JP2017224499A - Negative electrode active material for lithium ion battery and lithium ion battery - Google Patents

Negative electrode active material for lithium ion battery and lithium ion battery Download PDF

Info

Publication number
JP2017224499A
JP2017224499A JP2016119288A JP2016119288A JP2017224499A JP 2017224499 A JP2017224499 A JP 2017224499A JP 2016119288 A JP2016119288 A JP 2016119288A JP 2016119288 A JP2016119288 A JP 2016119288A JP 2017224499 A JP2017224499 A JP 2017224499A
Authority
JP
Japan
Prior art keywords
negative electrode
active material
electrode active
phase
lithium ion
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2016119288A
Other languages
Japanese (ja)
Other versions
JP6808988B2 (en
Inventor
優太 木村
Yuta Kimura
優太 木村
雄一郎 多湖
Yuichiro Tako
雄一郎 多湖
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Daido Steel Co Ltd
Original Assignee
Daido Steel Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Daido Steel Co Ltd filed Critical Daido Steel Co Ltd
Priority to JP2016119288A priority Critical patent/JP6808988B2/en
Publication of JP2017224499A publication Critical patent/JP2017224499A/en
Application granted granted Critical
Publication of JP6808988B2 publication Critical patent/JP6808988B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a negative electrode active material for a lithium ion battery which uses Si as an active material and has a high initial discharge capacity and good cycle characteristics.SOLUTION: A negative electrode active material composed of a binary Si-Zr alloy having a matrix phase composed of a Si phase and a Zr silicide phase dispersed in the matrix phase contains Si of 45 to 65 mass%.SELECTED DRAWING: Figure 1

Description

この発明はリチウムイオン電池用負極活物質およびリチウムイオン電池に関する。   The present invention relates to a negative electrode active material for a lithium ion battery and a lithium ion battery.

リチウムイオン電池は高容量、高電圧で小型化が可能である利点を有し、携帯電話やノートパソコン等の電源として広く用いられており、また近年電気自動車やハイブリッド自動車等のパワー用途の電源として大きな期待を集め、その開発が活発に進められている。   Lithium ion batteries have the advantage of being able to be miniaturized with high capacity and high voltage, and are widely used as power sources for mobile phones and notebook computers, and in recent years as power sources for power applications such as electric vehicles and hybrid vehicles. High expectations have been gathered and its development is actively underway.

このリチウムイオン電池では、正極と負極との間でリチウムイオン(以下Liイオンとする)が移動して充電と放電とが行われ、負極側では充電時に負極活物質中にLiイオンが吸蔵され、放電時には負極活物質からLiイオンが放出される。   In this lithium ion battery, lithium ions (hereinafter referred to as Li ions) move between the positive electrode and the negative electrode to perform charging and discharging, and on the negative electrode side, Li ions are occluded in the negative electrode active material during charging, During discharge, Li ions are released from the negative electrode active material.

従来、一般には正極側の活物質としてコバルト酸リチウム(LiCoO)が用いられ、また負極活物質として黒鉛が広く使用されていた。
しかしながら、負極活物質の黒鉛は、その理論容量が372mAh/gに過ぎず、より一層の高容量化が望まれている。そこで最近では炭素系負極活物質の代替材料として、高容量化が期待できるSi、Sn等の金属材料(Siの理論容量は4198mAh/g,Snの理論容量は993mAh/gである)が盛んに研究されている。
Conventionally, lithium cobaltate (LiCoO 2 ) has been generally used as the active material on the positive electrode side, and graphite has been widely used as the negative electrode active material.
However, graphite as the negative electrode active material has a theoretical capacity of only 372 mAh / g, and a higher capacity is desired. Therefore, recently, metal materials such as Si and Sn (theoretical capacity of Si is 4198 mAh / g, the theoretical capacity of Sn is 993 mAh / g), which can be expected to increase in capacity, are actively used as alternative materials for carbon-based negative electrode active materials. It has been studied.

ところが、SiやSnはLiとの合金化反応によりLiイオンの吸蔵を行うために、Liイオンの吸蔵・放出に伴って大きな体積膨張・収縮を生じる。
従ってSi,Sn単独で負極活物質を構成した場合、その膨張・収縮応力によってSiやSnの粒子が割れたり集電体から剥離したりし、充放電を繰り返したときの容量維持特性であるサイクル特性が悪いといった問題があり、このことがSi等を用いた負極活物質の実用化への大きな障壁となっていた。
However, since Si and Sn occlude Li ions by an alloying reaction with Li, large volume expansion and contraction occur with the occlusion and release of Li ions.
Therefore, when the negative electrode active material is composed of Si and Sn alone, the cycle is a capacity maintenance characteristic when the Si and Sn particles are cracked or peeled off from the current collector due to the expansion / contraction stress, and charge and discharge are repeated. There has been a problem that the characteristics are poor, and this has been a big barrier to the practical application of a negative electrode active material using Si or the like.

このようなことから、下記特許文献1,2で示されているように、Siを用いた負極活物質において、Siを合金化することが各種提案されている。
例えば、下記特許文献1には「リチウム二次電池」についての発明が示され、そこにおいて2元系のSi-Ni合金、又は、そのNiの一部を更にMn等で置換した3元系の合金をリチウム二次電池用負極材に用いる点、更にこれらのSi合金において、合金マトリクス相中にSi結晶を分散させた構造が開示されている。
For this reason, as shown in Patent Documents 1 and 2 below, various proposals have been made to alloy Si in a negative electrode active material using Si.
For example, the following Patent Document 1 discloses an invention about a “lithium secondary battery”, in which a binary Si—Ni alloy or a ternary system in which a part of Ni is further substituted with Mn or the like. A point in which an alloy is used as a negative electrode material for a lithium secondary battery, and a structure in which Si crystals are dispersed in an alloy matrix phase in these Si alloys are disclosed.

特開平10−294112号公報JP 10-294112 A 特表2015−524988号公報Special table 2015-524988 gazette

しかしながら上記特許文献に記載されているSi合金は、島状に晶出させたSi相の周囲をシリサイド相で取り囲む構造としたもので、サイクル特性の向上に一定の効果は認められるものの、Si相の膨張・収縮時に発生する応力を、周囲のシリサイド相で緩和させる効果が十分でなく、充放電を繰り返すにつれてSi合金の崩壊が生じており、未だ改善の余地があるものであった。
本発明は以上のような事情を背景とし、Siを活物質として用い、高い初期放電容量を保持するとともに良好なサイクル特性を備えたリチウムイオン電池用負極活物質およびリチウムイオン電池を提供することを目的としてなされたものである。
However, the Si alloy described in the above-mentioned patent document has a structure in which the periphery of the Si phase crystallized in an island shape is surrounded by a silicide phase, and although a certain effect is recognized in improving cycle characteristics, the Si phase is recognized. The effect of relaxing the stress generated at the time of expansion / contraction in the surrounding silicide phase was not sufficient, and the Si alloy collapsed as charging and discharging were repeated, and there was still room for improvement.
In view of the above circumstances, the present invention provides a negative electrode active material for lithium ion batteries and a lithium ion battery using Si as an active material, maintaining a high initial discharge capacity and having good cycle characteristics. It was made as a purpose.

