JPH1186853A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH1186853A
JPH1186853A JP9246471A JP24647197A JPH1186853A JP H1186853 A JPH1186853 A JP H1186853A JP 9246471 A JP9246471 A JP 9246471A JP 24647197 A JP24647197 A JP 24647197A JP H1186853 A JPH1186853 A JP H1186853A
Authority
JP
Japan
Prior art keywords
negative electrode
phase
intermetallic compound
secondary battery
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9246471A
Other languages
Japanese (ja)
Inventor
Junya Kaneda
潤也 金田
Seiji Takeuchi
瀞士 武内
Tadashi Muranaka
村中  廉
Hideki Shinohara
英毅 篠原
Akira Ri
燦 李
Masatoshi Inagaki
正寿 稲垣
Yasuhisa Aono
泰久 青野
Hideyo Kodama
英世 児玉
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Hitachi Ltd
Original Assignee
Hitachi Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Hitachi Ltd filed Critical Hitachi Ltd
Priority to JP9246471A priority Critical patent/JPH1186853A/en
Publication of JPH1186853A publication Critical patent/JPH1186853A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a lithium secondary battery, which has high capacity and low irreversible capacity and can perform high-speed charging/discharging and has a long charging discharging cycle service life. SOLUTION: This lithium secondary battery is composed of a negative electrode 22, composed mainly of a negative electrode active material to store/ release a lithium ion at charging/discharging time, a positive electrode 21 and a lithium ion conductive nonaqueous electrolyte or a polymer electrolyte, and the negative electrode active material is composed of particles which contain a phase of an inter-metallic compound containing 3B, 4B, 5B group elements of a periodic table and contains one or more phases of a phase, except for the inter-metallic compound composed of elements which are contained in the inter-metallic compound.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水系電解液二次
電池に係わり、特に、高電圧,高エネルギー密度,高充
放電容量,長サイクル寿命の充放電特性を有し、かつ安
全性の高いリチウム二次電池に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having charge / discharge characteristics of high voltage, high energy density, high charge / discharge capacity, long cycle life, and safety. Related to high lithium secondary batteries.

【0002】[0002]

【従来の技術】電子機器の分野では、機器を携帯使用す
る要望の高まりと共に、機器の小型軽量化が進んでい
る。このため、高エネルギー密度を有す電池、特に二次
電池の開発が要求されている。この要求を満たす二次電
池の候補としてリチウム二次電池がある。リチウム二次
電池は、ニッケルカドニウム電池,鉛蓄電池,ニッケル
水素電池に比べ、高電圧,高エネルギー密度を有し、し
かも軽量である。
2. Description of the Related Art In the field of electronic equipment, the demand for portable use of equipment has been increasing and the size and weight of the equipment have been reduced. For this reason, development of a battery having a high energy density, particularly a secondary battery, is required. A lithium secondary battery is a candidate for a secondary battery that satisfies this requirement. Lithium secondary batteries have higher voltage, higher energy density, and are lighter in weight than nickel cadmium batteries, lead storage batteries, and nickel hydrogen batteries.

【0003】しかし、負極活物質としてリチウム金属を
用いたリチウム二次電池では、充電時に負極表面にリチ
ウムがデンドライト析出し、正極との内部短絡や電解液
に対し負活性化するために、電池の寿命や安全性の点で
問題である。また、リチウム金属を使用することの危険
性を回避するために、Li−PbやLi−Al等のリチ
ウム合金を負極活物質に用いたリチウム二次電池が開発
されている。しかし、このリチウム二次電池において
も、デンドライト析出や微粉化の問題があり、十分な電
池寿命を得られていない。
However, in a lithium secondary battery using lithium metal as a negative electrode active material, lithium dendrite precipitates on the surface of the negative electrode during charging, and internal short-circuit with the positive electrode and negative activation with respect to the electrolytic solution occur. It is a problem in terms of life and safety. Further, in order to avoid the danger of using lithium metal, a lithium secondary battery using a lithium alloy such as Li-Pb or Li-Al as a negative electrode active material has been developed. However, this lithium secondary battery also has problems of dendrite precipitation and pulverization, and a sufficient battery life has not been obtained.

【0004】現在では、負極活物質に黒鉛を用いたリチ
ウム二次電池が開発され、実用化に至っている。これ
は、リチウムイオンを黒鉛のC面間に挿入,離脱させる
反応により、リチウムイオンを吸蔵,放出しており、化
学的に活性な金属リチウムに比べれば安定であり、ま
た、リチウムのデンドライト析出もない。このため、サ
イクル寿命も長くなり、安全性も向上した。
At present, lithium secondary batteries using graphite as a negative electrode active material have been developed and have been put to practical use. This is because lithium ions are inserted and desorbed from the C-plane of graphite by the reaction of inserting and removing lithium ions, and are more stable than chemically active metallic lithium. Absent. For this reason, the cycle life was extended and the safety was improved.

【0005】[0005]

【発明が解決しようとする課題】黒鉛を負極活物質に用
いた場合は、最大370mAh/gの放電容量である。
黒鉛の重量密度が2.2g/cm3であるために体積容量密
度はリチウム金属に比べ小さく、また黒鉛負極活物質を
負極集電体に塗布した負極シートではさらに体積容量密
度が小さくなる。この問題を解決するために、重量密度
の大きな金属系無機材料を負極活物質に用いたリチウム
二次電池が開発されている。例えば、特開平5−159780
号公報では、鉄硅化物、特にFeSi,FeSi2 を負
極活物質に用いることにより高い電圧,大きい充放電容
量,長いサイクル寿命を達成出来るとされている。
When graphite is used as the negative electrode active material, the discharge capacity is 370 mAh / g at the maximum.
Since the weight density of graphite is 2.2 g / cm 3 , the volume capacity density is smaller than that of lithium metal, and the volume capacity density is further reduced in a negative electrode sheet in which a graphite negative electrode active material is applied to a negative electrode current collector. In order to solve this problem, a lithium secondary battery using a metal-based inorganic material having a large weight density as a negative electrode active material has been developed. For example, JP-A-5-159780
According to the publication, it is possible to achieve a high voltage, a large charge / discharge capacity, and a long cycle life by using iron silicide, particularly FeSi or FeSi 2 as a negative electrode active material.

【0006】また、特開平8−153517号公報ではニッケ
ル硅化物を、特開平8−153537号公報では銅窒化物,亜
鉛窒化物を、特開平8−153538 公報号ではマンガン硅化
物を負極活物質として用いることにより、充放電容量が
大きく、エネルギー密度が高く、サイクル寿命の長いリ
チウム二次電池を提供できるとされている。上記負極活
物質の充放電の容量は最大でも560mAh/cm3 であ
り、黒鉛系負極に比べ数10%の容量増加である。
In Japanese Patent Application Laid-Open No. 8-153517, nickel silicide is used, in Japanese Patent Application Laid-Open No. 8-53537, copper nitride and zinc nitride are used, and in Japanese Patent Application Laid-Open No. 8-153538, manganese silicide is used as a negative electrode active material. It is said that a lithium secondary battery having a large charge / discharge capacity, a high energy density, and a long cycle life can be provided by using the lithium secondary battery. The charge / discharge capacity of the negative electrode active material is 560 mAh / cm 3 at the maximum, which is several tens of percent higher than that of the graphite negative electrode.

【0007】一方、初期の充電容量と放電容量の差であ
る不可逆容量は黒鉛材料に比べ大きく、リチウム二次電
池を構成する上で問題となる。また、充放電の速度が遅
いときはある程度の容量とサイクル寿命を示すが、充放
電速度が速くなると容量およびサイクル寿命が著しく劣
化する。これは、電池実用上好ましくなく、改善する必
要がある。これらの特性は、上記金属系負極活物質が充
放電の際に膨張収縮するために、結晶構造を安定に保つ
ことが出来ずに崩壊することにより生じていると考えら
れる。
On the other hand, the irreversible capacity, which is the difference between the initial charge capacity and the discharge capacity, is larger than that of a graphite material, and poses a problem in forming a lithium secondary battery. When the charge / discharge speed is low, a certain capacity and cycle life are exhibited. However, when the charge / discharge speed is high, the capacity and cycle life are remarkably deteriorated. This is not preferable in practical use of the battery and needs to be improved. It is considered that these characteristics are caused by the metal-based negative electrode active material expanding and contracting during charge / discharge, so that it cannot maintain a stable crystal structure and collapses.

