JP3152307B2 - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JP3152307B2
JP3152307B2 JP21448391A JP21448391A JP3152307B2 JP 3152307 B2 JP3152307 B2 JP 3152307B2 JP 21448391 A JP21448391 A JP 21448391A JP 21448391 A JP21448391 A JP 21448391A JP 3152307 B2 JP3152307 B2 JP 3152307B2
Authority
JP
Japan
Prior art keywords
lithium
battery
negative electrode
current collector
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP21448391A
Other languages
Japanese (ja)
Other versions
JPH0536401A (en
Inventor
吉田  浩明
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP21448391A priority Critical patent/JP3152307B2/en
Publication of JPH0536401A publication Critical patent/JPH0536401A/en
Application granted granted Critical
Publication of JP3152307B2 publication Critical patent/JP3152307B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、電子機器の駆動用電源
もしくはメモリー保持電源としてのリチウム二次電池の
負極板の改良に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an improvement in a negative electrode plate of a lithium secondary battery as a power supply for driving electronic equipment or a power supply for holding a memory.

【0002】[0002]

【従来の技術】電子機器の急激なる小形軽量化に伴い、
その電源である電池に対して小形で軽量かつ高エネルギ
ー密度で、更に繰り返し充放電が可能な二次電池の開発
への要求が高まっている。これら要求を満たす二次電池
として、リチウム二次電池が最も有望である。なぜな
ら、リチウム二次電池は、負極であるリチウムの電位が
極めて卑であるため、電池の電圧が高く、かつリチウム
の体積,重量エネルギー密度が高いため、高エネルギー
密度の二次電池を提供できるという利点を有しているか
らである。
2. Description of the Related Art As electronic devices have rapidly become smaller and lighter,
There is an increasing demand for the development of a secondary battery that is small, lightweight, has a high energy density, and that can be repeatedly charged and discharged with respect to the battery as the power source. As a secondary battery satisfying these requirements, a lithium secondary battery is most promising. This is because a lithium secondary battery can provide a high energy density secondary battery because the voltage of the battery is high and the volume and weight energy density of lithium are high because the potential of the negative electrode lithium is extremely low. This is because it has advantages.

【0003】リチウム二次電池の正極活物質は、研究の
結果より各種の材料が提案されいる。その結果、たとえ
ばTiS2 ,MnO2 ,V2 5 ,LiCoO2 等の無
機化合物系、あるいはポリアニリン,ポリピロール等の
有機化合物系の活物質が優れた充放電可逆性を有するも
のとしてほぼ完成しつつある。それにも関わらず、現在
リチウム二次電池が本格的に実用化されない理由とし
て、負極活物質であるリチウムの充放電可逆性が低いこ
とが挙げられる。
Various materials have been proposed for the positive electrode active material of a lithium secondary battery based on the results of research. As a result, for example, an inorganic compound-based active material such as TiS 2 , MnO 2 , V 2 O 5 , and LiCoO 2 or an organic compound-based active material such as polyaniline and polypyrrole is almost completed as having excellent charge / discharge reversibility. is there. Nevertheless, one reason that lithium secondary batteries are not put into practical use at present is that lithium, which is a negative electrode active material, has low charge / discharge reversibility.

【0004】リチウム極の充放電効率が低い原因として
は、放電時にはリチウムがイオンとして溶解し充電時に
はリチウムイオンがリチウムとして負極板上に電析する
といういわゆる溶解析出型の充放電反応を行うため、リ
チウムの樹枝状結晶(デンドライト)が生成することに
起因する。デンドライトが生成する理由としては、充電
時(リチウム電析)にリチウム表面にリチウムが偏在し
て電析し、さらにより析出しやすい凸部に優先的に次々
とリチウムが析出するため、その凸部が異常に成長する
ことから起こると考えられる。また成長したデンドライ
トは、負極板上から剥離しやすく、剥離したリチウムは
表面に電解液との反応で電気絶縁性の皮膜が生成するた
め、電気的に不活性となり負極容量が損失する。
The cause of the low charge / discharge efficiency of the lithium electrode is a so-called dissolution / deposition type charge / discharge reaction in which lithium dissolves as ions during discharging and lithium ions deposit as lithium on the negative electrode plate during charging. This is due to the formation of lithium dendrites (dendrites). The reason why dendrites are generated is that, during charging (lithium electrodeposition), lithium is unevenly distributed on the surface of lithium and electrodeposited, and lithium is preferentially deposited one after another on convexities which are more likely to be precipitated. Is thought to result from abnormal growth. The grown dendrites are easily peeled off from the negative electrode plate, and the peeled lithium reacts with the electrolytic solution to form an electrically insulating film on the surface, so that the lithium becomes electrically inactive and loses the negative electrode capacity.