而して請求項1はリチウムイオン電池用負極活物質に関するもので、2元系のSi-Zr合金からなり、Si相からなるマトリクス相と、該マトリクス相中に分散したZrシリサイド相と、を備え、Si含有量が45〜65質量%であることを特徴とする。   Thus, claim 1 relates to a negative electrode active material for a lithium ion battery, comprising a binary Si—Zr alloy, a matrix phase comprising a Si phase, and a Zr silicide phase dispersed in the matrix phase. And the Si content is 45 to 65% by mass.

請求項2はリチウムイオン電池に関するもので、請求項1に記載のリチウムイオン電池用負極活物質を含む負極を有することを特徴とする。   A second aspect of the present invention relates to a lithium ion battery, and has a negative electrode including the negative electrode active material for a lithium ion battery according to the first aspect.

以上のような2元系のSi-Zr合金からなる本発明の負極活物質は、初期容量が高く、また充放電を繰り返したときの容量維持特性、即ちサイクル特性も良好である。
本発明の負極活物質は、Si相からなるマトリクス相中にZrシリサイド相を分散させた構造である。Zrシリサイド相は、Si相の膨張時にその膨張応力を吸収するように働き、サイクル特性が向上するものと考えられる。
従来、リチウムイオン電池用負極活物質に用いられるSi合金では、Liイオンの吸蔵・放出に伴って大きな体積膨張・収縮を生じるSi相をシリサイド相中に分散させており、Si相を島状、シリサイド相を海状、とする構造であったため、Siが膨張する際に発生する応力がシリサイド相に加わり、シリサイド相もろとも粒子が崩壊する場合があった。
これに対し本発明は、従来とは海島構造を逆とする、即ち、シリサイド相を島状、Si相を海状、とする構造である。このようにすることで、Si相の大部分は最表面に位置しているため、Si相膨張時シリサイド相に加わる応力が小さくなり、粒子の崩壊を抑制できる。また島状に配置されたシリサイド相は膨張しないため、粒子の構造を維持する骨材の役割を果たし、粒子の崩壊をより効果的に抑制することができる。
The negative electrode active material of the present invention composed of the binary Si—Zr alloy as described above has a high initial capacity, and also has good capacity maintenance characteristics, that is, cycle characteristics when charging and discharging are repeated.
The negative electrode active material of the present invention has a structure in which a Zr silicide phase is dispersed in a matrix phase composed of a Si phase. It is considered that the Zr silicide phase works to absorb the expansion stress when the Si phase expands, and the cycle characteristics are improved.
Conventionally, in an Si alloy used as a negative electrode active material for a lithium ion battery, an Si phase that causes large volume expansion / contraction due to insertion / extraction of Li ions is dispersed in a silicide phase, and the Si phase is island-shaped. Since the silicide phase has a sea-like structure, stress generated when Si expands is applied to the silicide phase, and the silicide phase and the particles sometimes collapse.
On the other hand, the present invention has a structure in which the sea-island structure is reversed from that of the prior art, that is, the silicide phase is an island shape and the Si phase is a sea shape. By doing so, since most of the Si phase is located on the outermost surface, the stress applied to the silicide phase during the expansion of the Si phase is reduced, and particle collapse can be suppressed. In addition, since the silicide phase arranged in an island shape does not expand, it plays the role of an aggregate that maintains the structure of the particles, and the collapse of the particles can be more effectively suppressed.

そして、本発明ではこのような海島構造を、2元系のSi-Zr合金を用いることによって実現させている。かかるSi-Zr合金においては、合金溶湯を冷却・凝固させる過程で、先にSi-Zr化合物(Zrシリサイド相)が晶出し、その後Si(Si相)が晶出するため、Zrシリサイド相は島状に、Si相は海状に形成される。   In the present invention, such a sea-island structure is realized by using a binary Si—Zr alloy. In such a Si—Zr alloy, the Si—Zr compound (Zr silicide phase) crystallizes first and then the Si (Si phase) crystallizes in the process of cooling and solidifying the molten alloy. The Si phase is formed in a sea shape.

シリサイド相の晶出形状や大きさは、冷却速度によって変化させることができる。シリサイド相の形状は冷却速度が遅い場合に樹枝状となる一方、より速い速度で冷却することで分散化、扁平形状化する。本発明では、シリサイド相を扁平形状に晶出させることで、シリサイドの体積当たりでのSi相と接触する面積が増加し、Siの膨張をより吸収する効果が高くなるため、サイクル特性を向上させることができる。   The crystallization shape and size of the silicide phase can be changed depending on the cooling rate. The shape of the silicide phase becomes a dendritic shape when the cooling rate is low, but is dispersed and flattened by cooling at a higher rate. In the present invention, by crystallizing the silicide phase into a flat shape, the area in contact with the Si phase per unit volume of the silicide is increased, and the effect of absorbing the expansion of Si is enhanced, so that the cycle characteristics are improved. be able to.

本発明の負極活物質では、Si含有量を45〜65質量%とする。
Si含有量が45質量%未満であると、Si量が少な過ぎて初期放電容量が不足してしまう。一方、65%を超えて過剰にSiを含有すると、シリサイド相(Si-Zr化合物)の生成量が相対的に低下して、容量維持率が悪化する。そこで本発明ではSi含有量を45〜65質量%とする。更に望ましいSi含有量は55〜60質量%である。
In the negative electrode active material of the present invention, the Si content is 45 to 65% by mass.
If the Si content is less than 45% by mass, the amount of Si is too small and the initial discharge capacity is insufficient. On the other hand, if the Si content exceeds 65%, the amount of silicide phase (Si—Zr compound) produced is relatively reduced, and the capacity retention rate is deteriorated. Therefore, in the present invention, the Si content is set to 45 to 65% by mass. A more desirable Si content is 55 to 60% by mass.

以上のような本発明によれば、Siを活物質として用い、高い容量を保持するとともに良好なサイクル特性を備えたリチウムイオン電池用負極活物質およびリチウムイオン電池を提供することができる。   According to the present invention as described above, it is possible to provide a negative electrode active material for a lithium ion battery and a lithium ion battery that use Si as an active material, retain a high capacity, and have good cycle characteristics.

実施例3に係る負極活物質の走査型電子顕微鏡(SEM)による微細組織写真である。4 is a microstructural photograph of a negative electrode active material according to Example 3 by a scanning electron microscope (SEM). 比較例3に係る負極活物質の走査型電子顕微鏡による微細組織写真である。6 is a microstructural photograph of a negative electrode active material according to Comparative Example 3 taken with a scanning electron microscope. 比較例4に係る負極活物質の走査型電子顕微鏡による微細組織写真である。5 is a microstructural photograph of a negative electrode active material according to Comparative Example 4 taken with a scanning electron microscope. 比較例5に係る負極活物質の走査型電子顕微鏡による微細組織写真である。6 is a microstructural photograph of a negative electrode active material according to Comparative Example 5 using a scanning electron microscope.