【0008】そこで、本発明は、充放電の繰り返しによ
る負極活物質の崩壊を抑制し、高容量,低不可逆容量,
高速充放電,長寿命のリチウム二次電池用負極活物質を
提供すると共に、この負極活物質を用いることにより、
充放電容量が大きく、エネルギー密度が高く、高速充放
電が可能で、しかもサイクル寿命の長いリチウム二次電
池を提供することを目的とする。
Accordingly, the present invention suppresses the collapse of the negative electrode active material due to repetition of charge and discharge, and provides a high capacity, a low irreversible capacity,
By providing a high-speed charge / discharge, long-life negative electrode active material for lithium secondary batteries, and by using this negative electrode active material,
An object of the present invention is to provide a lithium secondary battery having a large charge / discharge capacity, a high energy density, capable of high-speed charge / discharge, and a long cycle life.

【0009】[0009]

【課題を解決するための手段】発明者らは、金属系負極
材料の充放電特性の劣化原因が、充放電の際に発生する
構造変化すなわち負極材料の崩壊、およびLi拡散の阻
害にあると考え、これらの問題を解決すべく、種々の負
極材料を作製し、その充放電試験を実施した。その結
果、優れた特性を有すリチウム二次電池用負極材料およ
びリチウム二次電池を発明するに至った。
SUMMARY OF THE INVENTION The inventors of the present invention have found that the cause of deterioration of the charge / discharge characteristics of a metal-based negative electrode material is a structural change occurring during charge / discharge, ie, collapse of the negative electrode material and inhibition of Li diffusion. In order to solve these problems, various negative electrode materials were manufactured and charge / discharge tests were performed. As a result, they have invented a negative electrode material for a lithium secondary battery and a lithium secondary battery having excellent characteristics.

【0010】発明者らによる種々の金属間化合物の充放
電試験の結果、3B,4B,5B族元素を構成元素の一
つとする金属間化合物が、リチウム二次電池用負極材料
として充放電可能な材料であった。その材料として、M
2Si ,Mg2Gg ,Mg2Pb,AlSb,Mg2
n,CoSi2,TiSi2,MoSi2,NiSi2等が挙
げられる。これらの材料のうちMg2Si について充放
電試験を実施した。Mg2Si 粉末は、分級により32
μm以下のものを選択した。この粉末をX線回折により
解析した結果、Mg2Si 単相の粉末であることが明か
となった。この粉末を用いた負極は、初期充電容量が6
50mAh/gを超える非常に大きな値を示したが、不
可逆容量も40%以上と非常に大きく、リチウム二次電
池用負極材料として用いるには好ましくない。Mg2
i とSiとが共に存在するMg2Si−Si 混相粒子
を作製し、充放電試験を実施した。その結果、充放電容
量が増加し、不可逆容量が減少した。また、充放電サイ
クル寿命も長くなった。このことから、リチウム二次電
池用負極活物質が材料組織上2相以上を含み、かつ前記
の相が全てLiを吸蔵することができる粒子であれば、
より高容量,低不可逆容量,長寿命のリチウム二次電池
を提供することができる。
As a result of charge / discharge tests of various intermetallic compounds by the inventors, an intermetallic compound containing a 3B, 4B, or 5B group element as a constituent element can be charged and discharged as a negative electrode material for a lithium secondary battery. Material. As the material, M
g 2 Si, Mg 2 Gg, Mg 2 Pb, AlSb, Mg 2 S
n, CoSi 2 , TiSi 2 , MoSi 2 , NiSi 2 and the like. A charge / discharge test was performed on Mg 2 Si among these materials. Mg 2 Si powder is classified into 32
Those having a size of μm or less were selected. Analysis of this powder by X-ray diffraction revealed that it was a single phase Mg 2 Si powder. A negative electrode using this powder has an initial charge capacity of 6
Although a very large value exceeding 50 mAh / g was shown, the irreversible capacity was also extremely large at 40% or more, which is not preferable for use as a negative electrode material for a lithium secondary battery. Mg 2 S
Mg 2 Si—Si mixed phase particles in which both i and Si were present were produced, and a charge / discharge test was performed. As a result, the charge / discharge capacity increased and the irreversible capacity decreased. In addition, the charge / discharge cycle life was prolonged. From this, if the negative electrode active material for a lithium secondary battery contains two or more phases in the material structure, and the above-mentioned phases are all particles that can occlude Li,
A higher capacity, lower irreversible capacity, and longer life lithium secondary battery can be provided.

【0011】これは、負極活物質が複数の相から構成さ
れていることで、充放電に伴う互いの構造変化を緩和し
合い、粒子の崩壊を抑制しているものと考えられる。ま
た、不可逆容量が低下することと容量が増加すること
は、複数の相が存在することによりそれらの界面がLi
拡散のバイパスとしての役割を担い、Liの拡散を助長
することに起因していると考えられる。
[0011] This is considered to be because the negative electrode active material is composed of a plurality of phases, thereby alleviating the mutual structural change due to charging and discharging, and suppressing the collapse of particles. In addition, the decrease in irreversible capacity and the increase in capacity are due to the presence of a plurality of phases, the interface of which is Li
It is considered that this plays a role as a diffusion bypass and promotes the diffusion of Li.

【0012】3B,4B,5B族元素を含む金属間化合
物を負極活物質とするリチウム二次電池は高容量が期待
される。上記の試験結果より、リチウム二次電池用負極
活物質は、2相以上を含む粒子で構成されることで長寿
命化できる。しかし、前記金属間化合物を構成する以外
の元素を含む混相粒子では、電気化学的反応により充放
電試験の際に電解液中に元素が溶解する恐れがあるの
で、混相粒子は前記金属間化合物に含まれる元素で構成
されていることが好ましい。したがって、負極活物質が
周期率表の3B,4B,5B族元素を含む金属間化合物
の相を含み、かつ前記金属間化合物に含まれる元素で構
成される前記金属間化合物以外の相を1相以上含む粒子
で構成されていることにより、優れた充放電特性を有す
リチウム二次電池を提供することができる。
A lithium secondary battery using an intermetallic compound containing a 3B, 4B, or 5B element as a negative electrode active material is expected to have a high capacity. According to the above test results, the life of the negative electrode active material for a lithium secondary battery can be extended by being composed of particles containing two or more phases. However, in the case of mixed-phase particles containing elements other than the constituents of the intermetallic compound, the elements may be dissolved in the electrolytic solution during a charge / discharge test due to an electrochemical reaction. It is preferable to be composed of the contained elements. Therefore, the negative electrode active material includes a phase of an intermetallic compound containing a 3B, 4B, or 5B group element of the periodic table, and a phase other than the intermetallic compound constituted by an element included in the intermetallic compound is one phase. The lithium secondary battery having excellent charge / discharge characteristics can be provided by being constituted by the particles including the above.

【0013】3B,4B,5B族元素を含む金属間化合
物のうち、特にAl,Ga,In,Si,Ge,Sn,
Pb,Sb,Biのうち少なくとも1種類以上を含む金
属間化合物は高充放電容量を期待できる。そこで、負極
活物質がAl,Ga,In,Si,Ge,Sn,Pb,
Sb,Biのうち少なくとも1種類以上を含む金属間化
合物の相を含み、かつ前記金属間化合物に含まれる元素
で構成される前記金属間化合物以外の相を1相以上含む
粒子で構成されているリチウム二次電池は、優れた充放
電特性を示す。
Among the intermetallic compounds containing group 3B, 4B and 5B elements, in particular, Al, Ga, In, Si, Ge, Sn,
An intermetallic compound containing at least one of Pb, Sb and Bi can be expected to have a high charge / discharge capacity. Therefore, the negative electrode active material is made of Al, Ga, In, Si, Ge, Sn, Pb,
It is composed of particles containing a phase of an intermetallic compound containing at least one of Sb and Bi, and containing one or more phases other than the intermetallic compound composed of elements contained in the intermetallic compound. Lithium secondary batteries exhibit excellent charge / discharge characteristics.

