JP2001015102A - Nonaqueous electrolyte secondary battery and its manufacture - Google Patents

Nonaqueous electrolyte secondary battery and its manufacture

Info

Publication number
JP2001015102A
JP2001015102A JP11188160A JP18816099A JP2001015102A JP 2001015102 A JP2001015102 A JP 2001015102A JP 11188160 A JP11188160 A JP 11188160A JP 18816099 A JP18816099 A JP 18816099A JP 2001015102 A JP2001015102 A JP 2001015102A
Authority
JP
Japan
Prior art keywords
secondary battery
electrolyte secondary
compound
negative electrode
formula
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11188160A
Other languages
Japanese (ja)
Inventor
Yasuhiko Mifuji
靖彦 美藤
Toshitada Sato
俊忠 佐藤
Hideji Takesawa
秀治 武澤
Hiromu Matsuda
宏夢 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP11188160A priority Critical patent/JP2001015102A/en
Publication of JP2001015102A publication Critical patent/JP2001015102A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To improve the capacity and the cycle characteristic by forming a negative electrode with a compound of Li, two or more kinds out of 36, kinds of elements including Ce and other, and one or more kinds out of 9 kinds of elements including Al. SOLUTION: A negative electrode comprises a compound having a composition expressed by formula Li αM1βM2γ. In the formula, M1 is two or more kinds of elements out of Ce, Ti, Zr, B, P, Mg, Ca, Sr, Ba, T, La, Cr, Mo, W, Mn, Co, Ir, Ni, Fe, Pd, Cu, Ag, Zn, Na, K, V, Nb, Al, Ga, In, Is, Ge, Sn, Pb, Sb, and Bi. M2 is one or more kinds of elements out of Al, Ga, In, Is, Ge, Sn, Pb, Sb, and Bi, wherein, elements M1 and M2 shall be prevented from mutually overlapped. The α, β, and γ are set to 0<=α<100, 0.1<=β<11, and γ=1 respectively. FeCuSn, etc., are illustrated as suitable compounds.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解質二次電池
およびその製造法に関する。さらに詳しくは、電気容量
が高く、デンドライトの発生が抑制された信頼性の高い
負極を具備し、高エネルギー密度でデンドライトの成長
に起因する短絡のない非水電解質二次電池およびその製
造法に関する。
[0001] The present invention relates to a non-aqueous electrolyte secondary battery and a method for producing the same. More specifically, the present invention relates to a non-aqueous electrolyte secondary battery including a highly reliable negative electrode having high electric capacity and suppressed generation of dendrite, having a high energy density and free from short-circuit due to dendrite growth, and a method for manufacturing the same.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極に
用いた非水電解質二次電池は、高電圧・高エネルギー密
度が期待できることから、多くの研究が行われている。
これまでに非水電解質二次電池の正極活物質としては、
LiMn24、LiCoO2、LiNiO2、V25、C
25、MnO2、TiS2、MoS2などの遷移金属の
酸化物およびカルコゲン化合物が知られている。これら
は層状もしくはトンネル構造を有し、リチウムイオンが
出入りできる結晶構造を有している。一方、負極活物質
としては、金属リチウムが多く検討されている。しか
し、金属リチウムを用いた場合、充電時にその表面に樹
枝状のリチウムが析出し、充放電効率の低下やこれが正
極と接することによる内部短絡を生じるという問題があ
る。
2. Description of the Related Art Many studies have been made on non-aqueous electrolyte secondary batteries using lithium or a lithium compound as a negative electrode since high voltage and high energy density can be expected.
Until now, as positive electrode active materials for non-aqueous electrolyte secondary batteries,
LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , V 2 O 5 , C
Oxides of transition metals such as r 2 O 5 , MnO 2 , TiS 2 and MoS 2 and chalcogen compounds are known. These have a layered or tunnel structure, and have a crystal structure through which lithium ions can enter and exit. On the other hand, as a negative electrode active material, metallic lithium is often studied. However, when metallic lithium is used, there is a problem in that dendritic lithium precipitates on the surface during charging, which lowers the charge / discharge efficiency and causes an internal short circuit due to contact with the positive electrode.

【0003】前記問題に対しては、樹枝状のリチウムの
成長を抑制してリチウムを吸蔵、放出することができる
リチウム−アルミニウムなどのリチウム系合金を負極に
用いる検討がなされている。しかし、リチウム系合金を
用いた場合、深い充放電を繰り返すと電極の微細化が生
じるなど、サイクル特性に問題がある。
In order to solve the above problem, studies have been made on the use of a lithium-based alloy such as lithium-aluminum for the negative electrode, which can occlude and release lithium while suppressing the growth of dendritic lithium. However, in the case of using a lithium-based alloy, there is a problem in cycle characteristics, such as repetition of deep charge / discharge, resulting in miniaturization of electrodes.

【0004】近年は、金属リチウムやリチウム系合金よ
りも容量は小さいが、リチウムを可逆的に吸蔵・放出で
き、サイクル特性や安全性に優れた炭素材料を負極に用
いたリチウムイオン電池が実用化されている。このよう
な中、さらなる高容量化を目指して負極に酸化物を用い
る検討がなされている。例えば結晶質のSnOやSnO
2が、従来のWO2などに比べて高容量な負極材料である
ことが提案されている(特開平7−122274号公
報、特開平7−235293号公報)。また、SnSi
3やSnSi1-xx3などの非晶質酸化物を負極に用
いることで、サイクル特性を改善する提案がなされてい
る(特開平7−288123号公報)。しかし、未だ充
分満足な特性のものは得られていない。
In recent years, a lithium ion battery using a carbon material for a negative electrode, which has a smaller capacity than metallic lithium and a lithium-based alloy but can reversibly store and release lithium, and has excellent cycle characteristics and safety, has been commercialized. Have been. Under such circumstances, studies have been made to use an oxide for the negative electrode in order to further increase the capacity. For example, crystalline SnO or SnO
It has been proposed that No. 2 is a negative electrode material having a higher capacity than conventional WO 2 or the like (JP-A-7-122274 and JP-A-7-235293). In addition, SnSi
A proposal has been made to improve the cycle characteristics by using an amorphous oxide such as O 3 or SnSi 1-x P x O 3 for the negative electrode (Japanese Patent Application Laid-Open No. 7-288123). However, no satisfactory properties have yet been obtained.

【0005】[0005]

【発明が解決しようとする課題】本発明は、前記実状に
鑑み、充電時にリチウムを吸蔵してデンドライトを発生
せず、高容量でサイクル特性に優れた非水電解質二次電
池およびその製造法を提供することを目的とする。
SUMMARY OF THE INVENTION In view of the above-mentioned circumstances, the present invention provides a non-aqueous electrolyte secondary battery having a high capacity and excellent cycle characteristics which does not generate dendrite by occluding lithium during charging and a method of manufacturing the same. The purpose is to provide.