【0005】充放電サイクルを繰り返すと、不活性なリ
チウムが増加し充放電可能なリチウムが消耗して電池の
寿命が尽きる。その他に、充放電可能なリチウムが残存
していても、デンドライトがスポンジ状となり電解液を
吸収するため、極間の電解液が消耗し電池の寿命が尽き
る場合やデンドライトがセパレーターを貫きショートし
て電池寿命が尽きる場合もある。
[0005] When the charge / discharge cycle is repeated, the amount of inactive lithium increases, the chargeable / dischargeable lithium is consumed, and the life of the battery is exhausted. In addition, even if lithium that can be charged and discharged remains, the dendrite becomes spongy and absorbs the electrolyte, so the electrolyte between the electrodes is exhausted and the battery life is exhausted, or the dendrite penetrates through the separator and shorts out The battery life may be exhausted.

【0006】[0006]

【発明が解決しようとする課題】上述したように、リチ
ウム二次電池の寿命はリチウムデンドライトの生成に大
きく左右されることがわかる。リチウム二次電池を実用
化するためにはリチウム電析時に生成する樹枝状結晶を
防止することが最も重要な課題である。
As described above, it can be seen that the life of a lithium secondary battery is greatly affected by the generation of lithium dendrites. In order to put a lithium secondary battery into practical use, prevention of dendritic crystals generated during lithium electrodeposition is the most important issue.

【0007】本発明は、この課題を解決し高エネルギー
密度で充放電サイクル寿命の長いリチウム二次電池を提
供することを目的とするものである。
An object of the present invention is to solve this problem and to provide a lithium secondary battery having a high energy density and a long charge / discharge cycle life.

【0008】[0008]

【課題を解決するための手段】本発明は、正極とリチウ
ムもしくはリチウム合金負極とからなるリチウム二次電
池において、該負極集電体の材質は、黄銅、燐青銅、ア
ルミニウム青銅であり、リチウムもしくはリチウム合金
が該負極集電体に直接圧着されていることを特徴とする
リチウム二次電池を提供し前記課題を解決するものであ
る。
According to the present invention, in a lithium secondary battery comprising a positive electrode and a lithium or lithium alloy negative electrode, the material of the negative electrode current collector is brass, phosphor bronze, aluminum bronze, and lithium or lithium bronze is used. An object of the present invention is to provide a lithium secondary battery in which a lithium alloy is directly press-bonded to the negative electrode current collector to solve the above-mentioned problem.

【0009】[0009]

【作用】各種金属材料を負極集電体に用いて電池を作成
し充放電サイクル試験を行った結果、デンドライト生成
の機構を下記に推察した。
A battery was prepared using various metal materials for the negative electrode current collector, and a charge / discharge cycle test was performed. As a result, the mechanism of dendrite formation was speculated as follows.

【0010】まず、ステンレスやニッケルなどを負極集
電体に用いるとデンドライト生成が起こりやすく電池の
寿命も短くなることがわかった。これは、金属表面に存
在する酸化皮膜の性質によるものと思われ、特に皮膜の
電気抵抗の大きなステンレスやニッケルにおいては、リ
チウムが電析する際、皮膜が比較的薄く電気抵抗の小さ
なところに集中して電析するために極板上に凸部が生成
し、これが選択的に成長してデンドライトなったものと
思われる。
First, it has been found that when stainless steel, nickel, or the like is used for the negative electrode current collector, dendrite is easily generated and the life of the battery is shortened. This is thought to be due to the nature of the oxide film present on the metal surface.Especially in the case of stainless steel and nickel, which have a large electric resistance, when lithium is electrodeposited, the film is relatively thin and concentrates on places with low electric resistance. It is considered that a projection was formed on the electrode plate for electrodeposition, and this was selectively grown to become a dendrite.

