surface. .
[0033]
Examples of the carbon precursor for the carbon layer include coal-based pitch and petroleum-based pitch, and are preferably petroleum-based pitch, particularly preferably petroleum-based anisotropic (mesophase) pitch or isotropic pitch. Is used. Using these carbon precursors, a melt immersion method, a melt spraying method, a mechanochemical treatment method, and the like, preferably a mechanochemical treatment method is used to form a carbon precursor film on the surface of the metal or metal compound particles, and furthermore, an inert gas A carbon layer is formed by performing heat treatment in an atmosphere.
[0034]
The thickness of the carbon layer is about 0.05 to 1.0 μm. If the thickness of the carbon layer is less than 0.05 μm, the carbon layer collapses due to expansion and contraction of the metal or metal compound during charge and discharge, and electron conductivity cannot be maintained. On the other hand, if it exceeds 1.0 μm, the carbon ratio becomes relatively high, which leads to a decrease in negative electrode capacity and a decrease in electron conductivity, which is not preferable.
(II) Method for producing composite carbon material for negative electrode of lithium ion secondary battery
The composite carbon material for a negative electrode of a lithium ion secondary battery of the present invention is, as described above, a metal or metal compound particle capable of occluding and releasing lithium immobilized on the surface of graphite particles by mechanochemical treatment, and further a carbon layer on the surface. It is manufactured by forming
[0035]
That is, first, metal or metal compound particles capable of occluding and releasing lithium are immobilized on the surface of the graphite particles produced as described above by mechanochemical treatment. Hereinafter, the mechanochemical processing will be described.
Mechanochemical treatment
The mechanochemical treatment in the present invention means a treatment method in which a chemical change is induced by using mechanical energy such as mechanical impact force by a dry method.
[0036]
As a specific method, there is a method in which the raw material powder is placed on a moving gas and the powders are bumped against each other, or the powder is bumped against a solid wall, for example, a jet mill, hybridization, or the like. Further, a method in which a shear force is applied to the powder by a method such as passing a small space with a large force and the energy at that time is used can be used. For example, Mechanofusion manufactured by Hosokawa Micron Corp. can be mentioned. When the above-mentioned shearing force is applied, the applied shearing speed is 10 sec.-1Above, preferably 100 sec-1Above, more preferably 1,000 sec-1That is all. The upper limit is usually 50,000 sec.-1It is as follows.
[0037]
In the present invention, it is preferable to perform mechanochemical treatment using a hybridizer. As described above, the hybridizer can disperse the particles in the gas phase and apply mechanical and thermal energy mainly to impact force to the particles to perform the immobilization or film formation process for 1 to 5 minutes. You can do it.
If the temperature of the atmosphere is increased during the mechanochemical treatment, the reaction between the graphite particles and the metal or metal compound particles is promoted, and the generation of carbides and the like is not preferred. The atmosphere temperature during the mechanochemical treatment is desirably 500 ° C or lower, preferably 400 ° C or lower, and more preferably 300 ° C or lower. Further, the mechanochemical treatment can be performed in the air, but an inert gas atmosphere, for example, a nitrogen gas atmosphere is preferable, and an inert gas atmosphere such as an argon gas is more preferable.
[0038]
The average particle size after the mechanochemical treatment is about 3 to 48 μm as measured by a laser diffraction method.
In the present invention, by performing the mechanochemical treatment, the metal or metal compound particles can be uniformly and firmly fixed on the graphite particle surface.
[0039]
In the composite carbon material for a negative electrode of a lithium ion secondary battery of the present invention, a metal or metal compound particle capable of occluding and releasing lithium is immobilized on a graphite particle surface by mechanochemical treatment, and a carbon layer is further formed on the surface. .
Hereinafter, formation of the carbon layer will be described.
Formation of carbon layer
In the present invention, as described above, preferably, a petroleum-based anisotropic (mesophase) pitch or an isotropic pitch is used as a carbon precursor, and the film is formed on a metal or metal compound particle surface by a mechanochemical treatment method or the like. And a heat treatment is performed in an inert gas atmosphere to form a carbon layer.
[0040]