次に本発明の一実施形態のリチウムイオン電池用負極活物質(以下単に負極活物質とする場合がある)、本負極活物質を負極に用いたリチウムイオン電池(以下単に電池とする場合がある)について具体的に説明する。   Next, a negative electrode active material for a lithium ion battery according to an embodiment of the present invention (hereinafter simply referred to as a negative electrode active material), a lithium ion battery using the negative electrode active material as a negative electrode (hereinafter simply referred to as a battery) ) Will be described in detail.

1.本負極活物質
本負極活物質は、Si相からなるマトリクス相と、このマトリクス相中に分散したZrシリサイド相と、を備えた2元系のSi-Zr合金からなる。
Si相は、Siを主に含有する相である。Li吸蔵量が大きくなるなどの観点から、好ましくはSiの単相よりなると良い。もっとも、Si相中には不可避的な不純物が含まれていても良い。
1. This negative electrode active material This negative electrode active material consists of a binary Si-Zr alloy provided with the matrix phase which consists of Si phases, and the Zr silicide phase disperse | distributed in this matrix phase.
The Si phase is a phase mainly containing Si. From the viewpoint of increasing the amount of occlusion of Li and the like, it is preferably made of a single phase of Si. However, inevitable impurities may be contained in the Si phase.

一方、本発明におけるZrシリサイド相はSiZrを主に含有する相であるが、不可避的に他のZrシリサイド相(SiZr、SiZr、SiZr、SiZr、SiZrなど)が含まれていても良い。マトリクス相(Si相)中に分散するZrシリサイド相の形状は、特に限定されるものではないが、このZrシリサイド相にてSi相の膨張・収縮時に発生する応力を緩和させる点を考慮すれば、Si相との接触面積が増加する扁平形状が望ましい。 On the other hand, the Zr silicide phase in the present invention is a phase mainly containing Si 2 Zr, but inevitably other Zr silicide phases (Si 4 Zr, Si 3 Zr 2 , Si 5 Zr 4 , SiZr, SiZr 2, etc.). ) May be included. The shape of the Zr silicide phase dispersed in the matrix phase (Si phase) is not particularly limited. However, in consideration of the point that the Zr silicide phase relaxes the stress generated during the expansion and contraction of the Si phase. A flat shape that increases the contact area with the Si phase is desirable.

Si-Zr合金からなる負極活物質の形態は、特に限定されるものではない。具体的には、薄片状、粉末状などの形態を例示することができる。好ましくは、負極の製造に適用しやすいなどの観点から、粉末状であると良い。また、本発明の負極活物質は、適当な溶媒中に分散されていても構わない。   The form of the negative electrode active material made of the Si—Zr alloy is not particularly limited. Specifically, forms such as flakes and powders can be exemplified. Preferably, it is in a powder form from the viewpoint of easy application to the production of a negative electrode. Moreover, the negative electrode active material of the present invention may be dispersed in a suitable solvent.

本発明の負極活物質は、所定の化学組成を有する合金溶湯を急冷して急冷合金を形成する工程を経る方法にて製造することができる。
得られた急冷合金が粉末状でない場合又は小径化したい場合には、急冷合金を適当な粉砕手段により粉砕して粉末状にする工程を追加しても良い。また、必要に応じて、得られた急冷合金を分級処理して適当な粒度に調整する工程などを追加しても良い。
The negative electrode active material of the present invention can be produced by a method that includes a step of rapidly cooling a molten alloy having a predetermined chemical composition to form a quenched alloy.
When the obtained quenched alloy is not in a powder form or when it is desired to reduce the diameter, a step of pulverizing the quenched alloy by an appropriate pulverizing means to form a powder may be added. Moreover, you may add the process of classifying the obtained quenched alloy and adjusting it to a suitable particle size, etc. as needed.

尚、活物質の粒径(平均粒子径(d50))は、1〜20μmの範囲内としておくことが望ましい。本発明における平均粒子径(d50)は、体積基準を意味し、レーザ回折・散乱式粒度分布測定装置(マイクロトラックMT3000)を用いて測定することができる。
Si合金を活物質に用いた場合であっても、充放電反応に伴う活物質自体の体積膨張・収縮を生じ、これにより負極活物質をバインダにて結着して成る合剤層、つまり導電膜中に応力が発生する。この場合、バインダがその応力に耐えられないとバインダの崩壊が生じ、その結果、導電膜の集電体からの剥離を生じ、結果として電極内の導電性が低下し、充放電サイクル特性が低下する。しかるに活物質の平均粒径を1〜20μmの微細な粒子としておいた場合、活物質が微細化であることによってバインダとの接触面積が増加し、これによりバインダの崩壊が良好に抑制され、結果としてサイクル特性が向上させることができる。
The active material preferably has a particle size (average particle size (d50)) in the range of 1 to 20 μm. The average particle diameter (d50) in the present invention means a volume reference and can be measured using a laser diffraction / scattering type particle size distribution measuring apparatus (Microtrack MT3000).
Even when Si alloy is used as the active material, the active material itself undergoes volume expansion / contraction due to the charge / discharge reaction. Stress is generated in the film. In this case, if the binder cannot withstand the stress, the binder collapses, resulting in peeling of the conductive film from the current collector. As a result, the conductivity in the electrode is lowered, and the charge / discharge cycle characteristics are lowered. To do. However, when the average particle diameter of the active material is set to be 1 to 20 μm fine particles, the contact area with the binder is increased because the active material is miniaturized, and thereby the collapse of the binder is favorably suppressed. As a result, the cycle characteristics can be improved.

上記製造方法において、合金溶湯は、具体的には、例えば、所定の化学組成となるように各原料を量り取り、量り取った各原料を、アーク炉、高周波誘導炉、加熱炉などの溶解手段を用いて溶解させるなどして得ることができる。   In the manufacturing method described above, the molten alloy specifically includes, for example, each raw material weighed so as to have a predetermined chemical composition, and the measured raw material is melted by an arc furnace, a high frequency induction furnace, a heating furnace, or the like. It can be obtained by dissolving using, for example.

合金溶湯を急冷する方法としては、具体的には、例えば、ロール急冷法(単ロール急冷法、双ロール急冷法等)、アトマイズ法(ガスアトマイズ法、水アトマイズ法、遠心アトマイズ法等)などの液体急冷法等を例示することができるが、特に冷却速度が高いロール急冷法を用いることが望ましい。   Specific examples of the method for rapidly cooling the molten alloy include liquids such as roll quenching methods (single roll quenching method, twin roll quenching method, etc.) and atomizing methods (gas atomizing method, water atomizing method, centrifugal atomizing method, etc.). Although a quenching method etc. can be illustrated, it is desirable to use a roll quenching method with a particularly high cooling rate.