【0011】そこで、酸化皮膜の電気抵抗が比較的小さ
いCuを負極集電体を用いるとステンレスやニッケルを
用いた場合に比べデンドライトが比較的生成しにくくな
り電池の寿命も長くなった。
[0011] Therefore, when a negative electrode current collector of Cu having a relatively small electric resistance of the oxide film is used as the negative electrode current collector, dendrite is relatively hardly generated and the life of the battery is prolonged as compared with the case of using stainless steel or nickel.

【0012】このように、金属表面の酸化皮膜の性質が
リチウムデンドライトの生成と相関があると思われ、デ
ンドライトの防止のためには酸化皮膜を除去するかもし
くは酸化皮膜が良好な電気伝導性を有する基板を集電体
とすればよいことがわかった。
As described above, it is considered that the properties of the oxide film on the metal surface are correlated with the formation of lithium dendrite. To prevent dendrite, the oxide film is removed or the oxide film has good electric conductivity. It has been found that the substrate having the current collector may be used.

【0013】しかし、上記条件を有する集電体を用いて
も、充電電流が高い場合デンドライトが生成する事があ
りまだ十分であるとは言えない。そこで、Cuに各種金
属材料を添加して合金化を行い、負極集電体の合金組成
と電池寿命との相関を見る実験を行った。
[0013] However, even if a current collector having the above conditions is used, dendrite may be generated when the charging current is high, and it is not yet sufficient. Therefore, various metal materials were added to Cu for alloying, and an experiment was performed to check the correlation between the alloy composition of the negative electrode current collector and the battery life.

【0014】その結果、Cuにリチウムと容易に合金化
する金属であるZn,Sn,Alなどを添加した黄銅,
燐青銅あるいはアルミニウム青銅を集電体に用いると電
池寿命が大きく向上した。特に、黄銅や燐青銅では顕著
な効果が見られた。
As a result, brass obtained by adding Zn, Sn, Al or the like which is a metal which easily alloys with lithium to Cu,
The use of phosphor bronze or aluminum bronze for the current collector greatly improved the battery life. In particular, remarkable effects were observed with brass and phosphor bronze.

【0015】この理由は、明かではないがリチウムと容
易に合金化する金属を添加することにより、未添加の場
合に比べデンドライトと集電体との結着力が向上し、集
電体からのデンドライトの脱落が起こりにくくなったた
めと考えられる。また、黄銅や燐青銅で顕著な効果が見
られたのは、合金中のZnやSnの酸化物が良好な電子
電導性を有することから、基板の表面皮膜が改質され上
記効果との相乗効果が現れたためと考えられる。
The reason for this is not clear, but by adding a metal that easily alloys with lithium, the binding force between the dendrite and the current collector is improved as compared with the case where no metal is added, and the dendrite from the current collector is removed. This is probably due to the fact that the falling off of the steel became difficult. The remarkable effect was observed with brass and phosphor bronze because the oxides of Zn and Sn in the alloy have good electron conductivity, so that the surface film of the substrate was modified and synergistic with the above effects. It is considered that the effect appeared.

【0016】[0016]

【実施例】以下に、好適な実施例を用いて本発明を説明
する。 [実施例1]正極活物質として、50mmHg以下の減圧下に
おいて375℃で5時間減圧乾燥処理した後、電気炉で
空気中において375℃で20時間追加熱処理して調製
した二酸化マンガンを用いた。
The present invention will be described below with reference to preferred embodiments. Example 1 As a positive electrode active material, manganese dioxide prepared by subjecting to a vacuum drying treatment at 375 ° C. for 5 hours under a reduced pressure of 50 mmHg or less, followed by additional heat treatment at 375 ° C. for 20 hours in air in an electric furnace was used.