【0006】[0006]

【課題を解決するための手段】本発明は、充放電可能な
正極と、非水電解液と、充放電可能な負極とを具備し、
負極は式(1): LiαM1βM2γ (1) で示される組成を有する化合物からなり、式(1)中、
1はCe、Ti、Zr、B、P、Mg、Ca、Sr、
Ba、Y、La、Cr、Mo、W、Mn、Co、Ir、
Ni、Fe、Pd、Cu、Ag、Zn、Na、K、V、
Nb、Al、Ga、In、Si、Ge、Sn、Pb、S
bおよびBiよりなる(M1)群から選択された少なく
とも2種の元素であり、M2はAl、Ga、In、S
i、Ge、Sn、Pb、SbおよびBiよりなる
(M2)群から選択された少なくとも1種の元素であ
り、M1から選択された元素とM2から選択された元素と
は互いに重複せず、0≦α<100、0.1≦β<11
およびγ=1であることを特徴とする非水電解質二次電
池に関する。
The present invention comprises a chargeable / dischargeable positive electrode, a non-aqueous electrolyte, and a chargeable / dischargeable negative electrode,
Negative formula (1): LiαM 1 βM made of a compound having a composition represented by 2 gamma (1), wherein (1),
M 1 is Ce, Ti, Zr, B, P, Mg, Ca, Sr,
Ba, Y, La, Cr, Mo, W, Mn, Co, Ir,
Ni, Fe, Pd, Cu, Ag, Zn, Na, K, V,
Nb, Al, Ga, In, Si, Ge, Sn, Pb, S
b and Bi are at least two kinds of elements selected from the (M 1 ) group, and M 2 is Al, Ga, In, S
at least one element selected from the group (M 2 ) consisting of i, Ge, Sn, Pb, Sb and Bi, wherein the element selected from M 1 and the element selected from M 2 overlap with each other 0 ≦ α <100, 0.1 ≦ β <11
And γ = 1.

【0007】前記式(1)で示される組成を有する化合
物は、(M2)群から選択された元素の単体相または合
金相を有することが好ましい。
The compound having the composition represented by the formula (1) preferably has a single phase or an alloy phase of an element selected from the group (M 2 ).

【0008】前記(M2)群から選択された元素の単体
相の平均結晶子径は、0.01〜10μmであることが
好ましい。
[0008] The average crystallite diameter of the single phase of the element selected from the group (M 2 ) is preferably 0.01 to 10 µm.

【0009】前記式(1)で示される組成を有する化合
物の平均粒子径は、0.05〜60μmであることが好
ましい。
The average particle size of the compound having the composition represented by the formula (1) is preferably 0.05 to 60 μm.

【0010】前記負極は、式(1)で示される組成を有
する化合物100重量部および炭素系材料5〜50重量
部からなることが好ましい。
The negative electrode preferably comprises 100 parts by weight of a compound having the composition represented by the formula (1) and 5 to 50 parts by weight of a carbon-based material.

【0011】また、本発明は、式(1)で示される組成
を有する化合物が、メカニカルアロイ法、液体急冷法、
イオンビームスパッタリング法、真空蒸着法、メッキ法
またはCVD法のいずれかにより合成されることを特徴
とする非水電解質二次電池の製造法に関する。
Further, according to the present invention, the compound having the composition represented by the formula (1) is prepared by using a mechanical alloy method, a liquid quenching method,
The present invention relates to a method for manufacturing a nonaqueous electrolyte secondary battery, which is synthesized by any one of an ion beam sputtering method, a vacuum evaporation method, a plating method, and a CVD method.

【0012】[0012]

【発明の実施の形態】本発明の非水電解質二次電池に
は、式(1): LiαM1βM2γ (1) で示される組成を有する化合物からなる負極が用いられ
る。式(1)中、M1はCe、Ti、Zr、B、P、M
g、Ca、Sr、Ba、Y、La、Cr、Mo、W、M
n、Co、Ir、Ni、Fe、Pd、Cu、Ag、Z
n、Na、K、V、Nb、Al、Ga、In、Si、G
e、Sn、Pb、SbおよびBiよりなる(M1)群、
好ましくはCe、Ti、Zr、B、P、Mg、Ca、S
r、Ba、Y、La、Cr、Mo、W、Mn、Co、I
r、Ni、Fe、Pd、Cu、Ag、Zn、Na、K、
VおよびNbよりなる群、さらに好ましくはFe、N
i、Co、Mn、CuおよびTiよりなる群から選択さ
れた少なくとも2種、好ましくは2〜4種の元素であ
る。M1として2種以上の元素を用いるため、前記化合
物の歪みによる非晶質化、あるいはLi挿入時の構造安
定化という効果が得られる。
The non-aqueous electrolyte secondary battery of the embodiment of the present invention, the formula (1): LiαM 1 βM negative electrode made of a compound having a composition represented by 2 gamma (1) is used. In the formula (1), M 1 is Ce, Ti, Zr, B, P, M
g, Ca, Sr, Ba, Y, La, Cr, Mo, W, M
n, Co, Ir, Ni, Fe, Pd, Cu, Ag, Z
n, Na, K, V, Nb, Al, Ga, In, Si, G
(M 1 ) group consisting of e, Sn, Pb, Sb and Bi;
Preferably Ce, Ti, Zr, B, P, Mg, Ca, S
r, Ba, Y, La, Cr, Mo, W, Mn, Co, I
r, Ni, Fe, Pd, Cu, Ag, Zn, Na, K,
V and Nb, more preferably Fe, Nb
At least two elements, preferably two to four elements, selected from the group consisting of i, Co, Mn, Cu and Ti. Since two or more elements are used as M 1 , an effect such as amorphization due to distortion of the compound or stabilization of the structure when Li is inserted can be obtained.

【0013】式(1)中、M2はAl、Ga、In、S
i、Ge、Sn、Pb、SbおよびBiよりなる
(M2)群、好ましくはSnおよびSiから選択された
少なくとも1種の元素である。ただし、M1から選択さ
れた元素とM2から選択された元素とは互いに重複せ
ず、M1≠M2である。
In the formula (1), M 2 is Al, Ga, In, S
It is a (M 2 ) group consisting of i, Ge, Sn, Pb, Sb and Bi, preferably at least one element selected from Sn and Si. However, the element selected from M 1 and the element selected from M 2 do not overlap each other, and M 1 ≠ M 2 .

【0014】式(1)中、αは、電池の充放電とともに
0≦α<100、好ましくは0≦α<30の範囲で変化
する。αが100以上になると、デンドライトが成長し
始める。また、0.1≦β<11、好ましくは0.5≦
β≦5およびγ=1を満たす。βが0.1未満になる
と、Li挿入時に構造が不安定となり、11以上になる
と、化合物の非晶質化やLi挿入時の構造安定化の効果
が得られず、低容量となる。
In the equation (1), α changes within the range of 0 ≦ α <100, preferably 0 ≦ α <30, as the battery is charged and discharged. When α becomes 100 or more, dendrite starts to grow. Also, 0.1 ≦ β <11, preferably 0.5 ≦
Satisfies β ≦ 5 and γ = 1. When β is less than 0.1, the structure becomes unstable when Li is inserted, and when β is 11 or more, the effect of amorphizing the compound or stabilizing the structure when Li is inserted cannot be obtained, resulting in low capacity.

【0015】式(1)で示される組成を有する化合物の
好ましい具体例としては、例えばFeCuSn、FeT
iSn、FeNiSi3、CoNiSi2、MnTiAl
3、Mg1.8Sr0.2Ge、TiZrPbなどが挙げられ
る。
Preferred specific examples of the compound having the composition represented by the formula (1) include, for example, FeCuSn, FeT
iSn, FeNiSi 3 , CoNiSi 2 , MnTiAl
3 , Mg 1.8 Sr 0.2 Ge, TiZrPb and the like.

