JPH08180875A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH08180875A
JPH08180875A JP6335905A JP33590594A JPH08180875A JP H08180875 A JPH08180875 A JP H08180875A JP 6335905 A JP6335905 A JP 6335905A JP 33590594 A JP33590594 A JP 33590594A JP H08180875 A JPH08180875 A JP H08180875A
Authority
JP
Japan
Prior art keywords
secondary battery
lithium secondary
positive electrode
lithium
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP6335905A
Other languages
Japanese (ja)
Inventor
Akihiko Murakami
彰彦 村上
Seiji Yasui
政治 安井
Takashi Kitayama
高志 北山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Aichi Steel Corp
Original Assignee
Aichi Steel Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Aichi Steel Corp filed Critical Aichi Steel Corp
Priority to JP6335905A priority Critical patent/JPH08180875A/en
Publication of JPH08180875A publication Critical patent/JPH08180875A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE: To provide a lithium secondary battery with high average potential of discharging and high output density. CONSTITUTION: This lithium secondary battery has a negative electrode 3 consisting of lithium, a lithium alloy or a carbon body capable of storing and releasing lithium ion, a positive electrode 2, a separator 4 interposed between the both and a nonaqueous electrolyte 5. The positive electrode active material is represented by Lix Tiy O4 (wherein 0<x<=2, 1<y<=3) or Lia Tib Mc O4 (wherein 0<a<=2, 0<b<=3, 0<c<=3), and M is at least one element selected from, for example, Mn, Fe, Cr, Ni, Co, Mg and B.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は,リチウムを吸蔵・放出
できる正極及び負極を用いたリチウム二次電池に関す
る。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery using a positive electrode and a negative electrode capable of inserting and extracting lithium.

【0002】[0002]

【従来技術】種々の二次電池のうち,特にリチウム二次
電池は,電圧が高いうえ,高いエネルギー密度を有して
いる。そのため,多くの分野において有望な二次電池と
して期待されている。従来のリチウム二次電池として
は,正極活物質にLiCoO2 ,LiNiO2,LiM
2 4 等の金属酸化物を,負極活物質にリチウム金
属,リチウム合金,もしくはリチウムイオンを吸蔵・放
出可能な炭素体を用いたものがある(例えば特開昭63
−114065号)。
2. Description of the Related Art Among various secondary batteries, particularly lithium secondary batteries have high voltage and high energy density. Therefore, it is expected as a promising secondary battery in many fields. The conventional lithium secondary battery has a positive electrode active material such as LiCoO 2 , LiNiO 2 , and LiM.
There are some which use a metal oxide such as n 2 O 4 and a negative electrode active material which is a lithium metal, a lithium alloy, or a carbon body capable of absorbing and desorbing lithium ions (for example, JP-A-63-63).
-114065).

【0003】[0003]

【解決しようとする課題】しかしながら,上記従来のリ
チウム二次電池においては,次の問題がある。即ち,従
来の正極活物質を用いたリチウム二次電池は,ニッケル
・カドミウム電池と比較して,出力密度が低い。そのた
め,例えば,電気自動車等のように高い出力密度を必要
とする製品への適用が難しい。なお,出力密度とは,単
位重量当たりの電力量をいい,放電平均電位を高くする
ことによりこれを高くすることができる。本発明は,か
かる従来の問題点に鑑みてなれたもので,放電平均電位
が高い,高出力密度のリチウム二次電池を提供しようと
するものである。
However, the above-mentioned conventional lithium secondary battery has the following problems. That is, the lithium secondary battery using the conventional positive electrode active material has a lower output density than the nickel-cadmium battery. Therefore, it is difficult to apply to products that require high power density, such as electric vehicles. The power density means the amount of electric power per unit weight, which can be increased by increasing the discharge average potential. The present invention has been made in view of such conventional problems, and an object of the present invention is to provide a lithium secondary battery having a high discharge average potential and a high output density.