The heat treatment temperature is 500 to 1,500 ° C, preferably 800 to 1,200 ° C. Forming the carbon layer in the above temperature range is preferable because the electron conductivity of the composite carbon material for a negative electrode can be increased and the generation of carbides of metal or metal compound particles can be suppressed.
The heat treatment is performed in an inert gas atmosphere, for example, a nitrogen gas atmosphere.
[0041]
The heat treatment time may be about 1 to 10 hours. Further, before the heat treatment, the pitch film may be appropriately subjected to infusibility treatment.
The average particle diameter of the composite carbon material for a negative electrode of a lithium ion secondary battery having a three-layer structure of the present invention thus manufactured is about 3 to 50 μm as measured by a laser diffraction method.
(III) Lithium ion secondary battery
The composite carbon material for a negative electrode of a lithium ion secondary battery of the present invention is obtained by adding a binder such as polyethylene or polyvinylidene fluoride or polytetrafluoroethylene, and pressing the roll into a shape suitable for forming a negative electrode, for example, a sheet or plate. Molding.
[0042]
The negative electrode thus produced has a large capacity per unit volume and is suitable for miniaturization of a battery.
When a lithium ion secondary battery is manufactured using the composite carbon material according to the present invention for a negative electrode, the electrolyte may be any as long as it can dissolve a lithium salt. Larger organic solvents are preferred.
[0043]
Examples of the organic solvent include propylene carbonate, ethylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dioxolan, 4-methyl-dioxolan, acetonitrile, dimethyl carbonate, methyl ethyl carbonate, diethyl carbonate and the like. These solvents can be used alone or in an appropriate mixture.
[0044]
Examples of the electrolyte include lithium salts that generate stable anions, such as lithium perchlorate, lithium borofluoride, lithium antimonate hexachloride, and lithium hexafluorophosphate (LiPF).6) Are suitable.
Examples of the positive electrode of the lithium ion secondary battery include metal oxides such as chromium oxide, titanium oxide, cobalt oxide, and vanadium pentoxide, and lithium manganese oxide (LiMn oxide).2O4), Lithium cobalt oxide (LiCoO)2), Lithium nickel oxide (LiNiO)2); A chalcogen compound of a transition metal such as titanium sulfide or molybdenum sulfide; and a conductive conjugated polymer such as polyacetylene, polyparaphenylene, or polypyrrole.
[0045]
A separator such as a nonwoven fabric made of synthetic fiber or glass fiber, a woven fabric, a polyolefin-based porous membrane, or a nonwoven fabric made of polytetrafluoroethylene is provided between the positive electrode and the negative electrode.
In addition, a current collector can be used as in the case of a conventional battery.
As the negative electrode current collector, a conductor which is electrochemically inert to an electrode, an electrolytic solution, or the like, for example, a metal such as copper, nickel, titanium, or stainless steel can be used in the form of a plate, a foil, or a rod.
[0046]
The lithium secondary battery of the present invention uses the above-described separator, current collector, gasket, sealing plate, battery component such as a case and the composite carbon material for a negative electrode of the present invention, and has a cylindrical shape, a square shape or It can have a form such as a button type.
The lithium secondary battery of the present invention is used for various portable electronic devices, and is particularly used for notebook computers, notebook word processors, palmtop (pocket) personal computers, mobile phones, PHSs, mobile faxes, mobile printers, headphone stereos, video cameras, It can be used for portable televisions, portable CDs, portable MDs, electric shaving machines, electronic organizers, transceivers, electric tools, radios, tape recorders, digital cameras, portable copiers, portable game machines, and the like. In addition, secondary vehicles such as electric vehicles, hybrid vehicles, vending machines, electric carts, power storage systems for load leveling, household power storage, distributed power storage systems (built-in in stationary appliances), emergency power supply systems, etc. It can be used as a battery.
[0047]
【Example】
Hereinafter, the present invention will be described more specifically with reference to Examples, but the present invention is not limited thereto.
[0048]
[Production example 1 of graphite particles]
Using an optically anisotropic petroleum-based mesophase pitch having a specific gravity of 1.25 as a raw material, heating is performed from a slit having a width of 3 mm using a spinneret having 500 spinning holes having a diameter of 0.2 mmφ in a line in a row. By blowing air, the molten pitch was pulled to produce pitch fibers having an average diameter of 13 μm. At this time, the spinning temperature was 360 ° C., and the discharge rate was 0.8 g / H · min.