【0016】式(1)で示される組成を有する化合物
は、(M2)群から選択された元素の単体相または合金
相を有することが、電池の高容量化の点から好ましい。
これらの相の化合物中での好ましい含有率は、10〜8
0重量%、さらには15〜50重量%である。これらの
相の含有率が少なすぎると、これらの相が存在すること
による効果が充分に得られず、大きくなりすぎると、L
i挿入時に構造が不安定となる傾向がある。なお、これ
らの相の存在は、X線回折図などから判断することがで
きる。
The compound having the composition represented by the formula (1) preferably has a simple phase or an alloy phase of an element selected from the group (M 2 ) from the viewpoint of increasing the capacity of the battery.
The preferred content of these phases in the compound is 10 to 8
0% by weight, more preferably 15 to 50% by weight. If the content of these phases is too small, the effect due to the presence of these phases cannot be sufficiently obtained.
The structure tends to be unstable when i is inserted. The presence of these phases can be determined from an X-ray diffraction diagram or the like.

【0017】前記(M2)群から選択された元素の単体
相の平均結晶子径は、活物質の膨張を抑え、反応性を維
持する点から、0.01〜10μm、さらには0.01
〜1μmであることが好ましく、合金相の平均結晶子径
は0.01〜1μmであることが好ましい。また、式
(1)で示される組成を有する化合物の平均粒子径は、
特性の安定化および構造の制御の点から、0.05〜6
0μm、さらには0.1〜30μmであることが好まし
い。
The average crystallite diameter of the elementary phase of the element selected from the group (M 2 ) is 0.01 to 10 μm, more preferably 0.01 to 10 μm, from the viewpoint of suppressing the expansion of the active material and maintaining the reactivity.
To 1 μm, and the average crystallite diameter of the alloy phase is preferably 0.01 to 1 μm. The average particle size of the compound having the composition represented by the formula (1) is
From the viewpoint of stabilizing characteristics and controlling the structure, 0.05 to 6
It is preferably 0 μm, more preferably 0.1 to 30 μm.

【0018】本発明の非水電解質二次電池に係る負極
は、例えば式(1)で示される組成を有する化合物10
0重量部に対し、炭素系材料5〜50重量部、適量の結
着剤および適量の溶剤を配合して混合した後、所定の形
状に成形して得られる。炭素系材料としては、黒鉛、ア
セチレンブラック、低結晶性炭素材料などが、結着剤と
しては、ポリ4フッ化エチレンなどが好ましく用いられ
るが、これらには限定されない。
The negative electrode according to the non-aqueous electrolyte secondary battery of the present invention may be, for example, a compound 10 having a composition represented by the formula (1):
It is obtained by mixing and mixing 5 to 50 parts by weight of a carbon-based material, an appropriate amount of a binder and an appropriate amount of a solvent with respect to 0 parts by weight, and then molding the mixture into a predetermined shape. As the carbon-based material, graphite, acetylene black, a low-crystalline carbon material, or the like is preferably used, and as the binder, polytetrafluoroethylene or the like is preferably used, but not limited thereto.

【0019】本発明の非水電解質二次電池に係る式
(1)で示される組成を有する化合物は、どのような方
法で製造してもよいが、メカニカルアロイ法、液体急冷
法、イオンビームスパッタリング法、真空蒸着法、メッ
キ法またはCVD(気相化学反応)法のいずれか、特に
液体急冷法やメカニカルアロイ法によれば、より容易に
製造することができる。例えば液体急冷法では、単ロー
ルにより105〜106K/秒の速度で急冷することによ
り、微少な結晶子をもつ低結晶化合物あるいは非晶質化
合物を得ることが可能となる。また、メカニカルアロイ
法では、ナノメーター(nm)オーダーの微少な結晶子
が得られるとともに、従来の熱的手法では得られない固
溶相などの相状態を得ることが可能となる。
The compound having the composition represented by the formula (1) according to the non-aqueous electrolyte secondary battery of the present invention may be produced by any method, including a mechanical alloy method, a liquid quenching method, and an ion beam sputtering method. It can be more easily manufactured by any one of the methods, the vacuum deposition method, the plating method, and the CVD (gas phase chemical reaction) method, particularly, the liquid quenching method and the mechanical alloy method. For example, in the liquid quenching method, a low-crystalline compound or an amorphous compound having fine crystallites can be obtained by quenching with a single roll at a rate of 10 5 to 10 6 K / sec. In addition, the mechanical alloy method can obtain fine crystallites on the order of nanometers (nm) and can obtain a phase state such as a solid solution phase that cannot be obtained by a conventional thermal method.

【0020】本発明の非水電解質二次電池は、前記化合
物からなる負極を用いる点以外、従来のものと同様にし
て得ることができる。したがって、従来から用いられて
いる充放電可能な正極および非水電解質を特に制限なく
用いることができる。
The non-aqueous electrolyte secondary battery of the present invention can be obtained in the same manner as a conventional battery, except that a negative electrode comprising the above compound is used. Therefore, the conventional chargeable / dischargeable positive electrode and nonaqueous electrolyte can be used without any particular limitation.

【0021】[0021]

【実施例】以下、本発明を実施例に基づいてより具体的
に説明するが、本発明はこれらに限定されるものではな
い。
EXAMPLES Hereinafter, the present invention will be described more specifically based on examples, but the present invention is not limited to these examples.

【0022】まず、以下の実施例および比較例で用いた
図1に示す試験セルおよび図2に示す円筒型電池につい
て説明する。試験セルは、負極の電極特性を評価するた
めに用い、円筒型電池は、その負極を用いた電池のサイ
クル特性を評価するために用いた。
First, the test cell shown in FIG. 1 and the cylindrical battery shown in FIG. 2 used in the following Examples and Comparative Examples will be described. The test cell was used to evaluate the electrode characteristics of the negative electrode, and the cylindrical battery was used to evaluate the cycle characteristics of the battery using the negative electrode.

【0023】(試験セル)負極活物質の粉末7g、導電
剤として黒鉛粉末2gおよび結着剤としてポリエチレン
粉末1gを混合して合剤とした。この合剤0.1gを直
径17.5mmの円板状に加圧成型して試験電極1とし
た。試験電極1を図1に示すようにケース2の中に置
き、その上に微孔性ポリプロピレンのセパレータ3を置
いた。セパレータ3上に非水電解液として1モル/lと
なるように過塩素酸リチウム(LiClO4)を溶解し
たエチレンカーボネートとジメトキシエタンとの等体積
比の混合溶液を注液した。この上に、内側に直径17.
5mmの円板状金属リチウム4を張り付け、外周部にポ
リプロピレンのガスケット5を付した封口板6を置いて
封口し、試験セルとした。
(Test Cell) A mixture was prepared by mixing 7 g of the negative electrode active material powder, 2 g of graphite powder as a conductive agent, and 1 g of polyethylene powder as a binder. 0.1 g of this mixture was pressure-molded into a disk having a diameter of 17.5 mm to obtain a test electrode 1. The test electrode 1 was placed in the case 2 as shown in FIG. 1, and the microporous polypropylene separator 3 was placed thereon. A mixed solution of ethylene carbonate and dimethoxyethane in which lithium perchlorate (LiClO 4 ) was dissolved at a volume ratio of 1 mol / l as a non-aqueous electrolyte was poured onto the separator 3. On top of this, inside diameter 17.
A 5 mm disk-shaped metallic lithium 4 was stuck, and a sealing plate 6 with a polypropylene gasket 5 attached to the outer periphery was placed and sealed to form a test cell.