ここで、Si,Zrを含む合金溶湯を用いて、本発明の負極活物質を製造する場合には、具体的には、以下の方法によると良い。
即ち、ロール急冷法を適用する場合、急冷および回収チャンバ等のチャンバ内に出湯されて連続的(棒状)に下方に流れ落ちる合金溶湯を、周速10m/s〜100m/s程度で回転する回転ロール(材質は、Cu、Feなど、ロール表面はメッキが施されていても良い)上で冷却する。合金溶湯は、ロール表面で冷却されることにより箔化または箔片化された合金材料となる。この場合、ボールミル、ディスクミル、コーヒーミル、乳鉢粉砕等の適当な粉砕手段により合金材料を粉砕、必要に応じて分級等すれば、粉末状の負極活物質が得られる。
Here, when the negative electrode active material of the present invention is produced using a molten alloy containing Si and Zr, specifically, the following method may be used.
That is, when the roll quenching method is applied, a rotating roll that rotates at a peripheral speed of about 10 m / s to 100 m / s is molten alloy that is discharged into a chamber such as a quenching and recovery chamber and continuously flows downward (in a rod shape). (The material is Cu, Fe or the like, and the roll surface may be plated). The molten alloy becomes an alloy material formed into a foil or a piece of foil by being cooled on the roll surface. In this case, the powdered negative electrode active material can be obtained by pulverizing the alloy material by an appropriate pulverizing means such as ball mill, disk mill, coffee mill, mortar pulverization, etc.

一方、アトマイズ法を適用する場合、噴霧チャンバ内に出湯されて連続的(棒状)に下方に流れ落ちる合金溶湯に対し、N、Ar、He等によるガスを高圧(例えば、1〜10MPa)で噴き付け、溶湯を粉砕しつつ冷却する。冷却された溶湯は、半溶融のまま噴霧チャンバ内を自由落下しながら球形に近づき、粉末状の負極活物質が得られる。また、冷却効果を向上させる観点からガスに代えて高圧水を噴き付けても良い。 On the other hand, when the atomizing method is applied, a gas of N 2 , Ar, He or the like is sprayed at a high pressure (for example, 1 to 10 MPa) to the molten alloy that is discharged into the spray chamber and continuously flows downward (in a rod shape). And cool the molten metal while crushing it. The cooled molten metal approaches a sphere while freely falling in the spray chamber while being semi-molten, and a powdered negative electrode active material is obtained. Further, high pressure water may be sprayed instead of gas from the viewpoint of improving the cooling effect.

2.本電池
本電池は、本負極活物質を含む負極を用いて構成されている。
2. This battery This battery is comprised using the negative electrode containing this negative electrode active material.

負極は、導電性基材と、導電性基材の表面に積層された導電膜とを有している。導電膜は、バインダ中に少なくとも上述した本負極活物質を含有している。導電膜は、他にも、必要に応じて、導電助材を含有していても良い。導電助材を含有する場合には、電子の導電経路を確保しやすくなる。   The negative electrode has a conductive base material and a conductive film laminated on the surface of the conductive base material. The conductive film contains at least the negative electrode active material described above in the binder. In addition, the conductive film may contain a conductive additive as necessary. In the case of containing a conductive additive, it becomes easy to secure a conductive path for electrons.

また、導電膜は、必要に応じて、骨材を含有していても良い。骨材を含有する場合には、充放電時の負極の膨張・収縮を抑制しやすくなり、負極の崩壊を抑制できるため、サイクル特性を一層向上させることができる。   Moreover, the electrically conductive film may contain the aggregate as needed. When the aggregate is contained, it becomes easy to suppress the expansion / contraction of the negative electrode during charge / discharge, and the negative electrode can be prevented from collapsing, so that the cycle characteristics can be further improved.

上記導電性基材は、集電体として機能する。その材質としては、例えば、Cu、Cu合金、Ni、Ni合金、Fe、Fe基合金などを例示することができる。好ましくは、Cu、Cu合金であると良い。また、具体的な導電性基材の形態としては、箔状、板状等を例示することができる。好ましくは、電池としての体積を小さくできる、形状自由度が向上するなどの観点から、箔状であると良い。   The conductive substrate functions as a current collector. Examples of the material include Cu, Cu alloy, Ni, Ni alloy, Fe, and Fe-based alloy. Preferably, Cu or Cu alloy is preferable. Moreover, as a form of a specific electroconductive base material, foil shape, plate shape, etc. can be illustrated. A foil shape is preferable from the viewpoint of reducing the volume of the battery and improving the degree of freedom in shape.

上記バインダの材質としては、例えば、ポリフッ化ビニリデン(PVdF)樹脂、ポリテトラフルオロエチレン等のフッ素樹脂、ポリビニルアルコール樹脂、ポリイミド樹脂、ポリアミド樹脂、ポリアミドイミド樹脂、スチレンブタジエンゴム(SBR)、ポリアクリル酸などを好適に用いることができる。これらは1種または2種以上併用することができる。これらのうち、機械的強度が強く、活物質の体積膨張に対しても良く耐え得、バインダの破壊によって導電膜の集電体からの剥離を良好に防ぐ意味で、ポリイミド樹脂が特に好ましい。   Examples of the material of the binder include, for example, polyvinylidene fluoride (PVdF) resin, fluorine resin such as polytetrafluoroethylene, polyvinyl alcohol resin, polyimide resin, polyamide resin, polyamideimide resin, styrene butadiene rubber (SBR), and polyacrylic acid. Etc. can be used suitably. These can be used alone or in combination of two or more. Among these, a polyimide resin is particularly preferable because it has high mechanical strength, can withstand the volume expansion of the active material, and prevents the conductive film from being peeled off from the current collector due to the destruction of the binder.

上記導電助材としては、例えば、ケッチェンブラック、アセチレンブラック、ファーネスブラック等のカーボンブラック、黒鉛、カーボンナノチューブ、フラーレンなどを例示することができる。これらは1または2以上併用しても良い。これらのうち、好ましくは、電子伝導性を確保しやすいなどの観点から、ケッチェンブラック、アセチレンブラックなどを好適に用いることができる。   Examples of the conductive aid include carbon black such as ketjen black, acetylene black and furnace black, graphite, carbon nanotube, fullerene and the like. One or more of these may be used in combination. Of these, ketjen black, acetylene black, and the like can be preferably used from the viewpoint of easily ensuring electron conductivity.

上記導電助材の含有量は、導電性向上度、電極容量などの観点から、本負極活物質100質量部に対して、好ましくは、0〜30質量部、より好ましくは、4〜13質量部の範囲内であると良い。また、上記導電助材の平均粒子径(d50)は、分散性、扱い易さなどの観点から、好ましくは、10nm〜1μm、より好ましくは、20〜50nmであると良い。   The content of the conductive auxiliary is preferably 0 to 30 parts by mass, more preferably 4 to 13 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoints of the degree of conductivity improvement, electrode capacity, and the like. It is good to be within the range. The average particle diameter (d50) of the conductive aid is preferably 10 nm to 1 μm, more preferably 20 to 50 nm, from the viewpoints of dispersibility and ease of handling.

上記骨材としては、充放電時に膨張・収縮しない、または、膨張・収縮が非常に小さい材質のものを好適に用いることができる。例えば、黒鉛、アルミナ、カルシア、ジルコニア、活性炭などを例示することができる。これらは1または2以上併用しても良い。これらのうち、好ましくは、導電性、Li活性度などの観点から、黒鉛などを好適に用いることができる。   As the above-mentioned aggregate, a material that does not expand or contract during charging / discharging or that has a very small expansion / contraction can be suitably used. For example, graphite, alumina, calcia, zirconia, activated carbon and the like can be exemplified. One or more of these may be used in combination. Of these, graphite and the like can be preferably used from the viewpoints of conductivity, Li activity, and the like.

上記骨材の含有量は、サイクル特性向上などの観点から、本負極活物質100質量部に対して、好ましくは、10〜400質量部、より好ましくは、43〜100質量部の範囲内であると良い。また、上記骨材の平均粒子径は、骨材としての機能性、電極膜厚の制御などの観点から、好ましくは、10〜50μm、より好ましくは、20〜30μmであると良い。なお、上記骨材の平均粒子径は、レーザー回折/散乱式粒度分布測定装置を用いて測定した値である。   The content of the aggregate is preferably 10 to 400 parts by mass, more preferably 43 to 100 parts by mass with respect to 100 parts by mass of the negative electrode active material from the viewpoint of improving cycle characteristics and the like. And good. The average particle diameter of the aggregate is preferably 10 to 50 μm, more preferably 20 to 30 μm, from the viewpoints of functionality as an aggregate and control of the electrode film thickness. The average particle diameter of the aggregate is a value measured using a laser diffraction / scattering particle size distribution measuring apparatus.

本負極は、例えば、適当な溶剤に溶解したバインダ中に、本負極活物質、必要に応じて、導電助材、骨材を必要量添加してペースト化し、これを導電性基材の表面に塗工、乾燥させ、必要に応じて、圧密化や熱処理等を施すことにより製造することができる。   For example, the negative electrode is made into a paste by adding a necessary amount of the negative electrode active material, if necessary, a conductive additive and an aggregate to a binder dissolved in an appropriate solvent, and this is applied to the surface of the conductive substrate. It can be produced by coating, drying, and applying consolidation or heat treatment as necessary.

本負極を用いてリチウムイオン電池を構成する場合、本負極以外の電池の基本構成要素である正極、電解質、セパレータなどについては、特に限定されるものではない。   When a lithium ion battery is configured using this negative electrode, the positive electrode, electrolyte, separator, etc., which are basic components of the battery other than the negative electrode, are not particularly limited.

上記正極としては、具体的には、例えば、アルミニウム箔などの集電体表面に、LiCoO、LiNiO、LiFePO、LiMnOなどの正極活物質を含む層を形成したものなどを例示することができる。 Specific examples of the positive electrode include, for example, a material in which a layer containing a positive electrode active material such as LiCoO 2 , LiNiO 2 , LiFePO 4 , LiMnO 2 is formed on the surface of a current collector such as an aluminum foil. Can do.

上記電解質としては、具体的には、例えば、非水溶媒にリチウム塩を溶解した電解液などを例示することができる。その他にも、ポリマー中にリチウム塩が溶解されたもの、ポリマーに上記電解液を含浸させたポリマー固体電解質などを用いることもできる。   Specific examples of the electrolyte include an electrolytic solution in which a lithium salt is dissolved in a nonaqueous solvent. In addition, a polymer in which a lithium salt is dissolved in a polymer, a polymer solid electrolyte in which a polymer is impregnated with the electrolytic solution, and the like can be used.

上記非水溶媒としては、具体的には、例えば、エチレンカーボネート、プロピレンカーボネート、ブチレンカーボネート、ジメチルカーボネート、ジエチルカーボネート、メチルエチルカーボネートなどを例示することができる。これらは1種または2種以上含まれていても良い。   Specific examples of the non-aqueous solvent include ethylene carbonate, propylene carbonate, butylene carbonate, dimethyl carbonate, diethyl carbonate, and methyl ethyl carbonate. These may be contained alone or in combination of two or more.

上記リチウム塩としては、具体的には、例えば、LiPF、LiBF、LiClO、LiCFSO、LiAsFなどを例示することができる。これらは1種または2種以上含まれていても良い。 Specific examples of the lithium salt include LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , LiAsF 6, and the like. These may be contained alone or in combination of two or more.

また、その他の電池構成要素としては、セパレータ、缶(電池ケース)、ガスケット等が挙げられるが、これらについても、リチウムイオン電池で通常採用される物であれば、何れの物であっても適宜組み合わせて電池を構成することができる。   Other battery components include separators, cans (battery cases), gaskets, and the like. Any of these may be used as long as they are usually employed in lithium ion batteries. A battery can be formed by combining them.

なお、電池形状は、特に限定されるものではなく、筒型、角型、コイン型など何れの形状であっても良く、その具体的用途に合わせて適宜選択することができる。   The battery shape is not particularly limited, and may be any shape such as a cylindrical shape, a square shape, or a coin shape, and can be appropriately selected according to the specific application.

以下、本発明を実施例を用いてより具体的に説明する。なお、合金組成、合金混合割合の%は、特に明示する場合を除き、質量%である。   Hereinafter, the present invention will be described more specifically with reference to examples. Note that% of the alloy composition and the alloy mixing ratio is mass% unless otherwise specified.

1.負極活物質の作製
表1に示す合金組成となるように各原料を秤量した。秤量した各原料を高周波誘導炉を用いて加熱、溶解し、合金溶湯とした。
得られた各合金溶湯を、単ロール急冷法を用いて急冷し、各急冷合金リボンを得た。なお、ロール周速は42m/s、ノズル距離は3mmとした。
得られた各急冷合金リボンを、乳鉢を用いて機械的に粉砕し、粉末状の各負極活物質を作製した。
1. Production of Negative Electrode Active Material Each raw material was weighed so as to have the alloy composition shown in Table 1. Each weighed raw material was heated and melted using a high frequency induction furnace to obtain a molten alloy.
Each obtained molten alloy was quenched using a single roll quenching method to obtain each quenched alloy ribbon. The roll peripheral speed was 42 m / s and the nozzle distance was 3 mm.
Each of the rapidly cooled alloy ribbons obtained was mechanically pulverized using a mortar to prepare powdery negative electrode active materials.

2.負極活物質の組織観察等
各実施例,比較例に係る負極活物質について、上記急冷合金リボンの断面を走査型電子顕微鏡(SEM)により組織観察した。尚、観察面についてはイオンポリッシュ法を用いて研磨した。またXRD(X線回折)による分析も併せて行ない、以下に述べるSi及びSi化合物の固有のピークを確認した。
2. Structure observation of negative electrode active material, etc. Regarding the negative electrode active material according to each example and comparative example, the cross section of the quenched alloy ribbon was observed with a scanning electron microscope (SEM). The observation surface was polished using an ion polishing method. Moreover, the analysis by XRD (X-ray diffraction) was also performed, and the intrinsic peaks of Si and Si compounds described below were confirmed.