[0049]
The spun fibers were collected on the belt while being sucked from the back surface of a belt made of a stainless steel mesh having a collecting portion of 20 mesh.
The collected mat was heated in the air from room temperature to 300 ° C. at an average heating rate of 6 ° C./min to perform infusibility treatment. Subsequently, the infusibilized yarn is carbonized at 650 ° C. and then pulverized by a high-speed rotating mill to obtain a carbon fiber mill having an average particle size of 23.0 μm (measured by a laser diffraction method; hereinafter, similarly measured). Was.
[0050]
Further, the carbon fiber mill obtained above was heated to 3,000 ° C. in the air over 8 hours in an Acheson furnace, and held at that temperature for 10 hours to perform a graphitization treatment. (Graphite particles A) were obtained.
When the degree of graphitization of the graphite particles A was measured by X-ray diffraction, the graphite interlayer distance (d002) Is 0.3362 nm, the crystallite size (Lc) in the c-axis direction is 60 nm, the crystallite size (La) in the a-axis direction is 70 nm, and the peak of the (101) diffraction peak and the (100) diffraction peak. Ratio (P101/ P100) Was 1.38. The average particle size after the graphitization treatment was 16.8 μm.
[0051]
[Production example 2 of graphite particles]
3% by weight of boron carbide having an average particle size of 10 μm was added to a milled carbon fiber obtained in the same manner as in Production Example 1 of graphite particles, and the mixture was uniformly stirred. The temperature was raised over a period of time, and the temperature was maintained for 10 hours to perform a graphitization treatment, thereby obtaining a graphitized mill (graphite particles B).
[0052]
When the degree of graphitization of the graphite particles B is measured by X-ray diffraction, the graphite interlayer distance (d002) Is 0.3355 nm, the crystallite size (Lc) in the c-axis direction is 100 nm or more, the crystallite size (La) in the a-axis direction is 100 nm or more, and the (101) diffraction peak and the (100) diffraction peak Peak ratio (P101/ P100) Was 1.98. Further, the average particle size after the graphitization treatment was measured to be 16.5 μm.
[0053]
[Production example 3 of graphite particles]
Petroleum coke having a specific gravity of 1.52 was pulverized with a high-speed rotating mill to obtain coke powder having an average particle size of 21.0 μm. Further, the coke powder is heated to 3,000 ° C. in the air over a period of 8 hours in an Acheson furnace, and is maintained at that temperature for 10 hours to perform a graphitization treatment, thereby obtaining a graphitized coke powder (graphite particles). C) was obtained.
[0054]
When the degree of graphitization of the graphite particles C is measured by X-ray diffraction, the graphite interlayer distance (d002) Is 0.3360 nm, the crystallite size (Lc) in the c-axis direction is 60 nm, the crystallite size (La) in the a-axis direction is 70 nm, and a peak between the (101) diffraction peak and the (100) diffraction peak. Ratio (P101/ P100) Was 1.38. Further, the average particle size after the graphitization treatment was measured. As a result, it was 17.5 μm.
[0055]
[Production example 1 of silicon fine powder]
10.0 g of silicon powder (manufactured by Kojundo Chemical Co., Ltd., average particle size: 5 μm, purity: 98.0%) was pulverized with a disk mill for 10 hours to obtain silicon fine powder D. As a result of measuring the average particle size of the silicon fine powder D, it was 0.03 μm.
[0056]
[Production example 2 of silicon fine powder]
10.0 g of silicon powder (manufactured by Kojundo Chemical: average particle size: 10 μm, purity: 99.9%) was pulverized with a disk mill for 10 hours to obtain silicon fine powder E. As a result of measuring the average particle size of this silicon fine powder E, it was 0.04 μm.
[0057]
Embodiment 1
Graphite particles A (23.0 g) to which silicon fine powder D (2.0 g) was added and pre-mixed were used for 12,000 rpm-3 minutes in air using a hybridizer (Type O: manufactured by Nara Machinery Co., Ltd.). By applying a mechanical impact force, a mechanochemical treatment was performed to obtain a composite treated powder (1). Next, to form a carbon layer, 5.0 g of a petroleum-based mesophase pitch powder having a specific gravity of 1.25 was added to 20.0 g of the composite-processed powder {circle around (1)}, and 12,000 rpm-in air using a hybridizer. By applying a mechanical impact force for 3 minutes, coating with petroleum-based mesophase pitch powder was performed to obtain a composite-processed powder (2). Next, the composite-treated powder (2) is heated to 1,000 ° C. at a rate of 10 ° C./min in a nitrogen atmosphere, and kept at that temperature for 1 hour to prepare the composite carbon for a negative electrode of the present invention. The material was obtained. Observation of the composite carbon material for a negative electrode with a scanning electron microscope (SEM) revealed that a composite carbon material uniformly coated with a carbon layer was obtained. The average particle size of the composite carbon material for a negative electrode was 18.2 μm, and the silicon concentration in the composite carbon material for a negative electrode determined by elemental analysis was 6.9% by weight.