【0024】(円筒型電池)正極活物質であるLiMn
1.8Co0.24は、Li2CO3、Mn34およびCoC
3を所定のモル比で混合し、900℃で加熱すること
により合成した。これを100メッシュ以下に分級した
ものを正極活物質とした。正極活物質100g、導電剤
として黒鉛粉末10gおよび結着剤としてポリ4フッ化
エチレンの水性ディスパージョンを樹脂成分で8g混合
し、さらに純水を加えてペースト状にした。これをチタ
ンの芯材に塗布し、乾燥、圧延して正極板とした。
(Cylindrical battery) LiMn as a positive electrode active material
1.8 Co 0.2 O 4 is composed of Li 2 CO 3 , Mn 3 O 4 and CoC
O 3 was mixed at a predetermined molar ratio and synthesized by heating at 900 ° C. This was classified to 100 mesh or less to obtain a positive electrode active material. 8 g of an aqueous dispersion of polytetrafluoroethylene as a resin component was mixed with 100 g of the positive electrode active material, 10 g of graphite powder as a conductive agent and a binder, and pure water was added to form a paste. This was applied to a titanium core material, dried and rolled to obtain a positive electrode plate.

【0025】負極活物質、導電剤として黒鉛粉末および
結着剤としてポリ4フッ化エチレンを重量比で60:3
0:10の割合で混合し、さらに石油系溶剤を加えてペ
−スト状にした。これを銅の芯材に塗布し、100℃で
乾燥し、負極板とした。
A negative electrode active material, graphite powder as a conductive agent, and polytetrafluoroethylene as a binder were included in a weight ratio of 60: 3.
The mixture was mixed at a ratio of 0:10, and a petroleum solvent was further added to form a paste. This was applied to a copper core material and dried at 100 ° C. to obtain a negative electrode plate.

【0026】得られた正極板と負極板を用いて以下のよ
うにして円筒型電池を組み立てた。図2に示すように、
スポット溶接にて取り付けた芯材と同材質の正極リード
7を有する正極板8と、スポット溶接にて取り付けた芯
材と同材質の負極リード9を有する負極板10との間
に、両極板より幅の広い帯状の多孔性ポリプロピレンか
らなるセパレータ11を配し、全体を渦巻状に捲回して
電極体とした。電極体の上下それぞれにポリプロピレン
製の絶縁板12、13を配し、電槽14に挿入した。電
槽14の上部に段部を形成させた後、非水電解液として
1モル/lとなるように過塩素酸リチウムを溶解させた
エチレンカーボネートとジメトキシエタンとの等体積比
の混合溶液を注液し、封口板15で密閉した。
Using the obtained positive electrode plate and negative electrode plate, a cylindrical battery was assembled as follows. As shown in FIG.
Between a positive electrode plate 8 having a positive electrode lead 7 of the same material as the core material attached by spot welding and a negative electrode plate 10 having a negative electrode lead 9 of the same material as the core material attached by spot welding, A separator 11 made of a wide band-shaped porous polypropylene was disposed, and the whole was spirally wound to form an electrode body. Insulating plates 12 and 13 made of polypropylene were arranged on the upper and lower sides of the electrode body, respectively, and inserted into the battery case 14. After forming a step in the upper part of the battery case 14, a mixed solution of ethylene carbonate and dimethoxyethane in which lithium perchlorate is dissolved so as to have a concentration of 1 mol / l as a non-aqueous electrolyte is poured. The solution was sealed and sealed with a sealing plate 15.

【0027】なお、以下の実施例1〜15に係る各化合
物のX線回折図を分析したところ、全ての化合物が(M
2)群から選択された元素の単体相または合金相を10
〜70重量%の範囲で含んでいた。また、前記各単体相
の平均結晶子径は、いずれも0.01〜1μmの範囲内
であり、各化合物の平均粒子径は、いずれも1〜30μ
mの範囲内であった。
When the X-ray diffraction diagrams of the compounds according to Examples 1 to 15 below were analyzed, all the compounds were found to have (M
2 ) Set the elementary phase or alloy phase of the element selected from the group to 10
In the range of 70% by weight. In addition, the average crystallite diameter of each of the single phases is in the range of 0.01 to 1 μm, and the average particle diameter of each compound is 1 to 30 μm.
m.

【0028】《実施例1》表1〜9に示す組成(モル
比)になるように原料を配合し、これをステンレス鋼製
のボール(直径1/2インチ)20個とともに内容積
0.5リットルのステンレス鋼製ポットミル中に入れ、
アルゴン雰囲気下で封口した。このミルを回転速度15
rpmで1週間作動させて、粉末状の式(1)で示され
る組成を有する化合物を得た。
Example 1 Raw materials were blended so as to have the compositions (molar ratios) shown in Tables 1 to 9, and this was mixed with 20 stainless steel balls (1/2 inch in diameter) with an inner volume of 0.5. Liter in a stainless steel pot mill,
It closed under argon atmosphere. This mill is rotated at a rotation speed of 15
The mixture was operated at rpm for one week to obtain a powdery compound having the composition represented by the formula (1).

【0029】前記各化合物を試験電極の活物質に用いて
試験セルを組み立て、2mAの定電流で、試験電極の電
位が金属リチウム対極に対して0Vになるまでカソード
分極し(試験電極を負極と仮定すると充電に相当す
る。)、次に試験電極の電位が金属リチウム対極に対し
て1.5Vになるまでアノード分極した(試験電極を負
極と仮定すると放電に相当する。)。その後、カソード
分極・アノード分極を繰り返した。試験電極の活物質1
gあたりの初回放電容量を表1〜9に示す。
A test cell was assembled by using each of the above compounds as an active material of a test electrode. Cathode polarization was performed at a constant current of 2 mA until the potential of the test electrode became 0 V with respect to the lithium metal counter electrode (the test electrode was connected to the negative electrode). Assuming that this corresponds to charging.) Then, the anode was anodically polarized until the potential of the test electrode became 1.5 V with respect to the lithium metal counter electrode (this corresponds to discharging when the test electrode was assumed to be a negative electrode). Thereafter, cathodic polarization and anodic polarization were repeated. Active material for test electrode 1
Tables 1 to 9 show the initial discharge capacity per g.

【0030】次に、前記各化合物を負極活物質に用いて
円筒型電池を組み立てた。得られた電池を試験温度30
℃、充放電電流1mA/cm2、充放電電圧4.3〜
2.6Vの条件で充放電するサイクルを繰り返し、1サ
イクル目に対する100サイクル目の容量維持率を求め
た。結果を表1〜9に示す。
Next, a cylindrical battery was assembled using each of the above compounds as a negative electrode active material. The obtained battery was tested at a test temperature of 30.
° C, charge / discharge current 1 mA / cm 2 , charge / discharge voltage 4.3 ~
The charge / discharge cycle under the condition of 2.6 V was repeated, and the capacity retention ratio at the 100th cycle relative to the first cycle was determined. The results are shown in Tables 1 to 9.