【0017】この二酸化マンガン100重量部に対して
アセチレンブラック(導電助剤)を5重量部、およびポ
リ4フッ化エチレン(結着材)を2重量部添加してよく
混練した後、120℃で4時間熱風乾燥して正極合剤を
調整した。そして、その正極合剤を108mg ずつ秤量して
325 メッシュのSUS316製金網に包み込んで、2トン/cm
2 で加圧成形して正極とした。正極の寸法は、直径15.0
mm厚み0.6mm 程度である。この正極を電池に組み込むま
えに再度、120℃で3時間熱風乾燥処理を行った。
To 100 parts by weight of this manganese dioxide, 5 parts by weight of acetylene black (conductive agent) and 2 parts by weight of polytetrafluoroethylene (binder) were added and kneaded well. The mixture was dried with hot air for 4 hours to prepare a positive electrode mixture. Then, weigh 108mg of the positive electrode mixture
Wrapped in 325 mesh SUS316 wire mesh, 2 tons / cm
Press molding was performed in 2 to obtain a positive electrode. The dimensions of the positive electrode are 15.0 in diameter
The thickness is about 0.6 mm. Before incorporating this positive electrode into the battery, hot air drying treatment was performed again at 120 ° C. for 3 hours.

【0018】負極集電体には、黄銅(JIS H 3100 C260
0) 製の直径16mm厚み0.1mm の円板を用い、負極缶に5
点スポット溶接を行った。
For the negative electrode current collector, brass (JIS H 3100 C260
0) using a disk with a diameter of 16 mm and a thickness of 0.1 mm
Spot spot welding was performed.

【0019】上記黄銅の成分は、Cu約70%,Zn約
30%そして不純物としてPbおよびFe0.05%で
ある。
The components of the brass are about 70% of Cu, about 30% of Zn, and 0.05% of Pb and Fe as impurities.

【0020】負極には、純リチウムを用いた。負極のサ
イズは直径16mm、厚み0.1mm程度で、理論容量
は約45mAhである。このリチウムを、上記集電体上
に約100kg/cm2の圧力で直接圧着し、負極板と
した。
Pure lithium was used for the negative electrode. The size of the negative electrode is about 16 mm in diameter and about 0.1 mm in thickness, and the theoretical capacity is about 45 mAh. This lithium was directly pressed on the current collector at a pressure of about 100 kg / cm 2 to obtain a negative electrode plate.

【0021】セパレータにはポリプロピレンのマイクロ
ポーラスセパレータ(商品名『セルガードK274』)及び
ポリプロピレンの不織布を重ねて用いて、外径20.0mm,
高さ2.0mm の電池を作成した。
As a separator, a polypropylene microporous separator (trade name: Celgard K274) and a polypropylene non-woven fabric are used in layers.
A 2.0 mm high battery was created.

【0022】電解液には、エチレンカーボネイト(E
C)と4−メチルジオキソラン(4−MeDOL)と
1,3−ジオキソランとの体積比で5:3:2.7の混
合溶媒に過塩素酸リチウム(LiClO4 )を1mol
/l溶解したものを用いた。
As the electrolyte, ethylene carbonate (E
At a volume ratio of C) and 4-methyl dioxolane (4-MeDOL) and 1,3-dioxolane 5: 3: 2.7 1mol lithium perchlorate (LiClO 4) in a mixed solvent of
/ L dissolved.