[0058]
A coating liquid was prepared by adding 7% by weight of polyvinylidene fluoride to the composite carbon material for a negative electrode obtained above, applied on a copper foil, dried, and then rolled to an electrode density of 1.6 g / cc. Then, a negative electrode was obtained.
That is, a mixed carbonate prepared by using ethylene carbonate (EC) / methyl ethyl carbonate (MEC) at a volume ratio of 1/2 using a three-electrode cell using lithium metal for the negative electrode, the counter electrode, and the reference electrode. Lithium hexafluorophosphate (LiPF) as an electrolyte in a solvent6) Was dissolved in an electrolytic solution having a concentration of 1 mol, and the charge / discharge capacity characteristics were measured.
[0059]
The charge and discharge were performed at a constant current of 100 mA / g-10 mV for 8 hours, and the discharge was performed at a constant current of 100 mA / g (1.5 V / Li / Li).+) And the measurement was repeated 10 times.
At this time, the first discharge capacity is 520 mAh / g, the charge / discharge efficiency is 92.0%, the 10th discharge capacity is 520 mAh / g, and the charge / discharge efficiency is 100.0%, which is a high discharge capacity and charge / discharge efficiency. The cycle was stably repeated up to the 10th cycle.
[0060]
Embodiment 2
Graphite particles B (20.0 g) to which silicon fine powder E (5.0 g) was added and premixed were used under a nitrogen atmosphere at 12,000 rpm-4 using a hybridizer (Type O: manufactured by Nara Machinery Co., Ltd.). By applying a mechanical impact force for one minute to obtain a composite-processed powder (3). Next, in order to form a carbon layer, 5.0 g of petroleum-based mesophase pitch powder having a specific gravity of 1.25 was added to 20.0 g of the composite-processed powder {circle around (3)}, and 12,000 rpm under a nitrogen atmosphere using a hybridizer. By applying a mechanical impact force of -4 minutes, coating with petroleum-based mesophase pitch powder was performed to obtain a composite-processed powder (4). Next, the composite treated powder (4) was heated to 1,100 ° C. at a rate of 10 ° C./min in a nitrogen atmosphere and kept at that temperature for 1 hour to prepare the composite carbon for a negative electrode of the present invention. The material was obtained. Observation of the composite carbon material for a negative electrode with a scanning electron microscope (SEM) revealed that a composite carbon material uniformly coated with a carbon layer was obtained. The average particle size of the composite carbon material for negative electrodes was measured to be 18.5 μm, and the silicon concentration in the composite carbon material for negative electrodes determined by elemental analysis was 17.0% by weight.
[0061]
The charge / discharge capacity characteristics of the composite carbon material for a negative electrode obtained above were measured in the same manner as in Example 1.
At this time, the first discharge capacity was 685 mAh / g, the charge / discharge efficiency was 91.5%, the 10th discharge capacity was 683 mAh / g, and the charge / discharge efficiency was 99.9%, indicating high discharge capacity and charge / discharge efficiency. The cycle was stably repeated up to the 10th cycle.
[0062]
Embodiment 3
Graphite particles C (22.0 g) to which silicon fine powder D (3.0 g) was added and premixed were used for 11,000 rpm-3 minutes in the air using a hybridizer (Type O: manufactured by Nara Machinery Co., Ltd.). By applying a mechanical impact force, a mechanochemical treatment was performed to obtain a composite treated powder (5). Next, to form a carbon layer, 5.0 g of petroleum-based isotropic pitch powder having a specific gravity of 1.22 was added to 20.0 g of the composite-processed powder (5), and 12,12 in air using a hybridizer. By applying a mechanical impact force of 000 rpm-3 minutes, coating with a petroleum-based isotropic pitch powder was performed to obtain a composite-processed powder (6). Next, the composite-treated powder (6) is heated to 1,100 ° C. at a rate of 10 ° C./min in a nitrogen atmosphere, and kept at that temperature for 1 hour to prepare the composite carbon for a negative electrode of the present invention. The material was obtained. Observation of the composite carbon material for a negative electrode with a scanning electron microscope (SEM) revealed that a composite carbon material uniformly coated with a carbon layer was obtained. The average particle size of the composite carbon material for negative electrodes was measured to be 19.4 μm, and the silicon concentration in the composite carbon material for negative electrodes by elemental analysis was 10.4% by weight.