【0031】[0031]

【表1】 [Table 1]

【0032】[0032]

【表2】 [Table 2]

【0033】[0033]

【表3】 [Table 3]

【0034】[0034]

【表4】 [Table 4]

【0035】[0035]

【表5】 [Table 5]

【0036】[0036]

【表6】 [Table 6]

【0037】[0037]

【表7】 [Table 7]

【0038】[0038]

【表8】 [Table 8]

【0039】[0039]

【表9】 [Table 9]

【0040】《実施例2》表10〜18に示す組成(モ
ル比)になるように原料を配合したこと以外は、実施例
1と同様の操作を行い、同様の評価を行った。結果を表
10〜18に示す。
Example 2 The same operation as in Example 1 was performed, except that the raw materials were blended to have the compositions (molar ratios) shown in Tables 10 to 18, and the same evaluation was performed. The results are shown in Tables 10 to 18.

【0041】[0041]

【表10】 [Table 10]

【0042】[0042]

【表11】 [Table 11]

【0043】[0043]

【表12】 [Table 12]

【0044】[0044]

【表13】 [Table 13]

【0045】[0045]

【表14】 [Table 14]

【0046】[0046]

【表15】 [Table 15]

【0047】[0047]

【表16】 [Table 16]

【0048】[0048]

【表17】 [Table 17]

【0049】[0049]

【表18】 [Table 18]

【0050】《実施例3》表19〜27に示す組成(モ
ル比)になるように原料を配合したこと以外は、実施例
1と同様の操作を行い、同様の評価を行った。結果を表
19〜27に示す。
Example 3 The same operation as in Example 1 was performed, except that the raw materials were mixed so as to have the compositions (molar ratios) shown in Tables 19 to 27, and the same evaluation was performed. The results are shown in Tables 19 to 27.

【0051】[0051]

【表19】 [Table 19]

【0052】[0052]

【表20】 [Table 20]

【0053】[0053]

【表21】 [Table 21]

【0054】[0054]

【表22】 [Table 22]

【0055】[0055]

【表23】 [Table 23]

【0056】[0056]

【表24】 [Table 24]

【0057】[0057]

【表25】 [Table 25]

【0058】[0058]

【表26】 [Table 26]

【0059】[0059]

【表27】 [Table 27]

【0060】《実施例4》表28〜36に示す組成(モ
ル比)になるように原料を配合したこと以外は、実施例
1と同様の操作を行い、同様の評価を行った。結果を表
28〜36に示す。
Example 4 The same operation as in Example 1 was carried out, except that the raw materials were blended so as to have the compositions (molar ratios) shown in Tables 28 to 36, and the same evaluation was performed. The results are shown in Tables 28 to 36.

【0061】[0061]

【表28】 [Table 28]

【0062】[0062]

【表29】 [Table 29]

【0063】[0063]

【表30】 [Table 30]

【0064】[0064]

【表31】 [Table 31]

【0065】[0065]

【表32】 [Table 32]

【0066】[0066]

【表33】 [Table 33]

【0067】[0067]

【表34】 [Table 34]

【0068】[0068]

【表35】 [Table 35]

【0069】[0069]

【表36】 [Table 36]

【0070】《実施例5》表37〜45に示す組成(モ
ル比)になるように原料を配合したこと以外は、実施例
1と同様の操作を行い、同様の評価を行った。結果を表
37〜45に示す。
Example 5 The same operation as in Example 1 was performed, except that the raw materials were blended so as to have the compositions (molar ratios) shown in Tables 37 to 45, and the same evaluation was performed. The results are shown in Tables 37 to 45.

【0071】[0071]

【表37】 [Table 37]

【0072】[0072]

【表38】 [Table 38]

【0073】[0073]

【表39】 [Table 39]

【0074】[0074]

【表40】 [Table 40]

【0075】[0075]

【表41】 [Table 41]

【0076】[0076]

【表42】 [Table 42]

【0077】[0077]

【表43】 [Table 43]

【0078】[0078]

【表44】 [Table 44]

【0079】[0079]

【表45】 [Table 45]

【0080】《実施例6》表46〜54に示す組成(モ
ル比)になるように原料を配合したこと以外は、実施例
1と同様の操作を行い、同様の評価を行った。結果を表
46〜54に示す。
Example 6 The same operation as in Example 1 was performed, except that the raw materials were blended so as to have the compositions (molar ratios) shown in Tables 46 to 54, and the same evaluation was performed. The results are shown in Tables 46 to 54.

【0081】[0081]

【表46】 [Table 46]

【0082】[0082]

【表47】 [Table 47]

【0083】[0083]

【表48】 [Table 48]

【0084】[0084]

【表49】 [Table 49]

【0085】[0085]

【表50】 [Table 50]

【0086】[0086]

【表51】 [Table 51]

【0087】[0087]

【表52】 [Table 52]

【0088】[0088]

【表53】 [Table 53]

【0089】[0089]

【表54】 [Table 54]

【0090】《実施例7》表55〜63に示す組成(モ
ル比)になるように原料を配合したこと以外は、実施例
1と同様の操作を行い、同様の評価を行った。結果を表
55〜63に示す。
Example 7 The same operation as in Example 1 was performed, except that the raw materials were blended so as to have the compositions (molar ratios) shown in Tables 55 to 63, and the same evaluation was performed. The results are shown in Tables 55 to 63.

【0091】[0091]

【表55】 [Table 55]

【0092】[0092]

【表56】 [Table 56]

【0093】[0093]

【表57】 [Table 57]

【0094】[0094]

【表58】 [Table 58]

【0095】[0095]

【表59】 [Table 59]

【0096】[0096]

【表60】 [Table 60]

【0097】[0097]

【表61】 [Table 61]

【0098】[0098]

【表62】 [Table 62]

【0099】[0099]

【表63】 《実施例8》表64〜72に示す組成(モル比)になる
ように原料を配合したこと以外は、実施例1と同様の操
作を行い、同様の評価を行った。結果を表64〜72に
示す。
[Table 63] Example 8 The same operation as in Example 1 was performed, except that the raw materials were blended to have the compositions (molar ratios) shown in Tables 64 to 72, and the same evaluation was performed. The results are shown in Tables 64-72.

【0100】[0100]

【表64】 [Table 64]

【0101】[0101]

【表65】 [Table 65]

【0102】[0102]

【表66】 [Table 66]

【0103】[0103]

【表67】 [Table 67]

【0104】[0104]

【表68】 [Table 68]

【0105】[0105]

【表69】 [Table 69]

【0106】[0106]

【表70】 [Table 70]

【0107】[0107]

【表71】 [Table 71]

【0108】[0108]

【表72】 [Table 72]

【0109】《比較例1》従来報告されている表73に
示す金属あるいは金属間化合物を活物質として用いるこ
と以外は、実施例1と同様の操作を行い、同様に評価し
た。結果を表73に示す。
Comparative Example 1 An operation was performed in the same manner as in Example 1 except that a conventionally reported metal or intermetallic compound shown in Table 73 was used as an active material, and the same evaluation was performed. The results are shown in Table 73.

【0110】[0110]

【表73】 [Table 73]

【0111】表1〜73の結果から、各実施例の電池
は、高容量で容量維持率が高く、サイクル特性が優れて
いるのに対し、比較例の電池は、容量維持率が著しく低
いことがわかる。
From the results shown in Tables 1 to 73, the batteries of the examples had a high capacity, a high capacity retention rate and excellent cycle characteristics, whereas the batteries of the comparative examples had a remarkably low capacity retention rate. I understand.