【0023】図1は、電池の縦断面図である。同図にお
いて1は、耐有機電解液性のステンレス鋼板をプレスに
よって打ち抜き加工した正極端子を兼ねるケース、2は
同種の材料を打ち抜き加工した負極端子を兼ねる封口板
であり、その内壁には負極集電体3’がスポット溶接さ
れ、集電体上には活物質3が直接圧着されている。5は
有機電解液を含浸したポリプロピレンからなるセパレー
タ、6は正極合剤であり正極端子を兼ねるケース1の開
口端部を内方へかしめ、ガスケット4を介して負極端子
を兼ねる封口板2の内周を締め付けることにより密閉封
口している。
FIG. 1 is a longitudinal sectional view of the battery. In the figure, 1 is a case also serving as a positive electrode terminal punched out of a stainless steel sheet having resistance to organic electrolyte by pressing, and 2 is a sealing plate also serving as a negative electrode terminal punched out of the same kind of material. The current collector 3 'is spot-welded, and the active material 3 is directly pressed on the current collector. Reference numeral 5 denotes a separator made of polypropylene impregnated with an organic electrolyte, 6 denotes a positive electrode mixture, and the inside of the sealing plate 2 which also serves as a negative electrode terminal is caulked by inwardly caulking an opening end of the case 1 which also serves as a positive electrode terminal. It is hermetically sealed by tightening the circumference.

【0024】この、黄銅製負極集電体を用いた本発明電
池を電池(A)とする。
The battery of the present invention using the negative electrode current collector made of brass is referred to as battery (A).

【0025】[実施例2]電池の負極集電体の材質とし
て、燐青銅(JIS H 3270 C5191)を用いることを除いて
他は、電池構成が実施例1と同様な電池を作成した。こ
の本発明の電池を電池(B)とする。
Example 2 A battery having the same battery configuration as that of Example 1 was prepared except that phosphor bronze (JIS H 3270 C5191) was used as the material of the negative electrode current collector of the battery. This battery of the present invention is referred to as battery (B).

【0026】上記、燐青銅の成分はCu約93%,Sn
約6%,P約0.03〜0.35%である。
The above phosphor bronze contains about 93% of Cu, Sn
About 6%, P about 0.03 to 0.35%.

【0027】[実施例3]電池の負極集電体の材質とし
て、アルミニウム青銅(JIS H 3100 C6280)を用いるこ
とを除いて他は、電池構成が実施例1と同様な電池を作
成した。この本発明の電池を電池(C)とする。
Example 3 A battery having the same battery configuration as that of Example 1 was prepared except that aluminum bronze (JIS H 3100 C6280) was used as the material of the negative electrode current collector of the battery. This battery of the present invention is referred to as battery (C).

【0028】上記、アルミニウム青銅の成分はCu約8
0%,Al約10%,Ni約5%,Fe約2.5%,M
n約1%である。
The component of the aluminum bronze is about 8 Cu.
0%, Al about 10%, Ni about 5%, Fe about 2.5%, M
n is about 1%.

【0029】[比較例1]電池の負極集電体の材質とし
て、ステンレス(SUS304)を用いることを除いて
他は、電池構成が実施例1と同様な電池を作成した。こ
の比較電池を電池(ア)とする。
Comparative Example 1 A battery having the same battery configuration as that of Example 1 was prepared except that stainless steel (SUS304) was used as the material of the negative electrode current collector of the battery. This comparative battery is referred to as battery (A).

【0030】[比較例2]電池の負極集電体の材質とし
て、ニッケルを用いることを除いて他は、電池構成が実
施例1と同様な電池を作成した。この比較電池を電池
(イ)とする。
Comparative Example 2 A battery having the same battery configuration as that of Example 1 was prepared except that nickel was used as the material of the negative electrode current collector of the battery. This comparative battery is referred to as battery (a).

【0031】[比較例3]電池の負極集電体の材質とし
て、銅を用いることを除いて他は、電池構成が実施例1
と同様な電池を作成した。この比較電池を電池(ウ)と
する。
COMPARATIVE EXAMPLE 3 The battery configuration was the same as that of Example 1 except that copper was used as the material of the negative electrode current collector of the battery.
A battery similar to the above was prepared. This comparative battery is referred to as a battery (C).

【0032】上記各種電池について、25℃恒温槽中、
3.4V〜2.0V間で1.8mAの定電流で充放電を
繰り返し、各サイクルにおける放電容量を測定した。
The above various batteries were placed in a thermostat at 25 ° C.
Charge and discharge were repeated at a constant current of 1.8 mA between 3.4 V and 2.0 V, and the discharge capacity in each cycle was measured.