[0063]
The charge / discharge capacity characteristics of the composite carbon material for a negative electrode obtained above were measured in the same manner as in Example 1.
At this time, the first discharge capacity was 591 mAh / g, the charge / discharge efficiency was 91.5%, the 10th discharge capacity was 590 mAh / g, and the charge / discharge efficiency was 99.9%, indicating high discharge capacity and charge / discharge efficiency. The cycle was stably repeated up to the 10th cycle.
[0064]
[Comparative Example 1]
Graphite particles A (23.0 g) and silicon fine powder D (2.0 g) were added to a tetrahydrofuran solvent, and 5.0 g of a phenol resin was further added and dissolved. The mixture was stirred at 15,000 rpm for 20 minutes using a high-speed stirrer. After that, the tetrahydrofuran solvent was removed by evaporation to obtain a composite-processed powder (7). Next, the composite-treated powder {circle around (7)} was heated to 1,000 ° C. in a nitrogen atmosphere at a rate of temperature increase of 10 ° C./min, and kept at that temperature for 1 hour to obtain a composite carbon material for a negative electrode. . Further, the average particle size of the composite carbon material for negative electrodes was measured to be 18.5 μm, and the silicon concentration in the composite carbon material for negative electrodes by elemental analysis was 7.5% by weight.
[0065]
The charge / discharge capacity characteristics of the composite carbon material for a negative electrode obtained above were measured in the same manner as in Example 1.
At this time, the initial discharge capacity is 536 mAh / g, the charge / discharge efficiency is 88.0%, the 10th discharge capacity is 475 mAh / g, the charge / discharge efficiency is 99.2%, the initial efficiency is low, and up to the 10th time. Was also remarkable.
[0066]
[Comparative Example 2]
Silicon fine powder D (3.0 g) was added to graphite particles C (23.0 g), and the mixture was stirred with a blender to obtain mixed treated powder (8). Next, 5.0 g of petroleum isotropic pitch powder having a specific gravity of 1.22 was added to 20.0 g of the mixed powder (8), and the mixture was stirred with a blender to obtain a composite powder (9). Next, the composite-processed powder (9) was heated to 1,100 ° C. at a rate of 10 ° C./min in a nitrogen atmosphere and held at that temperature for 1 hour to obtain a composite carbon material for a negative electrode. . The average particle size of the composite carbon material for negative electrodes was 18.5 μm, and the silicon concentration in the composite carbon material for negative electrodes determined by elemental analysis was 10.4% by weight.
[0067]
The charge / discharge capacity characteristics of the composite carbon material for a negative electrode obtained above were measured in the same manner as in Example 1.
At this time, the initial discharge capacity was 515 mAh / g, the charge / discharge efficiency was 85.6%, the 10th discharge capacity was 445 mAh / g, the charge / discharge efficiency was 99.0%, the initial efficiency was low, and up to the 10th time. Was also remarkable.
[0068]
【The invention's effect】
In the composite carbon material for a negative electrode of a lithium ion secondary battery of the present invention, the individual particles are homogeneous, and a metal or a metal compound is firmly fixed on the surface of graphite core particles, and the surface is relatively thick. Since it is covered with the carbon layer, good contact between the metal or metal compound having low conductivity and the graphite particles is maintained. Further, since the metal or the metal compound and the graphite particles are not easily separated, the conductivity is stably maintained.
[0069]
Furthermore, since the surface is covered with the carbon layer, the metal or the metal compound does not come into contact with the electrolytic solution, and therefore, the charge / discharge efficiency is improved. In addition, since the carbon layer is relatively thick, it is possible to suppress expansion and contraction of the metal or metal compound due to charge and discharge.
Further, since the composite carbon material for a negative electrode of the present invention is homogeneous, even if expansion occurs, stress applied to the electrode is uniform and deterioration of the electrode is small. Therefore, the composite carbon material for a negative electrode of a lithium ion secondary battery of the present invention has high capacity, high charge / discharge efficiency, and excellent cycle characteristics.
[0070]
In addition, since the manufacturing method is also a dry method, it is possible to easily control the ratio between the graphite particles serving as the nucleus and the metal or the metal compound, and it is possible to manufacture a homogeneous composite carbon material and to perform complicated steps. It can be manufactured inexpensively without need.