【0112】《比較例2》式(1)中のβを0.9に固
定し、M1として1種のみの元素を用いた表74および
75に示す元素の組み合わせにしたこと以外は、実施例
1と同様の操作を行い、同様に評価した。結果を表74
および75に示す。
[0112] "Comparative Example 2" (1) the β in fixed to 0.9, except that the combination of elements shown in Tables 74 and 75 using an element of only one as M 1 is performed The same operation as in Example 1 was performed, and the same evaluation was performed. Table 74 shows the results.
And 75.

【0113】[0113]

【表74】 [Table 74]

【0114】[0114]

【表75】 [Table 75]

【0115】《実施例9》2種のM1のうちの1種の含
有率を変化させた表76〜77に示す組成にしたこと以
外は、実施例1と同様の操作を行い、同様に容量維持率
を評価した。結果を表76〜77に示す。
Example 9 The same operation as in Example 1 was carried out, except that the composition was changed as shown in Tables 76 to 77 in which the content of one of the two types of M 1 was changed. The capacity retention was evaluated. The results are shown in Tables 76 to 77.

【0116】[0116]

【表76】 [Table 76]

【0117】[0117]

【表77】 [Table 77]

【0118】《実施例10》2種のM1のうちの1種の
含有率を変化させた表78〜79に示す組成にしたこと
以外は、実施例1と同様の操作を行い、同様に容量維持
率を評価した。結果を表78〜79に示す。
Example 10 The same operation as in Example 1 was carried out, except that the composition was changed as shown in Tables 78 to 79 in which the content of one of the two types of M 1 was changed. The capacity retention was evaluated. The results are shown in Tables 78 to 79.

【0119】[0119]

【表78】 [Table 78]

【0120】[0120]

【表79】 [Table 79]

【0121】《実施例11》2種のM1のうちの1種の
含有率を変化させた表80〜81に示す組成にしたこと
以外は、実施例1と同様の操作を行い、同様に容量維持
率を評価した。結果を表80〜81に示す。
Example 11 The same operation as in Example 1 was carried out, except that the composition shown in Tables 80 to 81 was changed, except that the content of one of the two types of M 1 was changed. The capacity retention was evaluated. The results are shown in Tables 80 to 81.

【0122】[0122]

【表80】 [Table 80]

【0123】[0123]

【表81】 《実施例12》2種のM1のうちの1種の含有率を変化
させた表82〜83に示す組成にしたこと以外は、実施
例1と同様の操作を行い、同様に容量維持率を評価し
た。結果を表82〜83に示す。
[Table 81] Example 12 The same operation as in Example 1 was carried out, except that the compositions shown in Tables 82 to 83 were changed, except that the content of one of the two types of M1 was changed, and the capacity retention ratio was similarly changed. Was evaluated. The results are shown in Tables 82 to 83.

【0124】[0124]

【表82】 [Table 82]

【0125】[0125]

【表83】 [Table 83]

【0126】《実施例13》2種のM1のうちの1種の
含有率を変化させた表84〜85に示す組成にしたこと
以外は、実施例1と同様の操作を行い、同様に容量維持
率を評価した。結果を表84〜85に示す。
Example 13 The same operation as in Example 1 was carried out except that the compositions shown in Tables 84 to 85 were changed, except that the content of one of the two types of M 1 was changed. The capacity retention was evaluated. The results are shown in Tables 84 to 85.

【0127】[0127]

【表84】 [Table 84]

【0128】[0128]

【表85】 《実施例14》2種のM1のうちの1種の含有率を変化
させた表86〜87に示す組成にしたこと以外は、実施
例1と同様の操作を行い、同様に容量維持率を評価し
た。結果を表86〜87に示す。
[Table 85] Example 14 The same operation as in Example 1 was performed, except that the composition shown in Tables 86 to 87 was changed, except that the content of one of the two types of M 1 was changed. Was evaluated. The results are shown in Tables 86 to 87.

【0129】[0129]

【表86】 [Table 86]

【0130】[0130]

【表87】 《実施例15》2種のM1のうちの1種の含有率を変化
させた表88〜89に示す組成にしたこと以外は、実施
例1と同様の操作を行い、同様に容量維持率を評価し
た。結果を表88〜89に示す。
[Table 87] Example 15 The same operation as in Example 1 was performed, except that the composition shown in Tables 88 to 89 was changed, except that the content of one of the two types of M 1 was changed, and the capacity retention ratio was similarly changed. Was evaluated. The results are shown in Tables 88 to 89.

【0131】[0131]

【表88】 [Table 88]

【0132】[0132]

【表89】 [Table 89]

【0133】なお、カソード分極後およびカソード分極
・アノード分極を10サイクル繰り返した後に全ての実
施例に係る試験セルを分解し、試験電極を取り出して観
察したところ、いずれも電極表面に金属リチウムの析出
はみられなかった。このことは、前記各実施例の化合物
(活物質)表面にはデンドライトが成長しにくいことを
示している。また、カソード分極後の試験電極をIPC
分析したところ、活物質中に含まれるリチウム量は、い
ずれも式(1)を満たす範囲内であった。
After the cathodic polarization and the cathodic and anodic polarization were repeated 10 cycles, the test cells according to all the examples were disassembled, and the test electrodes were taken out and observed. Was not seen. This indicates that dendrite does not easily grow on the surface of the compound (active material) in each of the above Examples. In addition, the test electrode after cathode polarization was
As a result of the analysis, the amounts of lithium contained in the active material were all within the range satisfying the formula (1).

【0134】[0134]

【発明の効果】本発明によれば、高容量でサイクル特性
に極めて優れ、高エネルギー密度でデンドライトによる
短絡のない信頼性の高い非水電解質二次電池を得ること
ができる。
According to the present invention, a highly reliable non-aqueous electrolyte secondary battery having high capacity, extremely excellent cycle characteristics, high energy density and no short circuit due to dendrite can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の非水電解質二次電池に用いる負極の電
極特性を評価するための試験セルの断面概略図である。
FIG. 1 is a schematic cross-sectional view of a test cell for evaluating the electrode characteristics of a negative electrode used in a nonaqueous electrolyte secondary battery of the present invention.

【図2】本発明の非水電解質二次電池の一例を示す円筒
型電池の断面図である。
FIG. 2 is a cross-sectional view of a cylindrical battery showing an example of the non-aqueous electrolyte secondary battery of the present invention.

