JPH10125317A - Monaqueous electrolyte secondary battery - Google Patents

Monaqueous electrolyte secondary battery

Info

Publication number
JPH10125317A
JPH10125317A JP8273602A JP27360296A JPH10125317A JP H10125317 A JPH10125317 A JP H10125317A JP 8273602 A JP8273602 A JP 8273602A JP 27360296 A JP27360296 A JP 27360296A JP H10125317 A JPH10125317 A JP H10125317A
Authority
JP
Japan
Prior art keywords
content
negative electrode
secondary battery
electrode
metal
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8273602A
Other languages
Japanese (ja)
Inventor
Shuji Ito
修二 伊藤
Toshihide Murata
年秀 村田
Yasuhiko Mifuji
靖彦 美藤
Yoshinori Toyoguchi
▲吉▼徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP8273602A priority Critical patent/JPH10125317A/en
Publication of JPH10125317A publication Critical patent/JPH10125317A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide a superior performance ensuring high-energy density and a cycle life, free from short-circuits due to dendrite by using a mixture of metallic or semi-metallic powder containing at least a phosphorus, a carbon material and a binding agent as a negative electrode. SOLUTION: Al, Sn, Si, Pb, Cd, Bi, In, Zn, Ga, B, Au and Pt, when made to contain P, improve the cycle characteristic thereof by leaps and bounds. The P content is preferably between 1wt.% and 50wt.%, and the content between 1wt.% and 15wt.% is particularly preferable. The mechanical strength of a metal is improved as a result of containing P, thereby restraining fine pulverization, due to the repetition of light discharge. Also, Mo, Mg, Fe, Mn, Co, Ni, Ta, Cr, W, Ti, V and the like become capable of performing a charging and discharging process by containing P. In this case, the P content is preferably between 1wt.% and 50wt.%, and the content between 5wt.% and 15wt.% is particularly preferable. A new Li storage site is formed when these metals turn into a solid solution state like metallic grating.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池、特にその負極の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement of a negative electrode thereof.

【0002】[0002]

【従来の技術】リチウムまたはリチウム化合物を負極と
する非水電解質二次電池は、高電圧で高エネルギー密度
が期待され、盛んに研究が行われている。これまで非水
電解質二次電池の正極活物質には、 LiCoO2、V2
5、Cr25、MnO2、TiS2、MoS2などの遷移
金属の酸化物およびカルコゲン化合物が知られている。
これらの化合物は、層状もしくはトンネル構造を有し、
リチウムイオンが出入りできる結晶構造を持っている。
一方、負極活物質としては、金属リチウムが多く検討さ
れてきた。しかしながら、充電時にリチウム表面に樹枝
状にリチウムが析出し、充放電効率の低下もしくは正極
と接して内部短絡を生じるという問題点を有していた。
2. Description of the Related Art A non-aqueous electrolyte secondary battery using lithium or a lithium compound as a negative electrode is expected to have a high voltage and a high energy density, and has been actively studied. Until now, LiCoO 2 , V 2
Oxides of transition metals such as O 5 , Cr 2 O 5 , MnO 2 , TiS 2 and MoS 2 and chalcogen compounds are known.
These compounds have a layered or tunnel structure,
It has a crystal structure that allows lithium ions to enter and exit.
On the other hand, as the negative electrode active material, many studies have been made of metallic lithium. However, there is a problem in that lithium is deposited in a dendritic manner on the lithium surface during charging, and the charging / discharging efficiency is reduced or an internal short circuit is caused by contact with the positive electrode.