【0014】高充電容量,低不可逆容量,長寿命のリチ
ウム二次電池を得るための負極活物質は、材料組織上2
相以上より成る粒子で構成されていなければならず、特
に、相の界面が存在することが重要であることは既に言
及した。そこで、種々の負極活物質粉末の断面を観察
し、単位面積当りの界面長さの平均値を求めた。界面長
さが長い程充放電特性が良好である。このことから、優
れた充放電特性を有すリチウム二次電池を得るために
は、界面長さが長いほうが好ましく、特に5×106m/
2 以上であることがより好ましい。また、試験結果よ
り、単位面積当りの界面長さが長い程、充放電速度が異
なる場合でも安定した充放電特性を得ることが出来、高
速充放電に有利であることが明かとなった。
The negative electrode active material for obtaining a lithium secondary battery having a high charge capacity, a low irreversible capacity, and a long life depends on the material structure.
It has already been mentioned that it must be composed of particles consisting of more than one phase, and in particular it is important that a phase interface exists. Therefore, cross sections of various negative electrode active material powders were observed, and the average value of the interface length per unit area was determined. The longer the interface length, the better the charge / discharge characteristics. For this reason, in order to obtain a lithium secondary battery having excellent charge / discharge characteristics, it is preferable that the interface length is long, and in particular, 5 × 10 6 m /
It is more preferably at least m 2 . Further, the test results revealed that the longer the interface length per unit area, the more stable the charge / discharge characteristics can be obtained even when the charge / discharge speed is different, which is advantageous for high-speed charge / discharge.

【0015】このことから、負極活物質は、Al,G
a,In,Si,Ge,Sn,Pb,Sb,Biのうち
少なくとも1種類以上を含む金属間化合物の相を含み、
かつ前記金属間化合物に含まれる元素で構成される前記
金属間化合物以外の相を1相以上含む粒子で構成され、
前記粒子の断面組織の上で隣接する複数の金属間化合物
相の界面長さが5×106m/m2以上であることが必要
である。
[0015] From this, the negative electrode active material is Al, G
a, In, Si, Ge, Sn, Pb, Sb, Bi, including a phase of an intermetallic compound containing at least one or more of Bi,
And it is composed of particles containing at least one phase other than the intermetallic compound composed of elements contained in the intermetallic compound,
It is necessary that the interface length between a plurality of intermetallic compound phases adjacent to each other on the sectional structure of the particles is 5 × 10 6 m / m 2 or more.

【0016】金属粉末の作製方法はいくつかあるが、相
界面長さを長くする、すなわち組織を微細化するために
は、急冷処理工程が含まれる作製方法が好ましい。この
方法として、例えばガスアトマイズ法がある。この方法
で作製した粉末は、2元系の場合、状態図上で隣接する
金属間化合物あるいは金属の相が2ないし4相観察され
る。本発明の負極活物質は、Al,Ga,In,Si,
Ge,Sn,Pb,Sb,Biのうち少なくとも1種類
以上を含む金属間化合物の相を含み、かつ前記金属間化
合物に含まれる元素で構成されて、状態図上で前記金属
間化合物と隣り合う金属間化合物あるいは金属の相を1
相以上含む粒子で構成されている。
Although there are several methods for producing metal powder, a production method including a quenching step is preferred in order to increase the length of the phase interface, that is, to refine the structure. As this method, for example, there is a gas atomizing method. When the powder produced by this method is a binary system, two to four phases of adjacent intermetallic compounds or metals are observed on the phase diagram. The negative electrode active material of the present invention includes Al, Ga, In, Si,
It contains a phase of an intermetallic compound containing at least one of Ge, Sn, Pb, Sb, and Bi and is composed of an element contained in the intermetallic compound, and is adjacent to the intermetallic compound on a phase diagram. 1 phase of intermetallic compound or metal
It is composed of particles containing more than one phase.

【0017】本発明における負極活物質は、その材料組
織の上では、Al,Ga,In,Si,Ge,Sn,P
b,Sb,Biのうち少なくとも1種類以上を含む金属
間化合物の相を含み、かつ前記金属間化合物に含まれる
元素で構成されて、状態図上で前記金属間化合物と隣り
合う金属間化合物あるいは金属の相を1相以上含む粒子
で構成され、前記粒子の断面組織の上で隣接する複数の
相の界面長さが5×106m/m2以上であることが最も
好ましい。
The negative electrode active material according to the present invention is composed of Al, Ga, In, Si, Ge, Sn, P
an intermetallic compound containing at least one of b, Sb, Bi and a phase of an intermetallic compound and being composed of an element contained in the intermetallic compound and adjacent to the intermetallic compound on a phase diagram; or Most preferably, it is composed of particles containing at least one metal phase, and the interface length of a plurality of adjacent phases on the sectional structure of the particles is 5 × 10 6 m / m 2 or more.

【0018】本発明の負極活物質は、その粒径が100
μm以下であることが好ましい。特に、リチウム二次電
池用負極シートを作製するときの塗布性や、充放電特性
から40μm以下であることが好ましい。
The negative electrode active material of the present invention has a particle diameter of 100.
It is preferably not more than μm. In particular, the thickness is preferably 40 μm or less from the viewpoint of applicability and charge / discharge characteristics when producing a negative electrode sheet for a lithium secondary battery.

【0019】本発明の負極活物質を用いて負極シートを
作製するとき、粒子自体の導電性が良いので導電材を用
いる必要はないが、充放電に伴う導電性低下を補うため
に導電材を混合して負極を形成することもできる。この
ときの導電材は、炭素粉末でも金属粉末を用いても導電
性が良好で電解液との反応性が弱いものであれば特に問
題はない。
When a negative electrode sheet is prepared using the negative electrode active material of the present invention, it is not necessary to use a conductive material because the particles themselves have good conductivity. However, the conductive material is used to compensate for a decrease in conductivity due to charge and discharge. Mixing can also form a negative electrode. The conductive material used at this time does not have any problem as long as the conductive material has good conductivity and low reactivity with the electrolytic solution regardless of whether carbon powder or metal powder is used.

【0020】また、負極を作製するときには結着剤を用
いる。結着剤としては、例えばEPDM,PVEF,ポリテ
トラフルオロエチレン等電解液と反応しないものであれ
ば特に限定されない。結着剤の配合量は、上記負極活物
質と導電材の合計重量に対して、1〜30wt.% 、特
に4〜15%が好ましい。前記合剤を用いた負極形状と
しては、シート状,フィルム状の金属箔上に塗布、ある
いは発泡金属に充填などして電池形状に対応した負極と
することが可能である。
When a negative electrode is produced, a binder is used. The binder is not particularly limited as long as it does not react with an electrolyte such as EPDM, PVEF, polytetrafluoroethylene, or the like. The compounding amount of the binder is preferably 1 to 30 wt.%, Particularly preferably 4 to 15%, based on the total weight of the negative electrode active material and the conductive material. The shape of the negative electrode using the mixture can be applied to a sheet-like or film-like metal foil, or filled in a foamed metal to form a negative electrode corresponding to the battery shape.

【0021】このようにして得られた負極は、通常用い
られる正極,セパレータおよび電解液と組合せることに
より最適なリチウム二次電池とすることができる。正極
に用いる活物質としては、LiCoO2,LiNiO2
LiMnO4 等のリチウムを含有した複合酸化物が用い
ることができ、これに導電材および粘結剤を混合したも
のをAl箔等の集電体に塗布して正極とする。セパレー
タとしては、ポリプロピレン,ポリエチレンやポリオレ
フィン系の多孔質膜が用いられている。また電解液とし
ては、プロピレンカーボネイト(PC),エチレンカー
ボネイト(EC)、1,2−ジメトキシエタン(DM
E),ジメチルカーボネイト(DMC),メチルエチル
カーボネイト(MEC)等の2種類以上の混合溶媒が用
いられる。また、電解質としては、LiPF6,LiB
4,LiClO4 等があり、上記溶媒に溶解したもの
が用いられる。
The thus obtained negative electrode can be combined with a generally used positive electrode, a separator and an electrolyte to make an optimal lithium secondary battery. As the active material used for the positive electrode, LiCoO 2 , LiNiO 2 ,
A composite oxide containing lithium, such as LiMnO 4, can be used, and a mixture of a conductive material and a binder is applied to a current collector such as an Al foil to form a positive electrode. As the separator, a porous film of polypropylene, polyethylene or polyolefin is used. Examples of the electrolyte include propylene carbonate (PC), ethylene carbonate (EC), and 1,2-dimethoxyethane (DM
E), two or more kinds of mixed solvents such as dimethyl carbonate (DMC) and methyl ethyl carbonate (MEC) are used. As the electrolyte, LiPF 6 , LiB
There are F 4 , LiClO 4 and the like, and those dissolved in the above solvents are used.