【符号の説明】[Explanation of symbols]

1 試験電極 2 ケース 3、11 セパレータ 4 金属リチウム 5 ガスケット 6 封口板 7 正極リード 8 正極板 9 負極リード 10 負極板 12 上部絶縁板 13 下部絶縁板 14 電槽 15 封口板 DESCRIPTION OF SYMBOLS 1 Test electrode 2 Case 3 and 11 Separator 4 Metal lithium 5 Gasket 6 Sealing plate 7 Positive electrode lead 8 Positive electrode plate 9 Negative electrode lead 10 Negative electrode plate 12 Upper insulating plate 13 Lower insulating plate 14 Battery case 15 Sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 武澤 秀治 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 松田 宏夢 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H003 AA02 AA04 BA00 BB02 BC05 BC06 BD00 BD02 BD04 5H014 AA02 EE05 EE07 HH01 5H029 AJ03 AJ05 AK03 AL02 AL06 AL12 AM03 AM04 AM05 AM07 BJ02 BJ03 BJ12 BJ14 CJ00 CJ24 DJ17 DJ18 HJ01 HJ02 HJ04 HJ05 HJ13  ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Hideharu Takezawa 1006 Kazuma Kadoma, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. (72) Hiromu Matsuda 1006 Kadoma Kadoma Kadoma City, Osaka Matsushita Electric Industrial Co., Ltd. F-term (reference) 5H003 AA02 AA04 BA00 BB02 BC05 BC06 BD00 BD02 BD04 5H014 AA02 EE05 EE07 HH01 5H029 AJ03 AJ05 AK03 AL02 AL06 AL12 AM03 AM04 AM05 AM07 BJ02 BJ03 BJ12 BJ14 CJ00 CJ24 H17J18 HJ

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 充放電可能な正極と、非水電解液と、充
放電可能な負極とを具備し、負極は式(1): LiαM1βM2γ (1) で示される組成を有する化合物からなり、式(1)中、
1はCe、Ti、Zr、B、P、Mg、Ca、Sr、
Ba、Y、La、Cr、Mo、W、Mn、Co、Ir、
Ni、Fe、Pd、Cu、Ag、Zn、Na、K、V、
Nb、Al、Ga、In、Si、Ge、Sn、Pb、S
bおよびBiよりなる(M1)群から選択された少なく
とも2種の元素であり、M2はAl、Ga、In、S
i、Ge、Sn、Pb、SbおよびBiよりなる
(M2)群から選択された少なくとも1種の元素であ
り、M1から選択された元素とM2から選択された元素と
は互いに重複せず、0≦α<100、0.1≦β<11
およびγ=1であることを特徴とする非水電解質二次電
池。
1. A chargeable / dischargeable positive electrode, a non-aqueous electrolyte, and a chargeable / dischargeable negative electrode, wherein the negative electrode has a composition represented by the formula (1): LiαM 1 βM 2 γ (1) And in equation (1)
M 1 is Ce, Ti, Zr, B, P, Mg, Ca, Sr,
Ba, Y, La, Cr, Mo, W, Mn, Co, Ir,
Ni, Fe, Pd, Cu, Ag, Zn, Na, K, V,
Nb, Al, Ga, In, Si, Ge, Sn, Pb, S
b and Bi are at least two kinds of elements selected from the (M 1 ) group, and M 2 is Al, Ga, In, S
at least one element selected from the group (M 2 ) consisting of i, Ge, Sn, Pb, Sb and Bi, wherein the element selected from M 1 and the element selected from M 2 overlap with each other 0 ≦ α <100, 0.1 ≦ β <11
And non-aqueous electrolyte secondary battery characterized by γ = 1.
【請求項2】 式(1)で示される組成を有する化合物
が、(M2)群から選択された元素の単体相または合金
相を有する請求項1記載の非水電解質二次電池。
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the compound having the composition represented by the formula (1) has a simple phase or an alloy phase of an element selected from the group (M 2 ).
【請求項3】 (M2)群から選択された元素の単体相
の平均結晶子径が、0.01〜10μmである請求項2
記載の非水電解質二次電池。
3. The average crystallite diameter of a single phase of an element selected from the group (M 2 ) is 0.01 to 10 μm.
The non-aqueous electrolyte secondary battery according to the above.
【請求項4】 式(1)で示される組成を有する化合物
の平均粒子径が、0.05〜60μmである請求項1〜
3のいずれかに記載の非水電解質二次電池。
4. The compound having the composition represented by the formula (1) has an average particle size of 0.05 to 60 μm.
3. The non-aqueous electrolyte secondary battery according to any one of 3.
【請求項5】 負極が、式(1)で示される組成を有す
る化合物100重量部および炭素系材料5〜50重量部
からなる請求項1〜4のいずれかに記載の非水電解質二
次電池。
5. The non-aqueous electrolyte secondary battery according to claim 1, wherein the negative electrode comprises 100 parts by weight of a compound having a composition represented by the formula (1) and 5 to 50 parts by weight of a carbon-based material. .
【請求項6】 式(1)で示される組成を有する化合物
が、メカニカルアロイ法、液体急冷法、イオンビームス
パッタリング法、真空蒸着法、メッキ法またはCVD法
のいずれかにより合成されることを特徴とする請求項1
〜5のいずれかに記載の非水電解質二次電池の製造法。
6. A compound having a composition represented by the formula (1) is synthesized by any of a mechanical alloy method, a liquid quenching method, an ion beam sputtering method, a vacuum evaporation method, a plating method, and a CVD method. Claim 1
The method for producing a nonaqueous electrolyte secondary battery according to any one of claims 1 to 5.
JP11188160A 1999-07-01 1999-07-01 Nonaqueous electrolyte secondary battery and its manufacture Pending JP2001015102A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11188160A JP2001015102A (en) 1999-07-01 1999-07-01 Nonaqueous electrolyte secondary battery and its manufacture

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11188160A JP2001015102A (en) 1999-07-01 1999-07-01 Nonaqueous electrolyte secondary battery and its manufacture

Publications (1)

Publication Number Publication Date
JP2001015102A true JP2001015102A (en) 2001-01-19

Family

ID=16218813

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11188160A Pending JP2001015102A (en) 1999-07-01 1999-07-01 Nonaqueous electrolyte secondary battery and its manufacture

Country Status (1)

Country Link
JP (1) JP2001015102A (en)

Cited By (22)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1134824A2 (en) * 2000-03-15 2001-09-19 Kabushiki Kaisha Toshiba Battery with nonaqueous electrolyte
WO2006028583A2 (en) * 2004-09-01 2006-03-16 3M Innovative Properties Company Anode composition for lithium ion battery
EP1724367A2 (en) * 2004-10-12 2006-11-22 Heraeus, Inc. Low oxygen content alloy compositions
WO2007014015A1 (en) * 2005-07-25 2007-02-01 3M Innovative Properties Company Alloy compositions for lithium ion batteries
WO2007014016A1 (en) * 2005-07-25 2007-02-01 3M Innovative Properties Company Alloy composition for lithium ion batteries
CN1299371C (en) * 2003-04-17 2007-02-07 株式会社东芝 Nonaqueous electrolyte secondary battery
JP2007149685A (en) * 2005-11-29 2007-06-14 Samsung Sdi Co Ltd Anode active material for lithium secondary battery and lithium secondary battery containing the same
JP2007165300A (en) * 2005-11-17 2007-06-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery
JP2007214127A (en) * 2006-02-10 2007-08-23 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, its manufacturing method, and lithium secondary battery containing it
JP2008235276A (en) * 2007-03-21 2008-10-02 Samsung Sdi Co Ltd Negative active material for lithium secondary battery and lithium secondary battery including it
JP2008243822A (en) * 2001-11-20 2008-10-09 Canon Inc Electrode material for lithium secondary battery, electrode structure, and secondary battery
US7498100B2 (en) 2003-08-08 2009-03-03 3M Innovative Properties Company Multi-phase, silicon-containing electrode for a lithium-ion battery
US7767349B2 (en) 2005-07-25 2010-08-03 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
JP2012238399A (en) * 2011-05-09 2012-12-06 Gs Yuasa Corp Electrode material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2014091854A (en) * 2012-11-02 2014-05-19 Solar Applied Materials Technology Corp Alloy target for recording layer, recording layer, optical recording medium, and blue-ray disk including the recording layer
US8835051B2 (en) 2007-04-05 2014-09-16 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery including same
JP2014232732A (en) * 2014-07-23 2014-12-11 株式会社Gsユアサ Electrode material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2016066418A (en) * 2014-09-22 2016-04-28 新日鐵住金株式会社 Electrode active material, electrode, battery, manufacturing method of electrode active material
JP2017508240A (en) * 2013-12-24 2017-03-23 イルジン エレクトリック カンパニー リミテッド Negative electrode active material for lithium secondary battery
CN107393670A (en) * 2017-06-13 2017-11-24 同济大学 A kind of high-performance MnBi base permanent magnetic alloys and preparation method thereof
EP4205885A4 (en) * 2020-08-31 2024-03-06 Panasonic Ip Man Co Ltd Negative electrode active material for secondary batteries, and secondary battery