【0003】このような問題を解決する手段として、リ
チウムの樹枝状成長を抑制しリチウムを吸蔵・放出する
ことできるリチウム−アルミニウムなどのリチウム合金
板を負極を用いる検討がなされている。しかしながら、
リチウム合金板を用いた場合、深い充放電を繰り返す
と、電極の微細化が生じ、このためサイクル特性に問題
があった。そこで、アルミニウムなどにおいては、さら
に他の元素を添加した合金を電極とすることで、電極の
微細化を抑制する提案がなされている(特開昭62−1
19856号公報、特開平4−109562号公報な
ど)。しかしながら、十分な特性改善がなされていない
のが現状である。
As means for solving such a problem, studies have been made on the use of a negative electrode made of a lithium alloy plate such as lithium-aluminum which can suppress the dendritic growth of lithium and occlude and release lithium. However,
In the case of using a lithium alloy plate, if the charge and discharge are repeated deeply, the electrode becomes finer, which causes a problem in cycle characteristics. Therefore, for aluminum and the like, a proposal has been made to suppress the miniaturization of the electrode by using an alloy to which another element is added as the electrode (Japanese Patent Laid-Open No. 62-1).
19856, JP-A-4-109562, etc.). However, at present, sufficient characteristics have not been improved.

【0004】[0004]

【発明が解決しようとする課題】本発明は、以上に鑑
み、充放電サイクル特性に優れた非水電解質二次電池用
負極を提供することを目的とする。本発明は、充電でL
iを吸蔵してデンドライトを発生せず、電気容量が大き
く、かつサイクル寿命の優れた負極を提供するものであ
る。
SUMMARY OF THE INVENTION In view of the above, an object of the present invention is to provide a negative electrode for a non-aqueous electrolyte secondary battery having excellent charge / discharge cycle characteristics. The present invention uses L
An object of the present invention is to provide a negative electrode that does not generate dendrite by absorbing i, has a large electric capacity, and has an excellent cycle life.

【0005】[0005]

【課題を解決するための手段】本発明は、充放電可能な
正極、非水電解質、および充放電可能な負極を具備する
非水電解質二次電池において、負極に少なくともPを含
有する金属あるいは半金属を用いることを特徴とする。
この負極を使用することにより、高エネルギー密度で、
デンドライトによる短絡のない、サイクル寿命に優れた
信頼性の高い二次電池を得ることが可能となる。
SUMMARY OF THE INVENTION The present invention relates to a non-aqueous electrolyte secondary battery including a chargeable / dischargeable positive electrode, a nonaqueous electrolyte, and a chargeable / dischargeable negative electrode. It is characterized by using a metal.
By using this negative electrode, with high energy density,
It is possible to obtain a highly reliable secondary battery having excellent cycle life and no short circuit due to dendrite.

【0006】[0006]

【発明の実施の形態】Pを含有する金属あるいは半金属
としては、Al、Sn、Si、Pb、Cd、Bi、I
n、Zn、Ga、B、Au、Pt、Mo、Mg、Fe、
Mn、Co、Ni、Ta、Cr、W、Ti、およびVか
らなる群より選択される少なくとも1種が好ましい。P
を含有する金属あるいは半金属の総重量におけるP含有
量としては、1〜50wt%が好ましい。
BEST MODE FOR CARRYING OUT THE INVENTION Metals or metalloids containing P include Al, Sn, Si, Pb, Cd, Bi, and I.
n, Zn, Ga, B, Au, Pt, Mo, Mg, Fe,
At least one selected from the group consisting of Mn, Co, Ni, Ta, Cr, W, Ti, and V is preferable. P
Is preferably 1 to 50% by weight based on the total weight of the metal or metalloid containing.

