JP2001093524A - Negative electrode for a non-aqueous electrolytic secondary cell, preparation thereof, and non-aqueous electrolytic secondary cell - Google Patents

Negative electrode for a non-aqueous electrolytic secondary cell, preparation thereof, and non-aqueous electrolytic secondary cell

Info

Publication number
JP2001093524A
JP2001093524A JP27070399A JP27070399A JP2001093524A JP 2001093524 A JP2001093524 A JP 2001093524A JP 27070399 A JP27070399 A JP 27070399A JP 27070399 A JP27070399 A JP 27070399A JP 2001093524 A JP2001093524 A JP 2001093524A
Authority
JP
Japan
Prior art keywords
phase
active material
negative electrode
electrolyte secondary
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP27070399A
Other languages
Japanese (ja)
Other versions
JP4056183B2 (en
Inventor
Toshitada Sato
俊忠 佐藤
Yasushi Nakagiri
康司 中桐
Hideji Takesawa
秀治 武澤
Hiromu Matsuda
宏夢 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP27070399A priority Critical patent/JP4056183B2/en
Priority to EP99949336A priority patent/EP1043789B1/en
Priority to PCT/JP1999/005805 priority patent/WO2000024070A1/en
Priority to US09/598,206 priority patent/US6265111B1/en
Publication of JP2001093524A publication Critical patent/JP2001093524A/en
Application granted granted Critical
Publication of JP4056183B2 publication Critical patent/JP4056183B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To obtain a non-aqueous electrolytic secondary cell with high energy density, in which short-circuiting by dendrites is not caused and a cycle life is excellent. SOLUTION: The non-aqueous electrolytic secondary cell is an active material having A-phase expressed in the formula 1: M1aM2 and having composition satisfying 0.25<=a<3 and B-phase expressed in the formula 2 M1bM2 and having composition satisfying 1<=b and a<b, where M1 and M1 are each at least one element selected from (m1) group consisting of Na, K, Rb, Cs, Ce, Ti, Zr, Hf, V, Nb, Ta, Ca, Sr, Ba, Y, La, Cr, Mo, W, Mn, Tc, Ru,Os, Co, Rh, Ir, Ni, Pd, Cu, Ag and Fe, and M2 and M2 are each at leasts one element selected rom (m2) group consisting of Al, Ga, In, Si, Ge, Sn, Pb, Sb and Bi.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池用負極活物質、その製造法および非水電解質二次電池
に関する。
The present invention relates to a negative electrode active material for a non-aqueous electrolyte secondary battery, a method for producing the same, and a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解液二次電池は、高電圧、高エネルギー密度
が期待でき、多くの研究が行われている。非水電解液二
次電池の正極活物質には、遷移金属の酸化物およびカル
コゲン化合物、例えばLiMn24、LiCoO2、L
iNiO2、V25、Cr25、MnO2、TiS2、M
oS2などが知られている。これらは、層状構造または
トンネル構造を有し、リチウムイオンが出入りできる結
晶構造を有する。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using lithium or a lithium compound as a negative electrode can be expected to have a high voltage and a high energy density, and much research has been conducted. The positive electrode active material of the nonaqueous electrolyte secondary battery includes a transition metal oxide and a chalcogen compound, for example, LiMn 2 O 4 , LiCoO 2 , L
iNiO 2 , V 2 O 5 , Cr 2 O 5 , MnO 2 , TiS 2 , M
oS 2 and the like are known. These have a layered structure or a tunnel structure, and have a crystal structure through which lithium ions can enter and exit.

【0003】一方、負極活物質としては、金属リチウム
が広く検討されいる。しかし、金属リチウムを用いた場
合、充電時にリチウム表面に樹枝状のリチウム、すなわ
ちデンドライトが析出し、充放電効率の低下または正極
と接して内部短絡を生じるという問題がある。そこで、
リチウムの樹枝状成長を抑制し、リチウムを吸蔵および
放出できるリチウム系合金、例えばリチウム−アルミニ
ウム合金などを負極活物質に用いる検討がなされてい
る。しかし、深い充放電を繰り返すと、電極材料が微粉
化し、サイクル特性に問題が生じる。
On the other hand, lithium metal has been widely studied as a negative electrode active material. However, when metallic lithium is used, there is a problem that dendritic lithium, ie, dendrite, precipitates on the lithium surface during charging, which lowers charging / discharging efficiency or causes internal short-circuiting due to contact with the positive electrode. Therefore,
Investigations have been made to use a lithium-based alloy capable of absorbing and releasing lithium, such as a lithium-aluminum alloy, as a negative electrode active material, while suppressing dendritic growth of lithium. However, when deep charge / discharge is repeated, the electrode material becomes finer, which causes a problem in cycle characteristics.

【0004】現在、金属リチウムやリチウム系合金より
も容量が小さい一方、リチウムを可逆的に吸蔵および放
出でき、サイクル特性、安全性などにも優れた黒鉛系炭
素材料を負極に用いたリチウムイオン電池が実用化され
ている。しかし、黒鉛系炭素材料を負極に使用した場
合、その実用的容量は、理論容量(372mAh/g)
に近い350mAh/gである。また、理論密度が2.
2g/ccと低く、実際にシート状の負極とすると、さ
らに密度が低下する。従って、電池のさらなる高容量化
を求めるには、単位体積あたりの容量が高い金属系無機
材料を負極活物質に用いる必要がある。
At present, a lithium ion battery using a graphite-based carbon material for a negative electrode, which has a smaller capacity than metallic lithium and a lithium-based alloy, can reversibly insert and extract lithium, and has excellent cycle characteristics and safety. Has been put to practical use. However, when a graphite-based carbon material is used for the negative electrode, its practical capacity is the theoretical capacity (372 mAh / g).
350 mAh / g. The theoretical density is 2.
The density is as low as 2 g / cc, and if a sheet-shaped negative electrode is actually used, the density is further reduced. Therefore, in order to further increase the capacity of the battery, it is necessary to use a metal-based inorganic material having a high capacity per unit volume as the negative electrode active material.

【0005】[0005]

【発明が解決しようとする課題】金属系無機材料を負極
活物質に使用した場合、リチウムの吸蔵および放出にと
もなう膨脹および収縮の繰り返しにより、活物質の微粉
化が生じる。微粉化した活物質は、負極中で他の活物質
または導電剤との物理的な接点が失われ、電子伝導性が
なくなることから、見かけ上は不活性となり、容量減少
の大きな要因となる。
When a metal-based inorganic material is used for a negative electrode active material, the active material is pulverized due to repetition of expansion and contraction accompanying occlusion and release of lithium. The finely divided active material loses physical contact with another active material or a conductive agent in the negative electrode, and loses electron conductivity. Therefore, the active material is apparently inactive and is a major factor in capacity reduction.

【0006】そこで、一粒子内にリチウムを吸蔵する相
と吸蔵しない相とを共存させ、充電状態(吸蔵状態)の
応力を、リチウムを吸収しない相で緩和する技術(特開
平11−86854号公報)、一粒子内にリチウムを吸
蔵する相を2相以上共存させ、各相のリチウム吸蔵時の
構造変化による応力を緩和する技術(特開平11−86
853号公報)が開示されており、結晶サイズを微細に
することで、応力緩和の効果が向上すると述べられてい
る。しかし、その効果は不充分である。
Therefore, a technique of coexisting a phase occluding lithium and a phase not occluding lithium in one particle to relieve stress in a charged state (occluding state) by a phase not absorbing lithium (Japanese Patent Laid-Open No. 11-86854). ), A technique of coexisting two or more phases that occlude lithium in one particle to relieve stress due to structural change of each phase during occlusion of lithium (Japanese Unexamined Patent Publication No. 11-86)
No. 853), which states that reducing the crystal size improves the effect of stress relaxation. However, the effect is insufficient.

【0007】活物質粒子内に複数の相を共存させ、結晶
サイズを微細にして粒界に膨脹応力を逃がしても、各相
の膨張率が大きく異なる場合、活物質粒子内の応力が不
均一になる。このため、膨脹応力が大きい一部の相で微
粉化が起こり、活物質粒子から遊離すると考えられる。
一の相がリチウムと合金化しやすい元素の単体の場合、
前記現象が生じる傾向はさらに大きい。
Even when a plurality of phases coexist in the active material particles and the expansion stress is released to the grain boundaries by making the crystal size fine, the stress in the active material particles is non-uniform if the expansion coefficients of the respective phases are largely different. become. For this reason, it is considered that pulverization occurs in some of the phases having a large expansion stress and is separated from the active material particles.
If one phase is a simple element of an element that easily alloys with lithium,
The tendency for this phenomenon to occur is even greater.

【0008】[0008]

【課題を解決するための手段】本発明は、負極活物質の
膨脹および収縮にともなう微粉化を抑制することによ
り、電池の高容量と長寿命とを両立させることを目的と
する。すなわち、本発明は、式(1):M1 a2で示さ
れ、0.25≦a<3を満たす組成のA相および式
(2):M1'b2'で示され、1≦bおよびa<bを満
たす組成のB相を有する活物質であって、M1および
1'は、Na、K、Rb、Cs、Ce、Ti、Zr、H
f、V、Nb、Ta、Ca、Sr、Ba、Y、La、C
r、Mo、W、Mn、Tc、Ru、Os、Co、Rh、
Ir、Ni、Pd、Cu、AgおよびFeよりなる(m
1)群から選択された少なくとも1種の元素であり、M2
およびM2'は、Al、Ga、In、Si、Ge、Sn、
Pb、SbおよびBiよりなる(m2)群から選択され
た少なくとも1種の元素であることを特徴とする非水電
解質二次電池用負極活物質に関する。
SUMMARY OF THE INVENTION It is an object of the present invention to achieve both high capacity and long life of a battery by suppressing pulverization accompanying expansion and contraction of a negative electrode active material. That is, the present invention provides an A phase represented by the formula (1): M 1 a M 2 , which satisfies 0.25 ≦ a <3, and a formula (2): M 1b M 2 ′ An active material having a B phase having a composition satisfying 1 ≦ b and a <b, wherein M 1 and M 1 ′ are Na, K, Rb, Cs, Ce, Ti, Zr, H
f, V, Nb, Ta, Ca, Sr, Ba, Y, La, C
r, Mo, W, Mn, Tc, Ru, Os, Co, Rh,
Consists of Ir, Ni, Pd, Cu, Ag and Fe (m
1) is at least one element selected from the group, M 2
And M 2 ′ are Al, Ga, In, Si, Ge, Sn,
The present invention relates to a negative electrode active material for a non-aqueous electrolyte secondary battery, which is at least one element selected from the group (m 2 ) consisting of Pb, Sb and Bi.