Cited By (30)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1134824A3 (en) * 2000-03-15 2003-10-29 Kabushiki Kaisha Toshiba Battery with nonaqueous electrolyte
EP1134824A2 (en) * 2000-03-15 2001-09-19 Kabushiki Kaisha Toshiba Battery with nonaqueous electrolyte
JP2008243822A (en) * 2001-11-20 2008-10-09 Canon Inc Electrode material for lithium secondary battery, electrode structure, and secondary battery
CN1299371C (en) * 2003-04-17 2007-02-07 株式会社东芝 Nonaqueous electrolyte secondary battery
US7498100B2 (en) 2003-08-08 2009-03-03 3M Innovative Properties Company Multi-phase, silicon-containing electrode for a lithium-ion battery
WO2006028583A2 (en) * 2004-09-01 2006-03-16 3M Innovative Properties Company Anode composition for lithium ion battery
WO2006028583A3 (en) * 2004-09-01 2006-07-27 3M Innovative Properties Co Anode composition for lithium ion battery
EP1724367A3 (en) * 2004-10-12 2010-02-17 Heraeus, Inc. Low oxygen content alloy compositions
EP1724367A2 (en) * 2004-10-12 2006-11-22 Heraeus, Inc. Low oxygen content alloy compositions
US7871727B2 (en) 2005-07-25 2011-01-18 3M Innovative Properties Company Alloy composition for lithium ion batteries
WO2007014016A1 (en) * 2005-07-25 2007-02-01 3M Innovative Properties Company Alloy composition for lithium ion batteries
WO2007014015A1 (en) * 2005-07-25 2007-02-01 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7767349B2 (en) 2005-07-25 2010-08-03 3M Innovative Properties Company Alloy compositions for lithium ion batteries
US7851085B2 (en) 2005-07-25 2010-12-14 3M Innovative Properties Company Alloy compositions for lithium ion batteries
JP2007165300A (en) * 2005-11-17 2007-06-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery, and method for producing negative electrode material for nonaqueous electrolyte secondary battery
US9284630B2 (en) 2005-11-29 2016-03-15 Samsung Sdi Co., Ltd. Negative active material including Si active metal grains and Cu—Al metal matrix surrounding Si active metal grains and rechargeable lithium battery including negative active material
JP2007149685A (en) * 2005-11-29 2007-06-14 Samsung Sdi Co Ltd Anode active material for lithium secondary battery and lithium secondary battery containing the same
US7906238B2 (en) 2005-12-23 2011-03-15 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
US8071238B2 (en) 2005-12-23 2011-12-06 3M Innovative Properties Company Silicon-containing alloys useful as electrodes for lithium-ion batteries
JP2007214127A (en) * 2006-02-10 2007-08-23 Samsung Sdi Co Ltd Negative active material for lithium secondary battery, its manufacturing method, and lithium secondary battery containing it
JP2008235276A (en) * 2007-03-21 2008-10-02 Samsung Sdi Co Ltd Negative active material for lithium secondary battery and lithium secondary battery including it
US8835053B2 (en) 2007-03-21 2014-09-16 Samsung Sdi Co., Ltd. Negative active material containing an intermetallic compound of silicon and a first metal and a metal matrix containing copper and aluminum for rechargeable lithium battery and rechargeable lithium battery containing the negative active material
US8835051B2 (en) 2007-04-05 2014-09-16 Samsung Sdi Co., Ltd. Negative active material for rechargeable lithium battery, method for preparing same, and rechargeable lithium battery including same
JP2012238399A (en) * 2011-05-09 2012-12-06 Gs Yuasa Corp Electrode material for nonaqueous electrolyte secondary battery, electrode for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2014091854A (en) * 2012-11-02 2014-05-19 Solar Applied Materials Technology Corp Alloy target for recording layer, recording layer, optical recording medium, and blue-ray disk including the recording layer
JP2017508240A (en) * 2013-12-24 2017-03-23 イルジン エレクトリック カンパニー リミテッド Negative electrode active material for lithium secondary battery
JP2014232732A (en) * 2014-07-23 2014-12-11 株式会社Gsユアサ Electrode material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
JP2016066418A (en) * 2014-09-22 2016-04-28 新日鐵住金株式会社 Electrode active material, electrode, battery, manufacturing method of electrode active material
CN107393670A (en) * 2017-06-13 2017-11-24 同济大学 A kind of high-performance MnBi base permanent magnetic alloys and preparation method thereof
EP4205885A4 (en) * 2020-08-31 2024-03-06 Panasonic Ip Man Co Ltd Negative electrode active material for secondary batteries, and secondary battery

Similar Documents

Publication Publication Date Title
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
JP4373211B2 (en) Improved lithium-ion battery
JP5563237B2 (en) Improved cathode materials for lithium ion batteries
JP2001015102A (en) Nonaqueous electrolyte secondary battery and its manufacture
KR20040096588A (en) Electrode Material for Negative Pole of Lithium Secondary Cell, Electrode Structure Using Said Electrode Material, Lithium Secondary Cell Using Said Electrode Structure, and Method for Manufacturing Said Electrode Structure and Said Lithium Secondary Cell
JP4439660B2 (en) Nonaqueous electrolyte secondary battery
JP3565478B2 (en) Non-aqueous electrolyte secondary battery
JP2000133261A (en) Nonaqueous electrolyte secondary battery and manufacture of same
JP3136679B2 (en) Non-aqueous electrolyte secondary battery
JP4378437B2 (en) Negative electrode material for lithium secondary battery and lithium secondary battery
JP2001345098A (en) Nonaqueous electrolyte cell
JP2003282053A (en) Negative electrode material for non-aqueous electrolyte cell, negative electrode, and non-aqueous electrolyte cell
JPH10125317A (en) Monaqueous electrolyte secondary battery
JPH0424828B2 (en)
JP2000285920A5 (en)
JP2858374B2 (en) Non-aqueous electrolyte secondary battery
JP2000285920A (en) Nonaqueous electrolyte secondary battery
JPH09293497A (en) Nonaqueous electrolyte secondary battery
JPH07296796A (en) Negative electrode for lithium secondary battery, and lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040427

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20050527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20050616

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20060105