本実施例、即ちSi相からなるマトリクス相と、マトリクス相中に分散したZrシリサイド相とを備えたSi-Zr合金からなる負極活物質の代表例として、実施例3に係る負極活物質の走査型電子顕微鏡写真を図1に示した。
また、図2に比較例3(Si-Fe合金)、図3に比較例4(Si-Ti合金)、図4に比較例5(Si-Cu合金)、についての負極活物質の走査型電子顕微鏡写真を示した。
As a representative example of a negative electrode active material made of an Si—Zr alloy having a matrix phase made of Si phase and a Zr silicide phase dispersed in the matrix phase in this example, scanning of the negative electrode active material according to Example 3 A scanning electron micrograph is shown in FIG.
2 is a scanning electron of the negative electrode active material of Comparative Example 3 (Si—Fe alloy), FIG. 3 is Comparative Example 4 (Si—Ti alloy), and FIG. 4 is Comparative Example 5 (Si—Cu alloy). A photomicrograph was shown.

図2で示す比較例3に係る負極活物質では、図中黒色のSi相が樹枝状に延び、そのSi相を取り囲むように図中灰色又は灰色+白色のFeシリサイド相が晶出している。
次に、図3で示す比較例4に係る負極活物質では、図中黒色の塊状のSi相が分散し、そのSi相を取り囲むようにTiシリサイド相が晶出している。
また、図4で示す比較例5に係る負極活物質では、図中黒色の細かく分散したSi相を取り囲むようにCuシリサイド相が晶出している。
以上のように、比較例3,4,5、即ちSi-Zr合金以外のSi合金については、Si相が島状で、シリサイド相が海状となった海島構造であった。
In the negative electrode active material according to Comparative Example 3 shown in FIG. 2, the black Si phase extends in a dendritic shape in the drawing, and a gray or gray + white Fe silicide phase is crystallized so as to surround the Si phase.
Next, in the negative electrode active material according to Comparative Example 4 shown in FIG. 3, the black bulk Si phase is dispersed in the drawing, and the Ti silicide phase is crystallized so as to surround the Si phase.
Further, in the negative electrode active material according to Comparative Example 5 shown in FIG. 4, a Cu silicide phase is crystallized so as to surround the black finely dispersed Si phase in the drawing.
As described above, Comparative Examples 3, 4 and 5, that is, the Si alloys other than the Si—Zr alloy, had a sea-island structure in which the Si phase was island-like and the silicide phase was sea-like.

これに対し、図1で示す実施例3に係る負極活物質では、図中黒色のSi相からなるマトリクス相中に、図中灰色又は灰色+白色の扁平形状のZrシリサイド相が多数分散しており、上記の比較例3,4,5とは海島の関係が逆になっていることが分かる。   On the other hand, in the negative electrode active material according to Example 3 shown in FIG. 1, a large number of gray or gray + white flat Zr silicide phases are dispersed in the matrix phase composed of the black Si phase in the figure. Thus, it can be seen that the sea-island relationship is reversed from the above Comparative Examples 3, 4, and 5.

3.負極活物質の評価
3.1 充放電試験用コイン型電池の作製
初めに、分級により25μm以下に調整した各負極活物質粉末80質量部と、導電助剤としてアセチレンブラック5質量部と、結着剤としてポリアミック酸15質量部と、溶剤としてN−メチル−2−ピロリドン(NMP)とを混合し、各負極活物質を含む各ペーストを作製した。
3. 3. Evaluation of negative electrode active material 3.1 Production of coin-type battery for charge / discharge test First, 80 parts by mass of each negative electrode active material powder adjusted to 25 μm or less by classification, 5 parts by mass of acetylene black as a conductive auxiliary agent, and binding 15 parts by mass of polyamic acid as an agent and N-methyl-2-pyrrolidone (NMP) as a solvent were mixed to prepare each paste containing each negative electrode active material.

次いで、負極集電体となる銅箔(厚み18μm)表面に、ドクターブレードを用いて、50μmになるように各ペーストを塗布し、乾燥させ、各負極活物質層を形成した。   Subsequently, each paste was apply | coated to the surface of copper foil (thickness 18 micrometers) used as a negative electrode electrical power collector so that it might be set to 50 micrometers using a doctor blade, and it dried and formed each negative electrode active material layer.

次いで、各負極活物質層が形成された銅箔を、直径11mmの円板状に打ち抜き、各試験極とした。   Next, the copper foil on which each negative electrode active material layer was formed was punched into a disk shape having a diameter of 11 mm to obtain each test electrode.

次いで、Li箔(厚み500μm)を上記試験極と略同形に打ち抜き、各対極を作製した。また、エチレンカーボネート(EC)とジエチルカーボネート(DEC)との等量混合溶媒に、LiPFを1mol/lの濃度で溶解させ、非水電解液を調製した。 Next, a Li foil (thickness: 500 μm) was punched out in substantially the same shape as the above test electrode to prepare each counter electrode. In addition, LiPF 6 was dissolved at a concentration of 1 mol / l in an equal mixed solvent of ethylene carbonate (EC) and diethyl carbonate (DEC) to prepare a nonaqueous electrolytic solution.

次いで、対極としてLi箔、試験極として上述の試験負極を、ポリプロピレンおよびポリエチレンを含む多孔質のセパレータを介して配置した。   Subsequently, Li foil as a counter electrode and the above-described test negative electrode as a test electrode were arranged via a porous separator containing polypropylene and polyethylene.

次いで、各缶内に上記非水電解液を注入し、各負極缶と各正極缶とをそれぞれ加締め固定し、各コイン型電池を作製した。   Next, the non-aqueous electrolyte solution was poured into each can, and each negative electrode can and each positive electrode can were caulked and fixed to prepare each coin-type battery.

3.2 充放電試験
各コイン型電池を用い、電流値0.2mAの定電流充放電を1サイクル分実施し、この放電容量を初期放電容量Cとした。2サイクル目以降は、1/5Cレートで充放電試験を実施した(Cレート:電極を(充)放電するのに要する電気量Cを1時間で(充)放電する電流値を1Cとする。5Cならば12分で、1/5Cならば5時間で(充)放電することとなる。)。この放電時に使用した容量(mAh)を活物質量(g)で割った値を各放電容量(mAh/g)とした。
3.2 with each coin type battery charge and discharge test, a constant current charge-discharge current value 0.2mA performed one cycle, and the discharge capacity and the initial discharge capacity C 0. The second and subsequent cycles, the charge and discharge test was performed at 1 / 5C rate (C rate: the electrode (charging) the electric quantity C 0 required to discharge in 1 hour (charge) and 1C a current value for discharging (If it is 5C, it will discharge (charge) in 12 minutes, and if it is 1 / 5C, it will discharge in 5 hours.) A value obtained by dividing the capacity (mAh) used at the time of discharge by the amount of active material (g) was defined as each discharge capacity (mAh / g).

測定した上記初期放電容量Cについては、600(mAh/g)以上を「○」、600未満を「×」と評価し、その結果を表1に示している。 Regarding the measured initial discharge capacity C 0 , 600 (mAh / g) or more was evaluated as “◯”, and less than 600 was evaluated as “×”. The results are shown in Table 1.