【0033】電池の種類とその充放電サイクルの進行に
ともなう放電容量変化を図2に示す。
FIG. 2 shows the type of battery and the change in discharge capacity as the charge / discharge cycle progresses.

【0034】本発明の電池(A),(B)および(C)
は、比較電池(ア),(イ)および(ウ)に比較して長
いサイクル寿命を有する。特に、(A)および(B)で
は顕著な効果が見られた。
The batteries (A), (B) and (C) of the present invention
Has a longer cycle life than the comparative batteries (A), (A) and (C). In particular, a remarkable effect was observed in (A) and (B).

【0035】これら試験終了電池を分解したところ、全
ての電池において、負極が微粉化しているのがみられ
た。これら電池の正極をそのまま用いて再度電池を組み
立て充放電試験を行ったところ、放電容量が初期容量ま
で回復した。これら事実より、これら電池の寿命は、全
て負極により制限されていることがわかった。本発明の
負極のサイクル寿命が長くなった理由は明確ではない
が、負極集電体の材質として、Cuに少なくともZn,
Sn,Alなどを添加した合金を用いるとで、有効にデ
ンドライトリチウムの発生を防止し、かつ集電体からの
デンドライトの脱落を防止したためであると思われる。
When the batteries after the test were disassembled, it was found that all the batteries had the negative electrode powdered. When the batteries were assembled again using the positive electrodes of these batteries as they were and a charge / discharge test was performed, the discharge capacity was restored to the initial capacity. From these facts, it was found that the lifetimes of these batteries were all limited by the negative electrode. Although it is not clear why the cycle life of the negative electrode of the present invention has been extended, at least Zn, Cu,
This is presumably because the use of an alloy to which Sn, Al, or the like was added effectively prevented the generation of lithium dendrite and prevented the dendrite from falling off the current collector.

【0036】なお、上記実施例では、負極集電体の材質
としてCuにそれぞれZn,Sn,Alを添加した場合
を述べたが、この他にもリチウムと容易に合金化するP
b,Bi,CdなどをCuに添加した場合やこれら添加
金属から選ばれる1種または2種以上の金属を組み合わ
せた場合も同様な効果が得られるものと考えられる。
In the above-described embodiment, the case where Zn, Sn, and Al are added to Cu as the material of the negative electrode current collector has been described.
It is considered that a similar effect can be obtained when b, Bi, Cd, or the like is added to Cu, or when one or two or more metals selected from these added metals are combined.

【0037】また、上記実施例では集電体に厚み0.1
mmの円板を用いたが、集電体としての強度の点から5
μm以上の厚みであれば同様な効果が得られ、またエネ
ルギー密度の点から0.1mm以下のものが望ましいが
それ以上の厚みとなっても電池寿命には影響はない。
In the above embodiment, the thickness of the current collector is 0.1
mm disk was used, but in view of the strength as a current collector, 5 mm
A similar effect can be obtained with a thickness of at least μm, and a thickness of 0.1 mm or less is desirable from the viewpoint of energy density, but a thickness greater than that does not affect the battery life.

【0038】集電体の形状としては、上記円板の他に
網,発泡体,エキスパンドネット,不織布あるいはエッ
チング板などの多孔質体を用いればより高い効果がえら
れ、この際網を例にとるとメッシュは細かい方がよく、
実用的には150〜300メッシュ程度のものが最適で
あると思われる。
As for the shape of the current collector, a higher effect can be obtained by using a porous body such as a net, a foam, an expanded net, a nonwoven fabric or an etched plate in addition to the above-mentioned disc. When taking, it is better that the mesh is fine,
Practically, a mesh of about 150 to 300 mesh seems to be optimal.