Claims (8)

黒鉛粒子表面に、リチウムを吸蔵・放出可能な金属もしくは金属化合物粒子をメカノケミカル処理により固定化し、さらにその表面に炭素層を形成してなる3層構造を有することを特徴とするリチウムイオン二次電池負極用複合炭素材料。A lithium ion secondary having a three-layer structure in which metal or metal compound particles capable of occluding and releasing lithium are fixed to the surface of graphite particles by mechanochemical treatment, and a carbon layer is formed on the surface. Composite carbon material for battery anode. 上記黒鉛粒子が、異方性(メソフェーズ)ピッチを原料とした炭素繊維ミルドまたは石油系コークスを黒鉛化した黒鉛粒子であることを特徴とする請求項1に記載のリチウムイオン二次電池負極用複合炭素材料。The composite for negative electrode of lithium ion secondary battery according to claim 1, wherein the graphite particles are graphite particles obtained by graphitizing carbon fiber milled or petroleum coke using anisotropic (mesophase) pitch as a raw material. Carbon material. 上記メカノケミカル処理により固定化される金属もしくは金属化合物粒子の平均粒径が、上記黒鉛粒子の平均粒径に対し、10分の1以下であることを特徴とする請求項1または2に記載のリチウムイオン二次電池負極用複合炭素材料。The metal or metal compound particles immobilized by the mechanochemical treatment have an average particle diameter of 1/10 or less of the average particle diameter of the graphite particles. Composite carbon material for negative electrode of lithium ion secondary battery. 上記炭素層が、異方性(メソフェーズ)ピッチまたは等方性ピッチを原料とした炭化物層であることを特徴とする請求項1ないし3のいずれか1項に記載のリチウムイオン二次電池負極用複合炭素材料。4. The negative electrode for a lithium ion secondary battery according to claim 1, wherein the carbon layer is a carbide layer using an anisotropic (mesophase) pitch or an isotropic pitch as a raw material. 5. Composite carbon material. 上記金属もしくは金属化合物が、ケイ素もしくはスズまたはそれらと他の金属との混合物あるいは合金を含む金属化合物であることを特徴とする請求項1ないし4のいずれか1項に記載のリチウムイオン二次電池負極用複合炭素材料。The lithium ion secondary battery according to any one of claims 1 to 4, wherein the metal or the metal compound is a metal compound containing silicon or tin or a mixture or alloy of the metal and the other metal. Composite carbon material for negative electrode. 黒鉛粒子表面に、リチウムを吸蔵・放出可能な金属もしくは金属化合物粒子を、乾式法にて機械的衝撃力を用いるメカノケミカル処理により固定化し、さらにその表面に炭素層を形成することを特徴とするリチウムイオン二次電池負極用複合炭素材料の製造方法。Metal or metal compound particles capable of occluding and releasing lithium are immobilized on the surface of graphite particles by mechanochemical treatment using mechanical impact force by a dry method, and a carbon layer is formed on the surface. A method for producing a composite carbon material for a negative electrode of a lithium ion secondary battery. 請求項1ないし5のいずれか1項に記載のリチウムイオン二次電池負極用複合炭素材料を用いることを特徴とするリチウムイオン二次電池負極。A negative electrode for a lithium ion secondary battery, comprising using the composite carbon material for a negative electrode for a lithium ion secondary battery according to any one of claims 1 to 5. 請求項7に記載のリチウムイオン二次電池負極を用いることを特徴とするリチウムイオン二次電池。A lithium ion secondary battery comprising the lithium ion secondary battery negative electrode according to claim 7.
JP2002351278A 2002-12-03 2002-12-03 Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method Pending JP2004185975A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002351278A JP2004185975A (en) 2002-12-03 2002-12-03 Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002351278A JP2004185975A (en) 2002-12-03 2002-12-03 Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method