【0009】前記活物質は、A相20〜80重量%、B
相20〜80重量%ならびにA相およびB相以外の相0
〜50重量%からなることが好ましい。また、A相とB
相とが接触した界面を有することが好ましい。また、A
相の50重量%以上が、B相のマトリックス中にB相と
接触した状態で分散していることが好ましい。また、A
相とB相のどちらか一方の相が、他方の相のマトリック
ス中に平均粒径0.05〜20μmの島状に分散してい
るか、またはA相とB相の両方が、それぞれ平均粒径1
〜20μmの粒子状であることが好ましい。また、A相
とB相とが、相互に入り組んだラメラ構造を有すること
が好ましい。また、A相とB相の少なくとも一方の相
が、アスペクト比1.5以上の針状に分散していること
が好ましい。また、任意の断面で観測されるA相および
B相の結晶粒の平均断面積が、10 -7cm2以下である
ことが好ましい。また、前記活物質の平均粒径は、45
μm以下であることが好ましい。
[0009] The active material comprises 20 to 80% by weight of phase A,
20-80% by weight of phase and phase 0 other than phase A and phase B
Preferably, it consists of 〜50% by weight. Also, A phase and B
It preferably has an interface in contact with the phase. Also, A
50% by weight or more of the phase contains the B phase in the B phase matrix.
Preferably, they are dispersed in contact. Also, A
Phase or phase B is the matrix of the other phase
Dispersed in islands with an average particle size of 0.05 to 20 μm
Or both the A phase and the B phase each have an average particle size of 1
It is preferably in the form of particles of up to 20 μm. A phase
And the B phase have an intricate lamellar structure
Is preferred. In addition, at least one of the A phase and the B phase
Are dispersed like needles with an aspect ratio of 1.5 or more
Is preferred. In addition, the A phase observed in an arbitrary cross section and
The average cross-sectional area of the B phase crystal grains is 10 -7cmTwoIs below
Is preferred. The average particle size of the active material is 45.
It is preferably not more than μm.

【0010】前記活物質において、A相が、NaS
2、KSn2、SrSn3、BaSn3、LaSn2、C
eSn3、ZrSn2、MnSn2、CoSn2、PdSn
2およびFeSn2よりなる群から選択された少なくとも
1種の相であり、B相が、Na2Sn、KSn、La2
n、Zr3Sn2、Zr4Sn、V3Sn、Nb3Sn、T
3Sn、MnSn、Mn2Sn、Mn3Sn、FeS
n、Fe1.3Sn、Fe3Sn、CoSn、Co3Sn2
Ni3Sn2、Ni3Sn、Cu6Sn5、Cu3Sn、Cu
4Sn、Ti6Sn5およびTi2Snよりなる群から選択
された少なくとも1種の相であることが好ましい。
[0010] In the active material, the A phase may be NaS.
nTwo, KSnTwo, SrSnThree, BaSnThree, LaSnTwo, C
eSnThree, ZrSnTwo, MnSnTwo, CoSnTwo, PdSn
TwoAnd FeSnTwoAt least selected from the group consisting of
One phase, B phase is NaTwoSn, KSn, LaTwoS
n, ZrThreeSnTwo, ZrFourSn, VThreeSn, NbThreeSn, T
aThreeSn, MnSn, MnTwoSn, MnThreeSn, FeS
n, Fe1.3Sn, FeThreeSn, CoSn, CoThreeSnTwo,
NiThreeSnTwo, NiThreeSn, Cu6SnFive, CuThreeSn, Cu
FourSn, Ti6SnFiveAnd TiTwoSelect from the group consisting of Sn
Preferably, it is at least one type of phase.

【0011】また、前記活物質において、A相が、Na
Sn、KSn、FeSn、CoSnおよびPdSnより
なる群から選択された少なくとも1種の相であり、B相
が、Na2Sn、La2Sn、Zr3Sn2、Zr4Sn、
3Sn、Nb3Sn、Ta3Sn、Mn2Sn、Mn3
n、Fe1.3Sn、Fe3Sn、Co3Sn2、Ni3
2、Ni3Sn、Cu6Sn5、Cu3Sn、Cu4Sn、
Ti6Sn5およびTi2Snよりなる群から選択された
少なくとも1種の相であることが好ましい。
In the above active material, the phase A may be Na
At least one phase selected from the group consisting of Sn, KSn, FeSn, CoSn, and PdSn, wherein the B phase is Na 2 Sn, La 2 Sn, Zr 3 Sn 2 , Zr 4 Sn,
V 3 Sn, Nb 3 Sn, Ta 3 Sn, Mn 2 Sn, Mn 3 S
n, Fe 1.3 Sn, Fe 3 Sn, Co 3 Sn 2 , Ni 3 S
n 2 , Ni 3 Sn, Cu 6 Sn 5 , Cu 3 Sn, Cu 4 Sn,
Preferably, it is at least one phase selected from the group consisting of Ti 6 Sn 5 and Ti 2 Sn.

【0012】また、前記活物質において、A相が、Ti
6Sn5およびCu6Sn5よりなる群から選択された少な
くとも1種の相であり、B相が、Na2Sn、La2
n、Zr3Sn2、Zr4Sn、V3Sn、Nb3Sn、T
3Sn、Mn2Sn、Mn3Sn、Ti3Sn、Cu3
n、Fe3Sn、Fe6Sn、Fe12Sn、Co3Sn2
Ni3Sn2、Ni3Sn、Cu4SnおよびTi2Snよ
りなる群から選択された少なくとも1種の相であること
が好ましい。
[0012] In the active material, the A phase may be Ti
At least one phase selected from the group consisting of 6 Sn 5 and Cu 6 Sn 5 , wherein the B phase is Na 2 Sn, La 2 S
n, Zr 3 Sn 2 , Zr 4 Sn, V 3 Sn, Nb 3 Sn, T
a 3 Sn, Mn 2 Sn, Mn 3 Sn, Ti 3 Sn, Cu 3 S
n, Fe 3 Sn, Fe 6 Sn, Fe 12 Sn, Co 3 Sn 2 ,
Ni 3 Sn 2, Ni 3 Sn , is preferably at least one phase selected from the group consisting of Cu 4 Sn and Ti 2 Sn.

【0013】また、前記活物質において、A相が、Na
2Sn、K2Sn、Mg2Sn、Ca2Sn、SrSn、B
2Sn、La2SnおよびTi2Snよりなる群から選
択された少なくとも1種の相であり、B相が、Mn3
n、Fe3Sn、Fe6Sn、Fe12Sn、Ni3Sn、
Ni6Sn、Cu3Sn、Cu4SnおよびTi3Snより
なる群から選択された少なくとも1種の相であることが
好ましい。
[0013] In the above active material, the phase A may be Na.
2 Sn, K 2 Sn, Mg 2 Sn, Ca 2 Sn, SrSn, B
at least one phase selected from the group consisting of a 2 Sn, La 2 Sn and Ti 2 Sn, wherein the B phase is Mn 3 S
n, Fe 3 Sn, Fe 6 Sn, Fe 12 Sn, Ni 3 Sn,
It is preferably at least one phase selected from the group consisting of Ni 6 Sn, Cu 3 Sn, Cu 4 Sn and Ti 3 Sn.

【0014】また、前記活物質において、A相が、Na
Si2、CaSi2、SrSi2、BaSi2、YSi2
LaSi2、CeSi2、TiSi2、ZrSi2、VSi
2、NbSi2、TaSi2、CrSi2、MoSi2、W
Si2、MnSi2、CoSi 2、CuSi2、FeSi2
およびNiSi2よりなる群から選択された少なくとも
1種の相であり、B相が、NaSi、KSi、Mg2
i、Ca2Si、Ce2Si、TiSi、Ti5Si3、Z
rSi、V3Si、Nb5Si3、Ta2Si、CrSi、
Cr2Si、Mo3Si、W3Si2、MnSi、Mn5
3、Mn3Si、FeSi、Fe5Si3、Fe3Si、
CoSi、Co2Si、Co3Si、NiSi、Ni3
2、Ni2Si、CuSi、Cu6Si5、Cu3Siお
よびCu4Siよりなる群から選択された少なくとも1
種の相であることが好ましい。
In the above-mentioned active material, the phase A may be Na
SiTwo, CaSiTwo, SrSiTwo, BaSiTwo, YSiTwo,
LaSiTwo, CeSiTwo, TiSiTwo, ZrSiTwo, VSi
Two, NbSiTwo, TaSiTwo, CrSiTwo, MoSiTwo, W
SiTwo, MnSiTwo, CoSi Two, CuSiTwo, FeSiTwo
And NiSiTwoAt least selected from the group consisting of
One phase, B phase is NaSi, KSi, MgTwoS
i, CaTwoSi, CeTwoSi, TiSi, TiFiveSiThree, Z
rSi, VThreeSi, NbFiveSiThree, TaTwoSi, CrSi,
CrTwoSi, MoThreeSi, WThreeSiTwo, MnSi, MnFiveS
iThree, MnThreeSi, FeSi, FeFiveSiThree, FeThreeSi,
CoSi, CoTwoSi, CoThreeSi, NiSi, NiThreeS
iTwo, NiTwoSi, CuSi, Cu6SiFive, CuThreeSi
And CuFourAt least one selected from the group consisting of Si
Preferably, it is a seed phase.

【0015】また、前記活物質において、A相が、Na
Si、KSi、CaSi、BaSi、TiSi、ZrS
i、CrSi、MnSi、FeSi、CoSi、PdS
i、NiSiおよびCuSiよりなる群から選択された
少なくとも1種の相であり、B相が、Mg2Si、Ca2
Si、Ce2Si、Ti5Si3、V3Si、Nb5Si3
Ta2Si、Cr2Si、Mo3Si、W3Si2、Mn5
3、Mn3Si、Fe 5Si3、Fe3Si、Co2Si、
Co3Si、Ni3Si2、Ni2Si、Cu6Si5、Cu
3SiおよびCu4Siよりなる群から選択された少なく
とも1種の相であることが好ましい。
[0015] In the active material, the A phase may be Na.
Si, KSi, CaSi, BaSi, TiSi, ZrS
i, CrSi, MnSi, FeSi, CoSi, PdS
i, selected from the group consisting of NiSi and CuSi
At least one phase, wherein the B phase is MgTwoSi, CaTwo
Si, CeTwoSi, TiFiveSiThree, VThreeSi, NbFiveSiThree,
TaTwoSi, CrTwoSi, MoThreeSi, WThreeSiTwo, MnFiveS
iThree, MnThreeSi, Fe FiveSiThree, FeThreeSi, CoTwoSi,
CoThreeSi, NiThreeSiTwo, NiTwoSi, Cu6SiFive, Cu
ThreeSi and CuFourSelected from the group consisting of Si
Both are preferably one kind of phase.

【0016】また、前記活物質において、A相が、Ti
5Si3、Nb5Si3、W3Si2、Mn5Si3、Fe5
3およびCu6Si5よりなる群から選択された少なく
とも1種の相であり、B相が、MgSi、Ca2
i、Ce2Si、V3Si、Ta2Si、Cr2Si、Mo
3Si、Mn3Si、Fe3Si、Co2Si、Co3
i、Ni2Si、Cu3SiおよびCu4Siよりなる群
から選択された少なくとも1種の相であることが好まし
い。
[0016] In the active material, the A phase may be Ti
5 Si 3, Nb 5 Si 3 , W 3 Si 2, Mn 5 Si 3, Fe 5 S
at least one phase selected from the group consisting of i 3 and Cu 6 Si 5 , wherein the B phase is Mg 2 Si, Ca 2 S
i, Ce 2 Si, V 3 Si, Ta 2 Si, Cr 2 Si, Mo
3 Si, Mn 3 Si, Fe 3 Si, Co 2 Si, Co 3 S
Preferably, it is at least one phase selected from the group consisting of i, Ni 2 Si, Cu 3 Si and Cu 4 Si.