【0039】本発明によるリチウム二次電池に用いられ
る正極活物質は基本的に限定されるものではなく、従来
のリチウム二次電池に用いられている正極活物質、すな
わちリチウムイオンあるいはアニオンと電気化学的に可
逆反応を行う物質を用いることができる。たとえば、 M
nO2 ,LiMn2 O4 ,LiCoX Mn2-X O2 ,LiCoX Ni1-X O
2 , CoO2 , TiS2 , V2 O5 およびポリアニリンなど
があげられる。
The positive electrode active material used in the lithium secondary battery according to the present invention is not particularly limited, and the positive electrode active material used in the conventional lithium secondary battery, ie, lithium ion or anion, and A substance that causes a reversible reaction can be used. For example, M
nO 2 , LiMn 2 O 4 , LiCo X Mn 2-X O 2 , LiCo X Ni 1-X O
2 , CoO 2 , TiS 2 , V 2 O 5 and polyaniline.

【0040】そして、負極活物質についても基本的に限
定されるものではなく、純リチウムの他にリチウムとA
l,Pb,Sn,Bi,CdおよびPなどとの1種また
は2種以上との合金を用いることができる。
The negative electrode active material is not basically limited either, and in addition to pure lithium, lithium and A
Alloys with one or more of l, Pb, Sn, Bi, Cd, P and the like can be used.

【0041】また、リチウムイオン伝導性物質である有
機溶媒や固体のイオン導電体も基本的に限定されず、従
来のリチウム二次電池に用いられているものを用いるこ
とができる。たとえば、有機溶媒としては非プロトン溶
媒であるエチレンカーボネイトなどの環状エステル類お
よびテトラハイドロフラン,ジオキソランなどのエーテ
ル類があげられ、これら単独もしくは2種以上を混合し
た溶媒を用いることが出来る。固体のイオン導電体とし
ては、リチウムイオン導電性を有するものであれば用い
ることが出来る。その代表的なものとして、ポリエチレ
ンオキサイドなどがあげられる。
The organic solvent and the solid ionic conductor which are lithium ion conductive materials are not particularly limited, and those used in conventional lithium secondary batteries can be used. For example, examples of the organic solvent include cyclic esters such as ethylene carbonate, which are aprotic solvents, and ethers such as tetrahydrofuran and dioxolan, and a single or a mixture of two or more thereof can be used. As the solid ionic conductor, any one having lithium ion conductivity can be used. A typical example is polyethylene oxide.

【0042】また、このような有機溶媒あるいは固体の
イオン導電体に溶解される支持電解質も基本的に限定さ
れるものではない。たとえば、 LiAsF6 , LiClO4 ,Li
BF4 ,LiPF6 ,LiCF3 SO3 などの1種以上を用いること
ができる。
The supporting electrolyte dissolved in such an organic solvent or solid ionic conductor is not basically limited. For example, LiAsF 6 , LiClO 4 , Li
One or more of BF 4 , LiPF 6 , LiCF 3 SO 3 and the like can be used.

【0043】なお、前記の実施例に係る電池はいずれも
ボタン形電池であるが、円筒形、角形またはペーパー形
電池に本発明を適用しても同様の効果が得られる。
Although the batteries according to the above embodiments are button batteries, the same effects can be obtained by applying the present invention to cylindrical, square or paper batteries.

【0044】[0044]

【発明の効果】本発明により従来の電池に比較して優れ
たサイクル寿命性能を有する高エネルギー密度のリチウ
ム二次電池を提供することができるものである。
According to the present invention, it is possible to provide a high energy density lithium secondary battery having excellent cycle life performance as compared with conventional batteries.

【図面の簡単な説明】[Brief description of the drawings]

【図1】リチウム二次電池の一例であるボタン電池の内
部構造を示した図である。
FIG. 1 is a diagram showing an internal structure of a button battery as an example of a lithium secondary battery.

【図2】本発明の効果を示した図である。FIG. 2 is a diagram showing an effect of the present invention.