Publications (1)

Publication Number Publication Date
JP2004185975A true JP2004185975A (en) 2004-07-02

Family

ID=32753240

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002351278A Pending JP2004185975A (en) 2002-12-03 2002-12-03 Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method

Country Status (1)

Country Link
JP (1) JP2004185975A (en)

Cited By (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253126A (en) * 2005-02-14 2006-09-21 Matsushita Electric Ind Co Ltd Anode active material for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell using same, and nonaqueous electrolyte secondary cell
WO2007074939A1 (en) * 2005-12-27 2007-07-05 Nippon Oil Corporation Raw coal for making carbonaceous material for electricity storage or needle coke
JP2008156376A (en) * 2005-12-27 2008-07-10 Nippon Petroleum Refining Co Ltd Petroleum coke and method for producing the same
JP2009181767A (en) * 2008-01-30 2009-08-13 Tokai Carbon Co Ltd Composite carbon material for negative electrode material of lithium secondary battery and its manufacturing method
US8137530B2 (en) 2007-06-22 2012-03-20 Nippon Petroleum Refining Co., Ltd. Process for producing petroleum coke
JP2012069488A (en) * 2010-09-27 2012-04-05 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
WO2014080629A1 (en) * 2012-11-20 2014-05-30 昭和電工株式会社 Method for producing negative electrode material for lithium ion batteries
JP2015005445A (en) * 2013-06-21 2015-01-08 太平洋セメント株式会社 Silicon negative electrode active material
JP2015008143A (en) * 2014-07-22 2015-01-15 日本ケミコン株式会社 Carbon carrying metal compound nanoparticles in dispersed state
KR20150083382A (en) * 2014-01-09 2015-07-17 삼성에스디아이 주식회사 Negative electrode and rechargeable lithium battery including same
JP2016039006A (en) * 2014-08-06 2016-03-22 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery
JP2018524774A (en) * 2015-06-15 2018-08-30 ユニスト(ウルサン ナショナル インスティテュート オブ サイエンス アンド テクノロジー) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
US11764407B2 (en) 2017-11-21 2023-09-19 Samsung Electronics Co., Ltd. All-solid-state secondary battery including anode active material alloyable with lithium and method of charging the same
US11824155B2 (en) 2019-05-21 2023-11-21 Samsung Electronics Co., Ltd. All-solid lithium secondary battery and method of charging the same

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294111A (en) * 1997-04-18 1998-11-04 Nippon Carbon Co Ltd Graphite carbon material coated with graphite for lithium secondary battery negative electrode material and its manufacture
JPH11265716A (en) * 1998-03-16 1999-09-28 Denso Corp Negative electrode active material for lithium secondary battery and its manufacture
JP2001102048A (en) * 1999-09-28 2001-04-13 Samsung Yokohama Research Institute Co Ltd Method for producing negative electrode material for lithium secondary battery
JP2002008652A (en) * 2000-06-16 2002-01-11 Samsung Yokohama Research Institute Co Ltd Negative electrode material for lithium secondary battery and electrode for lithium secondary battery and manufacturing method of lithium secondary battery and negative electrode material for lithium secondary battery
JP2002008656A (en) * 2000-06-23 2002-01-11 Hitachi Maxell Ltd Lithium secondary battery
JP2002100359A (en) * 2000-09-26 2002-04-05 Petoca Ltd Graphite material for negative electrode of lithium secondary battery, and its manufacturing method

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10294111A (en) * 1997-04-18 1998-11-04 Nippon Carbon Co Ltd Graphite carbon material coated with graphite for lithium secondary battery negative electrode material and its manufacture
JPH11265716A (en) * 1998-03-16 1999-09-28 Denso Corp Negative electrode active material for lithium secondary battery and its manufacture
JP2001102048A (en) * 1999-09-28 2001-04-13 Samsung Yokohama Research Institute Co Ltd Method for producing negative electrode material for lithium secondary battery
JP2002008652A (en) * 2000-06-16 2002-01-11 Samsung Yokohama Research Institute Co Ltd Negative electrode material for lithium secondary battery and electrode for lithium secondary battery and manufacturing method of lithium secondary battery and negative electrode material for lithium secondary battery
JP2002008656A (en) * 2000-06-23 2002-01-11 Hitachi Maxell Ltd Lithium secondary battery
JP2002100359A (en) * 2000-09-26 2002-04-05 Petoca Ltd Graphite material for negative electrode of lithium secondary battery, and its manufacturing method