【0017】また、前記活物質において、A相が、Mg
2Si、Ca2Si、SrSi、Ce 2Si、Cr2Si、
Co2Si、Pd2SiおよびCu2Siよりなる群から
選択された少なくとも1種の相であり、B相が、V3
i、Mo3Si、Mn3Si、Fe3Si、Co3Si、C
3SiおよびCu4Siよりなる群から選択された少な
くとも1種の相であることが好ましい。
In the above-mentioned active material, the A phase may be composed of Mg
TwoSi, CaTwoSi, SrSi, Ce TwoSi, CrTwoSi,
CoTwoSi, PdTwoSi and CuTwoFrom the group consisting of Si
At least one selected phase, wherein phase B is VThreeS
i, MoThreeSi, MnThreeSi, FeThreeSi, CoThreeSi, C
uThreeSi and CuFourA few selected from the group consisting of Si
Preferably it is at least one phase.

【0018】また、前記活物質において、A相が、Ca
Al4、CaAl2、SrAl4、BaAl4、BaA
2、LaAl4、LaAl2、CeAl4、CeAl2
TiAl 3、ZrAl3、ZrAl2、VAl3、V5
8、NbAl3、TaAl3、CrAl4、MoAl3
WAl4、MnAl4、MnAl3、Co2Al5、CuA
2、FeAl3、FeAl2、NiAl3およびNi2
3よりなる群から選択された少なくとも1種の相であ
り、B相が、SrAl、BaAl、LaAl、La3
2、CeAl、Ce3Al2、TiAl、ZrAl、Z
2Al、Mo3Al、MnAl、FeAl、Fe3
l、CoAl、NiAl、CuAlおよびCu4Al3
りなる群から選択された少なくとも1種の相であること
が好ましい。
In the above-mentioned active material, the phase A is Ca
AlFour, CaAlTwo, SrAlFour, BaAlFour, BaA
lTwo, LaAlFour, LaAlTwo, CeAlFour, CeAlTwo,
TiAl Three, ZrAlThree, ZrAlTwo, VAlThree, VFiveA
l8, NbAlThree, TaAlThree, CrAlFour, MoAlThree,
WAlFour, MnAlFour, MnAlThree, CoTwoAlFive, CuA
lTwo, FeAlThree, FeAlTwo, NiAlThreeAnd NiTwoA
lThreeAt least one phase selected from the group consisting of
B phase is SrAl, BaAl, LaAl, LaThreeA
lTwo, CeAl, CeThreeAlTwo, TiAl, ZrAl, Z
rTwoAl, MoThreeAl, MnAl, FeAl, FeThreeA
1, CoAl, NiAl, CuAl and CuFourAlThreeYo
At least one phase selected from the group consisting of
Is preferred.

【0019】また、前記活物質において、A相が、Sr
Al、BaAl、LaAl、CeAl、TiAl、Zr
Al、MnAl、FeAl、CoAl、NiAlおよび
CuAlよりなる群から選択された少なくとも1種の相
であり、B相が、La3Al2、Ce3Al2、Zr2
l、Mo3Al、Fe3AlおよびCu4Al3よりなる群
から選択された少なくとも1種の相であることが好まし
い。
In the above active material, the phase A is Sr.
Al, BaAl, LaAl, CeAl, TiAl, Zr
At least one phase selected from the group consisting of Al, MnAl, FeAl, CoAl, NiAl and CuAl, wherein the B phase is La 3 Al 2 , Ce 3 Al 2 , Zr 2 A
Preferably, it is at least one phase selected from the group consisting of 1, Mo 3 Al, Fe 3 Al and Cu 4 Al 3 .

【0020】また、本発明は、プラズマ法、アトマイズ
法、急冷法、鋳造法、メカニカルアロイ法またはメカノ
ケミカル法により合成することを特徴とする前記活物質
の製造法に関する。また、本発明は、各種原料元素の単
体を、塊状、板状または粒状で任意の比率で混合し、ア
ーク溶解炉で鋳造する工程、得られた鋳造品を、アルゴ
ン雰囲気下、噴射ノズル径0.5〜5mmφ、噴射圧5
0〜300kgf/cm2でガスアトマイズ法により球
状粒子とする工程を有することを特徴とする前記活物質
の製造法に関する。さらに、本発明は、充放電可能な正
極と、非水電解液と、前記活物質からなる負極とを具備
する非水電解質二次電池に関する。なお、本発明におい
て、活物質とは、電気化学的に活性な部分を含む材料を
いい、不活性な部分を含む材料も活物質に含まれる。
The present invention also relates to a method for producing the active material, wherein the active material is synthesized by a plasma method, an atomizing method, a quenching method, a casting method, a mechanical alloy method, or a mechanochemical method. Further, the present invention provides a step of mixing various raw material elements in a block, plate or granule at an arbitrary ratio and casting the mixture in an arc melting furnace. 0.5-5mmφ, injection pressure 5
The present invention relates to a method for producing the active material, comprising a step of forming spherical particles by a gas atomization method at 0 to 300 kgf / cm 2 . Further, the present invention relates to a non-aqueous electrolyte secondary battery including a chargeable / dischargeable positive electrode, a non-aqueous electrolyte, and a negative electrode made of the active material. In the present invention, the active material refers to a material including an electrochemically active portion, and a material including an inactive portion is also included in the active material.

【0021】[0021]

【発明の実施の形態】本発明の活物質は、式(1):M
1 a2で示され、0.25≦a<3、好ましくは0.5
≦a≦2を満たす組成のA相および式(2):M1'
b2'で示され、1≦bおよびa<b、好ましくは1≦
b≦5およびa<bを満たす組成のB相を有する。活物
質が、A相およびB相を有する場合、活物質の微粉化が
抑制され、充放電サイクルによる電池の劣化が抑えられ
る。これは、A相のリチウム吸蔵時の膨張応力とB相の
それとの差が小さいため、活物質全体における膨張応力
が均一に緩和されるためと考えられる。式(1)中、a
が0.25よりも小さいと、A相の膨張応力が極めて大
きく、微粉化しやすくなり、3以上になると、単位重量
および体積あたりのLi反応量が小さくなりすぎ、低容
量となる。また、式(2)中、bが1未満になると、B
相の膨張応力も大きくなり、両相が膨張し、5を超える
と、A相とB相との応力差が激しくなる。また、リチウ
ムを吸蔵する相を複数存在させることによる膨張応力の
緩和と、A相の膨張応力とB相のそれとの差を小さくす
ることによる活物質全体における膨張応力の均一化との
バランスなどから、aとbは、1<(b/a)<10、
さらには1.5≦(b/a)≦5を満たすことが好まし
い。
BEST MODE FOR CARRYING OUT THE INVENTION The active material of the present invention has the formula (1): M
1 a M 2 , 0.25 ≦ a <3, preferably 0.5
A phase having a composition satisfying ≦ a ≦ 2 and formula (2): M 1
b M 2 ′, 1 ≦ b and a <b, preferably 1 ≦ b
It has a B phase having a composition satisfying b ≦ 5 and a <b. When the active material has the A phase and the B phase, pulverization of the active material is suppressed, and deterioration of the battery due to charge / discharge cycles is suppressed. This is presumably because the difference between the expansion stress of the A phase during the occlusion of lithium and that of the B phase is small, so that the expansion stress in the entire active material is uniformly reduced. In the formula (1), a
Is less than 0.25, the expansion stress of the A phase is extremely large, and the powder is easily pulverized. When it is 3 or more, the Li reaction amount per unit weight and volume becomes too small, resulting in low capacity. In addition, in equation (2), when b is less than 1, B
The phase expansion stress also increases, and both phases expand. When the phase exceeds 5, the stress difference between the A phase and the B phase increases. The balance between the relaxation of the expansion stress caused by the presence of a plurality of phases that occlude lithium and the uniformization of the expansion stress in the entire active material by reducing the difference between the expansion stress of the A phase and that of the B phase. , A and b are 1 <(b / a) <10,
Further, it is preferable to satisfy 1.5 ≦ (b / a) ≦ 5.

【0022】式(1)および式(2)中、M1および
1'は、Na、K、Rb、Cs、Ce、Ti、Zr、H
f、V、Nb、Ta、Ca、Sr、Ba、Y、La、C
r、Mo、W、Mn、Tc、Ru、Os、Co、Rh、
Ir、Ni、Pd、Cu、AgおよびFeよりなる(m
1)群から選択された少なくとも1種の元素である。複
数の元素が含まれていてもよいが、一の相は、1種の
(M1)群から選ばれた元素からなることが好ましい。
A相およびB相が、それぞれ1種のみの(m1)群から
選ばれた元素からなる場合、(m1)群の中でも、T
i、Zr、Sr、Ba、Mn、Co、Ni、Cuまたは
Feからなることが好ましく、Ti、Mn、Co、Cu
またはFeからなることが、特に好ましい。
In the formulas (1) and (2), M 1 and M 1 ′ are Na, K, Rb, Cs, Ce, Ti, Zr, H
f, V, Nb, Ta, Ca, Sr, Ba, Y, La, C
r, Mo, W, Mn, Tc, Ru, Os, Co, Rh,
Consists of Ir, Ni, Pd, Cu, Ag and Fe (m
1 ) At least one element selected from the group. Although a plurality of elements may be contained, one phase is preferably made of an element selected from one kind of (M 1 ) group.
If the A-phase and B-phase is composed of an element selected from each of only one kind (m 1) groups, among the (m 1) group, T
i, Zr, Sr, Ba, Mn, Co, Ni, Cu or Fe, preferably Ti, Mn, Co, Cu
Alternatively, it is particularly preferable to be composed of Fe.

【0023】式(1)および式(2)中、M2および
2'は、Al、Ga、In、Si、Ge、Sn、Pb、
SbおよびBiよりなる(m2)群から選択された少な
くとも1種の元素である。複数の元素が含まれていても
よいが、一の相は、1種の(m 2)群から選ばれた元素
からなることが好ましい。A相およびB相が、それぞれ
1種のみの(m2)群から選ばれた元素からなる場合、
(m2)群の中でも、Al、In、Si、Ge、Snま
たはPbからなることが好ましく、Al、SiまたはS
nからなることが、特に好ましい。
In equations (1) and (2), MTwoand
MTwo'Is Al, Ga, In, Si, Ge, Sn, Pb,
Consisting of Sb and Bi (mTwo) A few selected from the group
It is at least one element. Even if it contains multiple elements
Good, but one phase consists of one (m Two) Elements selected from the group
It preferably comprises A phase and B phase respectively
Only one type (mTwo) If it consists of elements selected from the group,
(MTwo) Group, Al, In, Si, Ge, Sn
Or Pb, Al, Si or S
It is particularly preferred that it consists of n.

【0024】A相およびB相を有する活物質は、A相2
0〜80重量%、さらには30〜60重量%、B相20
〜80重量%、さらには40〜70重量%ならびにA相
およびB相以外の相0〜50重量%、さらには5〜30
重量%からなることが好ましい。また、A相とB相とが
接触した界面を有することが好ましい。A相とB相との
接触界面は、リチウム吸蔵時の応力緩和や活物質粒子内
のリチウム伝達経路の確保に重要な役割を果たすためで
ある。従って、接触界面は多い方が好ましく、例えばA
相の50重量%以上が、B相のマトリックス中にB相と
接触した状態で分散していることが好ましい。また、A
相とB相のどちらか一方の相が、他方の相のマトリック
ス中に島状に分散している場合、またはA相とB相の両
方が、それぞれ島状に分散している場合もしくは粒子か
らなる場合、島および粒子の平均粒径は、それぞれ0.
05〜20μm、さらには0.1〜5μmおよび0.1
〜20μm、さらには1〜20μm、特には1〜5μm
であることが好ましい。ここで、前記平均粒径は、例え
ば活物質粒子を任意の面で切断したときに得られる断面
において観察される島または粒子の断面の直径の平均か
ら求められる。また、さらに好ましい構造としては、A
相とB相とが、相互に入り組んだラメラ構造、すなわち
活物質断面が網の目のように互いに絡み合った構造が挙
げられる。ラメラ構造を得るには、例えばロール急冷法
やアトマイズ法のような急冷法で合成し、熱処理する必
要がある。A相の膨張応力とB相のそれとの差をより小
さくし、活物質の微粉化をさらに効率よく抑制するに
は、A相とB相の少なくとも一方の相が、アスペクト比
1.5以上の針状に分散していることが好ましい。ここ
で、アスペクト比とは、針状粒子の長さと幅との比率を
いい、例えば活物質粒子を任意の面で切断したときに得
られる断面において観察される針状粒子の断面の長さと
幅の比の平均から求められる。
The active material having the A phase and the B phase is the A phase 2
0 to 80% by weight, further 30 to 60% by weight, phase B 20
-80% by weight, furthermore 40-70% by weight and 0-50% by weight of phases other than the phases A and B, furthermore 5-30.
Preferably it consists of% by weight. Further, it is preferable to have an interface where the A phase and the B phase are in contact. This is because the contact interface between the A phase and the B phase plays an important role in relaxing the stress during the occlusion of lithium and securing a lithium transmission path in the active material particles. Therefore, it is preferable that the number of contact interfaces is large.
Preferably, at least 50% by weight of the phase is dispersed in the B-phase matrix in contact with the B-phase. Also, A
When either one of the phase and the B phase is dispersed in the form of islands in the matrix of the other phase, or when both the A phase and the B phase are each dispersed in the form of islands or from particles In this case, the average particle size of each of the islands and the particles is 0.1.
05 to 20 μm, further 0.1 to 5 μm and 0.1
-20 μm, further 1-20 μm, especially 1-5 μm
It is preferable that Here, the average particle diameter is determined, for example, from the average of the diameters of the cross sections of the islands or particles observed in the cross section obtained when the active material particles are cut along an arbitrary plane. Further, as a more preferable structure, A
A lamella structure in which the phase and the B phase are intertwined, that is, a structure in which the cross section of the active material is intertwined with each other like a mesh. In order to obtain a lamellar structure, it is necessary to synthesize by a quenching method such as a roll quenching method or an atomizing method and to perform a heat treatment. In order to further reduce the difference between the expansion stress of the A phase and that of the B phase and to suppress the pulverization of the active material more efficiently, at least one of the A phase and the B phase has an aspect ratio of 1.5 or more. It is preferably dispersed in a needle shape. Here, the aspect ratio refers to the ratio of the length and width of the acicular particles, for example, the length and width of the cross section of the acicular particles observed in a cross section obtained when the active material particles are cut on an arbitrary surface. From the average of the ratios

【0025】A相およびB相を構成する結晶粒の平均粒
径は、13μm以下、さらには0.1〜5μmであるこ
とが好ましい。前記平均粒径が13μmを超えると、リ
チウム吸蔵時に膨張応力によって結晶粒自体が粉砕され
る傾向があり、活物質が微粉化しやすくなる。また、任
意の断面で観測されるA相およびB相の結晶粒の平均断
面積は、10 -7cm2以下、さらには10-9〜10-8
2であることが好ましい。また、活物質粒子の平均粒
径は、非水電解質二次電池の負極が一般に80μm程度
のシート状であることから、45μm以下、さらには5
〜30μmであることが好ましい。粒径が40μmを超
えると、シート状負極の表面に凹凸が多くなり、電池特
性が低下する傾向がある。
Average grain size of crystal grains constituting phase A and phase B
The diameter should be 13 μm or less, and further 0.1 to 5 μm.
Is preferred. When the average particle size exceeds 13 μm,
The crystal grains themselves are crushed by the expansion stress during occlusion of titanium.
The active material tends to be pulverized. Also,
Average breakage of A-phase and B-phase crystal grains observed in the desired cross section
Area is 10 -7cmTwoBelow, and even 10-9-10-8c
mTwoIt is preferred that Also, the average particle size of the active material particles
The diameter of the negative electrode of a non-aqueous electrolyte secondary battery is generally about 80 μm.
45 μm or less, and even 5
It is preferably from 30 to 30 μm. Particle size exceeds 40μm
As a result, the surface of the sheet-shaped negative electrode becomes uneven,
Properties tend to decrease.

【0026】本発明の活物質内には、A相とB相の他
に、さらに別の相、例えば式:M1 2”で示され、
b<xを満たす組成の相などが存在していてもよい。こ
こで、M1”は前記(m1)群から選択された少なくとも
1種の元素であり、M2”は前記(m2)群から選択され
た少なくとも1種の元素である。また、例えば(m1
群から選択された元素のみからなる相が1種以上存在し
てもよい。この場合、放電容量はわずかに減少するが、
さらに長寿命な活物質粒子を得ることが可能となる。ま
た、(m2)群から選択された元素のみからなる相も存
在してよいが、電池の特性上、全活物質中の10重量%
以下であることが好ましい。
In the active material of the present invention, in addition to the phase A and the phase B,
And yet another phase, such as the formula: M1" xMTwo"
A phase having a composition satisfying b <x may be present. This
Where M1"Is the above (m1) At least selected from group
One kind of element, MTwo"Is the above (mTwo) Selected from the group
And at least one element. For example, (m1)
At least one phase consisting of only the elements selected from the group
You may. In this case, the discharge capacity decreases slightly,
Further, active material particles having a longer life can be obtained. Ma
(MTwo) Some phases consist only of elements selected from the group
However, due to the characteristics of the battery, 10% by weight of the total active material
The following is preferred.

【0027】前記活物質において、A相が、NaS
2、KSn2、SrSn3、BaSn3、LaSn2、C
eSn3、ZrSn2、MnSn2、CoSn2、PdSn
2またはFeSn2の単独または2種以上である場合、B
相は、Na2Sn、KSn、La2Sn、Zr3Sn2、Z
4Sn、V3Sn、Nb3Sn、Ta3Sn、MnSn、
Mn2Sn、Mn3Sn、FeSn、Fe1.3Sn、Fe3
Sn、CoSn、Co3Sn2、Ni3Sn2、Ni3
n、Cu6Sn5、Cu3Sn、Cu4Sn、Ti6Sn5
たはTi2Snの単独または2種以上であることが好ま
しい。
In the above-mentioned active material, the phase A is NaS
n 2 , KSn 2 , SrSn 3 , BaSn 3 , LaSn 2 , C
eSn 3 , ZrSn 2 , MnSn 2 , CoSn 2 , PdSn
2 or FeSn 2 alone or in combination of two or more,
The phases are Na 2 Sn, KSn, La 2 Sn, Zr 3 Sn 2 , Z
r 4 Sn, V 3 Sn, Nb 3 Sn, Ta 3 Sn, MnSn,
Mn 2 Sn, Mn 3 Sn, FeSn, Fe 1.3 Sn, Fe 3
Sn, CoSn, Co 3 Sn 2 , Ni 3 Sn 2 , Ni 3 S
n, Cu 6 Sn 5, Cu 3 Sn, Cu 4 Sn, is preferably Ti 6 Sn 5 or Ti 2 Sn alone or in combination.

【0028】また、前記活物質において、A相が、Na
Sn、KSn、FeSn、CoSnまたはPdSnの単
独または2種以上である場合、B相は、Na2Sn、L
2Sn、Zr3Sn2、Zr4Sn、V3Sn、Nb3
n、Ta3Sn、Mn2Sn、Mn3Sn、Fe1.3Sn、
Fe3Sn、Co3Sn2、Ni3Sn2、Ni3Sn、Cu
6Sn5、Cu3Sn、Cu4Sn、Ti6Sn5またはTi
2Snの単独または2種以上であることが好ましい。
In the above-mentioned active material, the phase A is Na
Sn, KSn, FeSn, CoSn or PdSn
In the case of Germany or two or more, the phase B is NaTwoSn, L
aTwoSn, ZrThreeSnTwo, ZrFourSn, VThreeSn, NbThreeS
n, TaThreeSn, MnTwoSn, MnThreeSn, Fe1.3Sn,
FeThreeSn, CoThreeSnTwo, NiThreeSnTwo, NiThreeSn, Cu
6SnFive, CuThreeSn, CuFourSn, Ti6SnFiveOr Ti
TwoIt is preferable that Sn is used alone or in combination of two or more.

【0029】また、前記活物質において、A相が、Ti
6Sn5またはCu6Sn5の単独または2種である場合、
B相は、Na2Sn、La2Sn、Zr3Sn2、Zr4
n、V3Sn、Nb3Sn、Ta3Sn、Mn2Sn、Mn
3Sn、Ti3Sn、Cu3Sn、Fe3Sn、Fe6
n、Fe12Sn、Co3Sn2、Ni3Sn2、Ni3Sn、
Cu4SnまたはTi2Snの単独または2種以上である
ことが好ましい。
In the above-mentioned active material, the phase A is Ti
When 6 Sn 5 or Cu 6 Sn 5 is used alone or in combination,
The B phase is composed of Na 2 Sn, La 2 Sn, Zr 3 Sn 2 , and Zr 4 S
n, V 3 Sn, Nb 3 Sn, Ta 3 Sn, Mn 2 Sn, Mn
3 Sn, Ti 3 Sn, Cu 3 Sn, Fe 3 Sn, Fe 6 S
n, Fe 12 Sn, Co 3 Sn 2 , Ni 3 Sn 2 , Ni 3 Sn,
It is preferable that Cu 4 Sn or Ti 2 Sn be used alone or in combination.

【0030】また、前記活物質において、A相が、Na
2Sn、K2Sn、Mg2Sn、Ca2Sn、SrSn、B
2Sn、La2SnまたはTi2Snの単独または2種
以上である場合、B相は、Mn3Sn、Fe3Sn、Fe
6Sn、Fe12Sn、Ni3Sn、Ni6Sn、Cu3
n、Cu4SnまたはTi3Snの単独または2種以上で
あることが好ましい。
In the above active material, the phase A may be Na
2 Sn, K 2 Sn, Mg 2 Sn, Ca 2 Sn, SrSn, B
a 2 Sn, if it is La 2 Sn or Ti 2 Sn alone or two or more, B phase, Mn 3 Sn, Fe 3 Sn , Fe
6 Sn, Fe 12 Sn, Ni 3 Sn, Ni 6 Sn, Cu 3 S
It is preferable that n, Cu 4 Sn or Ti 3 Sn be used alone or in combination.

【0031】また、前記活物質において、A相が、Na
Si2、CaSi2、SrSi2、BaSi2、YSi2
LaSi2、CeSi2、TiSi2、ZrSi2、VSi
2、NbSi2、TaSi2、CrSi2、MoSi2、W
Si2、MnSi2、CoSi 2、CuSi2、FeSi2
またはNiSi2の単独または2種以上である場合、B
相は、NaSi、KSi、Mg2Si、Ca2Si、Ce
2Si、TiSi、Ti5Si3、ZrSi、V3Si、N
5Si3、Ta2Si、CrSi、Cr2Si、Mo3
i、W3Si2、MnSi、Mn5Si3、Mn3Si、F
eSi、Fe5Si3、Fe3Si、CoSi、Co2
i、Co3Si、NiSi、Ni3Si2、Ni2Si、C
uSi、Cu6Si5、Cu3SiまたはCu4Siの単独
または2種以上であることが好ましい。
In the above-mentioned active material, the phase A is Na
SiTwo, CaSiTwo, SrSiTwo, BaSiTwo, YSiTwo,
LaSiTwo, CeSiTwo, TiSiTwo, ZrSiTwo, VSi
Two, NbSiTwo, TaSiTwo, CrSiTwo, MoSiTwo, W
SiTwo, MnSiTwo, CoSi Two, CuSiTwo, FeSiTwo
Or NiSiTwoB alone or in combination of two or more
The phases are NaSi, KSi, MgTwoSi, CaTwoSi, Ce
TwoSi, TiSi, TiFiveSiThree, ZrSi, VThreeSi, N
bFiveSiThree, TaTwoSi, CrSi, CrTwoSi, MoThreeS
i, WThreeSiTwo, MnSi, MnFiveSiThree, MnThreeSi, F
eSi, FeFiveSiThree, FeThreeSi, CoSi, CoTwoS
i, CoThreeSi, NiSi, NiThreeSiTwo, NiTwoSi, C
uSi, Cu6SiFive, CuThreeSi or CuFourSi alone
Alternatively, two or more kinds are preferable.

【0032】また、前記活物質において、A相が、Na
Si、KSi、CaSi、BaSi、TiSi、ZrS
i、CrSi、MnSi、FeSi、CoSi、PdS
i、NiSiまたはCuSiの単独または2種以上であ
る場合、B相は、Mg2Si、Ca2Si、Ce2Si、
Ti5Si3、V3Si、Nb5Si3、Ta2Si、Cr 2
Si、Mo3Si、W3Si2、Mn5Si3、Mn3Si、
Fe5Si3、Fe3Si、Co2Si、Co3Si、Ni3
Si2、Ni2Si、Cu6Si5、Cu3SiまたはCu4
Siの単独または2種以上であることが好ましい。
In the above-mentioned active material, the phase A is Na
Si, KSi, CaSi, BaSi, TiSi, ZrS
i, CrSi, MnSi, FeSi, CoSi, PdS
i, NiSi or CuSi alone or in combination of two or more
If the B phase is MgTwoSi, CaTwoSi, CeTwoSi,
TiFiveSiThree, VThreeSi, NbFiveSiThree, TaTwoSi, Cr Two
Si, MoThreeSi, WThreeSiTwo, MnFiveSiThree, MnThreeSi,
FeFiveSiThree, FeThreeSi, CoTwoSi, CoThreeSi, NiThree
SiTwo, NiTwoSi, Cu6SiFive, CuThreeSi or CuFour
It is preferable that Si is used alone or in combination.

【0033】また、前記活物質において、A相が、Ti
5Si3、Nb5Si3、W3Si2、Mn5Si3、Fe5
3またはCu6Si5の単独または2種以上である場
合、B相は、Mg2Si、Ca2Si、Ce2Si、V3
i、Ta2Si、Cr2Si、Mo 3Si、Mn3Si、F
3Si、Co2Si、Co3Si、Ni2Si、Cu3
iまたはCu4Siの単独または2種以上であることが
好ましい。
In the above active material, the phase A is Ti
FiveSiThree, NbFiveSiThree, WThreeSiTwo, MnFiveSiThree, FeFiveS
iThreeOr Cu6SiFiveIs a single or two or more
If the B phase is MgTwoSi, CaTwoSi, CeTwoSi, VThreeS
i, TaTwoSi, CrTwoSi, Mo ThreeSi, MnThreeSi, F
eThreeSi, CoTwoSi, CoThreeSi, NiTwoSi, CuThreeS
i or CuFourSi alone or two or more types
preferable.

【0034】また、前記活物質において、A相が、Mg
2Si、Ca2Si、SrSi、Ce 2Si、Cr2Si、
Co2Si、Pd2SiまたはCu2Siの単独または2
種以上である場合、B相は、V3Si、Mo3Si、Mn
3Si、Fe3Si、Co3Si、Cu3SiまたはCu4
Siの単独または2種以上であることが好ましい。
Further, in the above active material, the phase A may be composed of Mg
TwoSi, CaTwoSi, SrSi, Ce TwoSi, CrTwoSi,
CoTwoSi, PdTwoSi or CuTwoSi alone or 2
If more than one species, phase BThreeSi, MoThreeSi, Mn
ThreeSi, FeThreeSi, CoThreeSi, CuThreeSi or CuFour
It is preferable that Si is used alone or in combination.

【0035】また、前記活物質において、A相が、Ca
Al4、CaAl2、SrAl4、BaAl4、BaA
2、LaAl4、LaAl2、CeAl4、CeAl2、T
iAl3、ZrAl3、ZrAl2、VAl3、V5Al8
NbAl3、TaAl3、CrAl4、MoAl3、WAl
4、MnAl4、MnAl3、Co2Al5、CuAl2、F
eAl3、FeAl2、NiAl3またはNi2Al3の単
独または2種以上である場合、B相が、SrAl、Ba
Al、LaAl、La3Al2、CeAl、Ce3Al2
TiAl、ZrAl、Zr2Al、Mo3Al、MnA
l、FeAl、Fe3Al、CoAl、NiAl、Cu
AlまたはCu4Al3の単独または2種以上であること
が好ましい。
In the above active material, the phase A is Ca
Al 4 , CaAl 2 , SrAl 4 , BaAl 4 , BaA
l 2, LaAl 4, LaAl 2 , CeAl 4, CeAl 2, T
iAl 3 , ZrAl 3 , ZrAl 2 , VAl 3 , V 5 Al 8 ,
NbAl 3 , TaAl 3 , CrAl 4 , MoAl 3 , WAl
4 , MnAl 4 , MnAl 3 , Co 2 Al 5 , CuAl 2 , F
When eAl 3 , FeAl 2 , NiAl 3 or Ni 2 Al 3 is used alone or in combination of two or more, the B phase is SrAl, Ba
Al, LaAl, La 3 Al 2 , CeAl, Ce 3 Al 2 ,
TiAl, ZrAl, Zr 2 Al, Mo 3 Al, MnA
1, FeAl, Fe 3 Al, CoAl, NiAl, Cu
It is preferable that Al or Cu 4 Al 3 be used alone or in combination.

【0036】また、前記活物質において、A相が、Sr
Al、BaAl、LaAl、CeAl、TiAl、Zr
Al、MnAl、FeAl、CoAl、NiAlまたは
CuAlの単独または2種以上である場合、B相は、L
3Al2、Ce3Al2、Zr 2Al、Mo3Al、Fe3
AlまたはCu4Al3の単独または2種以上であること
が好ましい。
In the above active material, the phase A is Sr
Al, BaAl, LaAl, CeAl, TiAl, Zr
Al, MnAl, FeAl, CoAl, NiAl or
When CuAl is used alone or in combination of two or more, the B phase is L
aThreeAlTwo, CeThreeAlTwo, Zr TwoAl, MoThreeAl, FeThree
Al or CuFourAlThreeSingly or two or more
Is preferred.

【0037】本発明に係る活物質は、例えば各種原料元
素の単体を塊状、板状または粒状で任意の比率で混合
し、所定の熱処理を行う方法、例えばプラズマ法、アト
マイズ法、急冷法または鋳造法を単独で、または組み合
わせて用いることにより合成することができる。また、
他には、メカニカルアロイ法、メカノケミカル法により
合成することができる。前記プラズマ法によれば、微少
な粒子が得られやすく、前記アトマイズ法によれば、微
少で球形の粒子が得られやすく、量産性がよい。前記急
冷法によれば、微少な組織の粒子が得られやすく、前記
鋳造法によれば、合成が容易である。前記メカニカルア
ロイ法や前記メカノケミカル法によれば、微少粒子、微
細な組織が実現できる。より好ましい前記活物質の製造
法としては、例えば各種原料元素の単体を、塊状、板状
または粒状で任意の比率で混合し、アーク溶解炉で鋳造
する工程、得られた鋳造品を、アルゴン雰囲気下、噴射
ノズル径0.5〜5mmφ、噴射圧50〜300kgf
/cm2でガスアトマイズ法により球状粒子とする工程
からなる製造法が挙げられる。
The active material according to the present invention may be, for example, a method in which simple elements of various raw materials are mixed in an arbitrary ratio in the form of a block, a plate, or a granule and subjected to a predetermined heat treatment, for example, a plasma method, an atomizing method, a quenching method or a casting method. It can be synthesized by using the methods alone or in combination. Also,
Alternatively, it can be synthesized by a mechanical alloy method or a mechanochemical method. According to the plasma method, minute particles are easily obtained, and according to the atomizing method, minute spherical particles are easily obtained, and mass productivity is good. According to the quenching method, particles having a fine structure are easily obtained, and according to the casting method, synthesis is easy. According to the mechanical alloy method or the mechanochemical method, fine particles and a fine structure can be realized. As a more preferable method for producing the active material, for example, a step of mixing simple substances of various raw materials in an arbitrary ratio in a lump, a plate, or a granule, and casting in an arc melting furnace, Bottom, injection nozzle diameter 0.5-5mmφ, injection pressure 50-300kgf
/ Cm 2 , which includes a step of forming spherical particles by a gas atomizing method.

【0038】本発明の非水電解質二次電池は、前記活物
質を用いて一般的な方法で負極を作製し、充放電可能な
正極および非水電解液と組み合わせれば、得ることがで
きる。
The non-aqueous electrolyte secondary battery of the present invention can be obtained by preparing a negative electrode by a general method using the active material, and combining the negative electrode with a chargeable / dischargeable positive electrode and a non-aqueous electrolyte.

【0039】[0039]

【実施例】次に、本発明を実施例に基づいてさらに具体
的に説明するが、これらは本発明を限定するものではな
い。 《実施例1〜65》表1〜3に示す活物質組成(原料元
素の組成)を有し、A相、B相、(m2)群から選択さ
れた元素のみからなる相(表1〜3中ではC相と示す。
なお、C相の列において、( )内の数値は活物質中に
おけるC相の重量%を示す。表4において同じ。)およ
びその他の相(表1〜3中、その他の相の列における
「-」という表示は、その他の相が存在しないことを表
すものではない。表4において同じ。)からなる各活物
質を以下の手順で調製した。各種原料元素の単体を、塊
状、板状または粒状で任意の比率で混合し、アーク溶解
炉で鋳造した。得られた鋳造品を、アルゴン雰囲気下、
ガスアトマイズ法を用いて球状粒子にした。このとき、
噴射ノズル径は1mmφ、噴射圧は100kgf/cm
2であった。得られた粒子に45ミクロンメッシュのふ
るいを通し、平均粒径28μmの活物質粒子を得た。
EXAMPLES Next, the present invention will be described more specifically based on examples, but these do not limit the present invention. << Examples 1 to 65 >> A phase having an active material composition (composition of raw material elements) shown in Tables 1 to 3 and consisting of only an element selected from the A phase, the B phase, and the (m 2 ) group (Tables 1 to 6) 3 shows the phase C.
In the column of the C phase, the numerical value in parentheses indicates the weight% of the C phase in the active material. Same in Table 4. ) And other phases (the indication of “-” in the row of other phases in Tables 1 to 3 does not mean that there is no other phase; the same applies in Table 4). It was prepared by the following procedure. Simple materials of various raw material elements were mixed in an arbitrary ratio in a lump, plate, or granule, and cast in an arc melting furnace. The obtained casting is placed under an argon atmosphere.
Spherical particles were formed by using a gas atomizing method. At this time,
Injection nozzle diameter is 1mmφ, injection pressure is 100kgf / cm
Was 2 . The obtained particles were passed through a 45-micron mesh sieve to obtain active material particles having an average particle size of 28 μm.

【0040】得られた活物質粒子をX線回折により分析
し、表1に示す複数の相からなり、A相30〜65重量
%、B相30〜70重量%、(m2)群から選択された
元素のみからなる相(C相)0〜10重量%、その他の
相0〜20重量%からなるものを選択した。選択した活
物質粒子に対してEPMAによる表面分析を行ったとこ
ろ、どの活物質粒子も結晶粒の平均粒径は0.3〜13
μmの範囲内であった。また、A相およびB相を構成す
る結晶粒の平均断面積は、最大でも5x10-8cm2
あった。
The obtained active material particles were analyzed by X-ray diffraction, and consisted of a plurality of phases shown in Table 1, and were selected from A-phase 30 to 65% by weight, B-phase 30 to 70% by weight, (m 2 ) group. A phase (C phase) composed of only the selected elements (0 to 10% by weight) and another phase composed of 0 to 20% by weight were selected. When the selected active material particles were subjected to surface analysis by EPMA, the average particle size of the crystal grains was 0.3 to 13 for all the active material particles.
It was in the range of μm. The average sectional area of the crystal grains constituting the A phase and the B phase was 5 × 10 −8 cm 2 at the maximum.

【0041】[0041]

【表1】 [Table 1]

【0042】[0042]

【表2】 [Table 2]

【0043】[0043]

【表3】 [Table 3]

【0044】また、得られた活物質粒子の断面における
A相およびB相の状態は以下のようであった。すなわ
ち、いずれの活物質も、A相とB相とが接触した界面を
有しており、A相の50重量%以上が、B相のマトリッ
クス中にB相と接触した状態で分散していた。
The states of the A phase and the B phase in the cross section of the obtained active material particles were as follows. That is, each active material had an interface where the A phase and the B phase were in contact with each other, and 50% by weight or more of the A phase was dispersed in the matrix of the B phase in a state of being in contact with the B phase. .

【0045】前記活物質を負極材料に用いて図1に示す
試験セルを作製した。前記活物質の粉末7.5gに対し
て、導電剤として黒鉛粉末2g、結着剤としてポリエチ
レン粉末0.5gを混合し、合剤とした。この合剤0.
1gを直径17.5mmに加圧成型して電極1とし、ケ
ース3の中に設置した。微孔性ポリプロピレンセパレー
タ7を電極上に置いた。1モル/リットルとなるように
過塩素酸リチウム(LiClO4)を溶解したエチレン
カーボネートとジメトキシエタンとの体積比で1:1の
混合溶液を非水電解質としてセパレータ上に注液した。
この上に、内側に直径17.5mmの金属リチウム4を張
り付け、外周部にポリプロピレンガスケット8を付けた
封口板6を置いて、封口し試験セルとした。なお、図1
中、2は電極1の集電体を、5は金属リチウムの集電体
を示す。
A test cell as shown in FIG. 1 was prepared by using the active material as a negative electrode material. To 7.5 g of the active material powder, 2 g of graphite powder as a conductive agent and 0.5 g of polyethylene powder as a binder were mixed to form a mixture. The mixture 0.
1 g was pressure-molded to a diameter of 17.5 mm to form an electrode 1, which was placed in a case 3. A microporous polypropylene separator 7 was placed on the electrode. A 1: 1 by volume mixed solution of ethylene carbonate and dimethoxyethane in which lithium perchlorate (LiClO 4 ) was dissolved so as to be 1 mol / liter was poured on the separator as a non-aqueous electrolyte.
On this, metal lithium 4 having a diameter of 17.5 mm was adhered on the inside, and a sealing plate 6 with a polypropylene gasket 8 attached on the outer peripheral portion was placed thereon to form a test cell. FIG.
Among them, 2 indicates a current collector of the electrode 1 and 5 indicates a current collector of metallic lithium.

【0046】この試験セルについて、0.5mAの定電
流で、電極1がリチウム対極に対して0Vになるまでカ
ソード分極し(活物質電極を負極として見る場合、充電
に相当する。)、次に電極が1.5Vになるまでアノー
ド分極した(活物質電極を負極として見る場合、放電に
相当する。)。その後、カソード分極、アノード分極を
繰り返した。このときの活物質1gあたりの初回放電容
量を表1〜3に示す。次に、試験セルを分解し、カソー
ド分極後およびカソード分極、アノード分極を10サイ
クル繰り返した後の電極1を取り出し、観察したとこ
ろ、電極表面における金属リチウムの析出(デンドライ
ト)はみられなかった。
The test cell was cathode-polarized at a constant current of 0.5 mA until the electrode 1 became 0 V with respect to the lithium counter electrode (corresponding to charging when the active material electrode was viewed as a negative electrode). Anode polarization was performed until the voltage of the electrode reached 1.5 V (corresponding to discharge when the active material electrode was viewed as a negative electrode). Thereafter, cathodic polarization and anodic polarization were repeated. Tables 1 to 3 show the initial discharge capacity per 1 g of the active material at this time. Next, the test cell was disassembled, and the electrode 1 after cathode polarization and after repeating 10 times of cathode polarization and anodic polarization was taken out and observed. As a result, no deposition (dendrite) of metallic lithium on the electrode surface was observed.

【0047】次に、前記活物質を負極に用いた電池のサ
イクル特性を評価するため、図2に示す円筒型電池を作
製した。正極活物質であるLiMn1.8Co0.24は、
Li2CO3とMn34とCoCO3とを所定のモル比で
混合し、900℃で加熱することによって合成した。さ
らに、これを100メッシュ以下に分級したものを正極
活物質とした。正極活物質100gに対して、導電剤と
して炭素粉末を10g、結着剤としてポリ4フッ化エチ
レンの水性ディスパージョンを樹脂成分で8gおよび純
水を加え、ペースト状にし、チタンの芯材に塗布し、乾
燥、圧延して正極板11を得た。
Next, in order to evaluate the cycle characteristics of the battery using the active material for the negative electrode, a cylindrical battery shown in FIG. 2 was prepared. LiMn 1.8 Co 0.2 O 4 , which is a positive electrode active material,
It was synthesized by mixing Li 2 CO 3 , Mn 3 O 4, and CoCO 3 at a predetermined molar ratio and heating at 900 ° C. Furthermore, what classified this into 100 mesh or less was used as the positive electrode active material. To 100 g of the positive electrode active material, 10 g of carbon powder as a conductive agent, 8 g of an aqueous dispersion of polytetrafluoroethylene as a binder, and 8 g of pure water as a resin component are added to form a paste, which is applied to a titanium core material. Then, drying and rolling were performed to obtain a positive electrode plate 11.

【0048】次に、前記各活物質と、導電剤として黒鉛
粉末と、結着剤としてフッ素樹脂(テフロン)バインダ
ーとを、重量比で70:20:10の割合で混合し、石
油系溶剤を用いてペースト状にし、銅の芯材に塗布し、
100℃で乾燥し、負極板12を得た。
Next, each of the above active materials, graphite powder as a conductive agent, and a fluororesin (Teflon) binder as a binder were mixed at a weight ratio of 70:20:10, and a petroleum solvent was added. Into a paste, apply to the copper core,
It dried at 100 degreeC and the negative electrode plate 12 was obtained.

【0049】スポット溶接にて取り付けた芯材と同材質
の正極リード14を有する正極板11とスポット溶接に
て取り付けた芯材と同材質の負極リード15を有する負
極板12との間に、両極板より幅の広い帯状のセパレー
タ13を介在させ、全体を渦巻状に捲回した。捲回物の
上下それぞれにポリプロピレン製の上部絶縁板16およ
び下部絶縁板17を配して電槽18に挿入した。電槽1
8の上部に段部を形成させた後、非水電解液として、1
モル/リットルとなるように過塩素酸リチウムを溶解し
たエチレンカーボネートとジメトキシエタンとの体積比
で1:1の混合溶液を注入し、封口板19で密閉し、電
池を完成させた。セパレータ13には、多孔性ポリプロ
ピレンを用いた。なお、図2中、20は正極端子を示
す。
Between the positive electrode plate 11 having the positive electrode lead 14 of the same material as the core material attached by spot welding and the negative electrode plate 12 having the negative electrode lead 15 of the same material as the core material attached by spot welding, The whole was spirally wound with a band-shaped separator 13 wider than the plate. An upper insulating plate 16 and a lower insulating plate 17 made of polypropylene were arranged on the upper and lower sides of the wound material, respectively, and inserted into the battery case 18. Battery case 1
After forming a step on the top of 8, a non-aqueous electrolyte
A mixed solution of lithium carbonate and dimethoxyethane in a volume ratio of 1: 1 in which lithium perchlorate was dissolved at a molar ratio of 1: 1 was injected and sealed with a sealing plate 19 to complete the battery. Porous polypropylene was used for the separator 13. In FIG. 2, reference numeral 20 denotes a positive electrode terminal.

【0050】得られた電池について、試験温度30℃
で、充放電電流1mA/cm2、充放電電圧範囲4.3
〜2.6Vで充放電サイクル試験を行った。1サイクル
目に対する100サイクル目の容量維持率を表1〜3に
示す。
The obtained battery was tested at a test temperature of 30 ° C.
, Charge / discharge current 1 mA / cm 2 , charge / discharge voltage range 4.3
A charge / discharge cycle test was performed at ~ 2.6V. Tables 1 to 3 show the capacity retention ratio at the 100th cycle with respect to the first cycle.

【0051】《比較例1〜7》表4に示すSn単体およ
びAl単体の粒子(平均粒径26μm)、Cu6Sn5
のみからなる粒子、FeAl相のみからなる粒子(いず
れも平均粒径28μm、結晶粒の平均粒径2.1μm)
およびMg2Ge相とMg単体相とからなる粒子(平均
粒径25μm、結晶粒の平均粒径3.2μm、Mg2
e:Mgは7:3(モル比))、Mg2Sn相とMg単
体相とからなる粒子(平均粒径27μm、結晶粒の平均
粒径5.3μm、Mg2Sn:Mgは8:2(モル
比))、Mg2Sn相とSn相とからなる粒子(平均粒
径27μm、結晶粒の平均粒径5.3μm、Mg2
n:Snは7:3(モル比))を使用した場合について
も、試験セルの初回放電容量および円筒型電池の1サイ
クル目に対する100サイクル目の容量維持率を実施例
の場合と同様に求めた。これらの結果を表4に示す。
<< Comparative Examples 1 to 7 >> Particles of Sn alone and Al alone (average particle diameter 26 μm), particles composed only of Cu 6 Sn 5 phase, particles composed only of FeAl phase (all shown in Table 4) 28 μm, average grain size of crystal grains 2.1 μm)
And particles composed of an Mg 2 Ge phase and a Mg single phase (average particle diameter 25 μm, average crystal grain diameter 3.2 μm, Mg 2 G
e: Mg: 7: 3 (molar ratio), particles composed of Mg 2 Sn phase and Mg single phase (average particle diameter 27 μm, average crystal particle diameter 5.3 μm, Mg 2 Sn: Mg 8: 2) (Molar ratio)), particles composed of Mg 2 Sn phase and Sn phase (average particle size 27 μm, average crystal particle size 5.3 μm, Mg 2 S
In the case where n: Sn is 7: 3 (molar ratio)), the initial discharge capacity of the test cell and the capacity retention ratio at the 100th cycle with respect to the first cycle of the cylindrical battery are obtained in the same manner as in the example. Was. Table 4 shows the results.