【0004】[0004]

【課題の解決手段】本発明は,リチウム,リチウム合
金,もしくはリチウムイオンを吸蔵・放出できる炭素体
からなる負極と,正極と,両者間に介設されるセパレー
タと,非水電解液とを有するリチウム二次電池におい
て,正極活物質は,Lix Tiy 4 (ここに,0<x
≦2,1<y≦3),もしくはLia Tib c
4 (ここに,0<a≦2,0<b≦3,0<c≦3)で
表され,上記Mは,Mn,Fe,Cr,Ni,Co,M
g,Bのうちから選択される少なくとも一種の元素であ
ることを特徴とするリチウム二次電池にある。
The present invention has a negative electrode made of lithium, a lithium alloy, or a carbon body capable of inserting and extracting lithium ions, a positive electrode, a separator interposed therebetween, and a non-aqueous electrolyte. In the lithium secondary battery, the positive electrode active material is Li x Ti y O 4 (where 0 <x
≦ 2,1 <y ≦ 3), or Li a Ti b M c O
4 (where 0 <a ≦ 2, 0 <b ≦ 3, 0 <c ≦ 3), where M is Mn, Fe, Cr, Ni, Co, M
A lithium secondary battery is characterized in that it is at least one element selected from g and B.

【0005】本発明において最も注目すべきことは,正
極活物質は,上記Lix Tiy 4,もしくは上記Li
a Tib c 4 で表され,上記Mは,Mn,Fe,C
r,Ni,Co,Mg,Bのうちから選択される少なく
とも一種の元素であることにある。
What is most noticeable in the present invention is that the positive electrode active material is Li x Ti y O 4 or Li
a Ti b M c O 4, where M is Mn, Fe, C
It is at least one element selected from r, Ni, Co, Mg, and B.

【0006】また,上記Lia Tib c 4 における
Mに用いる元素は,1種類である場合に限らず,2種以
上にすることもできる。この場合,Mを構成する元素の
総和量の割合が上記組成式Lia Tib c 4 におけ
るcとなる。即ち,例えばMが2種類(M1,M2とす
る)の元素よりなる場合においては,上記組成式Lia
Tib c 4 は,Lia Tib (M1d M2e c
4 (ここに,d+e=1)により表される。その他,M
が3種以上の元素よりなる場合においても,同様であ
る。
Further, the element used for M in the above Li a Ti b M c O 4 is not limited to one kind, but may be two or more kinds. In this case, the ratio of the total amount of the elements constituting M becomes c in the above composition formula Li a Ti b M c O 4 . That is, for example, when M is composed of two kinds of elements (M1 and M2), the above composition formula Li a
Ti b M c O 4 is Li a Ti b (M1 d M2 e ) c O
4 (where d + e = 1). Other, M
The same applies when is composed of three or more elements.

【0007】また,上記組成式Lix Tiy 4 におい
て,xが2を越える場合においては,複合酸化物が安定
的に得られなくなり,サイクル特性が悪くなるという問
題がある。また,yが1未満の場合には,安定したスピ
ネル構造が得られなくなり,電池容量が低下するという
問題があり,1.5以上が好ましい。また,yが3を越
える場合には,安定したスピネル構造が得られなくな
り,電池容量が低下するという問題があり,2.5以下
が好ましい。
Further, in the above composition formula Li x Ti y O 4 , when x exceeds 2, there is a problem that the composite oxide cannot be stably obtained and the cycle characteristics deteriorate. Further, when y is less than 1, a stable spinel structure cannot be obtained and the battery capacity is lowered, so that it is preferably 1.5 or more. On the other hand, when y exceeds 3, there is a problem that a stable spinel structure cannot be obtained and the battery capacity decreases, so 2.5 or less is preferable.