【符号の説明】[Explanation of symbols]

1 電池ケース 2 封口板 3 リチウム 3’ 負極集電体 4 ガスケット 5 セパレーター 6 正極合剤 DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Lithium 3 'Negative electrode collector 4 Gasket 5 Separator 6 Positive electrode mixture

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 4/02 H01M 4/38 H01M 4/66 H01M 10/40 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 4/02 H01M 4/38 H01M 4/66 H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】 正極とリチウムもしくはリチウム合金負
極とからなるリチウム二次電池であって、該負極集電体
の材質は、黄銅、燐青銅、アルミニウム青銅であり、リ
チウムもしくはリチウム合金が該負極集電体に直接圧着
されていることを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising a positive electrode and lithium or lithium alloy negative electrode, a material of the negative electrode current collector, brass, phosphor bronze, an aluminum bronze, Li
Titanium or lithium alloy is pressed directly to the negative electrode current collector
Lithium secondary battery, characterized in that it is.
JP21448391A 1991-07-30 1991-07-30 Lithium secondary battery Expired - Fee Related JP3152307B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP21448391A JP3152307B2 (en) 1991-07-30 1991-07-30 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP21448391A JP3152307B2 (en) 1991-07-30 1991-07-30 Lithium secondary battery

Publications (2)

Publication Number Publication Date
JPH0536401A JPH0536401A (en) 1993-02-12
JP3152307B2 true JP3152307B2 (en) 2001-04-03

Family

ID=16656463

Family Applications (1)

Application Number Title Priority Date Filing Date
JP21448391A Expired - Fee Related JP3152307B2 (en) 1991-07-30 1991-07-30 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JP3152307B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPWO2004102703A1 (en) * 2003-05-16 2006-07-13 松下電器産業株式会社 Nonaqueous electrolyte secondary battery
JP2005293852A (en) * 2004-03-31 2005-10-20 Sanyo Electric Co Ltd Manufacturing method of lithium secondary battery and anode for the lithium secondary battery
JP5979034B2 (en) 2013-02-14 2016-08-24 三菱マテリアル株式会社 Sputtering target for protective film formation
EP2866285B1 (en) * 2013-10-23 2019-01-16 VARTA Microbattery GmbH Lithium ion batteries and method for their manufacture
JP5757318B2 (en) 2013-11-06 2015-07-29 三菱マテリアル株式会社 Protective film forming sputtering target and laminated wiring film
CN113113660A (en) * 2014-03-24 2021-07-13 株式会社半导体能源研究所 Lithium ion secondary battery

Also Published As

Publication number Publication date
JPH0536401A (en) 1993-02-12

Similar Documents

Publication Publication Date Title
JPH08167429A (en) Rechargeable electrochemical cell and its manufacture
JP2000030703A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
JPH09115523A (en) Nonaqueous electrolytic secondary battery
JPH1186853A (en) Lithium secondary battery
JPH1186854A (en) Lithium secondary battery
US5792576A (en) Limited rechargeable lithium battery based on a cathode slurry
JP3169102B2 (en) Non-aqueous electrolyte secondary battery
JPH11121012A (en) Nonaqueous electrolytic battery
JPH06342673A (en) Lithium secondary battery
US7097938B2 (en) Negative electrode material and battery using the same
JPH0896849A (en) Nonaqueous electrolytic secondary battery
JP3152307B2 (en) Lithium secondary battery
JPH11297311A (en) Negative electrode material for nonaqueous secondary battery
JP2005293960A (en) Anode for lithium ion secondary battery, and lithium ion secondary battery
JPH04294059A (en) Negative electrode for secondary battery with non-aqueous electrolyte
JP2734822B2 (en) Non-aqueous electrolyte secondary battery
JP3336672B2 (en) Manufacturing method of non-aqueous electrolyte secondary battery
JP4849291B2 (en) Secondary battery
JP3239267B2 (en) Organic electrolyte battery
JP3404929B2 (en) Non-aqueous electrolyte battery
JP3383454B2 (en) Lithium secondary battery
JP3168600B2 (en) Negative electrode for non-aqueous electrolyte secondary batteries
JPH09102312A (en) Secondary battery
JP3212018B2 (en) Non-aqueous electrolyte secondary battery
JP3447187B2 (en) Non-aqueous electrolyte battery and method for manufacturing the same

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees