JP2006253126A - Anode active material for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell using same, and nonaqueous electrolyte secondary cell - Google Patents

Anode active material for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell using same, and nonaqueous electrolyte secondary cell Download PDF

Info

Publication number
JP2006253126A
JP2006253126A JP2006036167A JP2006036167A JP2006253126A JP 2006253126 A JP2006253126 A JP 2006253126A JP 2006036167 A JP2006036167 A JP 2006036167A JP 2006036167 A JP2006036167 A JP 2006036167A JP 2006253126 A JP2006253126 A JP 2006253126A
Authority
JP
Japan
Prior art keywords
negative electrode
electrolyte secondary
alloy
active material
graphite
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2006036167A
Other languages
Japanese (ja)
Other versions
JP5043344B2 (en
Inventor
Toshitada Sato
俊忠 佐藤
Teruaki Yamamoto
輝明 山本
Masaki Hasegawa
正樹 長谷川
Yasuhiko Mifuji
靖彦 美藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2006036167A priority Critical patent/JP5043344B2/en
Publication of JP2006253126A publication Critical patent/JP2006253126A/en
Application granted granted Critical
Publication of JP5043344B2 publication Critical patent/JP5043344B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)
  • Secondary Cells (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a nonaqueous electrolyte secondary cell suppressing deterioration of cell characteristics with an expansion of an alloy material and having high capacity and good cycle characteristics, in an anode using both an alloy material and a graphite material. <P>SOLUTION: The anode active material for a nonaqueous electrolyte secondary cell contains an alloy material including Si and at least either Ti or Zr, as well as a graphite material, with a surface of the graphite material covered with the alloy material. An anode including the anode active material is preferred to have a porosity in a discharge state in a range of 10% to 80% inclusive. The nonaqueous electrolyte secondary cell is structured by combining the anode with a cathode including lithium-containing transition metal oxide and nonaqueous electrolyte including lithium salt. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、高容量で、長寿命である非水電解質二次電池に関し、詳しくは非水電解質二次電池用負極の改良に関する。   The present invention relates to a high-capacity, long-life non-aqueous electrolyte secondary battery, and more particularly to improvement of a negative electrode for a non-aqueous electrolyte secondary battery.

非水電解質二次電池の負極として、高電圧で高エネルギー密度を実現可能な金属リチウムを用いる研究開発が多く行われてきた。そして現在、リチウムを可逆的に吸蔵および放出し、サイクル寿命と安全性に優れた黒鉛材料を負極に用いたリチウムイオン電池が実用化されている。   Many researches and developments have been made using metallic lithium capable of realizing a high energy density at a high voltage as a negative electrode of a nonaqueous electrolyte secondary battery. Currently, lithium ion batteries that use a graphite material that reversibly occludes and releases lithium and has excellent cycle life and safety as a negative electrode have been put into practical use.

しかし、黒鉛材料を負極に用いた電池において、達成されている黒鉛の実用容量は約350mAh/gであり、黒鉛材料の理論容量(372mAh/g)にかなり接近している。そのため、負極に黒鉛材料を用いる限り、将来の飛躍的な容量向上は望めない。一方、携帯機器の高機能化に伴い、そのエネルギー源となる非水電解質二次電池に要求される容量は増大する傾向にある。よって、さらなる高容量化を実現するためには、黒鉛以上の容量を有する負極材料が必要となる。   However, in a battery using a graphite material as a negative electrode, the achieved practical capacity of graphite is about 350 mAh / g, which is quite close to the theoretical capacity of graphite material (372 mAh / g). Therefore, as long as a graphite material is used for the negative electrode, future dramatic capacity improvement cannot be expected. On the other hand, the capacity required for a non-aqueous electrolyte secondary battery serving as an energy source tends to increase as the functionality of portable devices increases. Therefore, in order to realize a further increase in capacity, a negative electrode material having a capacity higher than that of graphite is required.

高容量を与える材料として、現在ケイ素を含む合金材料やスズを含む合金材料が注目されている。ケイ素、スズ等の金属元素はリチウムイオンを電気化学的に吸蔵および放出可能であり、黒鉛材料に比べて非常に大きな容量の充放電が可能である。例えばケイ素であればその理論放電容量は4199mAh/gであり、黒鉛の11倍の高容量を有することが知られている。   Currently, alloy materials containing silicon and alloy materials containing tin are attracting attention as materials that provide high capacity. Metal elements such as silicon and tin can occlude and release lithium ions electrochemically, and can charge and discharge with a very large capacity compared to graphite materials. For example, silicon is known to have a theoretical discharge capacity of 4199 mAh / g, which is 11 times higher than that of graphite.

一方合金材料は、リチウムを吸蔵する際に、リチウム−ケイ素、リチウム−スズといったリチウム合金を形成する。リチウム合金の形成は、合金の結晶構造の変化に基づく非常に大きな膨張を伴う。例えばケイ素の体積は、最大限までリチウムを充電することにより、理論上4.1倍に膨張する。そのため活物質である合金材料が負極の集電体から剥がれ落ちて、電気的な導通が失われ、高率放電特性や充放電サイクル特性などが低下する。黒鉛の場合リチウムが黒鉛層間に挿入されるインターカレーション反応を利用するため、黒鉛の体積は1.1倍しか膨張しない。   On the other hand, the alloy material forms lithium alloys such as lithium-silicon and lithium-tin when occludes lithium. The formation of a lithium alloy involves a very large expansion based on changes in the crystal structure of the alloy. For example, the volume of silicon expands theoretically by a factor of 4.1 by charging lithium to the maximum. Therefore, the alloy material which is an active material is peeled off from the current collector of the negative electrode, electric conduction is lost, and high rate discharge characteristics, charge / discharge cycle characteristics and the like are deteriorated. In the case of graphite, since the intercalation reaction in which lithium is inserted between graphite layers is used, the volume of graphite expands only 1.1 times.

上記のような膨張を緩和し、かつ高容量を得る観点から、黒鉛と合金材料とを組み合わせて用いる検討が多く試みられている。しかし、単に黒鉛と合金材料とを混合した場合、合金材料の膨張が黒鉛材料に比べて大きく、かつ極板内で不均一な方向に膨張するため、周りの黒鉛が応力を受けて移動し、剥離に至る。その結果、合金材料を単独で用いた負極と同様に電子伝導性が低下し、電池の高率放電特性や充放電サイクル特性が低下する。   Many attempts have been made to use a combination of graphite and an alloy material from the viewpoint of alleviating the above expansion and obtaining a high capacity. However, when graphite and alloy material are simply mixed, the expansion of the alloy material is larger than that of the graphite material and expands in a non-uniform direction within the electrode plate, so that the surrounding graphite moves under stress, It leads to peeling. As a result, similarly to the negative electrode using the alloy material alone, the electron conductivity is lowered, and the high rate discharge characteristics and charge / discharge cycle characteristics of the battery are lowered.

上記の課題を解決することを目的として、特許文献1では、黒鉛粒子表面に結晶質のSi微粒子が付着し、さらに前記黒鉛粒子の少なくとも一部に炭素皮膜が被覆されている造粒体を活物質に用いることにより、上記課題を改善する試みを行っている。また、特許文献2においても、同様に黒鉛粒子表面にSiおよび/またはSi化合物を含む炭素質材料が付着した造粒体を活物質に用いることを提案している。   In order to solve the above problems, Patent Document 1 discloses that a granulated body in which crystalline Si fine particles are attached to the surface of graphite particles and a carbon film is coated on at least a part of the graphite particles is activated. Attempts have been made to improve the above problems by using them as substances. Similarly, Patent Document 2 proposes to use, as an active material, a granulated body in which a carbonaceous material containing Si and / or a Si compound is adhered to the surface of graphite particles.

これらの提案は、より膨張・収縮の小さく、かつ電気化学的に活性な黒鉛上に、大きな膨張・収縮を繰り返すSi材料を配置し、さらに、その上から炭素被覆している。これによりSi材料が黒鉛から剥がれ落ちにくく、かつ安定な集電性を付与させ、充放電サイクル特性の向上を試みている。しかしながら、被覆した炭素が強固なために、Si材料の膨張により造粒体が破壊されてしまい、充分な特性向上には至らない。また、炭素材料が表面に被覆しているため、結着剤と濡れにくく、充分な接着力が得られない。そのため、混練時に強力な負荷を与えることにより、活物質表面に結着剤を付与させるプロセスが必要不可欠になる。その際に、被覆した炭素およびSi材料とが、上記負荷によって、黒鉛表面から剥がれてしまうという重大な課題を有することが判明した。
特開2002−8652号公報 特開2004−182512号公報
In these proposals, a Si material that repeats large expansion and contraction is placed on graphite that is smaller in expansion and contraction and electrochemically active, and is further covered with carbon. As a result, the Si material is unlikely to be peeled off from the graphite, and a stable current collecting property is imparted to improve the charge / discharge cycle characteristics. However, since the coated carbon is strong, the granulated body is destroyed by the expansion of the Si material, and the characteristics are not sufficiently improved. Further, since the carbon material covers the surface, it is difficult to get wet with the binder, and a sufficient adhesive force cannot be obtained. Therefore, a process for imparting a binder to the active material surface by applying a strong load during kneading becomes indispensable. At that time, it has been found that the coated carbon and Si material have a serious problem that they are peeled off from the graphite surface by the load.
JP 2002-8652 A JP 2004-182512 A

上述のように、高容量な合金材料を負極材料として使いこなす観点から、合金材料と黒鉛材料との併用が広く検討がされているが、いずれの提案も合金材料の不均一な膨張による影響を十分に低減できていない。すなわち、従来の提案の場合、負極内において粒子間の電気的導通の切断や集電体または黒鉛材料から合金材料の剥離が発生し、結局負極の電子伝導性が低下し、電池特性も低下する。   As described above, the combined use of an alloy material and a graphite material has been widely studied from the viewpoint of using a high-capacity alloy material as a negative electrode material, but both proposals are sufficiently affected by the uneven expansion of the alloy material. It has not been reduced. That is, in the case of the conventional proposal, the disconnection of the electrical continuity between the particles in the negative electrode and the peeling of the alloy material from the current collector or the graphite material occur, and the electronic conductivity of the negative electrode eventually decreases, and the battery characteristics also deteriorate. .

上記を鑑み本発明は、Liを電気化学的に吸蔵および放出可能な合金材料と黒鉛材料とを活物質として用いる場合における、上述のような合金材料の膨張に伴う電池特性の低下を抑制することを目的とするものである。   In view of the above, the present invention suppresses the deterioration of battery characteristics due to the expansion of the alloy material as described above when an alloy material capable of electrochemically inserting and extracting Li and a graphite material are used as active materials. It is intended.

本発明の非水電解質二次電池用負極活物質は、Liを電気化学的に吸蔵および放出可能な活物質であって、TiおよびZrの少なくとも一方とSiとを含む合金材料、並びに黒鉛材料を含み、前記黒鉛材料の表面が前記合金材料により被覆されていることを特徴とする。   The negative electrode active material for a non-aqueous electrolyte secondary battery of the present invention is an active material capable of electrochemically occluding and releasing Li, comprising an alloy material containing at least one of Ti and Zr and Si, and a graphite material. And the surface of the graphite material is covered with the alloy material.

本発明によれば、合金材料と黒鉛材料とを併用した負極において、合金材料の膨張に伴う電池特性の低下を抑制できるため、高容量で、サイクル特性に優れた非水電解質二次電池を実現できる。   According to the present invention, in a negative electrode using a combination of an alloy material and a graphite material, it is possible to suppress a decrease in battery characteristics due to expansion of the alloy material, thereby realizing a high capacity non-aqueous electrolyte secondary battery with excellent cycle characteristics. it can.

