JP3239267B2 - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JP3239267B2
JP3239267B2 JP13168590A JP13168590A JP3239267B2 JP 3239267 B2 JP3239267 B2 JP 3239267B2 JP 13168590 A JP13168590 A JP 13168590A JP 13168590 A JP13168590 A JP 13168590A JP 3239267 B2 JP3239267 B2 JP 3239267B2
Authority
JP
Japan
Prior art keywords
battery
potential
organic electrolyte
positive electrode
electrolyte battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP13168590A
Other languages
Japanese (ja)
Other versions
JPH0426075A (en
Inventor
寿 塚本
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP13168590A priority Critical patent/JP3239267B2/en
Publication of JPH0426075A publication Critical patent/JPH0426075A/en
Application granted granted Critical
Publication of JP3239267B2 publication Critical patent/JP3239267B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機電解液電池に関する。Description: TECHNICAL FIELD The present invention relates to an organic electrolyte battery.

従来の技術 有機電解液電池は、水溶液系電池に比較して高電圧、
高エネルギー密度が得られる点で優れている。しかし、
有機電解液は、導電率が著しく低いので、有機電解液電
池の高率放電特性は水溶液系電池に比較してきわめて劣
っている。
2. Description of the Related Art Organic electrolyte batteries have higher voltage and higher voltage than aqueous batteries.
It is excellent in that a high energy density can be obtained. But,
Since the organic electrolyte has an extremely low electrical conductivity, the high-rate discharge characteristics of the organic electrolyte battery are extremely inferior to those of the aqueous battery.

有機電解液電池の電解液としては、プロピレンカーボ
ネートもしくはエチレンカーボネートまたは両者を混合
したものに、電解質としてLiClO4,LiAsF6,LiBF4,LiPF6
もしくはLiCF3CO3またはそれらの混合物を加えたものが
代表的である。
As an electrolyte for the organic electrolyte battery, propylene carbonate or ethylene carbonate or a mixture of both, and LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6
Alternatively, LiCF 3 CO 3 or a mixture thereof is typical.

プロピレンカーボネートおよびエチレンカーボネート
は、比較的誘電率が高いので、これらを用いた電解液の
導電率は比較的高い。しかし、有機電解液電池は、高率
放電性能の改善がつねに求められているので、この電解
液も導電率をさらに向上することが強く望まれている。
Propylene carbonate and ethylene carbonate have relatively high dielectric constants, and the electrolytes using them have relatively high conductivity. However, since improvement in high-rate discharge performance is always required for organic electrolyte batteries, it is strongly desired that this electrolyte also further improve conductivity.

発明が解決しようとする課題 従来、有機電解液の導電率を向上させるために、ジメ
トキシエタン(以下ではDMEと表記する)を添加する方
法が一般に用いられてきた。しかし、DMEには次のよう
な問題があった。すなわち、近年3.5V vs.Li/Li+以上の
きわめて貴な電位を示すLiCoO2,LiNiO2,LiFeO2またはカ
ーボン電極などの正極が用いられるようになってきた
が、このような高電位の正極を用いた場合には、DMEが
電池内で酸化分解されてしまい電池特性が急激に劣化す
るという問題があった。
Problems to be Solved by the Invention Conventionally, a method of adding dimethoxyethane (hereinafter referred to as DME) has been generally used to improve the conductivity of an organic electrolyte solution. However, DME had the following problems. That is, in recent years, a positive electrode such as LiCoO 2 , LiNiO 2 , LiFeO 2 or a carbon electrode showing a very noble potential of 3.5 V vs. Li / Li + or more has been used, but such a high potential positive electrode has been used. In the case where DME is used, there is a problem that DME is oxidized and decomposed in the battery and battery characteristics are rapidly deteriorated.

したがって、高電位な正極活性物質を備えた有機電解
液電池は、高率放電性能の改善が非常に難しいという課
題があった。
Therefore, an organic electrolyte battery provided with a high-potential positive electrode active material has a problem that it is extremely difficult to improve high-rate discharge performance.