【0052】[0052]

【表4】 [Table 4]

【0053】表1〜4は、本発明に係る活物質を負極に
用いた電池は、比較例に比べて高容量であり、サイクル
特性が格段に向上することを示している。なお、前記実
施例では、円筒型電池を作製したが、コイン型、角型お
よび偏平型の二次電池においても同様の効果が得られる
ことを確認している。また、前記実施例では、ガスアト
マイズ法を採用したが、プラズマ法、急冷法、鋳造法、
メカニカルアロイ法およびメカノケミカル法を採用して
も同様の効果が得られることを確認している。また、前
記実施例では、正極としてLiMn1.8Co0.24を用
いたが、LiMn24、LiCoO2、LiNiO2など
を用いた場合にも同様の効果が得られることを確認して
いる。
Tables 1 to 4 show that the batteries using the active material according to the present invention for the negative electrode have higher capacities than the comparative examples, and the cycle characteristics are remarkably improved. In the above-described example, a cylindrical battery was manufactured. However, it has been confirmed that the same effect can be obtained in coin-type, square-type, and flat-type secondary batteries. Further, in the above embodiment, the gas atomizing method was adopted, but the plasma method, the quenching method, the casting method,
It has been confirmed that the same effect can be obtained even when the mechanical alloy method and the mechanochemical method are employed. Further, in the above example, LiMn 1.8 Co 0.2 O 4 was used as the positive electrode. However, it has been confirmed that similar effects can be obtained when LiMn 2 O 4 , LiCoO 2 , LiNiO 2 or the like is used.

【0054】[0054]

【発明の効果】本発明によれば、高エネルギー密度でデ
ンドライトによる短絡がなく、サイクル寿命に優れた非
水電解質二次電池を得ることができる。
According to the present invention, a non-aqueous electrolyte secondary battery having a high energy density, no short circuit due to dendrite, and excellent cycle life can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の負極活物質の特性を評価するために実
施例で用いた試験セルの断面概略図である。
FIG. 1 is a schematic cross-sectional view of a test cell used in an example to evaluate characteristics of a negative electrode active material of the present invention.

【図2】本発明の負極活物質の特性を評価するために実
施例で用いた円筒型電池の断面概略図である。
FIG. 2 is a schematic cross-sectional view of a cylindrical battery used in an example to evaluate characteristics of a negative electrode active material of the present invention.

【符号の説明】[Explanation of symbols]

1 電極 2 電極1の集電体 3 ケース 4 金属リチウム 5 金属リチウムの集電体 6 封口板 7 微孔性ポリプロピレンセパレータ 8 ガスケット 11 正極板 12 負極板 13 セパレータ 14 正極リード 15 負極リード 16 上部絶縁板 17 下部絶縁板 18 電槽 19 封口板 20 正極端子 DESCRIPTION OF SYMBOLS 1 Electrode 2 Current collector of electrode 1 3 Case 4 Metal lithium 5 Current collector of metal lithium 6 Sealing plate 7 Microporous polypropylene separator 8 Gasket 11 Positive electrode plate 12 Negative electrode plate 13 Separator 14 Positive electrode lead 15 Negative electrode lead 16 Upper insulating plate 17 Lower insulating plate 18 Battery case 19 Sealing plate 20 Positive electrode terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武澤 秀治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松田 宏夢 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H003 AA04 BA00 BB02 BC06 BD02 BD04 5H014 AA02 EE10 HH01 HH08 5H029 AJ05 AK03 AL11 AM03 AM04 AM05 BJ02 BJ03 BJ14 CJ00 HJ01 HJ15  ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Hideharu Takezawa 1006 Kadoma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. F term (reference) 5H003 AA04 BA00 BB02 BC06 BD02 BD04 5H014 AA02 EE10 HH01 HH08 5H029 AJ05 AK03 AL11 AM03 AM04 AM05 BJ02 BJ03 BJ14 CJ00 HJ01 HJ15

Claims (10)

【特許請求の範囲】[Claims] 【請求項1】 式(1):M1 a2で示され、0.25
≦a<3を満たす組成のA相および式(2):M1'
b2'で示され、1≦bおよびa<bを満たす組成のB
相を有する活物質であって、M1およびM1'は、Na、
K、Rb、Cs、Ce、Ti、Zr、Hf、V、Nb、
Ta、Ca、Sr、Ba、Y、La、Cr、Mo、W、
Mn、Tc、Ru、Os、Co、Rh、Ir、Ni、P
d、Cu、AgおよびFeよりなる(m1)群から選択
された少なくとも1種の元素であり、M2およびM2'
は、Al、Ga、In、Si、Ge、Sn、Pb、Sb
およびBiよりなる(m2)群から選択された少なくと
も1種の元素であることを特徴とする非水電解質二次電
池用負極活物質。
1. Formula (1): M 1 a M 2 , 0.25
A phase having a composition satisfying ≦ a <3 and formula (2): M 1
b B having a composition represented by M 2 ′ and satisfying 1 ≦ b and a <b
An active material having a phase, wherein M 1 and M 1 ′ are Na,
K, Rb, Cs, Ce, Ti, Zr, Hf, V, Nb,
Ta, Ca, Sr, Ba, Y, La, Cr, Mo, W,
Mn, Tc, Ru, Os, Co, Rh, Ir, Ni, P
at least one element selected from the group consisting of d, Cu, Ag, and Fe (m 1 ); M 2 and M 2
Represents Al, Ga, In, Si, Ge, Sn, Pb, Sb
A negative electrode active material for a non-aqueous electrolyte secondary battery, characterized in that it is at least one element selected from the group consisting of (m 2 ) and Bi.
【請求項2】 A相20〜80重量%、B相20〜80
重量%ならびにA相およびB相以外の相0〜50重量%
からなる請求項1記載の非水電解質二次電池用負極活物
質。
2. 20% to 80% by weight of phase A, 20 to 80% of phase B
% By weight and 0 to 50% by weight of phases other than the phases A and B
The negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, comprising:
【請求項3】 A相の50重量%以上が、B相のマトリ
ックス中にB相と接触した状態で分散している請求項1
または2記載の非水電解質二次電池用負極活物質。
3. The phase A, wherein 50% by weight or more of the phase A is dispersed in a matrix of the phase B in contact with the phase B.
Or the negative electrode active material for a non-aqueous electrolyte secondary battery according to 2.
【請求項4】 A相とB相のどちらか一方の相が、他方
の相のマトリックス中に平均粒径0.05〜20μmの
島状に分散しているか、またはA相とB相の両方が、そ
れぞれ平均粒径1〜20μmの粒子からなる請求項1〜
3のいずれかに記載の非水電解質二次電池用負極活物
質。
4. One of the phases A and B is dispersed in the matrix of the other phase in the form of islands having an average particle size of 0.05 to 20 μm, or both the A and B phases are dispersed. Comprises particles having an average particle size of 1 to 20 μm, respectively.
3. The negative electrode active material for a non-aqueous electrolyte secondary battery according to any one of 3.
【請求項5】 A相とB相とが、相互に入り組んだラメ
ラ構造を有する請求項1〜4のいずれかに記載の非水電
解質二次電池用負極活物質。
5. The negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the A phase and the B phase have a lamellar structure in which they are intertwined with each other.
【請求項6】 任意の断面で観測されるA相およびB相
の結晶粒の平均断面積が、10-7cm2以下である請求
項1〜5のいずれかに記載の非水電解質二次電池用負極
活物質。
6. The non-aqueous electrolyte secondary according to claim 1, wherein the average cross-sectional area of the crystal grains of the A phase and the B phase observed in an arbitrary cross section is 10 −7 cm 2 or less. Negative active material for batteries.
【請求項7】 活物質の平均粒径が、45μm以下であ
る請求項1記載の非水電解質二次電池用負極活物質。
7. The negative electrode active material for a non-aqueous electrolyte secondary battery according to claim 1, wherein the average particle size of the active material is 45 μm or less.
【請求項8】 プラズマ法、アトマイズ法、急冷法、鋳
造法、メカニカルアロイ法またはメカノケミカル法によ
り合成することを特徴とする請求項1〜7のいずれかに
記載の非水電解質二次電池用負極活物質の製造法。
8. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is synthesized by a plasma method, an atomizing method, a quenching method, a casting method, a mechanical alloy method, or a mechanochemical method. Manufacturing method of negative electrode active material.
【請求項9】 各種原料元素の単体を、塊状、板状また
は粒状で任意の比率で混合し、アーク溶解炉で鋳造する
工程、得られた鋳造品を、アルゴン雰囲気下、噴射ノズ
ル径0.5〜5mmφ、噴射圧50〜300kgf/c
2でガスアトマイズ法により球状粒子とする工程を有
することを特徴とする請求項1〜7のいずれかに記載の
非水電解質二次電池用負極活物質の製造法。
9. A process of mixing various raw material elements in a lump, plate or granule at an arbitrary ratio and casting in an arc melting furnace. 5-5mmφ, injection pressure 50-300kgf / c
preparation of the negative electrode active material for a nonaqueous electrolyte secondary battery according to any one of claims 1 to 7, characterized in that it comprises a step of spherical particles by a gas atomizing method in m 2.
【請求項10】 充放電可能な正極と、非水電解液と、
請求項1〜7のいずれかに記載の負極活物質からなる負
極とを具備する非水電解質二次電池。
10. A chargeable / dischargeable positive electrode, a non-aqueous electrolyte,
A nonaqueous electrolyte secondary battery comprising: a negative electrode comprising the negative electrode active material according to claim 1.
JP27070399A 1998-10-22 1999-09-24 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery Expired - Fee Related JP4056183B2 (en)

Priority Applications (4)

Application Number Priority Date Filing Date Title
JP27070399A JP4056183B2 (en) 1999-09-24 1999-09-24 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
EP99949336A EP1043789B1 (en) 1998-10-22 1999-10-20 Secondary cell having non-aqueous electrolyte
PCT/JP1999/005805 WO2000024070A1 (en) 1998-10-22 1999-10-20 Secondary cell having non-aqueous electrolyte
US09/598,206 US6265111B1 (en) 1998-10-22 2000-06-21 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP27070399A JP4056183B2 (en) 1999-09-24 1999-09-24 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2001093524A true JP2001093524A (en) 2001-04-06
JP4056183B2 JP4056183B2 (en) 2008-03-05

Family

ID=17489794

Family Applications (1)

Application Number Title Priority Date Filing Date
JP27070399A Expired - Fee Related JP4056183B2 (en) 1998-10-22 1999-09-24 Negative electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4056183B2 (en)

Cited By (19)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3676301B2 (en) * 2000-04-26 2005-07-27 三洋電機株式会社 Electrode for lithium secondary battery and lithium secondary battery
JP2005310487A (en) * 2004-04-20 2005-11-04 Pionics Co Ltd Cathode active material particles for lithium secondary battery, and its manufacturing method
JP2006120324A (en) * 2003-10-30 2006-05-11 Toshiba Corp Nonaqueous electrolyte secondary battery
CN1299371C (en) * 2003-04-17 2007-02-07 株式会社东芝 Nonaqueous electrolyte secondary battery
WO2007015508A1 (en) * 2005-08-02 2007-02-08 Showa Denko K.K. Alloy for negative electrode of lithium secondary battery
KR100681465B1 (en) 2004-07-30 2007-02-09 주식회사 엘지화학 Electrode active material with high capacity and good cycleability and lithium secondary cell comprising the same
KR100796664B1 (en) 2007-03-21 2008-01-22 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery
JPWO2007015508A1 (en) * 2005-08-02 2009-02-19 昭和電工株式会社 Alloy for lithium secondary battery negative electrode
JP2009110748A (en) * 2007-10-29 2009-05-21 Denso Corp Negative electrode active material for nonaqueous electrolyte battery, negative electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2010519411A (en) * 2007-02-22 2010-06-03 サントル ナショナル ドゥ ラ ルシェルシュ スィヤンティフィック(セーエヌエルエス) Novel materials containing Group 14 elements
JP2010282920A (en) * 2009-06-08 2010-12-16 Kobe Steel Ltd Anode material for lithium ion secondary battery, manufacturing method therefor, and lithium ion secondary battery
JP2011077055A (en) * 2010-12-20 2011-04-14 Sumitomo Metal Ind Ltd Anode material for nonaqueous electrolyte secondary battery
WO2012099056A1 (en) * 2011-01-17 2012-07-26 山陽特殊製鋼株式会社 Si alloy powder for negative electrode of lithium-ion secondary cell, and method for manufacturing same
JP2013110128A (en) * 2013-02-21 2013-06-06 Denso Corp Anode active material for nonaqueous electrolyte battery, anode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
US8574764B2 (en) 2006-11-27 2013-11-05 Samsung Sdi Co., Ltd. Negative active material including silicon active particles surrounded by copper, aluminum and tin metal matrix and rechargeable lithium battery including the same
KR101397019B1 (en) * 2007-01-25 2014-05-20 삼성에스디아이 주식회사 Composite anode active material, method of preparing the same, and anode and lithium battery containing the material
US8835051B2 (en) 2007-04-05 2014-09-16 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery including same
JP2014179216A (en) * 2013-03-14 2014-09-25 Mitsubishi Materials Corp Negative electrode active material for lithium ion secondary batteries, and lithium ion secondary battery arranged by use thereof
JP2018200876A (en) * 2014-02-25 2018-12-20 新日鐵住金株式会社 Negative electrode active material, negative electrode and battery

Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274060A (en) * 1987-05-01 1988-11-11 Fuji Elelctrochem Co Ltd Negative electrode for lithium secondary battery
JPH0547381A (en) * 1991-08-20 1993-02-26 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH0878011A (en) * 1994-09-08 1996-03-22 Agency Of Ind Science & Technol Lithium battery and manufacture of its negative electrode carrier
JPH0963651A (en) * 1995-06-12 1997-03-07 Hitachi Ltd Nonaqueous secondary battery, and its negative electrode material
JPH1186853A (en) * 1997-09-11 1999-03-30 Hitachi Ltd Lithium secondary battery
JP2000030703A (en) * 1997-06-03 2000-01-28 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
JP2000173616A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000173670A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Charging method for nonaqueous electrolyte secondary battery
JP2000173590A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery

Patent Citations (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS63274060A (en) * 1987-05-01 1988-11-11 Fuji Elelctrochem Co Ltd Negative electrode for lithium secondary battery
JPH0547381A (en) * 1991-08-20 1993-02-26 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
JPH0878011A (en) * 1994-09-08 1996-03-22 Agency Of Ind Science & Technol Lithium battery and manufacture of its negative electrode carrier
JPH0963651A (en) * 1995-06-12 1997-03-07 Hitachi Ltd Nonaqueous secondary battery, and its negative electrode material
JP2000030703A (en) * 1997-06-03 2000-01-28 Matsushita Electric Ind Co Ltd Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
JPH1186853A (en) * 1997-09-11 1999-03-30 Hitachi Ltd Lithium secondary battery
JP2000173616A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2000173670A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Charging method for nonaqueous electrolyte secondary battery
JP2000173590A (en) * 1998-12-02 2000-06-23 Matsushita Electric Ind Co Ltd Non-aqueous electrolyte secondary battery

Cited By (25)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3676301B2 (en) * 2000-04-26 2005-07-27 三洋電機株式会社 Electrode for lithium secondary battery and lithium secondary battery
CN1299371C (en) * 2003-04-17 2007-02-07 株式会社东芝 Nonaqueous electrolyte secondary battery
US7572552B2 (en) * 2003-04-17 2009-08-11 Kabushiki Kaisha Toshiba Nonaqueous electrolyte secondary battery
JP4625672B2 (en) * 2003-10-30 2011-02-02 株式会社東芝 Nonaqueous electrolyte secondary battery
JP2006120324A (en) * 2003-10-30 2006-05-11 Toshiba Corp Nonaqueous electrolyte secondary battery
JP2005310487A (en) * 2004-04-20 2005-11-04 Pionics Co Ltd Cathode active material particles for lithium secondary battery, and its manufacturing method
KR100681465B1 (en) 2004-07-30 2007-02-09 주식회사 엘지화학 Electrode active material with high capacity and good cycleability and lithium secondary cell comprising the same
WO2007015508A1 (en) * 2005-08-02 2007-02-08 Showa Denko K.K. Alloy for negative electrode of lithium secondary battery
JPWO2007015508A1 (en) * 2005-08-02 2009-02-19 昭和電工株式会社 Alloy for lithium secondary battery negative electrode
US8574764B2 (en) 2006-11-27 2013-11-05 Samsung Sdi Co., Ltd. Negative active material including silicon active particles surrounded by copper, aluminum and tin metal matrix and rechargeable lithium battery including the same
KR101397019B1 (en) * 2007-01-25 2014-05-20 삼성에스디아이 주식회사 Composite anode active material, method of preparing the same, and anode and lithium battery containing the material
JP2010519411A (en) * 2007-02-22 2010-06-03 サントル ナショナル ドゥ ラ ルシェルシュ スィヤンティフィック(セーエヌエルエス) Novel materials containing Group 14 elements
KR100796664B1 (en) 2007-03-21 2008-01-22 삼성에스디아이 주식회사 Negative active material for rechargeable lithium battery and rechargeable lithium battery
US8835053B2 (en) 2007-03-21 2014-09-16 Samsung Sdi Co., Ltd. Negative active material containing an intermetallic compound of silicon and a first metal and a metal matrix containing copper and aluminum for rechargeable lithium battery and rechargeable lithium battery containing the negative active material
US8835051B2 (en) 2007-04-05 2014-09-16 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery including same
JP2009110748A (en) * 2007-10-29 2009-05-21 Denso Corp Negative electrode active material for nonaqueous electrolyte battery, negative electrode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2010282920A (en) * 2009-06-08 2010-12-16 Kobe Steel Ltd Anode material for lithium ion secondary battery, manufacturing method therefor, and lithium ion secondary battery
JP2011077055A (en) * 2010-12-20 2011-04-14 Sumitomo Metal Ind Ltd Anode material for nonaqueous electrolyte secondary battery
WO2012099056A1 (en) * 2011-01-17 2012-07-26 山陽特殊製鋼株式会社 Si alloy powder for negative electrode of lithium-ion secondary cell, and method for manufacturing same
JP2012150910A (en) * 2011-01-17 2012-08-09 Sanyo Special Steel Co Ltd Si ALLOY POWDER FOR LITHIUM ION SECONDARY BATTERY NEGATIVE ELECTRODE AND MANUFACTURING METHOD FOR THE SAME
CN103403926A (en) * 2011-01-17 2013-11-20 山阳特殊制钢株式会社 Si alloy powder for negative electrode of lithium-ion secondary cell, and method for manufacturing same
US9397334B2 (en) 2011-01-17 2016-07-19 Sanyo Special Steel Co., Ltd. Si alloy powder for negative electrode of lithium-ion secondary cell, and method for manufacturing same
JP2013110128A (en) * 2013-02-21 2013-06-06 Denso Corp Anode active material for nonaqueous electrolyte battery, anode for nonaqueous electrolyte battery, and nonaqueous electrolyte battery
JP2014179216A (en) * 2013-03-14 2014-09-25 Mitsubishi Materials Corp Negative electrode active material for lithium ion secondary batteries, and lithium ion secondary battery arranged by use thereof
JP2018200876A (en) * 2014-02-25 2018-12-20 新日鐵住金株式会社 Negative electrode active material, negative electrode and battery

Also Published As

Publication number Publication date
JP4056183B2 (en) 2008-03-05

Similar Documents

Publication Publication Date Title
EP1043789B1 (en) Secondary cell having non-aqueous electrolyte
JP4837661B2 (en) Electrode active material having multi-component oxide coating layer and method for producing the same
JP2001093524A (en) Negative electrode for a non-aqueous electrolytic secondary cell, preparation thereof, and non-aqueous electrolytic secondary cell
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
JPH07230800A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP2001110414A (en) Material for activating positive electrode of lithium secondary battery and the lithium secondary battery
JP2001015102A (en) Nonaqueous electrolyte secondary battery and its manufacture
US20040062991A1 (en) Negative electrode for lithium secondary battery, method for preparing negative electrode for lithium secondary battery and lithium secondary battery
JPH1186854A (en) Lithium secondary battery
JPH11102699A (en) Lithium secondary battery and negative electrode used therefor
JP3503688B2 (en) Lithium secondary battery
JP4608743B2 (en) Nonaqueous electrolyte secondary battery
KR101080619B1 (en) Negative electrode active material method of producing the same and nonaqueous electrolyte cell
JP2001068112A (en) Negative electrode active substance for nonaqueous electrolyte secondary battery, manufacturing method thereof, and nonaqueous electrolyte secondary battery
JP4439660B2 (en) Nonaqueous electrolyte secondary battery
JP4694721B2 (en) Anode material for non-aqueous electrolyte secondary battery and method for producing the same
JP2005317447A (en) Battery
JP2002042811A (en) Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
JP4032893B2 (en) Anode material for non-aqueous electrolyte secondary battery
JP7337580B2 (en) Anode materials for lithium-ion batteries containing multicomponent silicides and silicon
JP2003272613A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
JP4056181B2 (en) Anode material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2003151543A (en) Negative electrode active substance and nonaqueous electrolyte secondary battery
JP2003282053A (en) Negative electrode material for non-aqueous electrolyte cell, negative electrode, and non-aqueous electrolyte cell
JP2000133261A (en) Nonaqueous electrolyte secondary battery and manufacture of same

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040427

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20070823

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071019

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20071115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20071211

R150 Certificate of patent or registration of utility model

Ref document number: 4056183

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 4

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 5

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 6

LAPS Cancellation because of no payment of annual fees