【0022】リチウム二次電池用負極材料に、本発明の
複数相の混相粒子より成る粉末を負極活物質として用い
ることにより、高充放電容量,低不可逆容量,長寿命
で、かつ高速充電が可能なリチウム二次電池を提供する
ことができる。
By using the powder comprising the multi-phase mixed phase particles of the present invention as a negative electrode active material for a negative electrode material for a lithium secondary battery, high charge / discharge capacity, low irreversible capacity, long life, and high speed charging are possible. It is possible to provide a simple lithium secondary battery.

【0023】[0023]

【発明の実施の形態】BEST MODE FOR CARRYING OUT THE INVENTION

(実施例1)粒状のMgおよびSiを混合,溶解してM
g−Si合金を作製した。ここでは、Mgを16.5
g,Siを9.2gを混合し、溶解した。溶解は、浮遊
型高周波溶解装置を用い、1×10-7mbar以上の真空度
にした後、高純度アルゴンガスを導入し、1.5気圧で
実施した。この時の溶解時間は5minとした。得られた
Mg−Siインゴットを粉砕し、ふるいにより分級し、
粒径が32μm以下の粒子を選別した。これをX線回折
法により構造解析を行った結果、Mg2Si 結晶に対応
する回折ピークが得られ、上記粉末はMg2Si 粉末で
あることが明らかとなった。
(Example 1) Mixing and dissolving granular Mg and Si
A g-Si alloy was produced. Here, Mg is 16.5.
g, Si and 9.2 g were mixed and dissolved. The dissolution was carried out at 1.5 atm by introducing a high-purity argon gas after setting the degree of vacuum to 1 × 10 −7 mbar or more using a floating type high-frequency dissolution apparatus. The dissolution time at this time was 5 minutes. The obtained Mg-Si ingot is pulverized and classified by a sieve,
Particles having a particle size of 32 μm or less were selected. As a result of a structural analysis of this by an X-ray diffraction method, a diffraction peak corresponding to the Mg 2 Si crystal was obtained, and it became clear that the powder was Mg 2 Si powder.

【0024】上記粉末は、黒鉛,非晶質炭素およびPV
DFのN−メチルピロリドン溶液と混錬し、Cu箔に塗
布した。合剤中の各成分の重量比は、Mg2Si 粉末:
TJSP:AB:PVDF=80:8:4:8である。ま
た、Cu箔の厚さは20μmである。塗布後、80℃で
数時間乾燥させ、0.5ton/cm2 の圧力でプレスした
後、さらに120℃で3時間、真空乾燥した。
The above-mentioned powder is made of graphite, amorphous carbon and PV.
It was kneaded with a solution of DF in N-methylpyrrolidone and applied to a Cu foil. The weight ratio of each component in the mixture was Mg 2 Si powder:
TJSP: AB: PVDF = 80: 8: 4: 8. The thickness of the Cu foil is 20 μm. After coating, the coating was dried at 80 ° C. for several hours, pressed at a pressure of 0.5 ton / cm 2 , and further dried under vacuum at 120 ° C. for 3 hours.

【0025】このような操作により負極シートを作製し
た。この負極シートを、対極および参照極をLi金属と
して単極評価を実施した。このとき、電解液はLiPF
6 を1mol/l含むEC:DMC=1:2の溶液を用い
た。また、充放電電流は0.2mA/cm2となるように調
整し、参照極に対する負極の電位が0.01〜1Vの範
囲で充放電試験を行った。粉砕から充放電試験までの工
程は、すべてアルゴン雰囲気に制御されたグローブボッ
クス内で実施した。
A negative electrode sheet was produced by the above operation. This negative electrode sheet was subjected to unipolar evaluation using the counter electrode and the reference electrode as Li metal. At this time, the electrolyte is LiPF
EC: DMC = 1: 2 containing 1 mol / l of 6 was used. The charge / discharge current was adjusted to be 0.2 mA / cm 2, and the charge / discharge test was performed with the potential of the negative electrode with respect to the reference electrode in the range of 0.01 to 1 V. All processes from the pulverization to the charge / discharge test were performed in a glove box controlled in an argon atmosphere.

【0026】また、Mgを14.6g、Siを11.4g
を混合し、上記と同様の方法で溶解,粉砕し、粉末を作
製した。X線回折より、この粉末はMg2Si とSiか
ら構成されていることが明らかとなった。この粉末も上
記と同様の工程で、負極シートを作製し、充放電試験に
供した。
Also, 14.6 g of Mg and 11.4 g of Si
Were mixed and dissolved and pulverized in the same manner as above to prepare a powder. X-ray diffraction revealed that this powder was composed of Mg 2 Si and Si. This powder was also subjected to the same steps as above to produce a negative electrode sheet, which was subjected to a charge / discharge test.

【0027】充放電試験結果を図1に示す。Mg2Si
粉末は初期充電容量が650mAh/gを超える非常に
大きい充電容量を示したが、初期放電容量は400mA
h/g程度であり、不可逆容量は約40%と大きかっ
た。これに対し、Mg2Si −Si混相粉末は、初期充
電容量はほぼ同じ値であったが、初期放電容量が550
mAh/gを超え、その不可逆容量は約15%であっ
た。Si相も充放電に寄与していると考えられることか
ら、上記のMg2Si 粉末と平均粒径5μmのSi粉末
を、その重量比がMg2Si:Si=9:1 と成るよう
に混合した粉末を上記と同様な方法で負極シートを作製
し、充放電試験を実施した。
FIG. 1 shows the results of the charge / discharge test. Mg 2 Si
The powder showed a very large charge capacity with an initial charge capacity of more than 650 mAh / g, but an initial discharge capacity of 400 mAh / g.
h / g, and the irreversible capacity was as large as about 40%. On the other hand, the initial charge capacity of the Mg 2 Si—Si mixed phase powder was almost the same, but the initial discharge capacity was 550.
It exceeded mAh / g and its irreversible capacity was about 15%. Since the Si phase is also considered to contribute to charge and discharge, the above Mg 2 Si powder and Si powder having an average particle size of 5 μm were mixed so that the weight ratio was Mg 2 Si: Si = 9: 1. A negative electrode sheet was prepared from the powder thus obtained in the same manner as described above, and a charge / discharge test was performed.

【0028】その結果も図1に示している。Siを加え
ることにより初期充電容量は増加しているが、初期放電
容量は減少しており、Mg2Si 単独の粉末に比べ充放
電特性が劣化している。このことより、Mg2Si とS
iとの混相を有す粉末が最も充放電特性が良好である。
図1には、負極活物質としてTJSPのみを用いて負極
シートを作製したときの充放電特性も示してある。Mg
2Si −Si混相負極は、TJSP負極と比較してサイ
クル特性は僅かに劣るが、放電容量が非常に大きかっ
た。
The results are also shown in FIG. Although the initial charge capacity is increased by adding Si, the initial discharge capacity is decreased, and the charge / discharge characteristics are deteriorated as compared with the powder of Mg 2 Si alone. From this, Mg 2 Si and S
A powder having a mixed phase with i has the best charge / discharge characteristics.
FIG. 1 also shows charge / discharge characteristics when a negative electrode sheet was prepared using only TJSP as the negative electrode active material. Mg
The 2 Si—Si mixed-phase negative electrode had slightly lower cycle characteristics than the TJSP negative electrode, but had a very large discharge capacity.

【0029】一方、Mgを18.4g、Siを8.9gを
混合し、溶解した。このインゴットも粉砕してX線回折
法により構造解析した。その結果、Mg2Si とMgに
対応する回折ピークが観察された。この粉末を樹脂に埋
め、アルゴン雰囲気に制御したグローブボックス内で研
磨した後、走査型電子顕微鏡(SEM)でその断面を観
察し、MgとSiの元素分布を分析した。その結果、多
少Mg単相の粒子が観察されたが、大部分はMg2Si
あるいはMg2Si−Mg混相粉末であった。このMg2
Si −Mg混相粉末を用いて上記と同様な方法で負極
シートを作製し、充放電試験を実施した。この結果も図
1に示している。Mg2Si −Mg混相負極は、Mg2
Si −Si混相負極に比べ容量は低下するものの、充
放電サイクル特性は良好で、サイクル劣化は非常に小さ
い。
On the other hand, 18.4 g of Mg and 8.9 g of Si were mixed and dissolved. This ingot was also ground and its structure was analyzed by an X-ray diffraction method. As a result, diffraction peaks corresponding to Mg 2 Si and Mg were observed. This powder was buried in a resin, polished in a glove box controlled in an argon atmosphere, and then its cross section was observed with a scanning electron microscope (SEM) to analyze the element distribution of Mg and Si. As a result, Mg single-phase particles were observed to some extent, but most of them were Mg 2 Si
Alternatively, it was a Mg 2 Si—Mg mixed phase powder. This Mg 2
A negative electrode sheet was prepared using the Si-Mg mixed phase powder in the same manner as described above, and a charge / discharge test was performed. This result is also shown in FIG. Mg 2 Si -Mg multiphase anode, Mg 2
Although the capacity is lower than that of the Si—Si mixed phase negative electrode, the charge / discharge cycle characteristics are good and the cycle deterioration is very small.