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253126A (en) * 2005-02-14 2006-09-21 Matsushita Electric Ind Co Ltd Anode active material for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell using same, and nonaqueous electrolyte secondary cell
WO2007074939A1 (en) * 2005-12-27 2007-07-05 Nippon Oil Corporation Raw coal for making carbonaceous material for electricity storage or needle coke
JP2008156376A (en) * 2005-12-27 2008-07-10 Nippon Petroleum Refining Co Ltd Petroleum coke and method for producing the same
US7959888B2 (en) 2005-12-27 2011-06-14 Nippon Oil Corporation Raw coke for electricity storage carbon material and needle coke
US8197788B2 (en) 2005-12-27 2012-06-12 Nippon Oil Corporation Raw coke for electricity storage carbon material and needle coke
US8226921B2 (en) 2005-12-27 2012-07-24 Nippon Oil Corporation Raw coke for electricity storage carbon material and needle coke
US8137530B2 (en) 2007-06-22 2012-03-20 Nippon Petroleum Refining Co., Ltd. Process for producing petroleum coke
JP2009181767A (en) * 2008-01-30 2009-08-13 Tokai Carbon Co Ltd Composite carbon material for negative electrode material of lithium secondary battery and its manufacturing method
JP2012069488A (en) * 2010-09-27 2012-04-05 Mitsubishi Chemicals Corp Nonaqueous electrolyte secondary battery
JP5599527B1 (en) * 2012-11-20 2014-10-01 昭和電工株式会社 Method for producing negative electrode material for lithium ion battery
WO2014080629A1 (en) * 2012-11-20 2014-05-30 昭和電工株式会社 Method for producing negative electrode material for lithium ion batteries
CN104798228A (en) * 2012-11-20 2015-07-22 昭和电工株式会社 Method for producing negative electrode material for lithium ion batteries
JP2015005445A (en) * 2013-06-21 2015-01-08 太平洋セメント株式会社 Silicon negative electrode active material
KR20150083382A (en) * 2014-01-09 2015-07-17 삼성에스디아이 주식회사 Negative electrode and rechargeable lithium battery including same
KR102211528B1 (en) * 2014-01-09 2021-02-02 삼성에스디아이 주식회사 Negative electrode and rechargeable lithium battery including same
JP2015008143A (en) * 2014-07-22 2015-01-15 日本ケミコン株式会社 Carbon carrying metal compound nanoparticles in dispersed state
JP2016039006A (en) * 2014-08-06 2016-03-22 三星電子株式会社Samsung Electronics Co.,Ltd. Lithium ion secondary battery
JP2018524774A (en) * 2015-06-15 2018-08-30 ユニスト(ウルサン ナショナル インスティテュート オブ サイエンス アンド テクノロジー) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
US11764407B2 (en) 2017-11-21 2023-09-19 Samsung Electronics Co., Ltd. All-solid-state secondary battery including anode active material alloyable with lithium and method of charging the same
US11929463B2 (en) 2017-11-21 2024-03-12 Samsung Electronics Co., Ltd. All-solid-state secondary battery and method of charging the same
US11824155B2 (en) 2019-05-21 2023-11-21 Samsung Electronics Co., Ltd. All-solid lithium secondary battery and method of charging the same

Similar Documents

Publication Publication Date Title
JP4477522B2 (en) Negative electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the negative electrode active material
US7897283B2 (en) Non-aqueous secondary battery-use graphite composite particle, cathode active substance material containing IT, cathode and non-aqueous secondary battery
JP6466635B2 (en) Method for producing negative electrode for nonaqueous electrolyte secondary battery and method for producing nonaqueous electrolyte secondary battery
JP5346962B2 (en) Graphite material and production method thereof, negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP3540478B2 (en) Anode material for lithium ion secondary battery
JP2005259697A (en) Anode active material and cathode active material for lithium secondary battery, and lithium secondary battery
TW201339093A (en) Composite graphite particle and the use
JP2000272911A (en) Metal-carbon composite particle, its production, cathode material, cathode for lithium secondary battery and lithium secondary battery
WO2015049836A1 (en) Silicon-containing material, negative electrode for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery, and manufacturing method therefor
KR20160085089A (en) Secondary Battery
JP2004185975A (en) Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method
JPH0831422A (en) Carbon material for negative electrode of lithium secondary battery and manufacture thereof
JP2004200001A (en) Composit carbon material for lithium-ion secondary battery negative electrode, and its manufacturing method
JPH11219704A (en) Lithium secondary battery, its negative electrode and its manufacture
JP2002329494A (en) Graphite material for negative electrode of lithium ion secondary battery and production process thereof
JP6957127B1 (en) Carbon material for negative electrode of lithium ion secondary battery and its manufacturing method, and negative electrode and lithium ion secondary battery using it
JPH0963584A (en) Carbon material for lithium secondary battery and manufacture thereof
JP4299608B2 (en) Method for producing graphite material, negative electrode material for lithium ion secondary battery, and lithium ion secondary battery
JPH10255799A (en) Graphite material for high-capacity nonaqueous secondary battery negative electrode and its manufacture
JPH11219700A (en) Lithium secondary battery, its negative electrode and its manufacture
JPH0963585A (en) Carbon material for lithium secondary battery and manufacture thereof
JP2002146635A (en) Highly graphiteized carbon material, method for producing the same, and application thereof
JPH11343109A (en) Carbon material and its production, negative pole for lithium secondary battery and lithium secondary battery
JPH08306359A (en) Anode material for lithium secondary battery and its manufacture
JP2000012034A (en) Graphite material for lithium secondary battery and its manufacture

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051107

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20080516

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20080610

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20081014