本発明に係る負極活物質は、Liを電気化学的に吸蔵および放出可能な非水電解質二次電池用負極活物質であって、TiおよびZrの少なくとも一方とSiとを含む合金材料、並びに黒鉛材料を含み、前記黒鉛材料の表面が前記合金材料により被覆されていることを特徴とする。
本発明の一実施の形態における負極活物質の形状を図1に示す。本発明に係る活物質は、黒鉛材料の表面が合金材料により被覆されることによって、合金材料が膨張および収縮した場合においても、常に黒鉛材料と接触を維持することが可能になる。その結果、負極の電子伝導性の低下を抑制する。よって、この合金材料と黒鉛とを含む本発明の非水電解質二次電池用負極は、高容量で、サイクル特性に優れた電池を与える。
A negative electrode active material according to the present invention is a negative electrode active material for a non-aqueous electrolyte secondary battery capable of electrochemically inserting and extracting Li, an alloy material containing at least one of Ti and Zr and Si, and graphite It includes a material, and the surface of the graphite material is covered with the alloy material.
The shape of the negative electrode active material in one embodiment of the present invention is shown in FIG. The active material according to the present invention can always maintain contact with the graphite material even when the alloy material expands and contracts by covering the surface of the graphite material with the alloy material. As a result, a decrease in the electronic conductivity of the negative electrode is suppressed. Therefore, the negative electrode for a non-aqueous electrolyte secondary battery of the present invention containing this alloy material and graphite gives a battery with high capacity and excellent cycle characteristics.

また、本発明に係る負極活物質は、水に濡れにくい黒鉛材料の表面を、親水性の高いTi−Si合金材料またはZr−Si合金材料が被覆する構造を有することにより、負極活物質の表面が容易に結着剤と結びつくことが可能となる。そのため、高い応力をかける混練の必要なく、負極活物質の表面に充分な量の結着剤が付着した状態を調製することが可能となる。その結果、混練時に黒鉛材料と合金材料とが剥がれてしまう不具合の発生を防ぐ。さらには、上記活物質表面に結着剤が付着し、活物質の表面を覆うように存在することにより、合金材料の膨張・収縮による、黒鉛材料からの剥がれを抑制する。さらに、結着剤の多くは、有機高分子材料あるいはゴム系の材料である。そのような材料は、柔軟性に富んでいるから、上記合金材料の膨張・収縮に追随することにより、合金材料の活物質からの剥離を防ぐことが可能になる。   In addition, the negative electrode active material according to the present invention has a structure in which the surface of a graphite material that is difficult to wet with water is covered with a highly hydrophilic Ti-Si alloy material or Zr-Si alloy material, so that the surface of the negative electrode active material Can be easily combined with the binder. Therefore, it is possible to prepare a state in which a sufficient amount of the binder is attached to the surface of the negative electrode active material without the need for kneading that applies high stress. As a result, the occurrence of a problem that the graphite material and the alloy material are peeled off during kneading is prevented. Furthermore, the binder adheres to the surface of the active material and exists so as to cover the surface of the active material, thereby suppressing peeling from the graphite material due to expansion and contraction of the alloy material. Further, most of the binders are organic polymer materials or rubber materials. Since such a material is rich in flexibility, it is possible to prevent peeling of the alloy material from the active material by following the expansion and contraction of the alloy material.

さらには上記のような構造をとることにより、集電性が向上することによって、電極の高率放電特性が向上する。   Furthermore, by taking the structure as described above, the high-rate discharge characteristics of the electrode are improved by improving the current collecting property.

上記合金材料は、TiおよびZrの少なくとも一方とSiとを含むことを特徴とする。TiおよびZrは、他の遷移金属元素に比較して、酸素との反応性が高く、かつ粒子の最表面に安定な酸化物を形成し、過剰な酸化を防止する役割を果たす。また、上記のように表面に酸化物が形成されていることにより、他の金属粒子に比較して濡れ性が高く、特に、水に対する濡れ性が高くなるので、前述のような効果を引き出すことが可能になる。   The alloy material includes at least one of Ti and Zr and Si. Ti and Zr have a higher reactivity with oxygen than other transition metal elements, and form a stable oxide on the outermost surface of the particle to play a role in preventing excessive oxidation. In addition, since the oxide is formed on the surface as described above, the wettability is higher than that of other metal particles, and in particular, the wettability with respect to water is increased. Is possible.

上記合金材料は、さらに、少なくとも、Siを主体とする相(以下A相という)と金属間化合物TiSi2またはZrSi2の相(以下B相という)の2つの相を有することにより、より高容量かつ長寿命な電池を実現する。A相は、Liの吸蔵および放出を担う相であり、電気化学的にLiと反応可能な相である。A相は、Siを主体とする相であればよいが、好ましくはSi単体からなる相である。A相がSi単体からなる場合、単位重量もしくは単位体積あたりの合金材料が吸蔵および放出するLi量を非常に多量にすることができる。ただし、Si単体は半導体であるため、電子伝導性に乏しい。よって、微量の添加元素、例えばリン(P)や水素(H)等、あるいは遷移金属元素等を5重量%程度までA相に含ませることが有効である。 The alloy material further has at least two phases of a phase mainly composed of Si (hereinafter referred to as A phase) and a phase of an intermetallic compound TiSi 2 or ZrSi 2 (hereinafter referred to as B phase). In addition, a long-life battery is realized. The A phase is a phase responsible for insertion and extraction of Li, and is a phase that can electrochemically react with Li. The A phase may be a phase mainly composed of Si, but is preferably a phase composed of Si alone. When the A phase is composed of Si alone, the amount of Li absorbed and released by the alloy material per unit weight or unit volume can be made extremely large. However, since Si simple substance is a semiconductor, it has poor electronic conductivity. Therefore, it is effective to add a trace amount of additive elements such as phosphorus (P), hydrogen (H), etc., or transition metal elements to the A phase up to about 5% by weight.

B相は、金属間化合物TiSi2またはZrSi2の相を少なくとも有する。Siを含む金属間化合物は、A相との親和性が高く、結晶界面での割れなどが生じにくい。また、B相は遷移金属元素とSiとの金属間化合物の中でも、特にTiまたはZrとSiとからなる金属間化合物相が、Si単体相に比較して電子伝導性が高く、かつ硬度も高い。その中でも特にTiSi2またはZrSi2の相が、A相であるSiを主とした相と親和性が高く、好ましい。よって、B相は、A相の低い電子伝導性を補うとともに、膨張応力に対抗して、合金粒子の形状を維持させるように働く。 The B phase has at least a phase of the intermetallic compound TiSi 2 or ZrSi 2 . An intermetallic compound containing Si has a high affinity with the A phase, and is not easily cracked at the crystal interface. In addition, among the intermetallic compounds of transition metal element and Si, the B phase is particularly high in electronic conductivity and hardness as compared with the Si single phase in the intermetallic compound phase composed of Ti or Zr and Si. . Among them, the TiSi 2 or ZrSi 2 phase is particularly preferable because it has a high affinity with a phase mainly composed of Si as the A phase. Therefore, the B phase works to supplement the low electronic conductivity of the A phase and to maintain the shape of the alloy particles against the expansion stress.

さらにB相は、複数種存在していてもよく、TiSi2またはZrSi2の相と組成の異なる金属間化合物Ti−SiまたはZr−SiがTiSi2またはZrSi2の相とともに存在してもよい。例えば、TiSi2とTiSi、Ti5Si4、Ti3Siとが合金粒子内に存在してもよい。同様にZrSi2とZiSi、Zr5Si4、Zr3Si2およびZi2Siとが合金粒子内に存在してもよい。 Further B phase may be present more, TiSi 2, or different intermetallic compounds of phases and composition of ZrSi 2 TiSi or ZrSi may be present together with the phase of TiSi 2 or ZrSi 2. For example, TiSi 2 and TiSi, Ti 5 Si 4 , Ti 3 Si may be present in the alloy particles. Similarly, ZrSi 2 and ZiSi, Zr 5 Si 4 , Zr 3 Si 2 and Zi 2 Si may be present in the alloy particles.

また、それぞれ異なる遷移金属元素を含む金属間化合物、例えばTiSi2とZrSi2とが同時に合金粒子内に存在してもよい。さらにはTi、Zr以外の遷移金属元素も少量であれば存在していてもよい。その量は合金材料中、Siを除いた元素中10重量%以下が好ましい。 In addition, intermetallic compounds containing different transition metal elements, such as TiSi 2 and ZrSi 2 , may be simultaneously present in the alloy particles. Further, transition metal elements other than Ti and Zr may be present as long as they are in a small amount. The amount is preferably 10% by weight or less in the alloy material, excluding Si.

A相および/またはB相は、微結晶または非晶質の領域からなることが好ましい。微結晶または非晶質の合金材料を用いる場合、Liの吸蔵に伴う膨張による合金粒子の割れが発生しにくい。これは合金材料の組織が微結晶になればなるほど、結晶粒界が多く存在することになり、1つの結晶粒界にかかる膨張の応力が相対的に小さくなるためである。また、非晶質では粒界という概念が失われ、極めて微細な領域で膨張応力が分散されるため、同様に割れが発生しにくい。   The A phase and / or the B phase are preferably composed of microcrystalline or amorphous regions. When a microcrystalline or amorphous alloy material is used, cracking of the alloy particles due to expansion associated with the occlusion of Li hardly occurs. This is because as the structure of the alloy material becomes microcrystalline, more crystal grain boundaries exist, and the expansion stress applied to one crystal grain boundary becomes relatively small. In addition, the concept of grain boundary is lost in amorphous, and the expansion stress is dispersed in a very fine region, so that cracks are hardly generated in the same manner.

さらに本発明では、Siを主体とする相の結晶粒径が50nm以下であることが特に望ましい。ここで、結晶粒(結晶子)の直径が50nm以下である合金材料を微結晶であると定義する。合金材料が微結晶の領域を有する場合、X線回折測定で得られる合金粒子の回折スペクトルの中には、シャープではないが、半価幅を求め得る比較的明瞭なピークが一つ以上観測される。合金材料の結晶粒(結晶子)の直径は、X線回折測定で得られる合金粒子の回折スペクトルの中で最も強度の大きなピークの半価幅を求めることにより、その半価幅とScherrerの式から算出することができる。   Furthermore, in the present invention, it is particularly desirable that the crystal grain size of the phase mainly composed of Si is 50 nm or less. Here, an alloy material having a crystal grain (crystallite) diameter of 50 nm or less is defined as a microcrystal. If the alloy material has a microcrystalline region, one or more peaks that are not sharp but can be obtained with a half-value width are observed in the diffraction spectrum of alloy particles obtained by X-ray diffraction measurement. The The diameter of the crystal grain (crystallite) of the alloy material is obtained by calculating the half width of the peak with the highest intensity in the diffraction spectrum of the alloy particle obtained by X-ray diffraction measurement. It can be calculated from

一方、合金材料が非晶質な領域を有する場合、X線回折測定で得られる合金粒子の回折スペクトルの2θ=15〜40°の範囲には、半価幅を認識できない程度のブロードなハローパターンが観測される。   On the other hand, when the alloy material has an amorphous region, a broad halo pattern in which the half width cannot be recognized in the range of 2θ = 15 to 40 ° of the diffraction spectrum of the alloy particle obtained by X-ray diffraction measurement. Is observed.

上記合金材料中に含まれるSi量は、Zrとの合金の場合、少なくとも38重量%以上であることが好ましい。同様に上記合金材料に含まれる元素がTiおよびSiのみであった場合、Si量は54重量%以上であることが好ましい。逆に上記合金材料中に含まれるSi量は、多くとも95重量%以下であることが好ましい。これらの範囲の組成において、上記A相とB相とが混在し、かつ微細に分散することが可能となる。   In the case of an alloy with Zr, the amount of Si contained in the alloy material is preferably at least 38% by weight or more. Similarly, when the elements contained in the alloy material are only Ti and Si, the amount of Si is preferably 54% by weight or more. Conversely, the amount of Si contained in the alloy material is preferably at most 95% by weight. In the composition in these ranges, the A phase and the B phase can be mixed and finely dispersed.

より好ましいSi量は、60重量%以上93重量%以下である。前記組成の範囲において本発明の負極活物質として高容量および長寿命を両立することができる。   A more preferable amount of Si is 60% by weight or more and 93% by weight or less. Within the above composition range, the negative electrode active material of the present invention can achieve both high capacity and long life.

前記合金材料の平均粒径は5μm未満であることが望ましい。特に好ましくは3μm以下である。合金材料の平均粒径が小さくなればなるほど、膨張による一粒子あたりの変位量は小さくなり、黒鉛材料表面からの剥離は生じにくくなる。   The average particle size of the alloy material is preferably less than 5 μm. Particularly preferably, it is 3 μm or less. The smaller the average particle size of the alloy material, the smaller the amount of displacement per particle due to expansion, and the more difficult the separation from the surface of the graphite material occurs.

