JP3036018B2 - Organic electrolyte battery - Google Patents

Organic electrolyte battery

Info

Publication number
JP3036018B2
JP3036018B2 JP2212193A JP21219390A JP3036018B2 JP 3036018 B2 JP3036018 B2 JP 3036018B2 JP 2212193 A JP2212193 A JP 2212193A JP 21219390 A JP21219390 A JP 21219390A JP 3036018 B2 JP3036018 B2 JP 3036018B2
Authority
JP
Japan
Prior art keywords
battery
solvent
nmaa
negative electrode
nmpa
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Lifetime
Application number
JP2212193A
Other languages
Japanese (ja)
Other versions
JPH0494066A (en
Inventor
寿 塚本
Original Assignee
日本電池株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日本電池株式会社 filed Critical 日本電池株式会社
Priority to JP2212193A priority Critical patent/JP3036018B2/en
Publication of JPH0494066A publication Critical patent/JPH0494066A/en
Application granted granted Critical
Publication of JP3036018B2 publication Critical patent/JP3036018B2/en
Anticipated expiration legal-status Critical
Expired - Lifetime legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Primary Cells (AREA)

Description

【発明の詳細な説明】 産業上の利用分野 本発明は、有機電解液電池に関する。Description: TECHNICAL FIELD The present invention relates to an organic electrolyte battery.

従来の技術とその課題 有機電解液電池は、通常金属リチウムを負極に用いて
おり他の水溶液系電池に比較して高電圧、高エネルギー
密度な点で優れている。しかし有機溶媒は、水溶液に比
較して導電率が著しく低いので、有機電解液電池の高率
放電特性はきわめて劣っている。
2. Description of the Related Art Conventionally, an organic electrolyte battery generally uses metallic lithium for a negative electrode and is superior in terms of high voltage and high energy density as compared with other aqueous batteries. However, since the organic solvent has a significantly lower conductivity than the aqueous solution, the high rate discharge characteristics of the organic electrolyte battery are extremely poor.

従来の有機電解液電池の電解液は、プロピレンカーボ
ネート(以下ではPCと表記する)もしくはエチレンカー
ボネート(以下ではECと表記する)または両者を混合し
たものにジメトキシエタン(以下ではDMEと表記する)
を加えてなる溶媒にLiClO4,LiAsF6,LiBF4,LiPF6,LiSb
F6,LiCF3SO3もしくはLiCF3CO3を単体でまたは混合した
溶質を加えたものが用いられている。
The electrolyte of a conventional organic electrolyte battery is dimethoxyethane (hereinafter referred to as DME) in propylene carbonate (hereinafter referred to as PC) or ethylene carbonate (hereinafter referred to as EC) or a mixture of both.
LiClO 4 , LiAsF 6 , LiBF 4 , LiPF 6 , LiSb
F 6, LiCF 3 SO 3 or LiCF 3 CO 3 which was added alone or mixed solute is used.

高誘電率溶媒であるPCまたはECに低粘度溶媒であるDM
Eを混合すると下記のような効果が得られる。すなわ
ち、PCおよびECは、それぞれ誘電率が64および89と高い
点で優れているが、粘度が2.53cpおよび1.8cpと高い点
が問題である。これに対してDMEは、粘度が0.45cpと低
い点で優れているが、誘電率が5.5と低い点が問題であ
る。これらを混合すると、両者の長所を兼ね備えて誘電
率が高くて粘度が低く高い導電率を持った溶媒を得るこ
とができるものである。
PC or EC which is a high dielectric constant solvent and DM which is a low viscosity solvent
When E is mixed, the following effects can be obtained. That is, PC and EC are excellent in that their dielectric constants are as high as 64 and 89, respectively, but are problematic in that their viscosities are as high as 2.53 cp and 1.8 cp, respectively. On the other hand, DME is excellent in that the viscosity is as low as 0.45 cp, but has a problem in that the dielectric constant is as low as 5.5. When these are mixed, a solvent having both a high dielectric constant, a low viscosity, and a high conductivity can be obtained, having both advantages.

しかし、DMEには次のような欠点がある。すなわち、
近年、LiCoO2,LiNiO2,LiFeO2,LiMnO2またはカーボン電
極などの3.5Vvs.Li/Li+以上のきわめて貴な電位を示す
正極が検討されるようになってきたが、DMEはこのよう
な高電位の正極を用いた場合に容易に酸化分解するので
電解液に用いることができないという問題がある。
However, DME has the following disadvantages. That is,
Recently, LiCoO 2, LiNiO 2, LiFeO 2, but LiMnO 2 or a positive electrode showing a very noble potential of 3.5Vvs.Li/Li + more such carbon electrode has come to be discussed, DME is as this When a positive electrode having a high potential is used, it is easily oxidized and decomposed, so that it cannot be used as an electrolytic solution.

発明者は、DMEに変わる新しい低粘溶媒としてアセト
ニトリル(以下ではANと表記する)を検討した。ANは、
DMEよりも優れた耐酸化性能を有し、しかも粘度が0.34c
pとDMEよりもさらに低い。しかし、ANは、金属リチウム
と容易に反応するという欠点があった。そこで、発明者
は、従来有機電解液電池の負極板として一般に用いられ
ていた金属リチウムに変えて、リチウムよりも貴な電位
を有する他の負極板を用いることにより、ANの還元分解
を防止することを考えた。そして、0.2V vs.Li/Li+以上
貴な電位を有する負極を用いればANの還元分解を抑制す
ることができることを見いだし、AN系電解液の実用を可
能にした。(特願平2−131685号)。
The inventor has studied acetonitrile (hereinafter referred to as AN) as a new low-viscosity solvent replacing DME. AN is
Has better oxidation resistance than DME, and has a viscosity of 0.34c
Even lower than p and DME. However, AN has a disadvantage that it easily reacts with metallic lithium. Thus, the inventor has prevented the reductive decomposition of AN by using another negative electrode plate having a potential nobler than lithium instead of metal lithium which has been generally used as a negative electrode plate of an organic electrolyte battery in the past. I thought that. Then, it was found that the use of a negative electrode having a noble potential of 0.2 V vs. Li / Li + or more can suppress the reductive decomposition of AN, and made practical use of the AN-based electrolyte possible. (Japanese Patent Application No. 2-131685).

しかし、電解液の導電率をさらに向上させること、お
よび電解液の安定性をさらに増すことは、有機電解液電
池の高率放電性能および寿命性能を向上する上で常に検
討されるべき課題である。
However, further improving the conductivity of the electrolytic solution and further increasing the stability of the electrolytic solution are issues that should always be considered in improving the high-rate discharge performance and the life performance of the organic electrolyte battery. .

課題を解決するための手段 本発明は、電位が0.2V vs.Li/Li+よりも貴であるよう
な負極板を備え、有機溶媒が溶媒Aと溶媒Bの2種類の
溶媒から構成され、前記溶媒Aはバレロニトリル(以
下、VNと略す)、ブチロニトリル(以下、BNと略す)、
アセトニトリル(以下、ANと略す)+VN、AN+BN、VN+
BN、AN+VN+BNの群から選ばれた1種であり、前記溶媒
BはN−メチルアセトアミド(以下、NMAAと略す)、N
−メチルプロピオンアミド(以下、NMPAと略す)、N−
メチルホルムアミド(以下、NMFAと略す)+NMAA、NMFA
+NMPA、NMAA+NMPA、NMFA+NMAA+NMPAの群から選ばれ
た1種である有機溶媒を電解液として備えたことを特徴
とする有機電解液電池を用いて前記課題を解決するもの
である。
Means for Solving the Problems The present invention includes a negative electrode plate having a potential of 0.2 V vs. more noble than Li / Li + , and the organic solvent is composed of two types of solvents, a solvent A and a solvent B, The solvent A is valeronitrile (hereinafter abbreviated as VN), butyronitrile (hereinafter abbreviated as BN),
Acetonitrile (hereinafter abbreviated as AN) + VN, AN + BN, VN +
BN, AN + VN + BN, and the solvent B is N-methylacetamide (hereinafter abbreviated as NMAA), N
-Methylpropionamide (hereinafter abbreviated as NMPA), N-
Methylformamide (hereinafter abbreviated as NMFA) + NMAA, NMFA
An object of the present invention is to solve the above-mentioned problem by using an organic electrolyte battery including an organic solvent selected from the group of + NMPA, NMAA + NMPA, and NMFA + NMAA + NMPA as an electrolyte.

また、前記の電解液にエチレンカーボネートを添加し
た電解液を備えたことを特徴とする有機電解液電池を用
いることにより前記課題の解決をさらに容易にするもの
である。
Further, the object of the present invention is further facilitated by using an organic electrolyte battery comprising an electrolyte solution obtained by adding ethylene carbonate to the electrolyte solution.

作 用 発明者は、比較的低粘度の溶媒であって、しかもANよ
りも酸化還元の電位の差が大きい有機溶媒を検討した結
果、バレロニトリル(以下ではVNと表記する)およびブ
チロニトリル(以下ではBNと表記する)を見いだした。
これらの有機溶媒は、酸化電位から還元電位に至る電位
の幅がANよりも若干広い。したがって、VNまたはBNをAN
に変えて、またはANと混合して用いることにより、電解
液の電気化学的な安定性を向上させることができる。
The inventors studied an organic solvent having a relatively low viscosity and a larger difference in oxidation-reduction potential than that of AN. As a result, valeronitrile (hereinafter referred to as VN) and butyronitrile (hereinafter referred to as VN) were used. BN).
These organic solvents have a slightly wider potential range from the oxidation potential to the reduction potential than AN. Therefore, VN or BN AN
When used in place of or mixed with AN, the electrochemical stability of the electrolytic solution can be improved.

発明者は、AN,VNまたはBNにPCまたはECを添加すると
導電率が低下することをはじめて見いだした。このこと
は、DMEにPCやECを添加すると導電率が向上するという
従来の知見からは予想されない結果である。発明者は、
この原因を次のように考えた。すなわち、PCやECは、DM
Eに比較すれば充分高い誘電率を有しているが、ANに比
較すればそのほど誘電率が高いとは言えない。このた
め、ANにPCやECを加えた場合には、AN単体よりも粘度の
増加効果によってかえって導電率が低下するものと思わ
れる。(ただし、低温時の導電率は混合によって向上す
る。) 発明者は、AN,VNまたはBNに添加して導電率を向上さ
せるような新しい有機溶媒について検討した。その結
果、N−メチルホルムアミド(以下ではNMFAと表記す
る)、N−メチルアセトアミド(以下ではNMAAと表記す
る)もしくはN−メチルプロピオンアミド(以下ではNM
PAと表記する)を見いだした。これらの電解液は、粘度
が高いという欠点があるが、誘電率が150以上と非常に
高い。発明者は、これらの有機溶媒とAN,VNまたはBNと
混合することにより電解液の導電率を向上できることを
見いだした。
The inventor has for the first time found that the addition of PC or EC to AN, VN or BN results in a decrease in conductivity. This is an unexpected result from the conventional knowledge that the conductivity is improved when PC or EC is added to DME. The inventor
The cause was considered as follows. That is, PC and EC are DM
Although it has a sufficiently high dielectric constant as compared to E, it cannot be said that the dielectric constant is so high as compared to AN. For this reason, when PC or EC is added to AN, it is considered that the electrical conductivity is rather reduced due to the effect of increasing the viscosity as compared with AN alone. (However, the conductivity at low temperatures is improved by mixing.) The inventor has studied a new organic solvent that can be added to AN, VN or BN to improve the conductivity. As a result, N-methylformamide (hereinafter referred to as NMFA), N-methylacetamide (hereinafter referred to as NMAA) or N-methylpropionamide (hereinafter referred to as NMFA)
PA). These electrolytes have the disadvantage of high viscosity, but have a very high dielectric constant of 150 or more. The inventors have found that the conductivity of the electrolyte can be improved by mixing these organic solvents with AN, VN or BN.

また、発明者は、AN,VNもしくはBNおよびNMFA,NMAAも
しくはNMPAを混合してなる電解液にECを添加すると耐還
元性能が向上することを見いだした。すなわち、実施例
に詳しく示すようにECの添加は、電解液の劣化を抑制す
る作用があることがわかった。
Further, the inventors have found that reduction resistance performance is improved by adding EC to an electrolytic solution obtained by mixing AN, VN or BN and NMFA, NMAA or NMPA. That is, as shown in detail in Examples, it was found that the addition of EC has an effect of suppressing the deterioration of the electrolytic solution.

実施例 以下、本発明を好適な実施例を用いて説明する。Examples Hereinafter, the present invention will be described using preferred examples.

正極活物質にLiCoO2を用い、負極活物質にアルミニウ
ム合金を用いて、第1図に示す内部構造を有するボタン
型有機電解液電池を下記の要領で試作した。
Using LiCoO 2 as the positive electrode active material and an aluminum alloy as the negative electrode active material, a button type organic electrolyte battery having the internal structure shown in FIG. 1 was prototyped in the following manner.

70wt%のLiCoO2、20wt%のアセチレンブラックおよび
10wt%のポリテトラフルオロエチレン(PTFE)を混合し
て正極合剤とした。そして、この正極合剤を0.50g採集
して、325meshのステンレス(SUS316)製金網に包み込
んで、径が12mmで厚さが2.1mmの正極板ペレット(1)
を試作した。この正極板ペレットの放電容量は、0.5モ
ルのリチウムが吸蔵放出されるとした場合に50mAhであ
る。
70 wt% LiCoO 2 , 20 wt% acetylene black and
10 wt% of polytetrafluoroethylene (PTFE) was mixed to prepare a positive electrode mixture. Then, 0.50 g of this positive electrode mixture was collected, wrapped in a 325 mesh stainless steel (SUS316) wire mesh, and a positive electrode plate pellet having a diameter of 12 mm and a thickness of 2.1 mm (1)
Was prototyped. The discharge capacity of the positive electrode plate pellet is 50 mAh, assuming that 0.5 mol of lithium is inserted and released.

Al(92wt%)−Li(2wt%)−Si(5wt%)−Mn(1wt
%)合金をガスアトマイズ法によって平均粒径が8ミク
ロンの粉末に加工した。そして、このアルミニウム合金
粉末を0.20g採集して、180meshのニッケル金網に包み込
んで径が10mmで厚さが1.9mmの負極板ペレット(2)を
試作した。このアルミニウム合金の電位は、リチウムよ
りも約0.3V貴である。
Al (92wt%)-Li (2wt%)-Si (5wt%)-Mn (1wt
%) The alloy was processed into a powder having an average particle size of 8 microns by a gas atomizing method. Then, 0.20 g of this aluminum alloy powder was collected, wrapped in a 180 mesh nickel wire mesh, and a negative electrode plate pellet (2) having a diameter of 10 mm and a thickness of 1.9 mm was prototyped. The potential of this aluminum alloy is about 0.3 V higher than lithium.

葉脈状の無孔部と、孔が3次元的に配列した有孔部と
を有する平均厚さが23ミクロンのポリエチレン製微孔膜
を直径14mmに打ち抜いて微孔性セパレーター(3)を試
作した。また、ポリプロピレンの不織布を12mmに打ち抜
いて平均厚さが0.2mmの不織布セパレーター(4)を試
作した。これらに後述の電解液を真空含浸したのち、第
2図のように積層して、耐触性ステンレス鋼板製の正極
缶(5)および負極缶(6)、そしてポリプロピレン製
の絶縁ガスケット(7)からなる電池ケースに収納して
径が15.4mmで厚さが4.8mmのボタン型有機電解液電池を
試作した。
A microporous separator (3) was prototyped by punching a polyethylene microporous membrane having an average thickness of 23 microns having a non-porous portion in the form of veins and a perforated portion in which holes were three-dimensionally arranged to a diameter of 14 mm. . Also, a nonwoven fabric separator (4) having an average thickness of 0.2 mm was punched out by punching a polypropylene nonwoven fabric into 12 mm. These are impregnated with the electrolyte solution described below under vacuum, and then laminated as shown in FIG. 2 to form a positive electrode can (5) and a negative electrode can (6) made of a contact-resistant stainless steel plate, and an insulating gasket made of polypropylene (7). A button-type organic electrolyte battery with a diameter of 15.4 mm and a thickness of 4.8 mm was housed in a battery case consisting of

電解液として下記の7種類を用いた。すなわち、1.2M
LiAsF6/BN+NMAA(1:1)、1.2M LiAsF6/VN+NMAA(1:
1)、1.2M LiAsF6/AN+BN+NMAA(1:1:2)、1.2M LiAsF
6/BN+NMPA(1:1)、1.2M LiAsF6/AN+VN+NMPA(1:1:
2)、1.2M LiAsF6/BN+NMAA+EC(2:1:1)または1.2M L
iAsF6/BN+NMFA+NMPA+EC(3:1:1:1)である。これら
を用いた有機電解液電池をそれぞれ本発明の実施例によ
る電池1,2,3,4,5,6および7とする。
The following seven types were used as electrolytes. That is, 1.2M
LiAsF 6 /BN+NMAA(1:1),1.2M LiAsF 6 / VN + NMAA (1:
1), 1.2M LiAsF 6 / AN + BN + NMAA (1: 1: 2), 1.2M LiAsF
6 / BN + NMPA (1: 1), 1.2M LiAsF 6 / AN + VN + NMPA (1: 1:
2), 1.2M LiAsF 6 / BN + NMAA + EC (2: 1: 1) or 1.2ML
iAsF 6 / BN + NMFA + NMPA + EC (3: 1: 1: 1). Organic electrolyte batteries using these batteries are referred to as batteries 1, 2, 3, 4, 5, 6, and 7 according to embodiments of the present invention, respectively.

また、電解液に1.2M LiAsF6/AN+ECを用いた電池を比
較のための電池Aとする。また、負極板に径が10mmで厚
さが2mmの金属リチウムを用いた以外は、本発明による
電池1と同じ電池を比較のための電池Bとする。
A battery using 1.2 M LiAsF 6 / AN + EC as the electrolyte is referred to as Battery A for comparison. Battery B for comparison is the same battery as battery 1 according to the present invention except that lithium metal having a diameter of 10 mm and a thickness of 2 mm was used for the negative electrode plate.

これらの電池の放電容量の放電電流密度依存性能を比
較した結果を第2図に示す。図から明かなように、本発
明による電池は、電池Aに比較して高率放電時の容量が
多い。すなわち、AN,VNもしくはBNとNMFA,NMAAもしくは
NMPAとを混合した電解液またはこれらの電解液にさらに
ECを混合した電解液を備えた有機電解液電池は、AN+EC
電解液を備えた電池に比較して高率放電性能が優れてい
る。なお、本発明の電池は、電池Bと比較しても高率放
電性能に優れているが、これは、粉末負極板を用いたこ
とにより負極の実効の作用面積が増大したことに起因し
ているものと考えられる。
FIG. 2 shows the results of comparing the discharge current density-dependent performances of the discharge capacities of these batteries. As is clear from the figure, the battery according to the present invention has a larger capacity at the time of high-rate discharge than the battery A. That is, AN, VN or BN and NMFA, NMAA or
Electrolyte mixed with NMPA or these electrolytes
Organic electrolyte battery with electrolyte mixed with EC is AN + EC
High rate discharge performance is superior to a battery provided with an electrolytic solution. The battery of the present invention is superior in the high-rate discharge performance as compared with the battery B. This is because the effective working area of the negative electrode is increased by using the powdered negative electrode plate. It is thought that there is.

つぎに、上記の電池を2mAで4.0Vまで充電したのち2.5
Vまで放電するサイクル寿命試験にかけた。放電容量の
サイクルの進行にともなう変化を第3図に示す。
Next, after charging the above battery to 4.0 V at 2 mA,
It was subjected to a cycle life test of discharging to V. FIG. 3 shows the change in the discharge capacity with the progress of the cycle.

図から明らかなように、電池Bは、サイクル寿命が実
施例の電池および比較のための電池Aに比較して著しく
短い。これは、負極の金属リチウムがANと反応した結
果、電池の容量が低下したものと考えられる。
As is clear from the figure, the battery B has a significantly shorter cycle life than the battery of the example and the battery A for comparison. This is considered to be due to the fact that the metal lithium of the negative electrode reacted with the AN, resulting in a decrease in the capacity of the battery.

また、本発明の実施例の電池2,3は、1に比較して容
量低下の傾向が小さい。これは、VNやBNを添加した電解
液の電気化学的な安定性がこれらを用いない電解液に比
較して優れていることに起因するものと考えられる。
Also, the batteries 2 and 3 according to the examples of the present invention have a smaller tendency to decrease in capacity as compared to 1. This is considered to be due to the fact that the electrochemical stability of the electrolyte solution to which VN or BN is added is superior to the electrolyte solution not using these.

また、電池6,7は、他の電池に比較してサイクル寿命
が優れている。これは、ECの添加によって電解液の還元
分解が抑制されることに起因するものと考えられる。
Also, the batteries 6 and 7 have an excellent cycle life as compared with other batteries. This is considered to be due to the fact that reductive decomposition of the electrolytic solution is suppressed by the addition of EC.