課題を解決するための手段 本発明は、電位が3.5V vs.Li/Li+以上の正極と、電位
が0.2V vs.Li/Li+よりも貴である負極板を備え、プロピ
レンカーボネートとエチレンカーボネートとアセトニト
リルを混合してなる有機溶媒を電解液として備え、前記
電解液の酸化電位が4.8V(vs.Li/Li+)よりも貴であり
かつ20℃における導電率が12mS/cm2以上であることを特
徴とする有機電解液電池を用いて前記課題を解決するも
のである。
Means for Solving the Problems The present invention comprises a positive electrode having a potential of 3.5 V vs. Li / Li + or more, and a negative electrode plate having a potential of no more than 0.2 V vs. Li / Li + , propylene carbonate and ethylene. An organic solvent obtained by mixing carbonate and acetonitrile is provided as an electrolyte, the oxidation potential of the electrolyte is more noble than 4.8 V (vs. Li / Li + ), and the conductivity at 20 ° C. is 12 mS / cm 2 or more. The object is achieved by using an organic electrolyte battery characterized by the following.

作 用 発明者は、DMEと同様の低粘度溶媒であって、しかもD
MEよりも酸化電位が貴な有機溶媒について検討した結
果、後述のようにアセトニトリル(以下ではANと表記す
る)が有用であることを見いだした。
Effect The inventor uses a low-viscosity solvent similar to DME,
As a result of examining an organic solvent having an oxidation potential higher than that of ME, it was found that acetonitrile (hereinafter referred to as AN) was useful as described later.

ANあるいはDMEを添加した場合の酸化電位の変化を表
1に示す。表中PCはプロピレンカーボネート、ECはエチ
レンカーボネートを示す。DMEを添加した場合には酸化
電位が著しく卑に移行したが、ANを添加した場合には酸
化電位の低下がほとんど無かった。すなわち、ANの添加
は、電解液の耐酸化性能の劣化を招かないことがわかっ
た。
Table 1 shows the change in oxidation potential when AN or DME was added. In the table, PC indicates propylene carbonate, and EC indicates ethylene carbonate. When DME was added, the oxidation potential shifted remarkably to low, but when AN was added, the oxidation potential hardly decreased. That is, it was found that the addition of AN did not cause deterioration of the oxidation resistance performance of the electrolytic solution.

つぎに、これらの電解液の20℃における導電率を表2
に示す。ANまたはDMEを添加した場合には20℃における
導電率は向上した。しかし、DMEを添加した場合には前
記のように耐酸化性能が低下するので望ましくない。以
上のようにANの添加は、電解液の耐酸化性能を劣化させ
ずに20℃における導電率を向上できる点で優れている。
Next, the conductivity at 20 ° C. of these electrolytes is shown in Table 2.
Shown in When AN or DME was added, the conductivity at 20 ° C. was improved. However, when DME is added, the oxidation resistance deteriorates as described above, which is not desirable. As described above, the addition of AN is excellent in that the conductivity at 20 ° C. can be improved without deteriorating the oxidation resistance of the electrolytic solution.

しかし、ANには次のような欠点がある。すなわち、従
来の有機電解液電池は、通常金属リチウム負極を用いて
いる。ANは、この金属リチウム負極と容易に反応(還元
分解)する。このため、従来の有機電解液電池では、AN
は、ほとんど用いられていなかった。
However, AN has the following disadvantages. That is, the conventional organic electrolyte battery usually uses a metal lithium anode. AN easily reacts with this metallic lithium anode (reductive decomposition). For this reason, in the conventional organic electrolyte battery, AN
Was rarely used.

発明者は、ANの還元電位について詳しく検討した結
果、0.2V vs.Li/Li+以上の電位領域では、ANの還元分解
が起こりにくいことを見いだした。
As a result of a detailed study of the reduction potential of AN, the inventors have found that reductive decomposition of AN is unlikely to occur in a potential region of 0.2 V vs. Li / Li + or more.

よって、本発明では、平衡電位および作動電位が金属
リチウムよりも0.2V以上貴であるような負極板を備える
ことによって、ANの還元分解が起こらないようにした。
そして、電解液にANを添加して、高電位の正極活物質を
備えた有機電解液電池の高率放電性能の改良を可能にし
た。
Therefore, in the present invention, by providing a negative electrode plate having an equilibrium potential and an operating potential 0.2 V or more higher than that of metallic lithium, reduction decomposition of AN does not occur.
By adding AN to the electrolyte, it was possible to improve the high-rate discharge performance of the organic electrolyte battery provided with the high-potential positive electrode active material.