【0008】また,上記組成式Lia Tib c 4
おいて,aが2を越える場合においては,上記xが2を
越える場合と同様に,複合酸化物が安定的に得られなく
なり,サイクル特性が悪くなるという問題がある。ま
た,bが3を越える場合には,上記yが3を越える場合
と同様に,安定したスピネル構造が得られなくなり,電
池容量が低下するという問題があり,2.5以下が好ま
しい。また,cが3を越える場合には,上記bが3を越
える場合と同様に,安定したスピネル構造が得られなく
なり,電池容量が低下するという問題があり,2.5以
下が好ましい。
Further, in the above composition formula Li a Ti b M c O 4 , when a exceeds 2, as in the case where x exceeds 2, the complex oxide cannot be stably obtained and the cycle There is a problem that the characteristics deteriorate. When b exceeds 3, as in the case where y exceeds 3, there is a problem that a stable spinel structure cannot be obtained and the battery capacity decreases, so 2.5 or less is preferable. When c exceeds 3, there is a problem that a stable spinel structure cannot be obtained and the battery capacity decreases, as in the case where b exceeds 3, and 2.5 or less is preferable.

【0009】また,上記セパレータとしては,ポリプロ
ピレンの多孔質フィルム等がある。そして,上記セパレ
ータに含浸させる非水電解液としては,非水溶媒に適量
の電解質を溶解したものがある。上記非水溶媒として
は,エチレンカーボネート,ジエチルカーボネート,プ
ロピレンカーボネート,ブチレンカーボネート,テトラ
ヒドロフラン,2−メチルテトラヒドロフラン,ジメト
キシエタン,ジオキソラン及びγ−ブチロラクトンから
選ばれた1種又は2種以上の溶媒が好適である。また,
上記電解質としては,LiPF6 ,LiClO4 ,Li
BF4 ,LiAS6 等がある。
As the separator, there is a polypropylene porous film or the like. As the non-aqueous electrolytic solution with which the separator is impregnated, there is a non-aqueous solvent in which an appropriate amount of electrolyte is dissolved. As the non-aqueous solvent, one or more solvents selected from ethylene carbonate, diethyl carbonate, propylene carbonate, butylene carbonate, tetrahydrofuran, 2-methyltetrahydrofuran, dimethoxyethane, dioxolane and γ-butyrolactone are suitable. . Also,
As the electrolyte, LiPF 6 , LiClO 4 , Li
Examples include BF 4 and LiA S F 6 .

【0010】[0010]

【作用および効果】本発明のリチウム二次電池において
は,上記正極活物質は,上記特定の組成により表される
物質を用いている。そのため,本発明のリチウム二次電
池は,従来よりも高い出力密度,即ち,ニッケル・カド
ミウム電池と同程度の高い出力密度を発揮することがで
きる。従って,本発明によれば,放電平均電位が高い,
高出力密度のリチウム二次電池を提供することができ
る。
FUNCTION AND EFFECT In the lithium secondary battery of the present invention, the positive electrode active material is a material represented by the above specific composition. Therefore, the lithium secondary battery of the present invention can exhibit a higher output density than the conventional one, that is, a high output density comparable to that of the nickel-cadmium battery. Therefore, according to the present invention, the discharge average potential is high,
A lithium secondary battery with high output density can be provided.

【0011】[0011]

【実施例】【Example】

実施例1 本発明の実施例にかかるリチウム二次電池につき,図
1,図2を用いて説明する。本例のリチウム二次電池1
0は,図1に示すごとく,リチウムからなる負極3と,
正極2と,両者間に介設されるセパレータ4と,非水電
解液5とを有する。また,正極活物質は,Li1 Ti2
4 で表される物質を用いた。
Example 1 A lithium secondary battery according to an example of the present invention will be described with reference to FIGS. 1 and 2. Lithium secondary battery 1 of this example
0 is a negative electrode 3 made of lithium, as shown in FIG.
It has a positive electrode 2, a separator 4 interposed therebetween, and a non-aqueous electrolyte solution 5. In addition, the positive electrode active material is Li 1 Ti 2
A substance represented by O 4 was used.

【0012】また,上記リチウム二次電池10は,以下
の手順により作製した。まず,ステンレス鋼製のネット
からなる正極集電体22をスポット溶接した正極ケース
25と,同じくステンレス鋼製のネットからなる負極集
電体32をスポット溶接した負極ケース35を準備す
る。上記正極ケース25及び負極ケース35は,共にス
テンレス鋼製の板を絞り加工したものであり,それぞれ
正極端子及び負極端子を兼ねるものである。
The lithium secondary battery 10 is manufactured by the following procedure. First, a positive electrode case 25 in which a positive electrode current collector 22 made of a stainless steel net is spot-welded and a negative electrode case 35 in which a negative electrode current collector 32 also made of a stainless steel net is spot-welded are prepared. Each of the positive electrode case 25 and the negative electrode case 35 is formed by drawing a stainless steel plate, and also serves as a positive electrode terminal and a negative electrode terminal, respectively.

【0013】次いで,負極3は,厚み0.5mm,直径
15mmのリチウムを上記負極集電体32に圧着したも
のを用いる。また,上記正極集電体22に圧着成形させ
る正極2は以下の手順により作製する。
Next, as the negative electrode 3, one having a thickness of 0.5 mm and a diameter of 15 mm, which is pressed onto the negative electrode current collector 32, is used. Further, the positive electrode 2 to be pressure-molded on the positive electrode current collector 22 is manufactured by the following procedure.

【0014】まず,二酸化チタンと炭酸リチウムとから
なる出発原料を,生成物のLix Ti2 4 におけるx
が1となるような組成に調合し,十分に粉砕混合する。
次いで,上記Li1 Ti2 4 よりなる混合物と,導電
剤としての黒鉛粉末と,結着剤としてのポリテトラフル
オロエチレン粉末とを,重量比65:30:5の割合で
混合して正極合剤とする。次いで,この正極合剤を,上
記正極集電体22に圧着成形することによって,正極2
を得る。
First, a starting material composed of titanium dioxide and lithium carbonate is used as x in the product Li x Ti 2 O 4 .
The composition is adjusted so that 1 becomes 1, and the mixture is sufficiently pulverized and mixed.
Next, the mixture of Li 1 Ti 2 O 4 described above, graphite powder as a conductive agent, and polytetrafluoroethylene powder as a binder were mixed in a weight ratio of 65: 30: 5 to mix the positive electrode. Use as an agent. Then, this positive electrode mixture is pressure-bonded to the positive electrode current collector 22 to form a positive electrode 2
Get.

【0015】次いで,正極2と負極3との間に後述する
非水電解液5を含浸させたセパレータ4を介設すると共
に,ポリプロピレンを主体とするガスケット6を介して
上記正極ケース25と負極ケース35とを組み合わせ
る。そして,正極ケース25の開口縁部を内側に折り曲
げてかしめることにより,内容物を密封,閉止する。こ
れにより,外径20mm,厚さ2.5mmのコイン型の
リチウム二次電池10を得る。
Next, a separator 4 impregnated with a non-aqueous electrolyte 5 described later is interposed between the positive electrode 2 and the negative electrode 3, and the positive electrode case 25 and the negative electrode case are interposed via a gasket 6 mainly made of polypropylene. Combine with 35. Then, the opening edge of the positive electrode case 25 is bent inward and caulked to seal and close the contents. As a result, a coin-type lithium secondary battery 10 having an outer diameter of 20 mm and a thickness of 2.5 mm is obtained.

【0016】なお,上記非水電解液5としては,エチレ
ンカーボネートとジエチルカーボネートとを体積比1:
1の割合で混合した非水溶媒に,LiPF6 を1モル/
リットル溶解させたものを用いた。また,上記セパレー
タ4としては,ポリプロピレンの多孔質フィルムを用い
た。
As the non-aqueous electrolyte solution 5, ethylene carbonate and diethyl carbonate are used in a volume ratio of 1:
1 mol of LiPF 6 in a non-aqueous solvent mixed at a ratio of 1
What was melt | dissolved in 1 liter was used. A porous polypropylene film was used as the separator 4.