以上の結果から、本発明の有機電解液電池は、従来の
電池に比較して、高率放電性能およびサイクル寿命性能
が著しく優れていることがわかる。
From the above results, it is understood that the organic electrolyte battery of the present invention is significantly superior in high-rate discharge performance and cycle life performance as compared with the conventional battery.

なお、本発明では、負極にリチウムよりも0.2V以上貴
な電位を有する電極を用いるが、これは、実施例のよう
にアルミニウム合金負極を用いても良いし、そのほかカ
ーボン負極、リチウム鉛合金負極、二酸化タングステン
負極などを用いても良い。また、前記の負極にポリパラ
フェニレンを加えた負極板を用いてもよい。また、本発
明の実施例では、正極活物質にLiCoO2を用いているが、
LiCoO2と同様に3.5V vs.Li/Li+以上の高電位を示すLiNi
O2,LiNi1-xCoxO2,LiFeO2,LiMn2O3またはカーボン正極板
を用いても良い。もちろん、MnO2,V2O5,TiS2などの比較
的低電位の正極活物質を用いても良い。また、実施例で
は、全ての電解液が電解質にLiAsF6を用いているが、Li
ClO4,LiPF6,LiSbF6,LiCF3SO3またはLiCF3CO3などを単体
でまたは混合して用いてもよい。
In the present invention, an electrode having a potential 0.2 V or more noble than lithium is used for the negative electrode. This may be an aluminum alloy negative electrode as in the embodiment, or may be a carbon negative electrode, a lithium lead alloy negative electrode. Alternatively, a tungsten dioxide negative electrode or the like may be used. Further, a negative electrode plate in which polyparaphenylene is added to the negative electrode may be used. Further, in the embodiment of the present invention, LiCoO 2 is used for the positive electrode active material,
LiNi showing a high potential of 3.5 V vs. Li / Li + or more like LiCoO 2
O 2 , LiNi 1-x Co x O 2 , LiFeO 2 , LiMn 2 O 3 or a carbon positive electrode plate may be used. Of course, a relatively low-potential positive electrode active material such as MnO 2 , V 2 O 5 , or TiS 2 may be used. In the examples, all the electrolytes use LiAsF 6 for the electrolyte.
ClO 4 , LiPF 6 , LiSbF 6 , LiCF 3 SO 3 or LiCF 3 CO 3 may be used alone or in combination.

発明の効果 本発明は、有機電解液電池の高率放電性能およびサイ
クル寿命性能を著しく向上できるものであり、その工業
的価値はきわめて大である。
Effect of the Invention The present invention can significantly improve the high rate discharge performance and cycle life performance of an organic electrolyte battery, and its industrial value is extremely large.

【図面の簡単な説明】[Brief description of the drawings]

第1図は、本発明の実施例の電池の内部構造の概略図で
ある。第2図は、本発明の電池と従来の電池との高率放
電性能を比較した図である。第3図は、本発明の電池と
従来の電池とのサイクル寿命性能を比較した図である。
FIG. 1 is a schematic view of the internal structure of a battery according to an embodiment of the present invention. FIG. 2 is a diagram comparing the high-rate discharge performance between the battery of the present invention and a conventional battery. FIG. 3 is a diagram comparing the cycle life performance of the battery of the present invention and a conventional battery.

───────────────────────────────────────────────────── フロントページの続き (58)調査した分野(Int.Cl.7,DB名) H01M 10/40 H01M 6/16 ──────────────────────────────────────────────────続 き Continued on the front page (58) Field surveyed (Int.Cl. 7 , DB name) H01M 10/40 H01M 6/16

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】電位が0.2V vs.Li/Li+よりも貴であるよう
な負極板を備え、有機溶媒が溶媒Aと溶媒Bの2種類の
溶媒から構成され、前記溶媒Aはバレロニトリル(以
下、VNと略す)、ブチロニトリル(以下、BNと略す)、
アセトニトリル(以下、ANと略す)+VN、AN+BN、VN+
BN、AN+VN+BNの群から選ばれた1種であり、前記溶媒
BはN−メチルアセトアミド(以下、NMAAと略す)、N
−メチルプロピオンアミド(以下、NMPAと略す)、N−
メチルホルムアミド(以下、NMFAと略す)+NMAA、NMFA
+NMPA、NMAA+NMPA、NMFA+NMAA+NMPAの群から選ばれ
た1種である有機溶媒を電解液として備えたことを特徴
とする有機電解液電池。
1. A negative electrode plate having a potential nobler than 0.2 V vs. Li / Li + , wherein an organic solvent is composed of two kinds of solvents, a solvent A and a solvent B, wherein the solvent A is valeronitrile (Hereinafter abbreviated as VN), butyronitrile (hereinafter abbreviated as BN),
Acetonitrile (hereinafter abbreviated as AN) + VN, AN + BN, VN +
BN, AN + VN + BN, and the solvent B is N-methylacetamide (hereinafter abbreviated as NMAA), N
-Methylpropionamide (hereinafter abbreviated as NMPA), N-
Methylformamide (hereinafter abbreviated as NMFA) + NMAA, NMFA
An organic electrolyte battery comprising an organic solvent selected from the group of + NMPA, NMAA + NMPA, and NMFA + NMAA + NMPA as an electrolyte.
【請求項2】請求項1記載の電解液にエチレンカーボネ
ートを添加した電解液を備えたことを特徴とする有機電
解液電池。
2. An organic electrolyte battery comprising the electrolyte according to claim 1 and ethylene carbonate added thereto.
JP2212193A 1990-08-10 1990-08-10 Organic electrolyte battery Expired - Lifetime JP3036018B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2212193A JP3036018B2 (en) 1990-08-10 1990-08-10 Organic electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2212193A JP3036018B2 (en) 1990-08-10 1990-08-10 Organic electrolyte battery

Publications (2)

Publication Number Publication Date
JPH0494066A JPH0494066A (en) 1992-03-26
JP3036018B2 true JP3036018B2 (en) 2000-04-24

Family

ID=16618468

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2212193A Expired - Lifetime JP3036018B2 (en) 1990-08-10 1990-08-10 Organic electrolyte battery

Country Status (1)

Country Link
JP (1) JP3036018B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9281541B2 (en) 2007-04-05 2016-03-08 Mitsubishi Chemical Corporation Nonaqueous electrolyte for secondary battery and nonaqueous-electrolyte secondary battery employing the same
JP5490676B2 (en) * 2007-04-11 2014-05-14 エルジー・ケム・リミテッド Secondary battery and battery electrolyte using ternary eutectic mixture
KR101041722B1 (en) 2009-01-09 2011-06-14 주식회사 엘지화학 Electrolyte comprising eutectic mixture with nitrile compound and electrochemical device containing the same

Also Published As

Publication number Publication date
JPH0494066A (en) 1992-03-26

Similar Documents

Publication Publication Date Title
JP3304187B2 (en) Electrolyte for lithium secondary battery
JP3249305B2 (en) Non-aqueous electrolyte battery
JP3287376B2 (en) Lithium secondary battery and method of manufacturing the same
JP2002237334A (en) Double collector type negative electrode structure for alkaline metal ion battery
US5626985A (en) Nonaqueous electrolyte battery
JPH08115742A (en) Lithium secondary battery
JPH08250108A (en) Manufacture of negative electrode for lithium secondary battery, and lithium secondary battery
JP3239267B2 (en) Organic electrolyte battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JP3434677B2 (en) Secondary battery with non-aqueous solvent electrolyte
JP3036018B2 (en) Organic electrolyte battery
JP2940015B2 (en) Organic electrolyte secondary battery
JP4176435B2 (en) Non-aqueous electrolyte battery
JP2002100344A (en) Positive electrode and battery
JPH10144346A (en) Secondary battery containing nonaqueous solvent electrolytic solution
JP4432129B2 (en) Nonaqueous electrolyte secondary battery
JP3158981B2 (en) Manufacturing method of non-aqueous lithium battery
JPH08180875A (en) Lithium secondary battery
JPH0536401A (en) Lithium secondary battery
JP3443290B2 (en) Non-aqueous electrolyte battery
JP3163444B2 (en) Lithium secondary battery
JP5084073B2 (en) Lithium secondary battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JPH11214033A (en) Non aqueous electrolyte battery
JP4088850B2 (en) Non-aqueous solvent secondary battery