実施例 以下、本発明を好適な実施例を用いて説明する。Examples Hereinafter, the present invention will be described using preferred examples.

正極活物質にLiCoO2を用い、負極活物質にアルミニウ
ム合金を用いて、第一図に示した内部構造を有するボタ
ン型有機電解液電池をつぎのように試作した。
Using LiCoO 2 for the positive electrode active material and an aluminum alloy for the negative electrode active material, a button-type organic electrolyte battery having the internal structure shown in FIG. 1 was fabricated as follows.

90wt%のLiCoO2、8wt%のアセチレンブラックおよび2
wt%のポリテトラフルオロエチレン(PTFE)を混合して
正極合剤とした。そして、この正極合剤を0.65g採集し
て、325meshのステンレス(SUS316)製金網に包み込ん
で、径が12mmで厚さが2.1mmの正極板ペレット(1)を
試作した。この正極板ペレットの放電容量は、0.5モル
のリチウムが吸蔵放出されるとした場合に80mAhであ
る。
90 wt% LiCoO 2 , 8 wt% acetylene black and 2
wt% polytetrafluoroethylene (PTFE) was mixed to prepare a positive electrode mixture. Then, 0.65 g of this positive electrode mixture was collected, wrapped in a 325 mesh stainless steel (SUS316) wire mesh, and a positive electrode plate pellet (1) having a diameter of 12 mm and a thickness of 2.1 mm was prototyped. The discharge capacity of the positive electrode plate pellet is 80 mAh, assuming that 0.5 mol of lithium is inserted and released.

Al(91wt%)−Li(2wt%)−Si(5wt%)−Mn(1wt
%)−Ga(1wt%)合金をガスアトマイズ法によって平
均粒径が20ミクロンの粉末に加工した。そして、このア
ルミニウム合金粉末を0.3g採集して、180meshのニッケ
ル金網に包み込んで径が10mmで厚さが1.9mmの負極板ペ
レット(2)を試作した。なお、このアルミニウム合金
の電位は、リチウムよりも約0.3V貴である。したがっ
て、ANは負極において還元分解されない。
Al (91 wt%)-Li (2 wt%)-Si (5 wt%)-Mn (1 wt%
%)-Ga (1 wt%) alloy was processed into a powder having an average particle diameter of 20 microns by a gas atomizing method. Then, 0.3 g of this aluminum alloy powder was collected, wrapped in a 180 mesh nickel wire mesh, and a negative electrode plate pellet (2) having a diameter of 10 mm and a thickness of 1.9 mm was prototyped. The potential of this aluminum alloy is about 0.3 V higher than that of lithium. Therefore, AN is not reductively decomposed at the negative electrode.

葉脈状の無孔部と、孔が3次元的に配列した有孔分と
を有する平均厚さが23ミクロンのポリエチレン製微孔膜
(三菱化成株式会社エクセポールE)を直径14mmに打ち
抜いて微孔性セパレーター(3)を試作した。また、ポ
リプロピレンの不織布を12mmに打ち抜いて平均厚さが0.
2mmの不織布セパレーター(4)を試作した。
A microporous polyethylene film (Mitsubishi Kasei Corporation, Exepol E) having an average thickness of 23 microns and having a vein-like non-porous portion and pores in which holes are three-dimensionally arranged is punched out to a diameter of 14 mm. A porous separator (3) was experimentally manufactured. In addition, a polypropylene non-woven fabric is punched into 12 mm and the average thickness is 0.
A 2 mm nonwoven fabric separator (4) was prototyped.

これらの電池構成部品に後述の電解液を真空含浸した
のち、第1図のように積層して、耐蝕性ステンレス鋼板
製の正極缶(5)、負極缶(6)およびポリプロピレン
製の絶縁ガスケット(7)からなる電池ケースに収納し
て径が15.4mmで厚さが5mmのボタン型有機電解液電池を
試作した。
After these battery components are vacuum impregnated with an electrolytic solution described later, they are laminated as shown in FIG. 1 to form a positive electrode can (5) and a negative electrode can (6) made of a corrosion-resistant stainless steel plate and an insulating gasket (made of polypropylene). A button-type organic electrolyte battery with a diameter of 15.4 mm and a thickness of 5 mm was housed in the battery case of 7).

電解液として、1.5M LiClO4/PC+EC+AN(1:1:2)を
用いた有機電解液電池を本発明の実施例による電池1と
する。
An organic electrolyte battery using 1.5 M LiClO 4 / PC + EC + AN (1: 1: 2) as the electrolyte is referred to as Battery 1 according to the embodiment of the present invention.

本例では電解質にLiClO4を用いているが、表2に示し
たようにLiAsF6を用いた方が、20℃における導電率がよ
り高い。しかし、ヒ素系の電解液は、毒性が強いので実
用は難しいとされている。
In this example, LiClO 4 is used for the electrolyte. However, as shown in Table 2, the conductivity at 20 ° C. is higher when LiAsF 6 is used. However, arsenic-based electrolytes are considered to be practically difficult because of their high toxicity.

また、電解液に1.5M LiClO4/PC+EC(1:1)を用いた
電池を比較のための電池Aとする。そして、電解液に1.
5M LiClO4/PC+EC+DME(1:1:2)を用いた電池を比較の
ための電池Bとする。さらに、負極板に径が10mmで厚さ
が2mmの金属リチウムを用いた以外は、本発明による電
池1と同じ電池を比較のための電池Cとする。これらの
電池の放電容量の放電電流依存性を検討した。
A battery using 1.5 M LiClO 4 / PC + EC (1: 1) as an electrolyte is referred to as a battery A for comparison. Then, add 1.
A battery using 5M LiClO 4 / PC + EC + DME (1: 1: 2) is referred to as a battery B for comparison. Further, a battery C for comparison is the same battery as the battery 1 according to the present invention except that lithium metal having a diameter of 10 mm and a thickness of 2 mm was used for the negative electrode plate. The dependence of the discharge capacity of these batteries on the discharge current was studied.

その結果を第2図に示す。図から明らかなように、本
発明による電池1および比較のための電池Bおよび電池
Cは、電池Aに比較して高率放電時の容量が多い。すな
わち、ANまたはDMEの添加によって電池の高率放電性能
が改善された。
The result is shown in FIG. As is clear from the figure, the battery 1 according to the present invention and the batteries B and C for comparison have larger capacities during high-rate discharge than the battery A. That is, the high rate discharge performance of the battery was improved by the addition of AN or DME.

つぎに、上記の電池をD.O.D.100%の充放電サイクル
試験にかけた。放電容量のサイクルの進行にともなう変
化を第3図に示す。図から明らかなように、電池Bおよ
び電池Cは、サイクル寿命が実施例の電池1または比較
のための電池Aに比較して著しく短い。高電位の正極板
を用いてDMEを添加した場合には、DMEが酸化分解される
ことに起因して容量の低下が起こり、ANを添加して金属
リチウム負極板を用いた場合には、ANが還元分解される
ことに起因して容量低下が起きたものと考えられる。
Next, the battery was subjected to a 100% DOD charge / discharge cycle test. FIG. 3 shows the change in the discharge capacity with the progress of the cycle. As is apparent from the figure, the cycle life of the batteries B and C is significantly shorter than that of the battery 1 of the example or the battery A for comparison. When DME is added using a high-potential positive electrode plate, the capacity is reduced due to oxidative decomposition of DME. It is considered that the capacity was reduced due to the reductive decomposition of.

以上の結果から、電位が3.5V vs.Li/Li+以上の正極
と、電位が0.2V vs.Li/Li+よりも貴である負極板を用い
て、プロピレンカーボネートとエチレンカーボネートと
アセトニトリルを混合してなる有機溶媒を用いたことを
特徴とする本発明の有機電解液電池は、電解液高率放電
性能およびサイクル寿命性能が著しく優れていることが
わかる。
These results, potential and is 3.5V vs.Li/Li + or more positive electrode potential is the negative-electrode plate is nobler than 0.2V vs.Li/Li +, mixing propylene carbonate and ethylene carbonate and acetonitrile It can be seen that the organic electrolyte battery of the present invention, characterized by using the organic solvent prepared as described above, has remarkably excellent electrolytic solution high-rate discharge performance and cycle life performance.

なお、本発明では、負極としてリチウムよりも0.2V以
上貴な電位を有する電極を用いるが、この負極として
は、実施例のようにアルミニウム合金負極を用いても良
いし、たとえば、カーボン負極、鉛負極、二酸化タング
ステン負極などを用いても良い。また、本発明の実施例
では、正極活物質にLiCoO2を用いているが、LiCoO2と同
様に3.5V vs.Li/Li+以上の高電位を示すLiNiO2,LiNi1-x
CoxO2,LiFeO2またはカーボン正極板を用いても良い。も
ちろん、MnO2,V2O5,TiS2などの比較的低電位の正極活物
質を用いても良い。しかし、本発明が最も効果的なの
は、DMEを用いることができないような高電位の正極活
物質を備えた有機電解液電池の場合である。
In the present invention, an electrode having a potential 0.2 V or more noble than lithium is used as the negative electrode. As the negative electrode, an aluminum alloy negative electrode may be used as in the embodiment, for example, a carbon negative electrode, a lead A negative electrode, a tungsten dioxide negative electrode, or the like may be used. Further, in the embodiment of the present invention, LiCoO 2 is used as the positive electrode active material, but LiNiO 2 , LiNi 1-x exhibiting a high potential of 3.5 V vs. Li / Li + or more like LiCoO 2.
Co x O 2 , LiFeO 2 or a carbon positive electrode plate may be used. Of course, a relatively low-potential positive electrode active material such as MnO 2 , V 2 O 5 , or TiS 2 may be used. However, the present invention is most effective in the case of an organic electrolyte battery provided with a high-potential positive electrode active material in which DME cannot be used.

発明の効果 本発明は、有機電解液電池の高率放電性能を著しく向
上できるものであり、その工業的価値はきわめて大であ
る。
Effect of the Invention The present invention can significantly improve the high-rate discharge performance of an organic electrolyte battery, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の実施例の電池の内部構造の概略図で
ある。第2図は、本発明の電池と従来の電池との高率放
電性能を比較した図である。第3図は、本発明の電池と
従来の電池とのサイクル寿命性能を比較した図である。
FIG. 1 is a schematic view of the internal structure of a battery according to an embodiment of the present invention. FIG. 2 is a diagram comparing the high-rate discharge performance between the battery of the present invention and a conventional battery. FIG. 3 is a diagram comparing the cycle life performance of the battery of the present invention and a conventional battery.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭63−119170(JP,A) 特開 昭64−54674(JP,A) 特開 昭62−222577(JP,A) 特開 昭62−140358(JP,A) 特開 昭57−107576(JP,A) 特開 昭62−110272(JP,A) 吉沢四郎監修「電池ハンドブック」 (昭50−4−15)電気書院、p.3− 162〜3−165 (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 ──────────────────────────────────────────────────続 き Continuation of the front page (56) References JP-A-63-119170 (JP, A) JP-A-64-54674 (JP, A) JP-A-62-222577 (JP, A) JP-A 62-222577 140358 (JP, A) JP-A-57-107576 (JP, A) JP-A-62-110272 (JP, A) Shiro Yoshizawa "Battery Handbook" (Showa 50-4-15) Denki Shoin, p. 3-162 to 3-165 (58) Fields surveyed (Int. Cl. 7 , DB name) H01M 10/40

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電位が3.5V vs.Li/Li+以上の正極と、電位
が0.2V vs.Li/Li+よりも貴である負極板とを備え、プロ
ピレンカーボネートとエチレンカーボネートとアセトニ
トリルを混合してなる有機溶媒を電解液として備え、前
記電解液の酸化電位が4.8V(vs.Li/Li+)よりも貴であ
りかつ20℃における導電率が12mS/cm2以上であることを
特徴とする有機電解液電池。
And 1. A potential is 3.5V vs.Li/Li + more positive electrode potential and a negative electrode plate is nobler than 0.2V vs.Li/Li +, propylene carbonate and ethylene carbonate and acetonitrile mixture Wherein the organic solvent obtained is used as an electrolyte, the oxidation potential of the electrolyte is more noble than 4.8 V (vs. Li / Li + ), and the conductivity at 20 ° C. is 12 mS / cm 2 or more. Organic electrolyte battery.
JP13168590A 1990-05-21 1990-05-21 Organic electrolyte battery Expired - Lifetime JP3239267B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP13168590A JP3239267B2 (en) 1990-05-21 1990-05-21 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP13168590A JP3239267B2 (en) 1990-05-21 1990-05-21 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH0426075A JPH0426075A (en) 1992-01-29
JP3239267B2 true JP3239267B2 (en) 2001-12-17

Family

ID=15063826

Family Applications (1)

Application Number Title Priority Date Filing Date
JP13168590A Expired - Lifetime JP3239267B2 (en) 1990-05-21 1990-05-21 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP3239267B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007134484A1 (en) * 2006-05-18 2007-11-29 Citic Guoan Mengguli New Energy Technology Co., Ltd. A lithium-ion battery with medium and small capacity and high output
WO2013062056A1 (en) 2011-10-28 2013-05-02 旭化成株式会社 Non-aqueous secondary battery
US9893378B2 (en) 2010-10-29 2018-02-13 Asahi Kasei Kabushiki Kaisha Non-aqueous electrolyte solution and non-aqueous secondary battery

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
AUPS119502A0 (en) * 2002-03-19 2002-04-18 Energy Storage Systems Pty Ltd An electrolyte for an energy storage device
ATE355629T1 (en) * 2003-08-20 2006-03-15 Samsung Sdi Co Ltd ELECTROLYTE FOR RECHARGEABLE LITHIUM BATTERY AND RECHARGEABLE LITHIUM BATTERY CONTAINING THE SAME
JP2007287677A (en) 2006-03-24 2007-11-01 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
US8576541B2 (en) 2010-10-04 2013-11-05 Corning Incorporated Electrolyte system

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
吉沢四郎監修「電池ハンドブック」(昭50−4−15)電気書院、p.3−162〜3−165

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007134484A1 (en) * 2006-05-18 2007-11-29 Citic Guoan Mengguli New Energy Technology Co., Ltd. A lithium-ion battery with medium and small capacity and high output
JP2009537936A (en) * 2006-05-18 2009-10-29 中信国安盟固利新能源科技有限公司 Small and medium capacity high power lithium ion battery
US9893378B2 (en) 2010-10-29 2018-02-13 Asahi Kasei Kabushiki Kaisha Non-aqueous electrolyte solution and non-aqueous secondary battery
WO2013062056A1 (en) 2011-10-28 2013-05-02 旭化成株式会社 Non-aqueous secondary battery
US10644353B2 (en) 2011-10-28 2020-05-05 Asahi Kasei Kabushiki Kaisha Non-aqueous secondary battery

Also Published As

Publication number Publication date
JPH0426075A (en) 1992-01-29

Similar Documents

Publication Publication Date Title
JP3269396B2 (en) Non-aqueous electrolyte lithium secondary battery
CA2346601C (en) Efficient cell stack for cells with double current collectors sandwich cathodes
CA2345518C (en) Sandwich cathode design for alkali metal electrochemical cell with high discharge rate capability
JP3249305B2 (en) Non-aqueous electrolyte battery
US5837397A (en) Laminar (flat or paper-type) lithium-ion battery with slurry anodes and slurry cathodes
JP2002100361A (en) CONTROL OF CELL EXPANSION BY SUITABLE SELECTION OF MONO- FLUORIDATION CARBON (CFx) CATHODE MATERIAL IN HIGH RATE DEFIBRILLATOR CELL
CA2361030A1 (en) Double current collector cathode design for alkali metal electrochemical cells having short circuit safety characteristics
US5792576A (en) Limited rechargeable lithium battery based on a cathode slurry
JP2003242965A (en) Two sheets of positive electrode collectors for alkaline metal ion electrochemical battery
JP2002237334A (en) Double collector type negative electrode structure for alkaline metal ion battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JPH06342673A (en) Lithium secondary battery
JP3239267B2 (en) Organic electrolyte battery
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
JPH0745304A (en) Organic electrolyte secondary battery
JP3050885B2 (en) Non-aqueous solvent secondary battery and method of manufacturing the same
JP3289260B2 (en) Lithium secondary battery
JP3152307B2 (en) Lithium secondary battery
JP3036018B2 (en) Organic electrolyte battery
JPH10144346A (en) Secondary battery containing nonaqueous solvent electrolytic solution
JP2000012026A (en) Nonaqueous electrolyte secondary battery
US8153304B2 (en) Method of using cyclic pressure to increase the pressed density of electrodes for use in electrochemical cells
JP2001202999A (en) Charge and discharge method for nonaqueous electrolytic secondary battery
JPH0935716A (en) Lithium battery
JP3163444B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071012

Year of fee payment: 6

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081012

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091012

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9

EXPY Cancellation because of completion of term
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101012

Year of fee payment: 9