本発明で用いる黒鉛は、一般的に非水電解質二次電池に用いることができる黒鉛材料であればどのようなものでも構わない。例えば、天然黒鉛や、様々な方法で製造される人造黒鉛を用いることができる。   The graphite used in the present invention may be any graphite material as long as it can generally be used for a non-aqueous electrolyte secondary battery. For example, natural graphite or artificial graphite produced by various methods can be used.

黒鉛の平均粒径は、5μm以上45μm以下が好ましく、7μm以上25μm以下が更に好ましい。黒鉛の平均粒径が微細になりすぎると、黒鉛自身の比表面積が増加する。黒鉛と電解液等との副反応を抑制し、黒鉛表面に生成する皮膜を低減し、負極の不可逆容量を少量に制限する観点からは、黒鉛の平均粒径を5μm以上とし、黒鉛自身の比表面積をあまり増大させないことが望ましい。また、黒鉛の平均粒径が50μmより大きくなると、負極表面に凸凹が形成され易くなるとともに、負極活物質間の空隙が大きくなり、負極内部にある合金への集電がとりにくい。集電性に優れた負極を得る観点からは、黒鉛の平均粒径が50μm以下であることが望ましい。   The average particle size of graphite is preferably 5 μm or more and 45 μm or less, and more preferably 7 μm or more and 25 μm or less. If the average particle diameter of graphite becomes too fine, the specific surface area of graphite itself increases. From the viewpoint of suppressing side reactions between graphite and electrolyte, reducing the film formed on the graphite surface, and limiting the irreversible capacity of the negative electrode to a small amount, the average particle size of graphite should be 5 μm or more, and the ratio of graphite itself It is desirable not to increase the surface area too much. Further, when the average particle diameter of graphite is larger than 50 μm, irregularities are easily formed on the negative electrode surface, and voids between the negative electrode active materials are increased, making it difficult to collect current to the alloy inside the negative electrode. From the viewpoint of obtaining a negative electrode having excellent current collecting properties, it is desirable that the average particle size of graphite is 50 μm or less.

さらに本発明の負極活物質の比表面積は、15m2/g以上であることが好ましい。この条件を満たすことにより、負極活物質の充放電反応をスムーズに進行することが可能になる。ただし、負極活物質に含まれる黒鉛材料自身の比表面積は、5m2/g以下であることが望ましい。この条件を満たすことにより、黒鉛表面に生成する電解液などとの副反応による皮膜の過剰発生を抑え、良好な電池特性を与える。 Furthermore, the specific surface area of the negative electrode active material of the present invention is preferably 15 m 2 / g or more. By satisfying this condition, the charge / discharge reaction of the negative electrode active material can proceed smoothly. However, the specific surface area of the graphite material itself contained in the negative electrode active material is desirably 5 m 2 / g or less. By satisfying this condition, excessive generation of a film due to side reaction with an electrolytic solution generated on the graphite surface is suppressed, and good battery characteristics are given.

本発明の非水電解質二次電池用負極は、TiおよびZrの少なくとも一方とSiとを含む合金材料、並びに黒鉛材料を含み、前記黒鉛材料の表面が前記合金材料により被覆されている負極活物質を具備し、放電状態、つまり負極活物質からLiを放出した状態であり、電気化学的にはLiに対して0.8Vより貴な電位をもつ状態における空孔率が10%以上80%以下であることが好ましい。上記の空孔率とは、負極に含まれる構成要素それぞれの混合比率および真密度から算出される負極の真密度をDideal、負極の密度をDrealとしたとき、以下の式で表される。 The negative electrode for a non-aqueous electrolyte secondary battery of the present invention includes an alloy material containing at least one of Ti and Zr and Si, and a graphite material, and a negative electrode active material in which the surface of the graphite material is coated with the alloy material The porosity is 10% or more and 80% or less in a state of discharge, that is, a state where Li is released from the negative electrode active material, and electrochemically having a potential nobler than 0.8 V with respect to Li. It is preferable that The porosity is expressed by the following formula, where D ideal is the negative density calculated from the mixing ratio and true density of each component included in the negative electrode, and D real is the density of the negative electrode. .

上記負極活物質は、膨張・収縮が大きい合金材料を含み、その膨張・収縮にかかる応力が各々の負極活物質粒子の外側に広がるため、放電状態においては負極内部に充分な空間を有する必要がある。負極の空孔率が10%未満であると、上記理由により、膨張が充分に負極内で吸収できなくなり、負極合剤が崩壊あるいは剥離する恐れがある。逆に負極の空孔率が80%より大きいと、負極内部で膨張応力を吸収することは容易になるが、負極活物質は極めて少量になるため、電池として低容量になってしまう。好ましくは空孔率が30%以上70%以下である。   The negative electrode active material includes an alloy material having a large expansion / contraction, and stress applied to the expansion / contraction spreads outside each negative electrode active material particle. Therefore, it is necessary to have a sufficient space inside the negative electrode in a discharge state. is there. If the porosity of the negative electrode is less than 10%, the expansion cannot be sufficiently absorbed in the negative electrode due to the above reasons, and the negative electrode mixture may collapse or peel off. Conversely, if the porosity of the negative electrode is greater than 80%, it becomes easy to absorb the expansion stress inside the negative electrode, but the amount of the negative electrode active material becomes extremely small, resulting in a low battery capacity. Preferably, the porosity is 30% or more and 70% or less.

さらに充電状態、つまり負極活物質にLiを吸蔵した状態であり、電気化学的にはLiに対して0.3Vより卑な電位をもつ状態においては、上記空孔率は5%以上50%以下であることが望ましい。空孔率が5%未満であると、非水電解液が負極中にしみこむことが困難になり、反応に関与できない負極活物質が存在し、逆に50%より大きいと、負極活物質は極めて少量になるため、電池として低容量になる。   Further, in the state of charge, that is, the state in which Li is occluded in the negative electrode active material, and the electrochemically has a base potential lower than 0.3 V with respect to Li, the porosity is 5% or more and 50% or less. It is desirable that If the porosity is less than 5%, it is difficult for the nonaqueous electrolyte solution to penetrate into the negative electrode, and there is a negative electrode active material that cannot participate in the reaction. Conversely, if it is greater than 50%, the negative electrode active material is extremely Since the amount is small, the battery capacity is low.

非水電解質二次電池用負極には、上記負極活物質のみではなく、通常導電剤および結着剤が含まれる。導電剤は、負極活物質同士および負極活物質と集電体との間の導電ネットワーク形成を助ける働きをする。導電剤の材料としては、カーボンブラック、黒鉛および炭素材料からなる群より選ばれる少なくとも1種であることが好ましい。また、導電剤の平均粒径は5μmであることが好ましい。上記条件を満たすことで負極活物質の膨張を効果的に吸収することが可能になり、良好な導電ネットワークを維持することが可能になる。上記導電剤は、負極活物質100重量部に対して0.1重量部以上10重量部以下であることが好ましく、特に好ましくは1重量部以上5重量部以下である。   The negative electrode for a non-aqueous electrolyte secondary battery usually contains not only the negative electrode active material but also a conductive agent and a binder. The conductive agent serves to help form a conductive network between the negative electrode active materials and between the negative electrode active material and the current collector. The conductive agent material is preferably at least one selected from the group consisting of carbon black, graphite, and carbon materials. Moreover, it is preferable that the average particle diameter of a electrically conductive agent is 5 micrometers. By satisfying the above conditions, the expansion of the negative electrode active material can be effectively absorbed, and a good conductive network can be maintained. The conductive agent is preferably 0.1 to 10 parts by weight, particularly preferably 1 to 5 parts by weight, based on 100 parts by weight of the negative electrode active material.

また負極中には、負極活物質同士または負極活物質および導電剤を互いに固着させるとともに、合剤層を集電体に固着させるための結着剤が含まれる。結着剤は、負極活物質および導電剤に対して接着能力があるものであればどのような材料を用いても構わないが、負極の使用電位の範囲においてLiに対して電気化学的に不活性であり、他の物質にできるだけ影響を及ぼさない材料が選択される。好ましくは結着剤中に官能基としてカルボキシル基を有する材料がよい。上記負極活物質中に含まれる合金材料の最表面は、空気酸化による酸化物に覆われており、その酸化物表面と結着剤中のカルボキシル基とが水素結合を介して強力な接合を得ることが可能になる。その結果、負極は非常に強い力で負極活物質の膨張に耐えることができる。   The negative electrode includes a binder for fixing the negative electrode active materials or the negative electrode active material and the conductive agent to each other and fixing the mixture layer to the current collector. Any material can be used as the binder as long as it has an adhesive ability to the negative electrode active material and the conductive agent. However, the binder is electrochemically insensitive to Li in the range of potential of the negative electrode. A material is selected that is active and has as little influence on other substances as possible. A material having a carboxyl group as a functional group in the binder is preferable. The outermost surface of the alloy material contained in the negative electrode active material is covered with an oxide formed by air oxidation, and the oxide surface and the carboxyl group in the binder obtain a strong bond through a hydrogen bond. It becomes possible. As a result, the negative electrode can withstand the expansion of the negative electrode active material with a very strong force.

官能基としてカルボキシル基を有する結着剤は、例えば、ポリアクリル酸、カルボキシメチルセルロース、メチルセルロース等が適している。これらは単独で用いてもよく、複数を組み合わせて用いてもよい。さらに上記結着剤とともに助剤として、例えばスチレン−ブチレン共重合ゴム、ポリエチレン、ポリウレタン、ポリメタクリル酸メチル、ポリフッ化ビニリデン、ポリ4フッ化エチレンなどを添加した系でも構わない。結着剤の添加量は、合剤層の構造維持の観点からは多いほど好ましいが、電池容量の向上および放電特性の向上の観点からは少ない方が好ましい。   As the binder having a carboxyl group as a functional group, for example, polyacrylic acid, carboxymethylcellulose, methylcellulose and the like are suitable. These may be used alone or in combination. Further, a system in which, for example, styrene-butylene copolymer rubber, polyethylene, polyurethane, polymethyl methacrylate, polyvinylidene fluoride, polytetrafluoroethylene, or the like is added as an auxiliary agent together with the above binder may be used. The amount of the binder added is preferably as large as possible from the viewpoint of maintaining the structure of the mixture layer, but is preferably as small as possible from the viewpoint of improving battery capacity and improving discharge characteristics.

本発明における負極には集電体が含まれ、集電体の厚みは8μm以上40μm以下であることが望ましい。8μmより薄い集電体を用いた場合、負極作製時に集電体の破断・破損の可能性が高く、使用が困難である。逆に40μmより厚い集電体を用いた場合、電池内部における多くの体積を集電体にとられるため、充分な量の活物質や電解液を入れることができず、低容量となる。   The negative electrode in the present invention includes a current collector, and the thickness of the current collector is desirably 8 μm or more and 40 μm or less. When a current collector thinner than 8 μm is used, there is a high possibility that the current collector will be broken or damaged during the production of the negative electrode, making it difficult to use. On the other hand, when a current collector thicker than 40 μm is used, a large volume inside the battery can be taken up by the current collector, so that a sufficient amount of active material or electrolyte cannot be charged, resulting in a low capacity.

集電体には銅箔または銅合金箔を用いることが望ましい。銅合金箔の場合、Cuの含有量は90重量%以上であることが好ましい。集電体の強度あるいは柔軟性を向上させる観点からは、集電体にP、Ag、Cr等の元素を含ませることが有効である。Cuは安価かつ箔状で充分な強度を有し、また非常に電子伝導性に富む元素である。本発明において好ましくは10μm以上25μm以下の厚みを有する電解銅箔である。   It is desirable to use a copper foil or a copper alloy foil for the current collector. In the case of a copper alloy foil, the Cu content is preferably 90% by weight or more. From the viewpoint of improving the strength or flexibility of the current collector, it is effective to include an element such as P, Ag, or Cr in the current collector. Cu is an element that is inexpensive, foil-like, has sufficient strength, and is very rich in electron conductivity. In the present invention, the electrolytic copper foil preferably has a thickness of 10 μm or more and 25 μm or less.

本発明の負極は、負極活物質、導電剤、結着剤等の混合物および集電体からなる。負極合剤層の厚みは、集電体の片面あたり、一般に10μm以上100μm以下であり、好ましくは25μm以上60μm以下である。合剤層の厚みは10μmより薄くてもよいが、負極中に占める集電体の体積割合が大きくなりすぎないように配慮する必要がある。また、合剤層の厚みは100μmより厚くてもよいが、集電体近傍まで電解液が浸み渡りにくくなるため、高率放電特性が低下することがある。   The negative electrode of the present invention comprises a mixture of a negative electrode active material, a conductive agent, a binder and the like and a current collector. The thickness of the negative electrode mixture layer is generally 10 μm or more and 100 μm or less, preferably 25 μm or more and 60 μm or less, per one side of the current collector. Although the thickness of the mixture layer may be thinner than 10 μm, it is necessary to consider that the volume ratio of the current collector in the negative electrode does not become too large. Moreover, although the thickness of the mixture layer may be thicker than 100 μm, the high-rate discharge characteristics may be deteriorated because the electrolyte solution hardly penetrates to the vicinity of the current collector.

本発明の非水電解質二次電池は、上記の負極と、Liを電気化学的に吸蔵および放出可能な正極と、非水電解液とを具備する。   The non-aqueous electrolyte secondary battery of the present invention includes the above-described negative electrode, a positive electrode capable of electrochemically inserting and extracting Li, and a non-aqueous electrolyte.

正極は、非水電解質二次電池の正極に使用できるとして知られているものであれば、特に限定なく用いることができる。正極の製造法は従来通りに行えばよい。例えば、正極活物質と、カーボンブラックなどの導電剤と、ポリフッ化ビニリデンなどの結着剤とを、液相中で混合し、得られたペーストをAl等からなる正極集電体上に塗布し、乾燥し、圧延することによって正極が得られる。   The positive electrode can be used without any particular limitation as long as it is known to be usable for the positive electrode of a nonaqueous electrolyte secondary battery. The manufacturing method of the positive electrode may be performed as usual. For example, a positive electrode active material, a conductive agent such as carbon black, and a binder such as polyvinylidene fluoride are mixed in a liquid phase, and the obtained paste is applied onto a positive electrode current collector made of Al or the like. The positive electrode is obtained by drying and rolling.

正極活物質としては、リチウム含有遷移金属化合物が好ましい。リチウム含有遷移金属化合物の代表的な例としては、LiCoO2、LiNiO2、LiMn24、LiMnO2などを挙げることができるが、これらに限定されない。前記の化合物の遷移金属元素を異種の金属元素に置換した化合物も好ましく用いられる。例えば、LiCo1-xMgx2、LiNi1-yCoy2、LiNi1-y-zCoyMnz2(0<x<1、0<y<1、0<z<1)等が挙げられる。 As the positive electrode active material, a lithium-containing transition metal compound is preferable. Representative examples of the lithium-containing transition metal compound include, but are not limited to, LiCoO 2 , LiNiO 2 , LiMn 2 O 4 , and LiMnO 2 . A compound obtained by substituting a transition metal element of the above compound with a different metal element is also preferably used. For example, LiCo 1-x Mg x O 2, LiNi 1-y Co y O 2, LiNi 1-yz Co y Mn z O 2 (0 <x <1,0 <y <1,0 <z <1) , etc. Is mentioned.

非水電解液としては、非水電解質二次電池の電解液として知られているものであれば、特に限定なく用いることができるが、非水溶媒とそれに可溶なリチウム塩からなる電解液が好ましい。非水溶媒としては、エチレンカーボネート、プロピレンカーボネートなどの環状カーボネート類とジメチルカーボネート、ジエチルカーボネート、エチルメチルカーボネートなどの鎖状カーボネート類との混合溶媒が一般的に用いられる。さらには非水溶媒にγ−ブチロラクトンやジメトキシエタンなどが混合されていても構わない。   The non-aqueous electrolyte can be used without particular limitation as long as it is known as an electrolyte for a non-aqueous electrolyte secondary battery. However, an electrolyte composed of a non-aqueous solvent and a lithium salt soluble therein can be used. preferable. As the non-aqueous solvent, a mixed solvent of cyclic carbonates such as ethylene carbonate and propylene carbonate and chain carbonates such as dimethyl carbonate, diethyl carbonate, and ethyl methyl carbonate is generally used. Furthermore, γ-butyrolactone, dimethoxyethane, or the like may be mixed in a nonaqueous solvent.

また、リチウム塩としては無機リチウムフッ化物やリチウムイミド化合物等が挙げられる。前者としては、LiPF6、LiBF4等が挙げられ、後者としてはLiN(CF3SO23等が挙げられる。さらにはリチウム塩にLiClO4やLiCF3SO3等を混合してもよい。非水電解液はゲル状電解質でもよく、固体電解質を用いてもよい。 Examples of the lithium salt include inorganic lithium fluoride and a lithium imide compound. Examples of the former include LiPF 6 and LiBF 4 , and examples of the latter include LiN (CF 3 SO 2 ) 3 . Furthermore, LiClO 4 , LiCF 3 SO 3, or the like may be mixed in the lithium salt. The non-aqueous electrolyte may be a gel electrolyte or a solid electrolyte.

正極と負極との内部短絡を防ぐために、これらの間にはセパレータが設置される。セパレータの材質としては、非水電解液を適度に通過させ、かつ正極と負極との接触を妨げるものであればどのようなものでも構わない。非水電解質二次電池には、ポリエチレン、ポリプロピレン等からなる微多孔性フィルムが一般的に用いられており、その厚みは10μm以上30μm以下が一般的である。   In order to prevent an internal short circuit between the positive electrode and the negative electrode, a separator is installed between them. As the material of the separator, any material can be used as long as it allows a non-aqueous electrolyte to pass through appropriately and prevents the contact between the positive electrode and the negative electrode. A microporous film made of polyethylene, polypropylene, or the like is generally used for the nonaqueous electrolyte secondary battery, and the thickness is generally 10 μm or more and 30 μm or less.

本発明は、円筒型、扁平型、コイン型、角形等の様々な形状の非水電解質二次電池に適用可能であり、電池の形状は特に限定されない。本発明は、金属製の電池缶やラミネートフィルム製のケースに、電極、電解液等の発電要素を収容した電池を含め、様々な封止形態の電池に適用可能であり、電池の封止形態は特に限定されない。   The present invention can be applied to non-aqueous electrolyte secondary batteries having various shapes such as a cylindrical shape, a flat shape, a coin shape, and a square shape, and the shape of the battery is not particularly limited. INDUSTRIAL APPLICABILITY The present invention can be applied to batteries of various sealing forms, including batteries that contain power generation elements such as electrodes and electrolytes in metal battery cans and laminated film cases. Is not particularly limited.

次に、本発明を実施例および比較例に基づいて具体的に説明するが、下記の実施例は本発明の好ましい形態を例示するものであり、本発明が下記の実施例に限られるわけではない。   Next, the present invention will be specifically described based on examples and comparative examples. However, the following examples illustrate preferred modes of the present invention, and the present invention is not limited to the following examples. Absent.

《実施例1および2》
本実施例においては、以下の要領で負極および円筒型電池を作製し、そのサイクル寿命と放電容量について評価した。
<< Examples 1 and 2 >>
In this example, negative electrodes and cylindrical batteries were produced in the following manner, and their cycle life and discharge capacity were evaluated.

(1)合金材料の作製
金属Ti(純度99.99%、(株)高純度化学研究所製、100〜150μm品)と、金属Si(純度99.999%、関東化学(株)製、100〜150μm品)とを、重量比がTi:Si=10:90になるように秤量して混合した。同様に、金属Zr(純度99.99%、(株)フルウチ化学製、100〜150μm品)と上述の金属Siとを重量比がZr:Si=12:88になるように秤量して混合した。
(1) Preparation of alloy material Metal Ti (purity 99.99%, manufactured by Kojundo Chemical Laboratory Co., Ltd., 100-150 μm product) and metal Si (purity 99.999%, manufactured by Kanto Chemical Co., Inc., 100 ˜150 μm product) were weighed and mixed so that the weight ratio was Ti: Si = 10: 90. Similarly, metal Zr (purity: 99.99%, manufactured by Furuuchi Chemical Co., Ltd., 100-150 μm product) and the above-mentioned metal Si were weighed and mixed so that the weight ratio was Zr: Si = 12: 88. .

これらの混合粉をそれぞれ3.5kg秤量し、各々の混合粉ごとに用意した振動ミル装置(中央化工機(株)製、FV−20)に投入し、さらにステンレス鋼製ボール(直径2cm)をミル装置の内容積の70体積%を占めるように投入した。容器内部を真空に引いた後、Ar(純度99.999%、日本酸素)を導入して、1気圧になるようにした。ミル装置の振動数は720Hzとした。これらの条件でメカニカルアロイング操作を80時間行った。   Each of these mixed powders is weighed in an amount of 3.5 kg, put into a vibration mill device (Chuo Kako Co., Ltd., FV-20) prepared for each mixed powder, and further a stainless steel ball (diameter 2 cm). It charged so that it might occupy 70 volume% of the internal volume of a mill apparatus. After the inside of the container was evacuated, Ar (purity 99.999%, Japanese oxygen) was introduced so that the pressure became 1 atm. The frequency of the mill device was 720 Hz. Under these conditions, mechanical alloying operation was performed for 80 hours.

上記操作によって得られたTi−Si合金、およびZr−Si合金を回収し、粒度分布を調べたところ、0.5μm〜80μmの広い粒度分布を有することが判明した。これらの合金を篩い(45μmアンダー)で分級することによって、最大粒径45μm、平均粒径16μmの合金材料を得た。これらの合金材料を固形分濃度20重量%になるように純水中に分散させ、ビーズミル(商品名:ダイノーミル KD−6、(株)シンマルエンタープライゼス製)を用いて、ペースト流量2L/min、解砕媒としてジルコニアビーズ(直径Φ1mm)により1時間解砕を行った。この結果、平均粒径1.5μm、最大粒径3.5μmの合金材料を得た。   The Ti—Si alloy and Zr—Si alloy obtained by the above operation were recovered and the particle size distribution was examined. As a result, it was found to have a wide particle size distribution of 0.5 μm to 80 μm. By classifying these alloys with a sieve (under 45 μm), an alloy material having a maximum particle size of 45 μm and an average particle size of 16 μm was obtained. These alloy materials are dispersed in pure water so as to have a solid content concentration of 20% by weight, and using a bead mill (trade name: Dino Mill KD-6, manufactured by Shinmaru Enterprises Co., Ltd.), the paste flow rate is 2 L / min. Then, pulverization was performed for 1 hour using zirconia beads (diameter: Φ1 mm) as a crushing medium. As a result, an alloy material having an average particle size of 1.5 μm and a maximum particle size of 3.5 μm was obtained.

これらの合金材料をX線回折測定で分析したところ、本実施例で作製した合金材料は、いずれも微結晶であり、Scherrerの式に基づいて強度の最も大きなピークの半価幅から算出した結晶粒(結晶子)の粒径は18nmであった。   When these alloy materials were analyzed by X-ray diffraction measurement, the alloy materials produced in this example were all microcrystals, and were calculated from the half-value width of the peak with the highest intensity based on the Scherrer equation. The particle size of the grains (crystallites) was 18 nm.

さらにX線回折測定の結果から、Ti−Si合金およびZr−Si合金中には、それぞれSi単体相(A相)とそれぞれTiSi2相またはZrSi2相(B相)とが存在していることが推定された。 Furthermore, from the results of X-ray diffraction measurement, each of the Ti-Si alloy and the Zr-Si alloy has a single Si phase (A phase) and a TiSi 2 phase or a ZrSi 2 phase (B phase), respectively. Was estimated.

上記の2種の合金材料を透過電子顕微鏡(TEM)で観察したところ、非晶質領域と、粒径10nm程度の結晶粒(結晶子)からなるSi単体相と、粒径15〜20nm程度の結晶粒(結晶子)を有するTiSi2相またはZrSi2相とが、それぞれ存在していることが判明した。 When the above two types of alloy materials were observed with a transmission electron microscope (TEM), an Si region composed of an amorphous region, crystal grains (crystallites) having a particle size of about 10 nm, and a particle size of about 15 to 20 nm. It was found that a TiSi 2 phase or a ZrSi 2 phase having crystal grains (crystallites) was present.

黒鉛材料としてMCMB((株)大阪ガスケミカル製、平均粒径25μm)を選択した。上記の各合金材料と黒鉛材料とを重量比で20:80の割合で混合し、メカノフュージョン装置((株)ホソカワミクロン製、AMS−lab)中に混合粉200gを投入した。装置内を窒素気流下にし、1000rpmで10分間処理することによって負極活物質を得た。合金材料としてTi−Si合金を用いたものを負極活物質1、Zr−Si合金を用いたものを負極活物質2と称する。   MCMB (manufactured by Osaka Gas Chemical Co., Ltd., average particle size 25 μm) was selected as the graphite material. Each of the above alloy materials and graphite material were mixed at a weight ratio of 20:80, and 200 g of the mixed powder was put into a mechanofusion apparatus (AMS-lab, manufactured by Hosokawa Micron Corporation). The inside of the apparatus was placed under a nitrogen stream and treated at 1000 rpm for 10 minutes to obtain a negative electrode active material. A material using a Ti—Si alloy as an alloy material is referred to as a negative electrode active material 1, and a material using a Zr—Si alloy as a negative electrode active material 2.

上記操作によって得られた負極活物質1は、その形状が図1の通りであり、黒鉛材料表面に合金材料が均一に付着している様子がわかった。   The shape of the negative electrode active material 1 obtained by the above operation was as shown in FIG. 1, and it was found that the alloy material was uniformly attached to the surface of the graphite material.

(2)負極の作製
上記で得た各負極活物質100重量部に対して、結着剤としてポリアクリル酸(分子量15万、和光純薬工業(株)製)を7重量部および導電剤としてアセチレンブラック(商品名デンカブラック、電気化学工業(株)製)を2重量部添加し、純水を加えて充分に混練することにより、それぞれ負極合剤ペーストを得た。
(2) Production of negative electrode For 100 parts by weight of each negative electrode active material obtained above, 7 parts by weight of polyacrylic acid (molecular weight 150,000, manufactured by Wako Pure Chemical Industries, Ltd.) as a binder and a conductive agent were used. 2 parts by weight of acetylene black (trade name Denka Black, manufactured by Denki Kagaku Kogyo Co., Ltd.) was added, and pure water was added and sufficiently kneaded to obtain negative electrode mixture pastes.

負極合剤ペーストを厚み10μmの電解銅箔(古河サーキットフォイル(株)製)からなる集電体の両面に塗布し、乾燥し、圧延した。その結果、集電体と、その両面に担持された負極合剤層からなる負極が得られた。   The negative electrode mixture paste was applied to both sides of a current collector made of an electrolytic copper foil (manufactured by Furukawa Circuit Foil Co., Ltd.) having a thickness of 10 μm, dried and rolled. As a result, a negative electrode comprising a current collector and a negative electrode mixture layer carried on both surfaces thereof was obtained.

得られた負極の断面を走査電子顕微鏡(SEM)によって観察したところ、混練によって合金材料が黒鉛から剥がれるような現象は観察されなかった。負極合剤層の密度は1.3〜1.4g/cm3であり、負極合剤層の空孔率は40〜45%であった。 When the cross section of the obtained negative electrode was observed with a scanning electron microscope (SEM), a phenomenon that the alloy material was peeled off from the graphite by kneading was not observed. The density of the negative electrode mixture layer was 1.3 to 1.4 g / cm 3 , and the porosity of the negative electrode mixture layer was 40 to 45%.

(3)正極の作製
Li2CO3とCoCO3とを所定のモル比で混合し、950℃で加熱することによって正極活物質LiCoO2を合成した。これを45μm以下の大きさに分級した。この正極活物質100重量部に対して、導電剤としてアセチレンブラックを5重量部、結着剤としてポリフッ化ビニリデンを4重量部、および分散媒として適量のN−メチル−2−ピロリドンを加え、充分に混合し、正極合剤ペーストを得た。
(3) Production of positive electrode Li 2 CO 3 and CoCO 3 were mixed at a predetermined molar ratio and heated at 950 ° C. to synthesize a positive electrode active material LiCoO 2 . This was classified to a size of 45 μm or less. To 100 parts by weight of the positive electrode active material, 5 parts by weight of acetylene black as a conductive agent, 4 parts by weight of polyvinylidene fluoride as a binder, and an appropriate amount of N-methyl-2-pyrrolidone as a dispersion medium are added. To obtain a positive electrode mixture paste.

正極合剤ペーストを厚み15μmのアルミニウム箔(昭和電工(株)製)からなる集電体の両面に塗布し、乾燥し、圧延した。その結果、集電体と、その両面に担持された正極合剤層からなる正極が得られた。   The positive electrode mixture paste was applied to both sides of a current collector made of an aluminum foil having a thickness of 15 μm (manufactured by Showa Denko KK), dried and rolled. As a result, a positive electrode comprising a current collector and a positive electrode mixture layer carried on both surfaces thereof was obtained.

(4)円筒型電池の作製
上記の負極および正極を所定のサイズに切断し、正極の集電体には、アルミニウム製の正極リードを、また負極の集電体には、ニッケル製の負極リードをそれぞれ接続した。これらの負極、正極、および両者間に挿入した厚さ20μmのポリエチレン樹脂製微多孔フィルムからなるセパレータを渦巻き状に捲回して極板群を構成し、円筒形の電池ケースに組み入れ、図2に示すような円筒型のリチウムイオン二次電池を作製した。
(4) Production of Cylindrical Battery The negative electrode and the positive electrode are cut to a predetermined size, and the positive electrode current collector is made of an aluminum positive electrode lead, and the negative electrode current collector is made of a nickel negative electrode lead. Connected respectively. The negative electrode, the positive electrode, and a separator made of a polyethylene resin microporous film having a thickness of 20 μm inserted between them are wound in a spiral shape to form an electrode plate group, which is incorporated into a cylindrical battery case, and is shown in FIG. A cylindrical lithium ion secondary battery as shown was produced.

図2において、11は正極、12は負極を表している。正極11、負極12、および両極板より幅広のセパレータ13からなる極板群の外面はセパレータ13で覆われている。極板群の上下には、それぞれ上部絶縁リング16および下部絶縁リング17が配されている。極板群を電池ケース18に収容した後、非水電解液を注液し、極板群に含浸させている。電池ケースの開口部は、封口板19により封口されている。正極リード11は、封口板19に設けられた正極端子20に接続された金具に溶接されている。負極リード15は、電池ケース19の内底面に溶接されている。
負極活物質1を用いたものを電池A1、負極活物質2を用いたものを電池A2と称する。それぞれ電池A1および電池A2が実施例1および実施例2に相当する。
In FIG. 2, 11 represents a positive electrode, and 12 represents a negative electrode. The outer surface of the electrode plate group including the positive electrode 11, the negative electrode 12, and the separator 13 wider than both electrode plates is covered with the separator 13. An upper insulating ring 16 and a lower insulating ring 17 are arranged above and below the electrode plate group, respectively. After the electrode plate group is accommodated in the battery case 18, a nonaqueous electrolyte is injected to impregnate the electrode plate group. The opening of the battery case is sealed by a sealing plate 19. The positive electrode lead 11 is welded to a metal fitting connected to the positive electrode terminal 20 provided on the sealing plate 19. The negative electrode lead 15 is welded to the inner bottom surface of the battery case 19.
A battery using the negative electrode active material 1 is referred to as a battery A1, and a battery using the negative electrode active material 2 is referred to as a battery A2. Battery A1 and battery A2 correspond to Example 1 and Example 2, respectively.

非水電解液には、エチレンカーボネートとジエチルカーボネートとの体積比1:1の混合溶媒に六フッ化リン酸リチウムを1モル/Lの濃度で溶解したものを用いた。   As the non-aqueous electrolyte, a solution obtained by dissolving lithium hexafluorophosphate at a concentration of 1 mol / L in a mixed solvent of ethylene carbonate and diethyl carbonate in a volume ratio of 1: 1 was used.

《比較例1》
黒鉛100重量部、結着剤のポリアクリル酸4重量部、および導電剤のアセチレンブラック2重量部から上記と同様にして負極を作製した。この負極を用いた他は電池A1と同様にして電池B1を作製した。
<< Comparative Example 1 >>
A negative electrode was prepared in the same manner as described above from 100 parts by weight of graphite, 4 parts by weight of polyacrylic acid as a binder, and 2 parts by weight of acetylene black as a conductive agent. A battery B1 was produced in the same manner as the battery A1, except that this negative electrode was used.

《比較例2および3》
負極の作製において、黒鉛およびビーズミル処理後の微粉合金を、メカノフュージョン装置を通さずに混練機で混合させただけで用い、他の操作は電池A1および電池A2と同様にして、それぞれ比較例2の電池B2および比較例3の電池B3を作製した。
<< Comparative Examples 2 and 3 >>
In preparation of the negative electrode, the graphite and the bead mill-treated fine powder alloy were used by simply mixing them with a kneader without passing through the mechanofusion device, and other operations were performed in the same manner as in the batteries A1 and A2, respectively. Battery B2 and Battery B3 of Comparative Example 3 were produced.

電池A1、A2およびB1〜B3について、以下の評価を行った。   The following evaluation was performed about battery A1, A2, and B1-B3.

(5)電池の評価
(a)放電容量
20℃に設定した恒温槽の中で、円筒型電池を、定電流0.2Cで電池電圧が4.05Vになるまで充電し、次いで4.05Vの定電圧で電流値が0.01Cになるまで充電した。その後、0.2Cの電流で電池電圧が2.5Vになるまで放電した。このときの放電容量を表1に示す。
(5) Battery evaluation (a) Discharge capacity In a thermostat set at 20 ° C., the cylindrical battery was charged at a constant current of 0.2 C until the battery voltage reached 4.05 V, and then 4.05 V. The battery was charged at a constant voltage until the current value reached 0.01C. Then, it discharged until the battery voltage became 2.5V with the electric current of 0.2C. The discharge capacity at this time is shown in Table 1.

(b)サイクル寿命
20℃に設定した恒温槽の中で、上記放電容量を測定後の電池の充放電サイクルを以下の条件で繰り返した。
(B) Cycle life In the thermostat set to 20 degreeC, the charging / discharging cycle of the battery after measuring the said discharge capacity was repeated on condition of the following.

定電流1Cで電池電圧が4.05Vになるまで充電し、次いで4.05Vの定電圧で電流値が0.05Cになるまで充電し、その後、高率放電に相当する2Cの電流で電池電圧が2.5Vになるまで放電する操作を繰り返した。そして、2サイクル目の放電容量に対する100サイクル目の放電容量の割合を百分率で求め、容量維持率(%)とした。容量維持率が100%に近いほどサイクル寿命が良好であることを示す。これらの結果を表1に示す。   The battery voltage is charged at a constant current of 1 C until the battery voltage reaches 4.05 V, then charged at a constant voltage of 4.05 V until the current value reaches 0.05 C, and then the battery voltage at a current of 2 C corresponding to high rate discharge. The operation of discharging until 2.5V was repeated. And the ratio of the discharge capacity of the 100th cycle with respect to the discharge capacity of the 2nd cycle was calculated | required in percentage, and it was set as the capacity | capacitance maintenance factor (%). The closer the capacity retention rate is to 100%, the better the cycle life. These results are shown in Table 1.

電池A1およびA2は、特に電池B1に比べて容量が向上し、かつ電池B2およびB3に比べてサイクル寿命が向上していることがわかる。   It can be seen that the batteries A1 and A2 have a particularly improved capacity compared to the battery B1 and an improved cycle life compared to the batteries B2 and B3.

また、これら電池A1、A2およびB1〜B3を100サイクル後に、充電状態で分解し、その膨張度合いを評価した。その結果、それぞれの充放電前の負極厚みに比べて、電池B1では1.1倍、電池B2およびB3ではそれぞれ1.6倍および1.7倍に膨張していた。これらに対して、電池A1およびA2では、約1.3倍の膨張が確認された。すなわち、実施例の電池は、負極の過度な膨張を抑制し、ひいては負極合剤の電子伝導性を維持することによって長寿命性を実現していることがわかる。   Moreover, these batteries A1, A2, and B1 to B3 were disassembled in a charged state after 100 cycles, and the degree of expansion was evaluated. As a result, the battery B1 expanded 1.1 times, and the batteries B2 and B3 expanded 1.6 times and 1.7 times, respectively, compared to the negative electrode thickness before charging and discharging. On the other hand, about 1.3 times expansion | swelling was confirmed with battery A1 and A2. That is, it can be seen that the batteries of the examples achieve a long life by suppressing the excessive expansion of the negative electrode and thus maintaining the electronic conductivity of the negative electrode mixture.

《実施例3〜10》
合金材料の作製時にTiまたはZrとSiとの混合比を表2に示すような割合で混合し、電池A1と同様の手法で負極活物質を合成した。本実施例で作製した合金材料は、いずれも必ずSi単相であるA相およびTiSi2相またはZrSi2相からなるB相の他に、例えば電池A3およびA4においてはTiSi相およびTi5Si4相がX線回折結果から確認された。また、電池A5およびA6からはZrSi相およびZr5Si4相が同様に確認された。X線回折結果から算出されたこれらの合金材料の結晶粒径は15〜35nmであった。また、ビーズミルによる解砕処理後の平均粒径は1.8〜3.8μmであった。本実施例で用いた黒鉛は電池A1と同様MCMBである。上記以外は、電池A1と同様にして、電池A3〜A10を作製した。
<< Examples 3 to 10 >>
At the time of producing the alloy material, the mixing ratio of Ti or Zr and Si was mixed at a ratio shown in Table 2, and a negative electrode active material was synthesized by the same method as that for battery A1. In addition to the B phase consisting of the A phase and the TiSi 2 phase or the ZrSi 2 phase, which are all Si single phases, the alloy material produced in this example is, for example, a TiSi phase and a Ti 5 Si 4 in the batteries A3 and A4. The phase was confirmed from the X-ray diffraction results. Further, from the batteries A5 and A6, a ZrSi phase and a Zr 5 Si 4 phase were similarly confirmed. The crystal grain size of these alloy materials calculated from the X-ray diffraction results was 15 to 35 nm. Moreover, the average particle diameter after the crushing process by a bead mill was 1.8-3.8 micrometers. The graphite used in this example is MCMB as in the battery A1. Except for the above, batteries A3 to A10 were produced in the same manner as battery A1.

電池A3〜A10について、電池A1と同様の評価を行った。結果を表2に示す。   The batteries A3 to A10 were evaluated in the same manner as the battery A1. The results are shown in Table 2.

電池A3〜A6においては、高容量かつ長寿命を両立する結果が得られることが判明した。ただし、電池A7およびA9については、ほぼ前述の電池B1と同様の容量であるが、高い容量維持率を示した。これは合成時に前述のA相がほとんど生成しておらず、B相に相当するTiSi2あるいはZrSi2の金属間化合物相のみが生成していることから、リチウムの吸蔵・放出ができないためと考えられる。しかしながら、黒鉛表面に付着した合金材料が容易に結着剤と接着することにより、電池B1に比べて高い容量維持率を示したものと考えられる。さらに電池A8およびA10においては、どの実施例よりも高容量ではあるが、サイクル性が低下している。この要因は、電池A7およびA9とは逆に、リチウムの吸蔵・放出をうけもつA相のみが生成しており、その結果、過度な膨張・収縮によって容量劣化が他の実施例に比べて大きいためと考えられる。 In the batteries A3 to A6, it has been found that a result that achieves both a high capacity and a long life can be obtained. However, the batteries A7 and A9 had almost the same capacity as the battery B1 described above, but exhibited a high capacity retention rate. This is probably because the aforementioned A phase is hardly generated at the time of synthesis, and only the TiSi 2 or ZrSi 2 intermetallic compound phase corresponding to the B phase is generated, so that lithium cannot be occluded / released. It is done. However, it is considered that the alloy material adhering to the graphite surface easily adheres to the binder, thereby exhibiting a higher capacity retention rate than the battery B1. Furthermore, in the batteries A8 and A10, although the capacity is higher than in any of the examples, the cycle performance is lowered. Contrary to the batteries A7 and A9, this factor is generated only in the A phase that absorbs and releases lithium, and as a result, the capacity is deteriorated more than other examples due to excessive expansion and contraction. This is probably because of this.

《実施例11〜15、比較例4および5》
電池1と同様の操作によって得られた0.5μm〜80μmの広い粒度分布を有するTi−Si合金を、第1の篩い(45μmアンダー)を通して45μmより大きな粒子を除去し、次いで第2の篩い(20μmアンダー)を通すことによって20μmより小さな粒子を除去し、20〜45μmの粒度分布を有し、平均粒径32μmの合金材料を得た。
<< Examples 11 to 15, Comparative Examples 4 and 5 >>
A Ti—Si alloy having a wide particle size distribution of 0.5 μm to 80 μm obtained by the same operation as that of the battery 1 is passed through a first sieve (under 45 μm) to remove particles larger than 45 μm, and then a second sieve ( Particles smaller than 20 μm were removed by passing through (under 20 μm), and an alloy material having a particle size distribution of 20 to 45 μm and an average particle size of 32 μm was obtained.

上記合金材料を用いたこと以外、電池A1と同様にメカノフュージョン処理および解砕処理することにより、負極活物質を合成し、電池A11を作製した。   A negative electrode active material was synthesized by carrying out mechanofusion treatment and crushing treatment in the same manner as the battery A1, except that the above alloy material was used, and a battery A11 was produced.

電池A1と同様の操作によって得られた0.5μm〜80μmの広い粒度分布を有するTi−Si合金を、第1の篩い(20μmアンダー)を通し、次いで第2の篩い(5μmアンダー)を通して、5〜20μmの粒度分布を有し、平均粒径9μmの合金材料を得た。   A Ti—Si alloy having a wide particle size distribution of 0.5 μm to 80 μm obtained by the same operation as that of the battery A1 was passed through the first sieve (under 20 μm) and then through the second sieve (under 5 μm). An alloy material having a particle size distribution of ˜20 μm and an average particle size of 9 μm was obtained.

上記合金材料を用いたこと以外、電池A1と同様にメカノフュージョン処理および解砕処理することにより負極活物質を合成し、電池A12を作製した。   A negative electrode active material was synthesized by mechanofusion treatment and crushing treatment in the same manner as the battery A1, except that the above alloy material was used, and a battery A12 was produced.

電池A1と同様の組成で混合したTiおよびSi混合粉を電池A1と同様の振動ミル装置で運転時間を5時間、20時間、および40時間と変えることにより、それぞれの条件での合金材料を得た。これらの合金材料を、まず100μmアンダーの篩いによって100μm以上の合金粒子を除去した後、電池A1と同様にビーズミルで解砕することによって、それぞれ平均粒径2μmの合金材料を得た。運転時間が5時間、20時間、および40時間で合成された合金材料をそれぞれ合金a、合金b、および合金cと称する。これらの合金材料をX線回折で結晶性および相構造を評価すると、合金aにおいてはTiとSiそれぞれ単体の結晶質のピークが観察された。この結果から、合金aでは合金化には至っておらず、TiとSiとの混合物であることが判明した。合金bに関しては、A相(Si単相)およびB相(TiSi2相)が生成しているものの、そのXRDピークは結晶性であり、その半価幅を用いてScherrerの式から結晶粒径を算出すると1.5μmと大きかった。合金cに関しては、合金bと同様に、A相およびB相の生成が確認されたが、その結晶粒径は80nmであった。また、実施例1と同様に、TEMによって合金材料の相を観察したところ、ほぼ上記の結晶粒径を有していることが判明した。 The Ti and Si mixed powder mixed with the same composition as the battery A1 is changed to 5 hours, 20 hours, and 40 hours by using the same vibration mill apparatus as the battery A1, thereby obtaining an alloy material under each condition. It was. First, alloy particles of 100 μm or more were removed from these alloy materials with a 100 μm-under sieve, and then crushed by a bead mill in the same manner as the battery A1, thereby obtaining alloy materials having an average particle diameter of 2 μm. The alloy materials synthesized with an operation time of 5 hours, 20 hours, and 40 hours are referred to as alloy a, alloy b, and alloy c, respectively. When the crystallinity and phase structure of these alloy materials were evaluated by X-ray diffraction, Ti and Si single crystalline peaks were observed in alloy a. From this result, it was found that the alloy a was not alloyed and was a mixture of Ti and Si. Regarding the alloy b, although the A phase (Si single phase) and the B phase (TiSi 2 phase) are formed, the XRD peak is crystalline, and the crystal grain size is calculated from the Scherrer equation using the half width. Was calculated to be as large as 1.5 μm. Regarding alloy c, the formation of A phase and B phase was confirmed as in alloy b, but the crystal grain size was 80 nm. Further, as in Example 1, when the phase of the alloy material was observed by TEM, it was found that the crystal grain size was almost the same.

これらの合金材料と黒鉛材料(MCMB)とを実施例1と同様にメカノフュージョン処理することにより負極活物質を合成し、電池A1と同様にして、電池A13〜A15を作製した。   A negative electrode active material was synthesized by subjecting these alloy materials and graphite material (MCMB) to mechanofusion treatment in the same manner as in Example 1, and batteries A13 to A15 were produced in the same manner as battery A1.

Ti粉末のかわりにNiまたはFe粉末(どちらも(株)高純度化学研究所製、粒径100〜150μm)を用いて電池A1と同様の条件で合金材料を得た。このときNi−Si合金の混合比はNi:Si=30:70であり、Fe−Si合金の混合比はFe:Si=25:75(どちらも重量比)である。ビーズミルによる解砕処理後の合金材料は、平均粒径1.6μmであることが判明した。これらの合金材料をX線回折測定で分析したところ、電池A1と同様に微結晶であり、Scherrerの式に基づいて強度の最も大きなピークの半価幅から算出した結晶粒(結晶子)の粒径は23nmであった。さらにX線回折測定の結果から、それぞれSi単体相(A相)とNiSi2相またはFeSi2相(B相)とが存在していることが判明した。 An alloy material was obtained under the same conditions as in Battery A1, using Ni or Fe powder (both manufactured by Kojundo Chemical Laboratory Co., Ltd., particle size: 100 to 150 μm) instead of Ti powder. At this time, the mixing ratio of Ni—Si alloy is Ni: Si = 30: 70, and the mixing ratio of Fe—Si alloy is Fe: Si = 25: 75 (both are weight ratios). It was found that the alloy material after the crushing treatment by the bead mill had an average particle diameter of 1.6 μm. When these alloy materials were analyzed by X-ray diffraction measurement, they were microcrystals similar to the battery A1, and the crystal grains (crystallites) calculated from the half-value width of the strongest peak based on the Scherrer equation The diameter was 23 nm. Further, from the results of X-ray diffraction measurement, it was found that there existed a single Si phase (A phase) and a NiSi 2 phase or a FeSi 2 phase (B phase), respectively.

上記の各合金材料と黒鉛材料(MCMB)とを電池A1と同様にメカノフュージョン処理することにより、負極活物質を合成し、電池A1と同様にして、電池を作製した。Ni−Si合金を用いた電池をB4、Fe−Si合金を用いた電池をB5とする。   A negative electrode active material was synthesized by subjecting each of the above alloy materials and graphite material (MCMB) to mechanofusion treatment in the same manner as in battery A1, and a battery was fabricated in the same manner as battery A1. The battery using the Ni—Si alloy is designated as B4, and the battery using the Fe—Si alloy is designated as B5.

これら電池A11〜A15、B4およびB5について、実施例1と同様の評価を行った。結果を表3に示す。   These batteries A11 to A15, B4, and B5 were evaluated in the same manner as in Example 1. The results are shown in Table 3.

電池A11〜A15は高容量かつ長寿命を有していた。ここで、電池A1やA2に比べて容量維持率が低下しているが、これは電池A11およびA12を100サイクル後に分解して負極を観察したところ、合剤の剥離によるものであった。さらに、集電体にもシワの発生や端部に亀裂が観察され、さらには剥離した合剤をSEM観察したところ、合金材料の粒径がさらに微粉化していることが判明した。   The batteries A11 to A15 had a high capacity and a long life. Here, although the capacity retention rate was lower than that of the batteries A1 and A2, this was due to the peeling of the mixture when the batteries A11 and A12 were disassembled after 100 cycles and the negative electrode was observed. Furthermore, the current collector was observed to be wrinkled and cracked at the ends, and further, the peeled mixture was observed by SEM, and it was found that the particle size of the alloy material was further pulverized.

同様に電池A13〜A15においても100サイクル後の負極は、振動ミル装置の運転時間の長さに対して、剥離の度合いが減っていた。これらの結果より、本発明に用いる合金材料としては、平均粒径が微細であり、かつ結晶粒径も微細になっていることが好ましい。   Similarly, also in the batteries A13 to A15, the negative electrode after 100 cycles had a reduced degree of peeling with respect to the length of operation time of the vibration mill device. From these results, it is preferable that the alloy material used in the present invention has a fine average grain size and a fine crystal grain size.

また電池B4およびB5では、電池A1およびA2に比較して、低容量、かつサイクル特性も低いことが判明した。これらの負極単体を対極の金属リチウムで評価したところ、その不可逆容量は30〜40%と大きく、またNi−Si合金およびFe−Si合金中に含まれる酸素量はそれぞれ5.6重量%および7.1重量%と大きかった。これらの結果から推察するに、上記合金はその多くがSiOなどの酸化物を生成しており、初回の充電時に前記酸化物が還元されるために電気量が消費される。その結果、可逆な容量分を食いつぶしてしまい、電池として低容量になっているものと推測される。また、前記酸化物の還元によって生成したリチウム酸化物は、不導体であるために、負極活物質自身の電子伝導性を低下させる要因となり、それがサイクル特性を低下させる要因であると考えられる。   In addition, the batteries B4 and B5 were found to have a lower capacity and lower cycle characteristics than the batteries A1 and A2. When these negative electrodes were evaluated using lithium metal as a counter electrode, the irreversible capacity was as large as 30 to 40%, and the amounts of oxygen contained in the Ni—Si alloy and the Fe—Si alloy were 5.6% by weight and 7%, respectively. It was as large as 1% by weight. As inferred from these results, most of the above alloys generate oxides such as SiO, and the amount of electricity is consumed because the oxides are reduced during the first charge. As a result, it is estimated that the reversible capacity is consumed and the battery has a low capacity. Moreover, since the lithium oxide produced | generated by the reduction | restoration of the said oxide is a nonconductor, it becomes a factor which reduces the electronic conductivity of negative electrode active material itself, and it is thought that it is a factor which reduces cycling characteristics.

《実施例16〜実施例21》
電池A1の負極について、表4に示すような密度および空孔率になるように圧延を行い、その評価を行った。前記密度および空孔率は、全て電池組立前の測定値である。さらに、これらの電池を100サイクル後、充電状態で分解したときに測定された負極厚みの変化を膨張率として記載した。これは電池組立前の厚みに対して、サイクル後も厚みが変わらなければ100(%)としている。
<< Example 16 to Example 21 >>
About the negative electrode of battery A1, it rolled so that it might become a density and a porosity as shown in Table 4, and the evaluation was performed. The density and porosity are all measured values before battery assembly. Furthermore, the change of the negative electrode thickness measured when these batteries were decomposed in a charged state after 100 cycles was described as the expansion coefficient. This is 100 (%) with respect to the thickness before battery assembly if the thickness does not change after the cycle.

電池A1と同様にして、電池A16〜A21を作製し、電池A1と同様の評価を行った。結果を表4に示す。   Batteries A16 to A21 were produced in the same manner as the battery A1, and the same evaluation as the battery A1 was performed. The results are shown in Table 4.

表4の結果より、負極を高密度、つまり低空孔率にするほど高容量になるが、サイクル特性は低下する傾向にあった。また、その要因として、過剰な高密度化、例えば電池A20、によって電極の膨張率が増大し、これにより負極にシワが発生したり、正極−負極間の距離が不均一になったりすることにより、電池が不均一に反応するようになる。この結果、サイクル特性が低下したと考えられる。   From the results in Table 4, the higher the density of the negative electrode, that is, the lower the porosity, the higher the capacity, but the cycle characteristics tended to deteriorate. In addition, as a factor thereof, an excessively high density, for example, battery A20, increases the expansion coefficient of the electrode, thereby causing wrinkles in the negative electrode or non-uniform distance between the positive electrode and the negative electrode. The battery reacts unevenly. As a result, it is considered that the cycle characteristics deteriorated.

《実施例22〜25》
電池A1で使用した導電剤であるアセチレンブラックに代えて、微小黒鉛(商品名KS4 Timcal社製、平均粒径3μm)、気相法炭素繊維(商品名 VGCF 昭和電工(株)製、繊維径0.15μm)、または鱗片状黒鉛(商品名 SGP (株)エスイーシー製、平均粒径8μm)をアセチレンブラックと同重量部用いて、またはアセチレンブラック1重量部とVGCF1重量部の混合体を用いて電池A1と同様にして、それぞれ電池A22〜A25を作製し、電池A1と同様の評価を行った。結果を表5に示す。
<< Examples 22 to 25 >>
Instead of acetylene black, which is a conductive agent used in the battery A1, fine graphite (trade name: KS4 manufactured by Timcal, average particle size: 3 μm), vapor grown carbon fiber (trade name: VGCF, Showa Denko Co., Ltd., fiber diameter: 0) .15 μm), or scaly graphite (trade name: SGP Co., Ltd., average particle size: 8 μm) using the same parts by weight as acetylene black, or using a mixture of 1 part by weight of acetylene black and 1 part by weight of VGCF. Batteries A22 to A25 were produced in the same manner as A1 and evaluated in the same manner as the battery A1. The results are shown in Table 5.

表5より、電池A1と同様に良好な特性を示したものの、電池A24においては、100サイクル後に分解して負極を観察したところ、合剤の剥離が観察された。電池A22、A23およびA25は、100サイクル後においても平滑な状態を維持しており、微小な導電剤を用いることにより、負極の変形を抑制し、安定な充放電サイクル特性を示すと考えられる。   As shown in Table 5, the battery A24 showed good characteristics as in the case of the battery A1, but in the battery A24, when the negative electrode was observed after being decomposed after 100 cycles, peeling of the mixture was observed. Batteries A22, A23, and A25 maintain a smooth state even after 100 cycles, and it is considered that the use of a minute conductive agent suppresses deformation of the negative electrode and exhibits stable charge / discharge cycle characteristics.

《実施例26および27》
電池A1で使用した結着剤であるポリアクリル酸に代えて、カルボキシメチルセルロース(商品名 1290 ダイセル化学(株)製)5重量部とスチレン−ブタジエン共重合ゴム(商品名 0589 JSR(株)製)3重量部との混合物を用いて負極を作製した。また、結着剤にポリフッ化ビニリデン(商品名 1320 呉羽化学(株)製)を10重量部用い、溶剤としてN−メチル−2−ピロリドン(関東化学(株)製)を用いて負極を作製した。これらの負極を電池A1と同様にして電池A26およびA27を作製した。
<< Examples 26 and 27 >>
Instead of polyacrylic acid, which is the binder used in Battery A1, 5 parts by weight of carboxymethylcellulose (trade name 1290 manufactured by Daicel Chemical Industries) and styrene-butadiene copolymer rubber (trade name 0589 manufactured by JSR Corporation) A negative electrode was prepared using a mixture with 3 parts by weight. In addition, a negative electrode was prepared using 10 parts by weight of polyvinylidene fluoride (trade name: 1320 manufactured by Kureha Chemical Co., Ltd.) as a binder and N-methyl-2-pyrrolidone (manufactured by Kanto Chemical Co., Ltd.) as a solvent. . Batteries A26 and A27 were produced using these negative electrodes in the same manner as the battery A1.

上記電池A26およびA27について実施例1と同様の評価を行った。結果を表6に示す。   The batteries A26 and A27 were evaluated in the same manner as in Example 1. The results are shown in Table 6.

表6より、電池A1と同様に良好な特性を示した。しかし、電池A27は、100サイクル後に分解して負極を観察したところ、合剤の剥離が観察された。一方、電池A26は、100サイクル後においても平滑な状態を維持していた。これは電池A26が電池A1と同様に、カルボキシル基を有する結着剤を使用しており、特にカルボキシル基と合金材料表面とが強固に接着することによって合剤の剥離を防いでいる。その結果、充放電サイクル特性が良好であったと考えられる。   From Table 6, good characteristics were shown in the same manner as the battery A1. However, when the battery A27 was decomposed after 100 cycles and the negative electrode was observed, peeling of the mixture was observed. On the other hand, the battery A26 maintained a smooth state even after 100 cycles. This is because the battery A26 uses a binder having a carboxyl group in the same manner as the battery A1, and particularly the carboxyl group and the surface of the alloy material are firmly bonded to prevent the mixture from being peeled off. As a result, it is considered that the charge / discharge cycle characteristics were good.

本発明の非水電解質二次電池用負極は、高容量および良好な充放電サイクル特性を両立する優れた非水電解質二次電池を与える。本発明は、あらゆる形態の非水電解質二次電池に適用可能であり、例えば実施例で挙げた円筒型のみでなく、コイン型、角型、扁平型などの形状を有し、かつ捲回型、積層型などの極板群構造を有する電池にも適用可能である。本発明の非水電解質二次電池は、移動体通信機器、携帯電子機器などの主電源に有用である。   The negative electrode for a non-aqueous electrolyte secondary battery of the present invention provides an excellent non-aqueous electrolyte secondary battery having both high capacity and good charge / discharge cycle characteristics. The present invention is applicable to all forms of non-aqueous electrolyte secondary batteries. For example, the present invention has not only the cylindrical shape mentioned in the embodiment but also a coin shape, a square shape, a flat shape, and the like, and a wound type. The present invention is also applicable to a battery having an electrode plate group structure such as a stacked type. The nonaqueous electrolyte secondary battery of the present invention is useful as a main power source for mobile communication devices, portable electronic devices and the like.

本発明の実施例における負極の一例の断面の電子顕微鏡写真である。It is an electron micrograph of the cross section of an example of the negative electrode in the Example of this invention. 本発明の実施例で作製した円筒型電池の縦断面図である。It is a longitudinal cross-sectional view of the cylindrical battery produced in the Example of this invention.

Claims (10)

Liを電気化学的に吸蔵および放出可能な非水電解質二次電池用負極活物質であって、TiおよびZrの少なくとも一方とSiとを含む合金材料、並びに黒鉛材料を含み、前記黒鉛材料の表面が前記合金材料により被覆されていることを特徴とする非水電解質二次電池用負極活物質。   A negative electrode active material for a non-aqueous electrolyte secondary battery capable of electrochemically occluding and releasing Li, comprising an alloy material containing at least one of Ti and Zr and Si, and a graphite material, and a surface of the graphite material Is coated with the alloy material. A negative electrode active material for a non-aqueous electrolyte secondary battery. 前記合金材料は、少なくとも、Siを主体とする相と、金属間化合物TiSi2またはZrSi2の相とを含み、前記相の少なくとも一方は微結晶または非晶質の領域からなる請求項1記載の非水電解質二次電池用負極活物質。 2. The alloy material according to claim 1, wherein the alloy material includes at least a phase mainly composed of Si and a phase of an intermetallic compound TiSi 2 or ZrSi 2 , and at least one of the phases is formed of a microcrystalline or amorphous region. Negative electrode active material for non-aqueous electrolyte secondary battery. 前記Siを主体とする相の結晶粒径が50nm以下である請求項2記載の非水電解質二次電池用負極活物質。   The negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 2, wherein the crystal grain size of the Si-based phase is 50 nm or less. 前記合金材料中のSi量が、38重量%以上95重量%以下である請求項1記載の非水電解質二次電池用負極活物質。   The negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the amount of Si in the alloy material is 38 wt% or more and 95 wt% or less. 前記合金材料の平均粒径が、5μm未満である請求項1記載の非水電解質二次電池用負極活物質。   The negative electrode active material for a nonaqueous electrolyte secondary battery according to claim 1, wherein the alloy material has an average particle size of less than 5 μm. Liを電気化学的に吸蔵および放出可能な活物質であって、TiおよびZrの少なくと一方とSiとを含む合金材料、並びに黒鉛材料を含み、前記黒鉛材料の表面が前記合金材料により被覆されている負極活物質を具備し、放電状態における空孔率が10%以上80%以下であることを特徴とする非水電解質二次電池用負極。   An active material capable of electrochemically occluding and releasing Li, comprising an alloy material containing at least one of Ti and Zr and Si, and a graphite material, and a surface of the graphite material is coated with the alloy material A negative electrode for a non-aqueous electrolyte secondary battery, wherein the negative electrode active material has a porosity of 10% to 80% in a discharged state. 導電剤および結着剤が含まれている請求項6記載の非水電解質二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to claim 6, comprising a conductive agent and a binder. 前記導電剤はカーボンブラック、黒鉛および炭素材料からなる群より選ばれる少なくとも1種である請求項7記載の非水電解質二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to claim 7, wherein the conductive agent is at least one selected from the group consisting of carbon black, graphite, and a carbon material. 前記結着剤はカルボキシル基を有する請求項7記載の非水電解質二次電池用負極。   The negative electrode for a nonaqueous electrolyte secondary battery according to claim 7, wherein the binder has a carboxyl group. 請求項6記載の負極と、リチウム含有遷移金属酸化物を含む正極と、リチウム塩を含む非水電解質とを具備する非水電解質二次電池。   A nonaqueous electrolyte secondary battery comprising the negative electrode according to claim 6, a positive electrode containing a lithium-containing transition metal oxide, and a nonaqueous electrolyte containing a lithium salt.
JP2006036167A 2005-02-14 2006-02-14 Anode for non-aqueous electrolyte secondary battery Active JP5043344B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006036167A JP5043344B2 (en) 2005-02-14 2006-02-14 Anode for non-aqueous electrolyte secondary battery

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2005035586 2005-02-14
JP2005035586 2005-02-14
JP2006036167A JP5043344B2 (en) 2005-02-14 2006-02-14 Anode for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2006253126A true JP2006253126A (en) 2006-09-21
JP5043344B2 JP5043344B2 (en) 2012-10-10

Family

ID=37093347

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006036167A Active JP5043344B2 (en) 2005-02-14 2006-02-14 Anode for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5043344B2 (en)

Cited By (16)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141573A (en) * 2005-11-16 2007-06-07 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2007273355A (en) * 2006-03-31 2007-10-18 Fukuda Metal Foil & Powder Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method
JP2010129363A (en) * 2008-11-27 2010-06-10 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2010212144A (en) * 2009-03-11 2010-09-24 Nissan Motor Co Ltd Lithium-ion secondary battery
WO2013088540A1 (en) * 2011-12-14 2013-06-20 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and method for manufacturing negative electrode for secondary battery
JP2013229163A (en) * 2012-04-25 2013-11-07 Shin Etsu Chem Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2015017418A1 (en) * 2013-07-29 2015-02-05 The Penn State Research Foundation Elastic gel polymer binder for silicon-based anode
WO2015088248A1 (en) * 2013-12-10 2015-06-18 주식회사 엘지화학 Negative electrode material for secondary battery, and secondary battery using same
WO2015163398A1 (en) * 2014-04-25 2015-10-29 三井金属鉱業株式会社 Negative electrode active substance for non-aqueous electrolyte secondary batteries
JP2016072035A (en) * 2014-09-29 2016-05-09 株式会社Gsユアサ Nonaqueous electrolyte power storage device
JP2016103337A (en) * 2014-11-27 2016-06-02 株式会社日立製作所 Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2017224499A (en) * 2016-06-15 2017-12-21 大同特殊鋼株式会社 Negative electrode active material for lithium ion battery and lithium ion battery
JP2019071195A (en) * 2017-10-06 2019-05-09 トヨタ自動車株式会社 Method for manufacturing secondary battery
JP2022510833A (en) * 2018-12-19 2022-01-28 ノボニクス バッテリー テスティング サービシズ インコーポレイテッド Electrochemically active dispersions and composites for anodes of rechargeable batteries
US12087938B2 (en) 2015-12-11 2024-09-10 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, power storage device, and electric device
US12119439B2 (en) 2017-11-30 2024-10-15 Gs Yuasa International Ltd. Energy storage device

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173594A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2002008652A (en) * 2000-06-16 2002-01-11 Samsung Yokohama Research Institute Co Ltd Negative electrode material for lithium secondary battery and electrode for lithium secondary battery and manufacturing method of lithium secondary battery and negative electrode material for lithium secondary battery
JP2004103340A (en) * 2002-09-06 2004-04-02 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2004185975A (en) * 2002-12-03 2004-07-02 Samsung Yokohama Research Institute Co Ltd Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method
JP2004182512A (en) * 2002-12-02 2004-07-02 Showa Denko Kk Carbon material, its manufacturing method and use
JP2004220790A (en) * 2003-01-09 2004-08-05 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery
JP2004241256A (en) * 2003-02-06 2004-08-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2004296269A (en) * 2003-03-27 2004-10-21 Nippon Carbon Co Ltd Negative electrode material for lithium ion secondary battery, its manufacturing method, and battery using the same
JP2005108774A (en) * 2003-10-01 2005-04-21 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, lithium secondary battery, and manufacturing method of negative electrode active material for lithium secondary battery
JP2005276821A (en) * 2004-02-24 2005-10-06 Sumitomo Metal Ind Ltd Nonaqueous secondary battery negative electrode material and its manufacturing method

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000173594A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2002008652A (en) * 2000-06-16 2002-01-11 Samsung Yokohama Research Institute Co Ltd Negative electrode material for lithium secondary battery and electrode for lithium secondary battery and manufacturing method of lithium secondary battery and negative electrode material for lithium secondary battery
JP2004103340A (en) * 2002-09-06 2004-04-02 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, its manufacturing method, and nonaqueous electrolyte secondary battery
JP2004182512A (en) * 2002-12-02 2004-07-02 Showa Denko Kk Carbon material, its manufacturing method and use
JP2004185975A (en) * 2002-12-03 2004-07-02 Samsung Yokohama Research Institute Co Ltd Compound carbon material for lithium ion secondary battery negative electrode and its manufacturing method
JP2004220790A (en) * 2003-01-09 2004-08-05 Matsushita Electric Ind Co Ltd Negative electrode for lithium ion secondary battery
JP2004241256A (en) * 2003-02-06 2004-08-26 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2004296269A (en) * 2003-03-27 2004-10-21 Nippon Carbon Co Ltd Negative electrode material for lithium ion secondary battery, its manufacturing method, and battery using the same
JP2005108774A (en) * 2003-10-01 2005-04-21 Samsung Sdi Co Ltd Negative electrode active material for lithium secondary battery, lithium secondary battery, and manufacturing method of negative electrode active material for lithium secondary battery
JP2005276821A (en) * 2004-02-24 2005-10-06 Sumitomo Metal Ind Ltd Nonaqueous secondary battery negative electrode material and its manufacturing method

Cited By (26)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2007141573A (en) * 2005-11-16 2007-06-07 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, its manufacturing method, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2007273355A (en) * 2006-03-31 2007-10-18 Fukuda Metal Foil & Powder Co Ltd Negative electrode for lithium secondary battery, and its manufacturing method
JP4654381B2 (en) * 2006-03-31 2011-03-16 福田金属箔粉工業株式会社 Negative electrode for lithium secondary battery and method for producing the same
JP2010129363A (en) * 2008-11-27 2010-06-10 Jfe Chemical Corp Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2010212144A (en) * 2009-03-11 2010-09-24 Nissan Motor Co Ltd Lithium-ion secondary battery
CN103988344B (en) * 2011-12-14 2016-11-09 丰田自动车株式会社 Rechargeable nonaqueous electrolytic battery and the manufacture method of secondary battery cathode
WO2013088540A1 (en) * 2011-12-14 2013-06-20 トヨタ自動車株式会社 Non-aqueous electrolyte secondary battery and method for manufacturing negative electrode for secondary battery
CN103988344A (en) * 2011-12-14 2014-08-13 丰田自动车株式会社 Non-aqueous electrolyte secondary battery and method for manufacturing negative electrode for secondary battery
JPWO2013088540A1 (en) * 2011-12-14 2015-04-27 トヨタ自動車株式会社 Nonaqueous electrolyte secondary battery and method for producing negative electrode for secondary battery
US9911972B2 (en) 2011-12-14 2018-03-06 Toyota Jidosha Kabushiki Kaisha Non-aqueous electrolyte secondary battery and method for manufacturing negative electrode for secondary battery
JP2013229163A (en) * 2012-04-25 2013-11-07 Shin Etsu Chem Co Ltd Negative electrode for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2015017418A1 (en) * 2013-07-29 2015-02-05 The Penn State Research Foundation Elastic gel polymer binder for silicon-based anode
US10115963B2 (en) 2013-12-10 2018-10-30 Lg Chem, Ltd. Negative electrode material for secondary battery and secondary battery using the same
WO2015088248A1 (en) * 2013-12-10 2015-06-18 주식회사 엘지화학 Negative electrode material for secondary battery, and secondary battery using same
WO2015163398A1 (en) * 2014-04-25 2015-10-29 三井金属鉱業株式会社 Negative electrode active substance for non-aqueous electrolyte secondary batteries
JP2016072035A (en) * 2014-09-29 2016-05-09 株式会社Gsユアサ Nonaqueous electrolyte power storage device
KR20160063988A (en) 2014-11-27 2016-06-07 가부시끼가이샤 히다치 세이사꾸쇼 Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
JP2016103337A (en) * 2014-11-27 2016-06-02 株式会社日立製作所 Lithium ion secondary battery and method for manufacturing lithium ion secondary battery
US10347908B2 (en) 2014-11-27 2019-07-09 Hitachi, Ltd. Lithium ion secondary battery and manufacturing method of the lithium ion secondary battery
US12087938B2 (en) 2015-12-11 2024-09-10 Semiconductor Energy Laboratory Co., Ltd. Negative electrode for power storage device, power storage device, and electric device
JP7559023B2 (en) 2015-12-11 2024-10-01 株式会社半導体エネルギー研究所 Negative electrodes for power storage devices
JP2017224499A (en) * 2016-06-15 2017-12-21 大同特殊鋼株式会社 Negative electrode active material for lithium ion battery and lithium ion battery
JP2019071195A (en) * 2017-10-06 2019-05-09 トヨタ自動車株式会社 Method for manufacturing secondary battery
US12119439B2 (en) 2017-11-30 2024-10-15 Gs Yuasa International Ltd. Energy storage device
JP7520006B2 (en) 2018-12-19 2024-07-22 ノボニクス バッテリー テクノロジー ソリューションズ インコーポレイテッド Electrochemically active dispersions and composites for anodes in rechargeable batteries - Patents.com
JP2022510833A (en) * 2018-12-19 2022-01-28 ノボニクス バッテリー テスティング サービシズ インコーポレイテッド Electrochemically active dispersions and composites for anodes of rechargeable batteries

Also Published As

Publication number Publication date
JP5043344B2 (en) 2012-10-10

Similar Documents

Publication Publication Date Title
JP5043344B2 (en) Anode for non-aqueous electrolyte secondary battery
US7537862B2 (en) Negative electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery comprising the same
JP4794972B2 (en) Non-aqueous electrolyte secondary battery negative electrode and non-aqueous electrolyte secondary battery including the same
JP4868786B2 (en) Lithium secondary battery
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
JP5147170B2 (en) Lithium secondary battery
JP5219339B2 (en) Lithium secondary battery
US7556881B2 (en) Lithium secondary battery
US20070054190A1 (en) Lithium secondary battery
US20090087731A1 (en) Lithium secondary battery
JP2009099523A (en) Lithium secondary battery
WO2006075552A1 (en) Material of negative electrode for lithium secondary battery, negative electrode utilizing the material, lithium secondary battery utilizing the negative electrode, and process for producing the material of negative electrode
JP2001068096A (en) Negative electrode for nonaqueous electrolyte secondary battery, manufacture thereof and nonaqueous electrolyte secondary battery
WO2011052533A1 (en) Lithium secondary battery
JP2004146253A (en) Negative electrode and battery, and manufacturing method of these
JP2005116509A (en) Negative electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery using the same
JP2004139886A (en) Nonaqueous electrolyte secondary battery
JP2004349164A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
WO2015083262A1 (en) Negative electrode material for lithium ion secondary batteries, method for producing same, negative electrode for lithium ion secondary batteries, method for producing negative electrode for lithium ion secondary batteries, and lithium ion secondary battery
JPH1186853A (en) Lithium secondary battery
JP2004127535A (en) Negative electrode for lithium secondary battery, and lithium secondary battery
JP4984402B2 (en) Nonaqueous electrolyte secondary battery
JP2004335439A (en) Nonaqueous electrolyte secondary battery
JP5267976B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP3848187B2 (en) Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20061227

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081030

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110916

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111006

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111202

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120405

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120523

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120614

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120712

R150 Certificate of patent or registration of utility model

Ref document number: 5043344

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150720

Year of fee payment: 3