【0017】次に,本例のリチウム二次電池10の充放
電試験結果について,図2を用いて説明する。充放電試
験の条件としては,室温において,1mAの定電流によ
る充電と,1mAの定電流による放電を繰り返した。ま
た充電上限電圧は5.2V(図2,A),放電下限電圧
は3.5V(図2,C)とした。
Next, the charge / discharge test results of the lithium secondary battery 10 of this example will be described with reference to FIG. As conditions for the charge / discharge test, charging at a constant current of 1 mA and discharging at a constant current of 1 mA were repeated at room temperature. The upper limit voltage of charging was 5.2 V (Fig. 2, A) and the lower limit voltage of discharging was 3.5 V (Fig. 2, C).

【0018】試験の結果得られた充放電特性を図2に示
す。図2より知られるごとく,本例のリチウム二次電池
10は,放電平均電位が4.5Vという高電位の放電特
性を有することが判る。即ち,図2に示すごとく,放電
開始時の電位5V(図2,B)と,放電終了時の電位
3.5V(図2,C)の平均が4.5Vという高電位と
なった。また,図2に示すごとく,優れた再現性が得ら
れた。
The charge / discharge characteristics obtained as a result of the test are shown in FIG. As is known from FIG. 2, it is understood that the lithium secondary battery 10 of this example has a high-potential discharge characteristic with an average discharge potential of 4.5V. That is, as shown in FIG. 2, the average of the potential of 5 V at the start of discharge (FIG. 2, B) and the potential of 3.5 V at the end of discharge (FIG. 2, C) was as high as 4.5 V. Moreover, as shown in FIG. 2, excellent reproducibility was obtained.

【0019】次に本例の作用効果につき説明する。本例
のリチウム二次電池10においては,上記正極活物質
は,上記特定の組成により表される物質を用いている。
そのため,本例のリチウム二次電池10は,従来よりも
高い出力密度,即ち,ニッケル・カドミウム電池と同程
度の高い出力密度を発揮することができる。
Next, the function and effect of this example will be described. In the lithium secondary battery 10 of this example, the positive electrode active material is a material represented by the above specific composition.
Therefore, the lithium secondary battery 10 of this example can exhibit a higher output density than the conventional one, that is, a high output density comparable to that of the nickel-cadmium battery.

【0020】実施例2 本例のリチウム二次電池においては,実施例1の正極活
物質としてのLi1 Ti2 4 に代えて,Li1.7 Ti
2 4 を用いた。このLi1.7 Ti2 4 は,二酸化チ
タンと炭酸リチウムを出発物質として用いて,上記組成
になるように,実施例1と同様の手法により作製した。
その他は,実施例1と同様である。
Example 2 In the lithium secondary battery of this example, Li 1.7 Ti was used instead of Li 1 Ti 2 O 4 as the positive electrode active material of Example 1.
2 O 4 was used. This Li 1.7 Ti 2 O 4 was prepared by the same method as in Example 1 using titanium dioxide and lithium carbonate as starting materials so as to have the above composition.
Others are the same as in the first embodiment.

【0021】本例のリチウム二次電池について,実施例
1と同様の条件により充放電試験を行った。その結果,
図3より知られるごとく,放電平均電位が4.5Vを示
す高い放電特性を有することが判った。その他,実施例
1と同様の効果が得られる。
The lithium secondary battery of this example was subjected to a charge / discharge test under the same conditions as in Example 1. as a result,
As is known from FIG. 3, it has been found that the battery has high discharge characteristics with an average discharge potential of 4.5V. In addition, the same effect as that of the first embodiment can be obtained.

【0022】実施例3 本例のリチウム二次電池においては,実施例1の正極活
物質としてのLi1 Ti2 4 に代えて,Li2 Ti2
4 を用いた。このLi2 Ti2 4 は,二酸化チタン
と炭酸リチウムを出発物質として用いて,上記組成にな
るように,実施例1と同様の手法により作製した。その
他は,実施例1と同様である。
[0022] In the lithium secondary battery of Example 3 This example, in place of the Li 1 Ti 2 O 4 as a positive electrode active material of Example 1, Li 2 Ti 2
O 4 was used. This Li 2 Ti 2 O 4 was prepared by the same method as in Example 1 using titanium dioxide and lithium carbonate as starting materials so as to have the above composition. Others are the same as in the first embodiment.

【0023】本例のリチウム二次電池について,実施例
1と同様の条件により充放電試験を行った。その結果,
図4より知られるごとく,放電平均電位が4.5Vを示
す高い放電特性を有することが判った。その他,実施例
1と同様の効果が得られる。
The lithium secondary battery of this example was subjected to a charge / discharge test under the same conditions as in Example 1. as a result,
As is known from FIG. 4, it has been found that the battery has high discharge characteristics with an average discharge potential of 4.5V. In addition, the same effect as that of the first embodiment can be obtained.

【0024】実施例4 本例のリチウム二次電池においては,実施例1の正極活
物質としてのLi1 Ti2 4 に代えて,Li1 Ti
0.9 Mn1.1 4 を用いた。このLi1 Ti0.9Mn
1.1 4 は,二酸化チタン,二酸化マンガン,及び炭酸
リチウムを出発物質として用いて,上記組成になるよう
に,実施例1と同様の手法により作製した。その他は,
実施例1と同様である。
Example 4 In the lithium secondary battery of this example, Li 1 Ti 2 O 4 as the positive electrode active material of Example 1 was replaced with Li 1 Ti.
0.9 Mn 1.1 O 4 was used. This Li 1 Ti 0.9 Mn
1.1 O 4 was produced in the same manner as in Example 1 using titanium dioxide, manganese dioxide, and lithium carbonate as starting materials so as to have the above composition. Others,
This is the same as in the first embodiment.

【0025】本例のリチウム二次電池について,実施例
1と同様の条件により充放電試験を行った。その結果,
図5より知られるごとく,放電平均電位が4.5Vを示
す高い放電特性を有することが判った。その他,実施例
1と同様の効果が得られる。
The lithium secondary battery of this example was subjected to a charge / discharge test under the same conditions as in Example 1. as a result,
As is known from FIG. 5, it has been found that the battery has high discharge characteristics with an average discharge potential of 4.5V. In addition, the same effect as that of the first embodiment can be obtained.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例1のリチウム二次電池の断面図。FIG. 1 is a cross-sectional view of a lithium secondary battery of Example 1.

【図2】実施例1のリチウム二次電池にかかる充放電特
性の説明図。
FIG. 2 is an explanatory diagram of charge / discharge characteristics of the lithium secondary battery of Example 1.

【図3】実施例2のリチウム二次電池にかかる充放電特
性の説明図。
3 is an explanatory diagram of charge / discharge characteristics of the lithium secondary battery of Example 2. FIG.

【図4】実施例3のリチウム二次電池にかかる充放電特
性の説明図。
FIG. 4 is an explanatory diagram of charge / discharge characteristics of the lithium secondary battery of Example 3.

【図5】実施例4のリチウム二次電池にかかる充放電特
性の説明図。
5 is an explanatory diagram of charge / discharge characteristics of the lithium secondary battery of Example 4. FIG.

【符号の説明】[Explanation of symbols]

10...リチウム二次電池, 2...正極, 22...正極集電体, 25...正極ケース, 3...負極, 32...負極集電体, 35...負極ケース, 4...セパレータ, 5...非水電解液, 6...ガスケット, 10. . . Lithium secondary battery, 2. . . Positive electrode, 22. . . Positive electrode current collector, 25. . . Positive electrode case, 3. . . Negative electrode, 32. . . Negative electrode current collector, 35. . . Negative electrode case, 4. . . Separator, 5. . . Non-aqueous electrolyte solution, 6. . . gasket,

Claims (1)