【0030】(実施例2)次に、Niを58.7g、S
iを29.2gを実施例1で用いた浮遊型高周波溶解装
置を用いてNi−Si合金を作製した。得られたNi−
Siインゴットを粉砕し、ふるいにより分級し、粒径が
32μm以下の粒子を選別した。これをX線回折法によ
り構造解析を行った結果、NiSi2 およびSiに対応
する回折ピークが得られた。また、NiSiに対応する
回折ピークも微弱に検出された。この粉末の断面組織を
SEMで観察し、元素分布を分析した結果、上記粉末は
SiとNiSi2がそれぞれ単相の粒子が多少含まれて
いて、主にはNiSi2−Si混相粒子であることが明
らかとなった。SEM観察ではNiSi相は観察されな
かった。この粉末をNiSi2−Si混相と呼ぶ。
(Example 2) Next, 58.7 g of Ni and S
A Ni-Si alloy was produced using a floating-type high-frequency melting apparatus using 29.2 g of i in Example 1. The obtained Ni-
The Si ingot was pulverized and classified by a sieve, and particles having a particle size of 32 μm or less were selected. The structure was analyzed by X-ray diffraction. As a result, diffraction peaks corresponding to NiSi 2 and Si were obtained. Further, a diffraction peak corresponding to NiSi was also weakly detected. As a result of observing the cross-sectional structure of this powder with a SEM and analyzing the element distribution, the powder contains a small amount of single-phase particles of Si and NiSi 2 , respectively, and is mainly NiSi 2 -Si mixed phase particles. Became clear. No NiSi phase was observed by SEM observation. This powder is called a NiSi 2 —Si mixed phase.

【0031】上記と同じ配合組成で溶製したNi−Si
合金インゴットから、アルゴン雰囲気のガスアトマイズ
法により粉末を作製した。この粉末も粒径32μmの粒
子を選別し、X線回折法およびSEM観察により組織を
同定した。その結果、ほとんどがNiSi2単相の粉末
で、わずかにSi単相およびNiSi2−Si混相粉末
が含まれていた。この粉末をNiSi2と呼ぶ。
Ni-Si melted with the same composition as above
Powder was produced from the alloy ingot by a gas atomization method in an argon atmosphere. In this powder, particles having a particle size of 32 μm were selected, and the structure was identified by X-ray diffraction and SEM observation. As a result, most of the powder was a NiSi 2 single phase powder, and contained a slight amount of a Si single phase and a NiSi 2 —Si mixed phase powder. We call this powder and NiSi 2.

【0032】Niを57.5g、Siを42.5gを上記
と同じ方法で溶解し、Ni−Siインゴットを作製し
た。これを粉砕,分級した粉末は、X線回折およびSE
M観察の結果、NiSi2 とNiSiの混相粉末である
ことが明らかとなった。また、このインゴットから上記
のガスアトマイズ法により作製した粉末は、NiSi2
とNiSiの混相粉末であるが、上記の粉末に比べそれ
ぞれの結晶粒径が小さく、微細組織の混相となってい
た。ここでは、前者のNiSi2 −NiSi混相粉末を
NiSi2−NiSi混相1、後者の微細組織のNiS
2−NiSi混相粉末をNiSi2−NiSi混相2と
呼ぶことにする。
57.5 g of Ni and 42.5 g of Si were dissolved in the same manner as described above to produce a Ni-Si ingot. The pulverized and classified powder is subjected to X-ray diffraction and SE
As a result of M observation, it was revealed that the powder was a mixed phase powder of NiSi 2 and NiSi. The powder produced from the ingot by the gas atomization method described above was NiSi 2
And NiSi mixed phase powders, each of which had a smaller crystal grain size than the above powders, and had a microstructure. Here, the former NiSi 2 —NiSi mixed phase powder was converted to NiSi 2 —NiSi mixed phase 1 and the latter NiS 2
The i 2 -NiSi multiphase powder is referred to as NiSi 2 -NiSi multiphase 2.

【0033】上記のNiSi2−Si混相、NiS
2 ,NiSi2−NiSi混相1、NiSi2−NiSi
混相2およびNiSi2とSi粉末を混合しただけのNi
Si2−Si混合粉を用い、実施例1と同一の配合比、
条件で負極シートを作製し、充放電試験を実施した。そ
の結果を図2に示す。これより、NiSi2 −Si混合
粉は初期容量が非常に大きいがサイクル劣化が著しく、
負極材料として用いることは不適である。これ以外の4
つの材料は、これに比べるとサイクル特性は良好であっ
た。この中でもNiSi2 −NiSi混相2は、容量,
サイクル特性ともに良い特性を示した。
The above NiSi 2 —Si mixed phase, NiS
i 2 , NiSi 2 —NiSi mixed phase 1, NiSi 2 —NiSi
Mixed phase 2 and Ni just mixed with NiSi 2 and Si powder
Using a Si 2 -Si mixed powder, the same compounding ratio as in Example 1,
A negative electrode sheet was prepared under the conditions, and a charge / discharge test was performed. The result is shown in FIG. From this, the NiSi 2 —Si mixed powder has a very large initial capacity, but the cycle deterioration is remarkable,
It is not suitable for use as a negative electrode material. Other 4
The two materials had better cycle characteristics. Among them, NiSi 2 —NiSi mixed phase 2 has a capacity,
Both cycle characteristics showed good characteristics.

【0034】このことから、リチウム二次電池用負極材
料は、粒子内部が混相になっている粉末が良好な特性を
示し、さらにはそれぞれの相が微細であるほうが充放電
特性上好ましいことは明らかである。NiSi2 −Ni
Si混相1も良好な充放電特性を示した。この材料の断
面組織写真から、任意に引いた直線と相界面とが交差す
る点数を測定し、単位面積当りの界面長さを求めた。そ
の結果、平均の界面長さは、6.7×106m/m2 であ
った。このことから、界面長さが少なくとも5×106
m/m2以上であれば、充放電特性が良好である。
From the above, it is clear that, in the negative electrode material for a lithium secondary battery, powder having mixed phases inside the particles shows good characteristics, and it is more preferable that each phase is finer in terms of charge and discharge characteristics. It is. NiSi 2 -Ni
Si mixed phase 1 also showed good charge / discharge characteristics. From the photograph of the cross-sectional structure of this material, the number of points at which the arbitrarily drawn straight line intersected the phase interface was measured, and the interface length per unit area was determined. As a result, the average interface length was 6.7 × 10 6 m / m 2 . From this, the interface length is at least 5 × 10 6
If it is at least m / m 2 , the charge / discharge characteristics will be good.

【0035】(実施例3)実施例1の溶解装置を用い
て、重量比がMg:Ge=16:84,Mg:Sn=5
0:50,Mg:Pb=37:63となるように配合し
た材料をそれぞれ溶解し、Mg−Ge,Mg−Sn,M
g−Pbの合金インゴットを作製した。これらを粉砕,
分級して得た粉末は、X線回折,SEM観察の結果、そ
れぞれMg2Ge−Ge混相,Mg2Sn−Mg混相,Mg2
Pb−Mg混相であることがわかった。これらには多少
の単相粒子も含まれていたが、そのほとんどは上記の混
相粒子であった。これらの材料を用いて、実施例1と同
様な方法で作製した負極シートを同様な条件で充放電試
験した。その結果を、TJSP負極の場合と比較して図
3に示す。いずれの混相材料ともTJSPに比べ容量が
大きく、サイクル特性は同程度であった。
Example 3 Using the melting apparatus of Example 1, the weight ratio was Mg: Ge = 16: 84, Mg: Sn = 5.
0:50, Mg: Pb = 37: 63, respectively, dissolving the blended materials to obtain Mg-Ge, Mg-Sn, M
A g-Pb alloy ingot was produced. Crush these,
As a result of X-ray diffraction and SEM observation, the powder obtained by classification was determined to be a Mg 2 Ge—Ge mixed phase, a Mg 2 Sn—Mg mixed phase, and a Mg 2
It turned out that it was a Pb-Mg mixed phase. These also contained some single-phase particles, most of which were mixed phase particles as described above. Using these materials, a negative electrode sheet produced in the same manner as in Example 1 was subjected to a charge / discharge test under the same conditions. The result is shown in FIG. 3 in comparison with the case of the TJSP negative electrode. Each of the mixed phase materials had a larger capacity than TJSP, and the cycle characteristics were almost the same.

【0036】(実施例4)実施例2で作製したNiSi
2,NiSi2−NiSi混相1,NiSi2 −NiSi
混相2を、充放電電流を1.0mA/cm2とし、その他の
試験条件は実施例2と同一にして、充放電試験を実施し
た。その結果を、図4に示す。NiSi2 −NiSi混相2
は充放電速度に依存せずほぼ同じ充放電特性を示した
が、NiSi2とNiSi2 −NiSi混相1は充放電速度
が速くなると、サイクル劣化が観察された。微細な混相
組織を有する負極材料は、充放電速度が異なる場合でも
安定した充放電特性を示た。
Example 4 NiSi fabricated in Example 2
2, NiSi 2 -NiSi multiphase 1, NiSi 2 -NiSi
A charge / discharge test was performed on the mixed phase 2 with a charge / discharge current of 1.0 mA / cm 2 and the other test conditions were the same as in Example 2. The result is shown in FIG. NiSi 2 -NiSi mixed phase 2
Showed almost the same charge / discharge characteristics without depending on the charge / discharge rate, but with NiSi 2 and NiSi 2 —NiSi mixed phase 1, when the charge / discharge rate was increased, cycle deterioration was observed. The negative electrode material having a fine mixed phase structure exhibited stable charge / discharge characteristics even at different charge / discharge rates.

【0037】(実施例5)厚さ20μmのAl箔にLi
CoO2 活物質と人造黒鉛とPVDFを重量比で87:
9:4とした合剤を片面90μmとなるように両面に塗
布し、乾燥,圧延した正極21と、厚さ20μmのCu
箔に実施例2で作製したNiSi2 −NiSi混相2の粉末
と人造黒鉛とPVDFを重量比で86:8:6とした合
剤を片面50μmとなるように両面塗布し、乾燥,圧延
した負極22、および厚さ25μmのポリエチレン製多
孔質のセパレータ23を、図5に示すように捲回して外
寸法18φ×65mmの電池缶に収納し、電解液として1M
LiPF6−EC/DMC を用いて、その特性を評価した。
Example 5 A 20 μm thick Al foil was coated with Li
CoO 2 active material, artificial graphite and PVDF in a weight ratio of 87:
A 9: 4 mixture was applied to both sides so as to have a thickness of 90 μm on one side, dried and rolled, and a 20 μm thick Cu
A negative electrode prepared by applying a mixture of NiSi 2 -NiSi mixed phase 2 powder prepared in Example 2 and artificial graphite and PVDF at a weight ratio of 86: 8: 6 on both sides to a thickness of 50 μm on one side, and then drying and rolling the foil. 22, and a polyethylene porous separator 23 having a thickness of 25 μm were wound as shown in FIG. 5 and housed in a battery can having an outer size of 18 × 65 mm, and 1 M was used as an electrolyte.
The characteristics were evaluated using LiPF 6 -EC / DMC.

【0038】試験条件は、充放電速度0.5C,充電終
止電圧4.2V,放電終止電圧2.5Vとした。その結
果、400Wh/lのエネルギー密度が得られ、100
サイクルまで安定した性能を示した。
The test conditions were a charge / discharge rate of 0.5 C, a charge end voltage of 4.2 V, and a discharge end voltage of 2.5 V. As a result, an energy density of 400 Wh / l was obtained,
The performance was stable up to the cycle.

【0039】[0039]

【発明の効果】本発明は、3B,4B,5B族元素を構
成元素の一つとする金属間化合物相と、この金属間化合
物に含まれる元素で構成される上記金属間化合物以外の
相を1相以上含む多相粉末を、リチウム二次電池用負極
活物質として用いることにより、充放電に伴う互いの構
造変化を緩和し合い、粒子の崩壊を抑制し、また、相界
面がLi拡散のバイパスとしての役割を担い、Liの拡
散を助長するために、充放電容量が大きく、不可逆容量
が小さく、充放電サイクル寿命が長く、レート特性が良
好なリチウム二次電池を提供することができる。
According to the present invention, an intermetallic compound phase containing a group 3B, 4B, or 5B element as one of the constituent elements, and a phase other than the intermetallic compound constituted by the elements contained in the intermetallic compound are used. By using a multi-phase powder containing more than one phase as a negative electrode active material for a lithium secondary battery, mutual structural changes due to charge and discharge are alleviated, particle collapse is suppressed, and the phase interface is a Li diffusion bypass. In order to promote the diffusion of Li, a lithium secondary battery having a large charge / discharge capacity, a small irreversible capacity, a long charge / discharge cycle life, and excellent rate characteristics can be provided.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明のMg2Si 系負極材料とTJSPの充
放電サイクル特性。
FIG. 1 shows charge / discharge cycle characteristics of an Mg 2 Si-based negative electrode material of the present invention and TJSP.

【図2】NiSi2 系負極材料の充放電サイクル特性。FIG. 2 shows charge / discharge cycle characteristics of a NiSi 2 -based negative electrode material.

【図3】Mg含有金属間化合物の充放電サイクル特性。FIG. 3 shows charge-discharge cycle characteristics of an Mg-containing intermetallic compound.

【図4】NiSi2 系負極材料の高速充放電による充放
電サイクル特性。
FIG. 4 shows charge / discharge cycle characteristics of a NiSi 2 -based negative electrode material by high-speed charge / discharge.

【図5】本発明の円筒型電池の構成図。FIG. 5 is a configuration diagram of a cylindrical battery of the present invention.

【符号の説明】[Explanation of symbols]

1…Mg2Si粉末の充放電サイクル特性曲線、2…M
2Si−Si混相粉末の充放電サイクル特性曲線、3
…Mg2Si −Si混合粉末の充放電サイクル特性曲
線、4…TJSPの充放電サイクル特性曲線、5…Mg
2Si −Mg混相粉末の充放電サイクル特性曲線、6…
NiSi2 −Si混相粉末の充放電サイクル特性曲線、
7…NiSi2 粉末の充放電サイクル特性曲線、8…N
iSi2 −NiSi混相1粉末の充放電サイクル特性曲
線、9…NiSi2 −NiSi混相2粉末の充放電サイ
クル特性曲線、10…NiSi2 −Si混合粉末の充放
電サイクル特性曲線、11…Mg2Ge −Ge混相粉末
の充放電サイクル特性曲線、12…Mg2Sn−Mg混
相粉末の充放電サイクル特性曲線、13…Mg2Pb−
Mg混相粉末の充放電サイクル特性曲線、14…NiS
2 粉末の高速充放電サイクル特性曲線、15…NiS
2 −NiSi混相1粉末の高速充放電サイクル特性曲
線、16…NiSi2 −NiSi混相2粉末の高速充放
電サイクル特性曲線、21…正極、22…負極、23…
セパレータ、24…正極端子、25…負極端子。
1 ... Charge / discharge cycle characteristic curve of Mg 2 Si powder, 2 ... M
g 2 Si—Si mixed phase powder charge / discharge cycle characteristic curve, 3
... Mg 2 Si -Si mixed charge-discharge cycle characteristics curves of the powder, the charge-discharge cycle characteristics curves of the 4 ... TJSP, 5 ... Mg
Charge-discharge cycle characteristic curve of 2 Si-Mg mixed phase powder, 6 ...
Charge / discharge cycle characteristic curve of NiSi 2 -Si mixed phase powder,
7 ... charge-discharge cycle characteristics curves of NiSi 2 powder, 8 ... N
i Si 2 -NiSi multiphase 1 charge-discharge cycle characteristics curves of the powder, 9 ... charge-discharge cycle characteristics curves of NiSi 2 -NiSi multiphase 2 powder, charge-discharge cycle characteristics curves of 10 ... NiSi 2 -Si mixed powder, 11 ... Mg 2 Ge charge-discharge cycle characteristics curves of -Ge multiphase powder, 12 ... Mg 2 Sn-Mg mixed phase charge-discharge cycle characteristics curves of the powder, 13 ... Mg 2 Pb-
Charge / discharge cycle characteristic curve of Mg mixed phase powder, 14 ... NiS
High-speed charge / discharge cycle characteristic curve of i 2 powder, 15 ... NiS
i 2 -NiSi multiphase 1 powder fast charge-discharge cycle characteristic curve, 16 ... NiSi 2 -NiSi multiphase 2 powder high-speed charge-discharge cycle characteristic curve, 21 ... positive electrode, 22 ... negative electrode, 23 ...
Separator, 24: Positive terminal, 25: Negative terminal.

フロントページの続き (72)発明者 篠原 英毅 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 李 燦 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 稲垣 正寿 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 青野 泰久 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内 (72)発明者 児玉 英世 茨城県日立市大みか町七丁目1番1号 株 式会社日立製作所日立研究所内Continued on the front page (72) Inventor Hideki Shinohara 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi Research Laboratory, Hitachi, Ltd. (72) Inventor Li Sun 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd.Hitachi Research Laboratories (72) Inventor Masatoshi Inagaki 1-1-1, Omikacho, Hitachi City, Ibaraki Prefecture Hitachi, Ltd.Hitachi Research Laboratories (72) Inventor Yasuhisa Aono 7, Omikacho, Hitachi City, Ibaraki Prefecture No. 1-1 Inside Hitachi, Ltd. Hitachi Research Laboratory (72) Inventor Hideyo Kodama 7-1-1, Omika-cho, Hitachi City, Ibaraki Prefecture Inside Hitachi, Ltd. Hitachi Research Laboratory

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】充放電時にリチウムイオンを吸蔵,放出す
る負極活物質を主体とする負極と、正極と、リチウムイ
オン導電性の非水系電解液あるいはポリマー電解質から
成るリチウム二次電池において、前記負極活物質が周期
率表の3B,4B,5B族元素を含む金属間化合物の相
を含み、かつ材料組織上2相以上を含む粒子で構成さ
れ、さらには前記相が全てLiを吸蔵することができる
ことを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising a negative electrode mainly composed of a negative electrode active material that occludes and releases lithium ions during charge and discharge, a positive electrode, and a lithium ion conductive non-aqueous electrolyte or polymer electrolyte. The active material may include a phase of an intermetallic compound containing a 3B, 4B, or 5B group element in the periodic table, and may be composed of particles including two or more phases in the material structure, and all of the phases may occlude Li. A rechargeable lithium battery characterized by being able to.
【請求項2】充放電時にリチウムイオンを吸蔵,放出す
る負極活物質を主体とする負極と、正極と、リチウムイ
オン導電性の非水系電解液あるいはポリマー電解質から
成るリチウム二次電池において、前記負極活物質が周期
率表の3B,4B,5B族元素を含む金属間化合物の相
を含み、かつ前記金属間化合物に含まれる元素で構成さ
れる前記金属間化合物以外の相を1相以上含む粒子で構
成されていることを特徴とするリチウム二次電池。
2. A lithium secondary battery comprising a negative electrode mainly composed of a negative electrode active material that occludes and releases lithium ions during charge and discharge, a positive electrode, and a lithium ion conductive non-aqueous electrolyte or polymer electrolyte. Particles in which the active material contains a phase of an intermetallic compound containing a 3B, 4B, or 5B group element in the periodic table, and contains at least one phase other than the intermetallic compound constituted by an element contained in the intermetallic compound. A lithium secondary battery characterized by comprising:
【請求項3】充放電時にリチウムイオンを吸蔵,放出す
る負極活物質を主体とする負極と、正極と、リチウムイ
オン導電性の非水系電解液あるいはポリマー電解質から
成るリチウム二次電池において、前記負極活物質がA
l,Ga,In,Si,Ge,Sn,Pb,Sb,Bi
のうち少なくとも1種類以上を含む金属間化合物の相を
含み、かつ前記金属間化合物に含まれる元素で構成され
る前記金属間化合物以外の相を1相以上含む粒子で構成
されていることを特徴とするリチウム二次電池。
3. A lithium secondary battery comprising a negative electrode mainly composed of a negative electrode active material that occludes and releases lithium ions during charge and discharge, a positive electrode, and a lithium ion conductive non-aqueous electrolyte or polymer electrolyte. Active material is A
1, Ga, In, Si, Ge, Sn, Pb, Sb, Bi
Characterized by comprising particles of at least one phase of an intermetallic compound containing at least one kind thereof, and at least one phase other than the intermetallic compound, which is composed of an element contained in the intermetallic compound. Lithium secondary battery.
【請求項4】充放電時にリチウムイオンを吸蔵,放出す
る負極活物質を主体とする負極と、正極と、リチウムイ
オン導電性の非水系電解液あるいはポリマー電解質から
成るリチウム二次電池において、前記負極活物質がA
l,Ga,In,Si,Ge,Sn,Pb,Sb,Bi
のうち少なくとも1種類以上を含む金属間化合物の相を
含み、かつ前記金属間化合物に含まれる元素で構成され
る前記金属間化合物以外の相を1相以上含む粒子で構成
され、前記粒子の断面組織の上で隣接する複数の金属間
化合物相の界面長さが5×106m/m2以上であること
を特徴とするリチウム二次電池。
4. A lithium secondary battery comprising a negative electrode mainly composed of a negative electrode active material that occludes and releases lithium ions during charge and discharge, a positive electrode, and a lithium ion conductive non-aqueous electrolyte or polymer electrolyte. Active material is A
1, Ga, In, Si, Ge, Sn, Pb, Sb, Bi
A phase of an intermetallic compound containing at least one or more of the above, and a particle containing at least one phase other than the intermetallic compound composed of elements contained in the intermetallic compound, and a cross section of the particle. A lithium secondary battery, wherein the interface length of a plurality of intermetallic compound phases adjacent on the structure is 5 × 10 6 m / m 2 or more.
【請求項5】充放電時にリチウムイオンを吸蔵,放出す
る負極活物質を主体とする負極と、正極と、リチウムイ
オン導電性の非水系電解液あるいはポリマー電解質から
成るリチウム二次電池において、前記負極活物質がA
l,Ga,In,Si,Ge,Sn,Pb,Sb,Bi
のうち少なくとも1種類以上を含む金属間化合物の相を
含み、かつ前記金属間化合物に含まれる元素で構成され
て、状態図上で前記金属間化合物と隣り合う金属間化合
物あるいは金属の相を1相以上含む粒子で構成されてい
ることを特徴とするリチウム二次電池。
5. A lithium secondary battery comprising a negative electrode mainly composed of a negative electrode active material that occludes and releases lithium ions during charge and discharge, a positive electrode, and a lithium ion conductive non-aqueous electrolyte or polymer electrolyte. Active material is A
1, Ga, In, Si, Ge, Sn, Pb, Sb, Bi
A phase of an intermetallic compound or a metal which is composed of elements contained in the intermetallic compound and which is adjacent to the intermetallic compound on a phase diagram. A lithium secondary battery comprising particles containing more than one phase.
【請求項6】充放電時にリチウムイオンを吸蔵,放出す
る負極活物質を主体とする負極と、正極と、リチウムイ
オン導電性の非水系電解液あるいはポリマー電解質から
成るリチウム二次電池において、前記負極活物質がA
l,Ga,In,Si,Ge,Sn,Pb,Sb,Bi
のうち少なくとも1種類以上を含む金属間化合物の相を
含み、かつ前記金属間化合物に含まれる元素で構成され
て、状態図上で前記金属間化合物と隣り合う金属間化合
物あるいは金属の相を1相以上含む粒子で構成され、前
記粒子の断面組織の上で隣接する複数の相の界面長さが
5×106m/m2以上であることを特徴とするリチウム
二次電池。
6. A lithium secondary battery comprising a negative electrode mainly composed of a negative electrode active material that occludes and releases lithium ions during charge and discharge, a positive electrode, and a lithium ion conductive non-aqueous electrolyte or polymer electrolyte. Active material is A
1, Ga, In, Si, Ge, Sn, Pb, Sb, Bi
A phase of an intermetallic compound or a metal which is composed of elements contained in the intermetallic compound and which is adjacent to the intermetallic compound on a phase diagram. A lithium secondary battery comprising particles containing at least one phase, wherein an interface length of a plurality of phases adjacent to each other on the sectional structure of the particles is 5 × 10 6 m / m 2 or more.
JP9246471A 1997-09-11 1997-09-11 Lithium secondary battery Pending JPH1186853A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9246471A JPH1186853A (en) 1997-09-11 1997-09-11 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9246471A JPH1186853A (en) 1997-09-11 1997-09-11 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH1186853A true JPH1186853A (en) 1999-03-30