本実施例では、上記充放電サイクルを50回行うことにより、サイクル特性の評価を行った。そして、得られた各放電容量から容量維持率(50サイクル後の放電容量/初期放電容量(1サイクル目の放電容量)×100)を求めた。容量維持率が50%以上であれば「○」、50%未満を「×」と評価し、その結果を表1に併せて示している。   In this example, the cycle characteristics were evaluated by performing the charge / discharge cycle 50 times. Then, the capacity retention ratio (discharge capacity after 50 cycles / initial discharge capacity (discharge capacity at the first cycle) × 100) was determined from each obtained discharge capacity. When the capacity retention rate is 50% or more, “◯” is evaluated, and when it is less than 50%, “×” is evaluated. The results are also shown in Table 1.

以上のようにして得られた表1の結果から次のことが分かる。
比較例1は、Si-Zr合金からなる負極活物質であるが、Si量が本発明の上限値65質量%よりも過剰である。このため初期放電容量は良好であるが、Zrシリサイド相の量が少なくなり容量維持率の評価は「×」でサイクル特性が悪い。
一方、比較例2は、逆にSi量が本発明の下限値45質量%よりも小さい。このため容量維持率は良好であるが、初期放電容量が低く、初期放電容量の評価が「×」である。
The following can be understood from the results of Table 1 obtained as described above.
Although the comparative example 1 is a negative electrode active material which consists of a Si-Zr alloy, Si amount is excess rather than the upper limit 65 mass% of this invention. For this reason, the initial discharge capacity is good, but the amount of Zr silicide phase is reduced, and the capacity retention rate is evaluated as “x” and the cycle characteristics are poor.
On the other hand, in Comparative Example 2, the Si amount is smaller than the lower limit of 45% by mass of the present invention. Therefore, the capacity retention rate is good, but the initial discharge capacity is low, and the evaluation of the initial discharge capacity is “x”.

他方、比較例3,4,5は、本発明のSi量の規定範囲を満たしており初期放電容量は良好であるが、容量維持率の評価は「×」でサイクル特性が悪い。これら比較例3,4,5は、いずれもSi相が島状、シリサイド相が海状の海島構造となっているため、Siが膨張する際に発生する応力がシリサイド相に加わり粒子が崩壊してしまいサイクル特性が悪くなったものと推定される。   On the other hand, Comparative Examples 3, 4 and 5 satisfy the specified range of the Si amount of the present invention and the initial discharge capacity is good, but the capacity retention rate is evaluated as “x” and the cycle characteristics are poor. In these comparative examples 3, 4 and 5, since the Si phase has an island-like structure and the silicide phase has a sea-like island structure, the stress generated when Si expands is applied to the silicide phase and the particles collapse. It is estimated that the cycle characteristics deteriorated.

以上のように各比較例は、初期放電容量、容量維持率の何れか一方の評価が「×」となっており、これら2つの評価項目を両立できていない。尚、上記の基準で、従来、負極活物質として広く使用されている黒鉛を評価すると、容量維持率は「○」であるが、初期放電容量は低く「×」となり、各比較例と同様に2つの評価項目を両立できていない。   As described above, in each comparative example, the evaluation of either the initial discharge capacity or the capacity maintenance rate is “x”, and these two evaluation items cannot be achieved at the same time. In addition, when the graphite that has been widely used as a negative electrode active material is evaluated based on the above criteria, the capacity retention rate is “◯”, but the initial discharge capacity is low “×”, which is the same as each comparative example. Two evaluation items are not compatible.

これに対し本発明の各実施例は、初期放電容量、容量維持率、何れの評価も「○」となっており、これら評価項目の両立が可能である。これら実施例のようにSi相が海状の場合には、Si相の大部分は最表面に位置しているため、Si相膨張時シリサイド相に加わる応力が小さくなり、粒子の崩壊が抑制されるものと推察される。また、島状に配置されたシリサイド相は膨張しないため、粒子の構造を維持する骨材の役割を果たし、粒子の崩壊を抑制しているものと推察される。   On the other hand, in each example of the present invention, the initial discharge capacity and the capacity maintenance rate are all “◯”, and these evaluation items can be compatible. When the Si phase is in a sea state as in these examples, the majority of the Si phase is located on the outermost surface, so the stress applied to the silicide phase during the Si phase expansion is reduced, and particle collapse is suppressed. Inferred. In addition, since the silicide phase arranged in an island shape does not expand, it is presumed that it plays the role of an aggregate that maintains the structure of the particles and suppresses the collapse of the particles.

以上本発明のリチウムイオン電池用負極活物質およびリチウムイオン電池について詳しく説明したが、本発明は上記実施形態,実施例に限定されるものではなく、本発明の趣旨を逸脱しない範囲内で種々の改変が可能である。   Although the negative electrode active material for a lithium ion battery and the lithium ion battery of the present invention have been described in detail above, the present invention is not limited to the above-described embodiments and examples, and various modifications can be made without departing from the spirit of the present invention. Modification is possible.

Claims (2)

2元系のSi-Zr合金からなり、
Si相からなるマトリクス相と、
該マトリクス相中に分散したZrシリサイド相と、を備え、
Si含有量が45〜65質量%であることを特徴とするリチウムイオン電池用負極活物質。
Made of binary Si-Zr alloy,
A matrix phase composed of Si phase;
A Zr silicide phase dispersed in the matrix phase,
A negative electrode active material for a lithium ion battery, wherein the Si content is 45 to 65% by mass.
請求項1に記載のリチウムイオン電池用負極活物質を含む負極を有することを特徴とするリチウムイオン電池。   It has a negative electrode containing the negative electrode active material for lithium ion batteries of Claim 1, The lithium ion battery characterized by the above-mentioned.
JP2016119288A 2016-06-15 2016-06-15 Negative electrode active material for lithium-ion batteries and lithium-ion batteries Active JP6808988B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2016119288A JP6808988B2 (en) 2016-06-15 2016-06-15 Negative electrode active material for lithium-ion batteries and lithium-ion batteries

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2016119288A JP6808988B2 (en) 2016-06-15 2016-06-15 Negative electrode active material for lithium-ion batteries and lithium-ion batteries

Publications (2)

Publication Number Publication Date
JP2017224499A true JP2017224499A (en) 2017-12-21
JP6808988B2 JP6808988B2 (en) 2021-01-06

Family

ID=60688422

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2016119288A Active JP6808988B2 (en) 2016-06-15 2016-06-15 Negative electrode active material for lithium-ion batteries and lithium-ion batteries

Country Status (1)