【0007】Al、Sn、Si、Pb、Cd、Bi、I
n、Zn、Ga、B、Au、およびPtは、単独でもL
iなどのアルカリ金属を吸蔵・放出することが可能であ
るが、Pを含有することでサイクル特性が飛躍的に改善
される。また、Mo、Mg、Fe、Mn、Co、Ni、
Ta、Cr、W、Ti、Vなどは、従来単独ではLiな
どのアルカリ金属を吸蔵・放出することができなかった
が、Pを含有することで充放電が可能になった。Pを含
有することによる効果の詳細は不明であるが、従来から
Pを含有しなくてもLiなどのアルカリ金属を吸蔵・放
出することが可能なAl、Sn、Si、Pb、Cd、B
i、In、Zn、Ga、B、Au、およびPtに関して
は、Pを含有することで金属の機械的強度が高められ、
従来からの充放電を繰り返すことで生じる微粉化を抑制
するものと考えられる。容量特性とサイクル特性の両特
性から見て、P含有量は、1〜50wt%が好ましく、
1〜30wt%がより好ましく、1〜15wt%が特に
好ましい。
Al, Sn, Si, Pb, Cd, Bi, I
n, Zn, Ga, B, Au, and Pt are each independently L
Although it is possible to occlude and release an alkali metal such as i, the cycle characteristics are dramatically improved by containing P. In addition, Mo, Mg, Fe, Mn, Co, Ni,
Conventionally, Ta, Cr, W, Ti, V, and the like have not been able to occlude and release an alkali metal such as Li by themselves, but containing P enables charge and discharge. The details of the effect of containing P are unknown, but Al, Sn, Si, Pb, Cd, and B, which can occlude and release an alkali metal such as Li without containing P conventionally.
Regarding i, In, Zn, Ga, B, Au, and Pt, the mechanical strength of the metal is increased by containing P,
It is considered that pulverization caused by repeating conventional charge and discharge is suppressed. In view of both the capacity characteristics and the cycle characteristics, the P content is preferably 1 to 50% by weight,
1-30 wt% is more preferable, and 1-15 wt% is particularly preferable.

【0008】一方、Mo、Mg、Fe、Mn、Co、N
i、Ta、Cu、Cr、W、Ti、Vなど、従来単独で
はLiなどのアルカリ金属を吸蔵・放出することができ
なかった金属に関しては、金属格子状にPが固溶するこ
とで新たなLi収納サイトが形成されたものと考えられ
る。容量特性とサイクル特性の両特性から見て、P含有
量は、1〜50wt%が好ましく、1〜30wt%がよ
り好ましく、5〜15wt%が特に好ましい。
On the other hand, Mo, Mg, Fe, Mn, Co, N
For metals such as i, Ta, Cu, Cr, W, Ti, and V, which have not been able to occlude and release alkali metals such as Li by themselves, a new solution is formed by the solid solution of P in a metal lattice. It is considered that the Li storage site was formed. In view of both the capacity characteristics and the cycle characteristics, the P content is preferably 1 to 50 wt%, more preferably 1 to 30 wt%, and particularly preferably 5 to 15 wt%.

【0009】[0009]

【実施例】以下、本発明の実施例を説明する。 《実施例1》まず、表1に示すP含有量の異なるAl、
Sn、Si、Pb、Cd、Bi、In、Zn、Ga、
B、Au、およびPtの負極活物質としての特性を検討
するため、図1に示す試験セルを作製した。活物質粉末
6gに対して、導電剤の黒鉛粉末3g、および結着剤の
ポリエチレン粉末1gを混合して合剤とした。この合剤
0.1gを直径17.5mmの円盤に加圧成型して電極
1とした。この電極1をケース2の中央に配置し、その
上に微孔性ポリプロピレンフィルムからなるセパレータ
3を置いた。1モル/lの過塩素酸リチウム(LiCl
O4)を溶解したエチレンカーボネートとジメトキシエ
タンの体積比1:1の混合溶液を非水電解質としてセパ
レータ上に注液した。この後、内側に直径17.5mm
の金属リチウム板4を張り付け、外周部にポリプロピレ
ン製ガスケット5を付けた封口板6を前記ケースに組み
合わせ、封口し試験セルとした。
Embodiments of the present invention will be described below. << Example 1 >> First, Al having different P contents shown in Table 1 was used.
Sn, Si, Pb, Cd, Bi, In, Zn, Ga,
In order to study the characteristics of B, Au, and Pt as a negative electrode active material, a test cell shown in FIG. 1 was manufactured. To 6 g of the active material powder, 3 g of graphite powder as a conductive agent and 1 g of polyethylene powder as a binder were mixed to form a mixture. 0.1 g of this mixture was pressed into a disk having a diameter of 17.5 mm to obtain an electrode 1. The electrode 1 was placed at the center of the case 2, and a separator 3 made of a microporous polypropylene film was placed thereon. 1 mol / l of lithium perchlorate (LiCl
A mixed solution of ethylene carbonate and dimethoxyethane in which O4) was dissolved at a volume ratio of 1: 1 was injected as a non-aqueous electrolyte onto the separator. After this, the inside diameter is 17.5mm
A metal lithium plate 4 was attached, and a sealing plate 6 having a gasket 5 made of polypropylene on the outer periphery was combined with the case, and sealed to form a test cell.

【0010】この試験セルについて、2mAの定電流
で、電極がLi対極に対して0Vになるまでカソード分
極(電極1を負極として見る場合には充電に相当)し、
次に電極が1.0Vになるまでアノード分極(放電に相
当)した。このカソード分極、アノード分極を繰り返し
て電極特性を評価した。また、比較例として、Pを含有
していない各種金属あるいは半金属についても検討し
た。この比較例についても、上記と同様に試験セルを作
製し、同条件で電極特性を調べた。表1に1サイクル目
の活物質1g当たりの放電容量を示す。
The test cell is subjected to cathodic polarization at a constant current of 2 mA until the electrode becomes 0 V with respect to the Li counter electrode (corresponding to charging when the electrode 1 is viewed as a negative electrode),
Next, anodic polarization (corresponding to discharge) was performed until the electrode reached 1.0 V. The electrode characteristics were evaluated by repeating this cathodic polarization and anodic polarization. As comparative examples, various metals or metalloids not containing P were also examined. Also for this comparative example, a test cell was prepared in the same manner as described above, and the electrode characteristics were examined under the same conditions. Table 1 shows the discharge capacity per 1 g of the active material in the first cycle.

【0011】[0011]

【表1】 [Table 1]

【0012】本実施例のPを含有している電極は、いず
れも充放電することがわかった。Pを含有したAl、S
n、Si、Pb、Cd、Bi、In、Zn、Mg、G
a、B、Au、およびPt合金に関しては、P含有量が
増加するにつれて、1サイクル目の放電容量は低下する
が、P含有量が50wt%まではPを含有しない金属の
50%以上の容量を示した。この試験セルの10サイク
ル目のカソード分極が終了した後、試験セルを分解した
ところ、いずれも金属リチウムの析出は認められなかっ
た。以上より本発明の活物質電極では、カソード分極で
Liが電極中に吸蔵され、アノード分極で吸蔵されたL
iが放出され、金属Liの析出はないことがわかった。
It has been found that all of the P-containing electrodes of this embodiment charge and discharge. Al, S containing P
n, Si, Pb, Cd, Bi, In, Zn, Mg, G
For a, B, Au, and Pt alloys, as the P content increases, the discharge capacity in the first cycle decreases, but the P content is 50% by weight or more of the P-free metal. showed that. After the cathode polarization in the tenth cycle of this test cell was completed, the test cell was disassembled, and no deposition of lithium metal was observed in any case. As described above, in the active material electrode of the present invention, Li was occluded in the electrode by the cathodic polarization, and L absorbed by the anodic polarization.
It was found that i was released and no metal Li was deposited.

【0013】《実施例2》ここでは、表2に示すP含有
量の異なるMo、Mg、Fe、Mn、Co、Ni、T
a、Cu、Cr、W、Ti、およびVの負極活物質とし
ての特性を検討するため、実施例1と同様に図1に示す
試験セルを作製し、実施例1と同様の条件で試験した。
その結果を表2に示す。また、比較例として、Pを含有
していない各種金属についても検討した。表2に1サイ
クル目の活物質1g当たりの放電容量を示す。
<< Example 2 >> Here, Mo, Mg, Fe, Mn, Co, Ni, T having different P contents shown in Table 2 were used.
In order to study the characteristics of a, Cu, Cr, W, Ti, and V as a negative electrode active material, a test cell shown in FIG. 1 was prepared in the same manner as in Example 1, and tested under the same conditions as in Example 1. .
Table 2 shows the results. As comparative examples, various metals not containing P were also examined. Table 2 shows the discharge capacity per 1 g of the active material in the first cycle.

【0014】[0014]

【表2】 [Table 2]

【0015】本実施例の電極は、Pを含有することで充
放電することがわかった。Mo、Mg、Fe、Mn、C
o、Ni、Ta、Cu、Cr、W、Ti、およびV金属
単独では、ほとんど容量を有さないのに対して、Pをわ
ずかに含有することで容量が飛躍的に増加した。この試
験セルの10サイクル目のカソード分極が終了した後、
試験セルを分解したところ、いずれも金属リチウムの析
出は認められなかった。以上より本発明の活物質電極で
は、カソード分極でLiが電極中に吸蔵され、アノード
分極で吸蔵されたLiが放出され、金属Liの析出はな
い。また、充放電容量は、Pを含有することできわめて
大きくなることがわかった。
It has been found that the electrode of this embodiment charges and discharges by containing P. Mo, Mg, Fe, Mn, C
The o, Ni, Ta, Cu, Cr, W, Ti, and V metals alone have almost no capacity, whereas the presence of a small amount of P significantly increased the capacity. After the cathode polarization of the 10th cycle of this test cell is completed,
When the test cells were disassembled, no deposition of metallic lithium was observed in any case. As described above, in the active material electrode of the present invention, Li is occluded in the electrode by cathodic polarization, and the occluded Li is released by anodic polarization, and there is no deposition of metallic Li. Further, it was found that the charge / discharge capacity became extremely large by containing P.

【0016】《実施例3》ここでは、表3に示すP含有
量の異なるAl、Sn、Si、Pb、Cd、Bi、I
n、Zn、Mg、Ga、B、Au、Pt、Mo、Fe、
Mn、Co、Ni、Ta、Cr、W、Ti、およびVを
負極とする図2に示した円筒形電池を構成して特性を調
べた。電池を以下の手順により作製した。正極活物質で
あるLiMn1.8Co0.24は、Li2CO3とMn34
とCoCO3とを所定のモル比で混合し、900℃で加
熱することによって合成した。さらに、これを100メ
ッシュ以下に分級したものを正極活物質とした。正極活
物質100gに対して、導電剤の炭素粉末を10g、結
着剤のポリ4フッ化エチレンの水性ディスパージョンを
8g、および純水を加え、ペースト状にし、チタンの芯
材に塗布し、乾燥、圧延して正極を得た。一方、Pを含
有した各種合金粉末からなる負極活物質に、導電剤の黒
鉛粉末、結着剤のテフロンバインダ−を重量比で60:
30:10の割合で混合し、石油系溶剤を用いてペ−ス
ト状としたものを銅の芯材に塗布後、100℃で乾燥
し、負極板とした。セパレ−タには、微孔性ポリプロピ
レンフィルムを用いた。
<< Example 3 >> Here, Al, Sn, Si, Pb, Cd, Bi, and I having different P contents shown in Table 3 were used.
n, Zn, Mg, Ga, B, Au, Pt, Mo, Fe,
The cylindrical battery shown in FIG. 2 having Mn, Co, Ni, Ta, Cr, W, Ti, and V as negative electrodes was constructed and its characteristics were examined. A battery was manufactured according to the following procedure. LiMn 1.8 Co 0.2 O 4 , which is a positive electrode active material, is composed of Li 2 CO 3 and Mn 3 O 4
And CoCO 3 were mixed at a predetermined molar ratio and heated at 900 ° C. to synthesize. Furthermore, what classified this into 100 mesh or less was used as the positive electrode active material. With respect to 100 g of the positive electrode active material, 10 g of a carbon powder as a conductive agent, 8 g of an aqueous dispersion of polytetrafluoroethylene as a binder, and pure water were added to form a paste, which was applied to a titanium core material, After drying and rolling, a positive electrode was obtained. On the other hand, a graphite powder as a conductive agent and a Teflon binder as a binder were added to a negative electrode active material composed of various alloy powders containing P at a weight ratio of 60:
The mixture was mixed at a ratio of 30:10, made into a paste using a petroleum solvent, applied to a copper core material, and then dried at 100 ° C. to obtain a negative electrode plate. A microporous polypropylene film was used as a separator.

【0017】上記の正極板11と負極板12とを両極板
間に極板より幅の広いセパレータ13を挟んで重ね合わ
せ、これらを渦巻状に捲回して極板群を構成した。この
極板群をその上下にそれぞれポリプロピレン製の絶縁板
16および17を配して電槽18に挿入し、電槽18の
上部に段部を形成させた後、非水電解液を注入し、封口
板19で密閉して図2のような電池を作製した。なお、
電解液には、1モル/lの過塩素酸リチウムを溶解した
エチレンカーボネートとジメトキシエタンの等比体積混
合溶液を用いた。14は正極の芯材と同材質の正極リー
ドで、封口板19に設けた正極端子20に接続されてい
る。15は負極と同材質の負極リードで、電槽18に接
続されている。比較例として、負極活物質にPを含有し
ていない各種金属あるいは半金属粉末を用いた他は上記
と同様にして負極を作製し、電池を組み立てた。
The above-mentioned positive electrode plate 11 and negative electrode plate 12 were superposed on each other with a separator 13 wider than the electrode plates interposed therebetween, and these were spirally wound to form an electrode plate group. This electrode plate group is provided with insulating plates 16 and 17 made of polypropylene on the upper and lower sides thereof, respectively, and inserted into the battery case 18. After forming a step on the upper portion of the battery case 18, a non-aqueous electrolyte is injected. The battery was sealed as shown in FIG. 2 with a sealing plate 19. In addition,
As the electrolytic solution, an equivolume mixed solution of ethylene carbonate and dimethoxyethane in which 1 mol / l of lithium perchlorate was dissolved was used. Reference numeral 14 denotes a positive electrode lead made of the same material as the core material of the positive electrode, and is connected to a positive electrode terminal 20 provided on the sealing plate 19. Reference numeral 15 denotes a negative electrode lead made of the same material as the negative electrode, and is connected to the battery case 18. As a comparative example, a negative electrode was prepared and a battery was assembled in the same manner as described above except that various metal or metalloid powders not containing P were used as the negative electrode active material.

【0018】これら電池を温度30℃において、充放電
電流1mA/cm2、充放電電圧範囲4.2V〜3.0
Vで充放電を繰り返し、放電容量が初期容量の50%に
低下するまでの寿命(サイクル数)を調べた。この結果
を表3に示す。
These batteries were charged at a temperature of 30 ° C. at a charge / discharge current of 1 mA / cm 2 and a charge / discharge voltage range of 4.2 V to 3.0 V.
Charge / discharge was repeated at V, and the life (cycle number) until the discharge capacity was reduced to 50% of the initial capacity was examined. Table 3 shows the results.

【0019】[0019]

【表3】 [Table 3]

【0020】Al、Sn、Si、Pb、Cd、Bi、I
n、Zn、Ga、B、Au、およびPtは、P含有量が
50wt%までは、P含有量が増加するほどサイクル特
性が向上した。実施例1で示した容量特性とサイクル特
性の両特性から見て、Pを含有したAl、Sn、Si、
Pb、Cd、Bi、In、Zn、Ga、B、Au、およ
びPtのP含有量は、1〜50wt%が好ましく、1〜
30wt%がより好ましく、1〜15wt%が特に好ま
しい。一方、Mo、Mg、Fe、Mn、Co、Ni、T
a、Cu、Cr、W、Ti、およびVも、Pを含有する
ことで充放電が可能となり、また良好なサイクル特性を
示した。実施例2で示した容量特性とサイクル特性の両
特性から見て、P含有量は、1〜50wt%好ましく、
1〜30wt%がより好ましく、5〜15wt%が特に
好ましい。
Al, Sn, Si, Pb, Cd, Bi, I
For n, Zn, Ga, B, Au and Pt, up to a P content of 50 wt%, the cycle characteristics were improved as the P content increased. In view of both the capacity characteristic and the cycle characteristic shown in Example 1, P containing Al, Sn, Si,
The P content of Pb, Cd, Bi, In, Zn, Ga, B, Au, and Pt is preferably 1 to 50 wt%, and 1 to 50 wt%.
30 wt% is more preferable, and 1 to 15 wt% is particularly preferable. On the other hand, Mo, Mg, Fe, Mn, Co, Ni, T
a, Cu, Cr, W, Ti, and V also became capable of charging and discharging by containing P, and exhibited good cycle characteristics. In view of both the capacity characteristic and the cycle characteristic shown in Example 2, the P content is preferably 1 to 50% by weight,
1-30 wt% is more preferable, and 5-15 wt% is particularly preferable.

【0021】上記の実施例では、円筒型電池について説
明したが、本発明はこの構造に限定されるものではな
く、コイン型、角型、偏平型などの形状の二次電池にお
いても全く同様の効果が得られることはいうまでもな
い。
In the above embodiment, a cylindrical battery was described. However, the present invention is not limited to this structure, and the same applies to a secondary battery having a coin shape, a square shape, a flat shape, or the like. Needless to say, an effect can be obtained.

【0022】[0022]

【発明の効果】本発明によれば、高容量でかつ、サイク
ル寿命の極めて優れた負極が得られる。この負極を用い
ることにより、高エネルギー密度で、デンドライトによ
る短絡のない信頼性の高い非水電解質二次電池を得るこ
とが可能となる。
According to the present invention, a negative electrode having a high capacity and an extremely excellent cycle life can be obtained. By using this negative electrode, a highly reliable non-aqueous electrolyte secondary battery having a high energy density and no short circuit due to dendrite can be obtained.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明の実施例に用いた試験セルの縦断面概略
図である。
FIG. 1 is a schematic longitudinal sectional view of a test cell used in an example of the present invention.

【図2】本発明の他実施例に用いた円筒型電池の縦断面
図である。
FIG. 2 is a longitudinal sectional view of a cylindrical battery used in another embodiment of the present invention.

【符号の説明】[Explanation of symbols]

1 試験電極 2 ケース 3 セパレータ 4 金属リチウム 5 ガスケット 6 封口板 11 正極板 12 負極板 13 セパレータ 14 正極リード 15 負極リード 16 上部絶縁板 17 下部絶縁板 18 電槽 19 封口板 20 正極端子 DESCRIPTION OF SYMBOLS 1 Test electrode 2 Case 3 Separator 4 Metal lithium 5 Gasket 6 Sealing plate 11 Positive electrode plate 12 Negative electrode plate 13 Separator 14 Positive electrode lead 15 Negative electrode lead 16 Upper insulating plate 17 Lower insulating plate 18 Battery case 19 Sealing plate 20 Positive electrode terminal

───────────────────────────────────────────────────── フロントページの続き (72)発明者 豊口 ▲吉▼徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Toyoguchi ▲ Yoshi ▼ Toku 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 充放電可能な正極、非水電解質、および
充放電可能な負極を具備し、前記負極がPを含有する金
属あるいは半金属からなることを特徴とする非水電解質
二次電池。
1. A non-aqueous electrolyte secondary battery comprising a chargeable / dischargeable positive electrode, a non-aqueous electrolyte, and a chargeable / dischargeable negative electrode, wherein the negative electrode is made of a P-containing metal or metalloid.
【請求項2】 充放電可能な正極、非水電解質、および
充放電可能な負極を具備し、前記負極がPを含有する金
属粉末あるいは半金属粉末と炭素材と結着剤の混合物か
らなることを特徴とする非水電解質二次電池。
2. A chargeable / dischargeable positive electrode, a nonaqueous electrolyte, and a chargeable / dischargeable negative electrode, wherein the negative electrode is made of a mixture of a P-containing metal powder or semimetal powder, a carbon material, and a binder. Non-aqueous electrolyte secondary battery characterized by the following.
【請求項3】 前記Pを含有する金属あるいは半金属
が、Al、Sn、Si、Pb、Cd、Bi、In、Z
n、Ga、B、Au、Pt、Mo、Mg、Fe、Mn、
Co、Ni、Ta、Cr、W、Ti、およびVから群よ
り選択される少なくとも1種である請求項1または2記
載の非水電解質二次電池。
3. The method according to claim 1, wherein the metal or metalloid containing P is Al, Sn, Si, Pb, Cd, Bi, In, Z
n, Ga, B, Au, Pt, Mo, Mg, Fe, Mn,
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the secondary battery is at least one selected from the group consisting of Co, Ni, Ta, Cr, W, Ti, and V.
【請求項4】 前記Pを含有する金属あるいは半金属の
P含有量が1〜50wt%である請求項1、2、または
3記載の非水電解質二次電池。
4. The non-aqueous electrolyte secondary battery according to claim 1, wherein the metal or metalloid containing P has a P content of 1 to 50 wt%.
JP8273602A 1996-10-16 1996-10-16 Monaqueous electrolyte secondary battery Pending JPH10125317A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8273602A JPH10125317A (en) 1996-10-16 1996-10-16 Monaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8273602A JPH10125317A (en) 1996-10-16 1996-10-16 Monaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH10125317A true JPH10125317A (en) 1998-05-15

Family

ID=17530056

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8273602A Pending JPH10125317A (en) 1996-10-16 1996-10-16 Monaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH10125317A (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
JP2010501995A (en) * 2006-08-25 2010-01-21 エルジー・ケム・リミテッド Highly reversible electrode active material capable of inserting lithium, method for producing the same, electrode having the same, and secondary battery
JP2010510625A (en) * 2006-11-17 2010-04-02 パナソニック株式会社 Electrode active material for non-aqueous secondary battery
US7811706B2 (en) 2004-11-08 2010-10-12 Sony Corporation Battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH11242954A (en) * 1997-01-28 1999-09-07 Canon Inc Electrode structural body, secondary battery, and their manufacture
US7811706B2 (en) 2004-11-08 2010-10-12 Sony Corporation Battery
JP2010501995A (en) * 2006-08-25 2010-01-21 エルジー・ケム・リミテッド Highly reversible electrode active material capable of inserting lithium, method for producing the same, electrode having the same, and secondary battery
JP2010510625A (en) * 2006-11-17 2010-04-02 パナソニック株式会社 Electrode active material for non-aqueous secondary battery

Similar Documents

Publication Publication Date Title
JP5143852B2 (en) Nonaqueous electrolyte secondary battery
JP2001185127A (en) Lithium secondary battery
JPH05101846A (en) Non-aqueous electrolytic secondary battery
JP3403449B2 (en) Non-aqueous electrolyte secondary battery
JP3291750B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2001015102A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH10255839A (en) Nonaqueous electrolyte secondary battery
JPH09115523A (en) Nonaqueous electrolytic secondary battery
JPH1186854A (en) Lithium secondary battery
JPH06318454A (en) Nonaqueous electrolyte secondary battery
US3998658A (en) High voltage organic electrolyte batteries
JP3405418B2 (en) Non-aqueous electrolyte secondary battery
EP0810681B1 (en) Nonaqueous electrolyte secondary battery
JP3565478B2 (en) Non-aqueous electrolyte secondary battery
JPH05251080A (en) Negative electrode for nonaqueous electrolyte secondary cell and its manufacture
JPH10125317A (en) Monaqueous electrolyte secondary battery
JPH0547383A (en) Nonaqueous electrolyte secondary battery and manufacture thereof
JP3152307B2 (en) Lithium secondary battery
JP3136679B2 (en) Non-aqueous electrolyte secondary battery
JP3048953B2 (en) Non-aqueous electrolyte secondary battery
JP3405419B2 (en) Non-aqueous electrolyte secondary battery
JPH01128371A (en) Nonaqueous electrolyte secondary cell
JP3451602B2 (en) Non-aqueous electrolyte battery
JP2000133261A (en) Nonaqueous electrolyte secondary battery and manufacture of same
JP4752126B2 (en) Non-aqueous electrolyte secondary battery