Family

ID=17148905

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9246471A Pending JPH1186853A (en) 1997-09-11 1997-09-11 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH1186853A (en)

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
WO2000014817A1 (en) * 1998-09-08 2000-03-16 Sumitomo Metal Industries, Ltd. Negative electrode material for nonaqueous electrode secondary battery and method for producing the same
JP2000173607A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000173608A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000173588A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2000173587A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2001006667A (en) * 1999-04-20 2001-01-12 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2001068112A (en) * 1999-08-30 2001-03-16 Matsushita Electric Ind Co Ltd Negative electrode active substance for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP2001076719A (en) * 1999-08-31 2001-03-23 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, and its manufacturing method, and nonaqueous electrolyte secondary battery
JP2001093524A (en) * 1999-09-24 2001-04-06 Matsushita Electric Ind Co Ltd Negative electrode for a non-aqueous electrolytic secondary cell, preparation thereof, and non-aqueous electrolytic secondary cell
JP2001148247A (en) * 1999-11-19 2001-05-29 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and alloy for battery and its manufacturing method
US6265111B1 (en) 1998-10-22 2001-07-24 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
JP2001210323A (en) * 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
WO2002007239A1 (en) * 2000-07-19 2002-01-24 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
WO2002067348A1 (en) 2001-02-22 2002-08-29 Kureha Chemical Industry Company, Limited Electrode material for non-aqueous solvent secondary cell, electrode and secondary cell
US6558841B1 (en) 1999-08-30 2003-05-06 Matsushita Electric Industrial Co., Ltd. Negative electrode for non-aqueous electrolyte rechargeable batteries
US6824921B2 (en) 2000-11-15 2004-11-30 Matsushita Electric Industrial Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery and method for producing the same
JP2007214127A (en) * 2006-02-10 2007-08-23 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, its manufacturing method, and lithium secondary battery containing it
CN100386905C (en) * 2006-05-26 2008-05-07 清华大学 Metal particle-cladded active carbon microsphere cathode composite materials and method for preparing same
JP2009289680A (en) * 2008-05-30 2009-12-10 Toyota Industries Corp Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the negative electrode, and manufacturing method of negative electrode for lithium ion secondary battery
US7658871B2 (en) 2003-08-22 2010-02-09 Samsung Sdi Co., Ltd. Method of preparing a negative active material for rechargeable lithium battery

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
WO2000014817A1 (en) * 1998-09-08 2000-03-16 Sumitomo Metal Industries, Ltd. Negative electrode material for nonaqueous electrode secondary battery and method for producing the same
US6835496B1 (en) 1998-09-08 2004-12-28 Sumitomo Metal Industries, Ltd. Negative electrode material for a non-aqueous electrolyte secondary battery and processes for its manufacture
US6881518B2 (en) 1998-09-08 2005-04-19 Sumitomo Metal Industries, Ltd. Process for manufacture of negative electrode material for a non-aqueous electrolyte secondary battery
US6265111B1 (en) 1998-10-22 2001-07-24 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary battery
JP4534265B2 (en) * 1998-12-02 2010-09-01 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP4534266B2 (en) * 1998-12-02 2010-09-01 パナソニック株式会社 Nonaqueous electrolyte secondary battery
JP2000173587A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2000173588A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2000173608A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000173607A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2001006667A (en) * 1999-04-20 2001-01-12 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
JP2001068112A (en) * 1999-08-30 2001-03-16 Matsushita Electric Ind Co Ltd Negative electrode active substance for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
US6558841B1 (en) 1999-08-30 2003-05-06 Matsushita Electric Industrial Co., Ltd. Negative electrode for non-aqueous electrolyte rechargeable batteries
JP2001076719A (en) * 1999-08-31 2001-03-23 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery, and its manufacturing method, and nonaqueous electrolyte secondary battery
JP2001093524A (en) * 1999-09-24 2001-04-06 Matsushita Electric Ind Co Ltd Negative electrode for a non-aqueous electrolytic secondary cell, preparation thereof, and non-aqueous electrolytic secondary cell
JP2001148247A (en) * 1999-11-19 2001-05-29 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery and alloy for battery and its manufacturing method
JP2001210323A (en) * 2000-01-26 2001-08-03 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP4608743B2 (en) * 2000-07-19 2011-01-12 パナソニック株式会社 Nonaqueous electrolyte secondary battery
US6761998B2 (en) 2000-07-19 2004-07-13 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
JP2002042805A (en) * 2000-07-19 2002-02-08 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery
WO2002007239A1 (en) * 2000-07-19 2002-01-24 Matsushita Electric Industrial Co., Ltd. Non-aqueous electrolyte secondary cell
US6824921B2 (en) 2000-11-15 2004-11-30 Matsushita Electric Industrial Co., Ltd. Negative electrode material for non-aqueous electrolyte secondary battery and method for producing the same
EP1298742A1 (en) * 2001-02-22 2003-04-02 Kureha Chemical Industry Co., Ltd. Electrode material for non-aqueous solvent secondary cell, electrode and secondary cell
EP2058879A1 (en) 2001-02-22 2009-05-13 Kureha Corporation Electrode material for non-aqueous solvent secondary cell, electrode and secondary cell
US7235329B2 (en) 2001-02-22 2007-06-26 Kureha Chemical Industry Company, Limited Electrode material for non-aqueous solvent-secondary cell, electrode and secondary cell
EP1298742A4 (en) * 2001-02-22 2006-12-06 Kureha Corp Electrode material for non-aqueous solvent secondary cell, electrode and secondary cell
WO2002067348A1 (en) 2001-02-22 2002-08-29 Kureha Chemical Industry Company, Limited Electrode material for non-aqueous solvent secondary cell, electrode and secondary cell
US7658871B2 (en) 2003-08-22 2010-02-09 Samsung Sdi Co., Ltd. Method of preparing a negative active material for rechargeable lithium battery
JP2007214127A (en) * 2006-02-10 2007-08-23 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, its manufacturing method, and lithium secondary battery containing it
CN100386905C (en) * 2006-05-26 2008-05-07 清华大学 Metal particle-cladded active carbon microsphere cathode composite materials and method for preparing same
JP2009289680A (en) * 2008-05-30 2009-12-10 Toyota Industries Corp Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the negative electrode, and manufacturing method of negative electrode for lithium ion secondary battery

Similar Documents

Publication Publication Date Title
JP3726958B2 (en) battery
KR100453093B1 (en) Non-aqueous electrolyte secondary battery
JPH1186853A (en) Lithium secondary battery
EP0883199A1 (en) Negative electrode materials for non-aqueous electrolyte secondary batteries and said batteries employing the same materials
JP2000285919A (en) Nonaqueous electrolyte secondary battery, and its negative electrode
JP2001068096A (en) Negative electrode for nonaqueous electrolyte secondary battery, manufacture thereof and nonaqueous electrolyte secondary battery
WO2000033402A1 (en) Non-aqueous electrolyte secondary cell and its charging method
JP2004349164A (en) Negative electrode active material for lithium ion secondary battery, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2006253126A (en) Anode active material for nonaqueous electrolyte secondary cell, anode for nonaqueous electrolyte secondary cell using same, and nonaqueous electrolyte secondary cell
JPH1186854A (en) Lithium secondary battery
JP2002373648A (en) Negative electrode, nonaqueous electrolyte secondary battery, and method for producing the negative electrode
JPH09293536A (en) Nonaqueous electrolyte secondary battery
JP4635283B2 (en) Nonaqueous electrolyte secondary battery
JP4056180B2 (en) Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2001052699A (en) Lithium secondary battery
JP2000173587A (en) Non-aqueous electrolyte secondary battery
US6576366B1 (en) Non-aqueous electrolyte secondary cell, and material for negative electrode used therefor
JP2000173670A (en) Charging method for nonaqueous electrolyte secondary battery
JP2007087941A (en) Lithium ion secondary battery
JP2007095570A (en) Lithium secondary battery and negative electrode used in that battery
JP4457441B2 (en) Nonaqueous electrolyte secondary battery
WO2000033403A1 (en) Non-aqueous electrolyte secondary cell and its charging method
JP2001210323A (en) Nonaqueous electrolyte secondary battery
JP2000173616A (en) Nonaqueous electrolyte secondary battery
JP3124749B2 (en) Lithium ion secondary battery

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20040413

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20040810