Country Link
JP (1) JP6808988B2 (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200096876A (en) 2019-02-06 2020-08-14 다이도 토쿠슈코 카부시키가이샤 Negative electrode active material for lithium-ion battery, negative electrode for lithium-ion battery and lithium-ion battery
JP2020145053A (en) * 2019-03-05 2020-09-10 株式会社豊田中央研究所 Negative electrode active substance material and power storage device
WO2022260110A1 (en) 2021-06-10 2022-12-15 大同特殊鋼株式会社 Lithium ion battery negative electrode active material
WO2023054289A1 (en) 2021-09-30 2023-04-06 大同特殊鋼株式会社 ELECTRODE MATERIAL FOR LITHIUM-ION BATTERY AND Si ALLOY COMPOSITE POWDER
WO2023054290A1 (en) 2021-09-30 2023-04-06 大同特殊鋼株式会社 Negative electrode material powder for lithium ion battery
KR20240016929A (en) 2022-07-29 2024-02-06 다이도 토쿠슈코 카부시키가이샤 Si ALLOY POWDER FOR NEGATIVE ELECTRODE
KR20240016928A (en) 2022-07-29 2024-02-06 다이도 토쿠슈코 카부시키가이샤 Si ALLOY POWDER FOR NEGATIVE ELECTRODE

Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253126A (en) * 2005-02-14 2006-09-21 Matsushita Electric Ind Co Ltd Anode active material for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell using same, and nonaqueous electrolyte secondary cell
JP2011249302A (en) * 2010-04-28 2011-12-08 Hitachi Chem Co Ltd Composite particle, manufacturing method of composite particle, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2014107132A (en) * 2012-11-28 2014-06-09 Furukawa Electric Co Ltd:The Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery
WO2016042728A1 (en) * 2014-09-19 2016-03-24 株式会社豊田自動織機 Msix (m is at least one element selected from group 3-9 elements, provided that 1/3≤x≤3)-containing silicon material and method for manufacturing same

Patent Citations (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006253126A (en) * 2005-02-14 2006-09-21 Matsushita Electric Ind Co Ltd Anode active material for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell using same, and nonaqueous electrolyte secondary cell
JP2011249302A (en) * 2010-04-28 2011-12-08 Hitachi Chem Co Ltd Composite particle, manufacturing method of composite particle, negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP2014107132A (en) * 2012-11-28 2014-06-09 Furukawa Electric Co Ltd:The Negative electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, lithium ion secondary battery, and method for producing negative electrode material for lithium ion secondary battery
WO2016042728A1 (en) * 2014-09-19 2016-03-24 株式会社豊田自動織機 Msix (m is at least one element selected from group 3-9 elements, provided that 1/3≤x≤3)-containing silicon material and method for manufacturing same

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20200096876A (en) 2019-02-06 2020-08-14 다이도 토쿠슈코 카부시키가이샤 Negative electrode active material for lithium-ion battery, negative electrode for lithium-ion battery and lithium-ion battery
KR102317162B1 (en) * 2019-02-06 2021-10-22 다이도 토쿠슈코 카부시키가이샤 Negative electrode active material for lithium-ion battery, negative electrode for lithium-ion battery and lithium-ion battery
US11862787B2 (en) 2019-02-06 2024-01-02 Daido Steel Co., Ltd. Negative electrode active material for lithium-ion battery, negative electrode for lithium-ion battery and lithium-ion battery
JP2020145053A (en) * 2019-03-05 2020-09-10 株式会社豊田中央研究所 Negative electrode active substance material and power storage device
JP6998335B2 (en) 2019-03-05 2022-02-10 株式会社豊田中央研究所 Negative electrode active material and power storage device
WO2022260110A1 (en) 2021-06-10 2022-12-15 大同特殊鋼株式会社 Lithium ion battery negative electrode active material
KR20240005073A (en) 2021-06-10 2024-01-11 다이도 토쿠슈코 카부시키가이샤 Negative active material for lithium ion batteries
WO2023054289A1 (en) 2021-09-30 2023-04-06 大同特殊鋼株式会社 ELECTRODE MATERIAL FOR LITHIUM-ION BATTERY AND Si ALLOY COMPOSITE POWDER
WO2023054290A1 (en) 2021-09-30 2023-04-06 大同特殊鋼株式会社 Negative electrode material powder for lithium ion battery
KR20240016929A (en) 2022-07-29 2024-02-06 다이도 토쿠슈코 카부시키가이샤 Si ALLOY POWDER FOR NEGATIVE ELECTRODE
KR20240016928A (en) 2022-07-29 2024-02-06 다이도 토쿠슈코 카부시키가이샤 Si ALLOY POWDER FOR NEGATIVE ELECTRODE

Also Published As

Publication number Publication date
JP6808988B2 (en) 2021-01-06

Similar Documents

Publication Publication Date Title
JP5884573B2 (en) Negative electrode active material for lithium ion battery and negative electrode for lithium ion battery using the same
JP5790282B2 (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery
JP6808988B2 (en) Negative electrode active material for lithium-ion batteries and lithium-ion batteries
JP7375569B2 (en) Negative active material for lithium ion batteries
JP6371504B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP2012178344A (en) Compound material and method for manufacturing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2013191529A (en) Composite material, method for manufacturing composite material, electrode material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6601937B2 (en) Negative electrode active material, negative electrode employing the same, lithium battery, and method for producing the negative electrode active material
WO2016043061A1 (en) Si-BASED ALLOY NEGATIVE ELECTRODE MATERIAL FOR ELECTRICITY STORAGE DEVICES AND ELECTRODE USING SAME
JP2012014866A (en) Negative electrode active substance for lithium secondary battery, and method of manufacturing the same
JP7337580B2 (en) Anode materials for lithium-ion batteries containing multicomponent silicides and silicon
KR102317162B1 (en) Negative electrode active material for lithium-ion battery, negative electrode for lithium-ion battery and lithium-ion battery
JP6371635B2 (en) Si-based alloy negative electrode material for power storage device and electrode using the same
JP2021150111A (en) Electrode active material layer for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP7443851B2 (en) Powder material for negative electrode of lithium ion battery and its manufacturing method
WO2015163398A1 (en) Negative electrode active substance for non-aqueous electrolyte secondary batteries
JP2015056313A (en) Negative electrode active material for secondary battery, negative electrode and secondary battery
TWI813461B (en) Negative electrode material powder for lithium-ion batteries
JP2015138625A (en) Negative electrode active material for lithium ion batteries
WO2022260110A1 (en) Lithium ion battery negative electrode active material
JP2024018915A (en) Si alloy powder for lithium ion battery negative electrode
JP2022161719A (en) Negative electrode active material particle, negative electrode, and, battery
JP2024018914A (en) Si alloy powder for lithium ion battery negative electrode
JP2015125794A (en) Composite particles and manufacturing method thereof, and negative electrode and nonaqueous electrolyte secondary battery using the same
JP2017188271A (en) Negative electrode active material for lithium ion battery, and method for manufacturing the same

Legal Events

Date Code Title Description
A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20160616

RD04 Notification of resignation of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7424

Effective date: 20170424

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20190418

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20200117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20200212

A601 Written request for extension of time

Free format text: JAPANESE INTERMEDIATE CODE: A601

Effective date: 20200403

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20200609

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20201110

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20201123

R150 Certificate of patent or registration of utility model

Ref document number: 6808988

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150