【特許請求の範囲】[Claims] 【請求項1】 リチウム,リチウム合金,もしくはリチ
ウムイオンを吸蔵・放出できる炭素体からなる負極と,
正極と,両者間に介設されるセパレータと,非水電解液
とを有するリチウム二次電池において,正極活物質は,
Lix Tiy 4 (ここに,0<x≦2,1<y≦
3),もしくはLia Tib c 4 (ここに,0<a
≦2,0<b≦3,0<c≦3)で表され,上記Mは,
Mn,Fe,Cr,Ni,Co,Mg,Bのうちから選
択される少なくとも一種の元素であることを特徴とする
リチウム二次電池。
1. A negative electrode composed of lithium, a lithium alloy, or a carbon body capable of inserting and extracting lithium ions,
In a lithium secondary battery having a positive electrode, a separator interposed therebetween, and a non-aqueous electrolyte, the positive electrode active material is
Li x Ti y O 4 (where 0 <x ≦ 2, 1 <y ≦
3), or Li a Ti b M c O 4 (where 0 <a
≦ 2,0 <b ≦ 3, 0 <c ≦ 3), and the above M is
A lithium secondary battery comprising at least one element selected from Mn, Fe, Cr, Ni, Co, Mg, and B.
JP6335905A 1994-12-24 1994-12-24 Lithium secondary battery Pending JPH08180875A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP6335905A JPH08180875A (en) 1994-12-24 1994-12-24 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP6335905A JPH08180875A (en) 1994-12-24 1994-12-24 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH08180875A true JPH08180875A (en) 1996-07-12

Family

ID=18293687

Family Applications (1)

Application Number Title Priority Date Filing Date
JP6335905A Pending JPH08180875A (en) 1994-12-24 1994-12-24 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH08180875A (en)

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134723A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
WO1999004442A1 (en) * 1997-07-15 1999-01-28 Sony Corporation Non-aqueous electrolyte secondary cell
JP2000090933A (en) * 1998-07-13 2000-03-31 Ngk Insulators Ltd Lithium secondary battery
US6482546B1 (en) * 1999-03-19 2002-11-19 Sanyo Electric Co., Ltd. Rechargeable lithium battery
JP2003036847A (en) * 2001-07-25 2003-02-07 National Institute For Materials Science Lithium-chromium-titanium oxide having ramsdellite type crystal structure, its production method and lithium secondary battery using its oxide
US6720112B2 (en) 2001-10-02 2004-04-13 Valence Technology, Inc. Lithium cell based on lithiated transition metal titanates
JP2006324258A (en) * 1996-06-14 2006-11-30 Hitachi Maxell Ltd Lithium secondary battery and its manufacturing method

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134723A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JP2006324258A (en) * 1996-06-14 2006-11-30 Hitachi Maxell Ltd Lithium secondary battery and its manufacturing method
WO1999004442A1 (en) * 1997-07-15 1999-01-28 Sony Corporation Non-aqueous electrolyte secondary cell
US6120938A (en) * 1997-07-15 2000-09-19 Sony Corporation Non-aqueous electrolyte secondary cell
JP2000090933A (en) * 1998-07-13 2000-03-31 Ngk Insulators Ltd Lithium secondary battery
US6482546B1 (en) * 1999-03-19 2002-11-19 Sanyo Electric Co., Ltd. Rechargeable lithium battery
JP2003036847A (en) * 2001-07-25 2003-02-07 National Institute For Materials Science Lithium-chromium-titanium oxide having ramsdellite type crystal structure, its production method and lithium secondary battery using its oxide
US6720112B2 (en) 2001-10-02 2004-04-13 Valence Technology, Inc. Lithium cell based on lithiated transition metal titanates

Similar Documents

Publication Publication Date Title
US6808848B2 (en) Nonaqueous electrolyte secondary cells
US5316875A (en) Secondary battery with nonaqueous electrolyte and method of manufacturing same
JPH1027626A (en) Lithium secondary battery
JPH06342673A (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JPH0864240A (en) Nonaqueous electrolyte battery
JP3546566B2 (en) Non-aqueous electrolyte secondary battery
JPH08180875A (en) Lithium secondary battery
JPH0864246A (en) Sealed type nonaqueous electrolyte secondary battery
JP2000067853A (en) Negative electrode for lithium secondary battery
JP2007134274A (en) Electrode material, electrode, and lithium ion battery
JPH08171936A (en) Lithium secondary battery
JP3229531B2 (en) Non-aqueous electrolyte secondary battery
JPH07134986A (en) Nonaqueous electrolyte battery
JP3615416B2 (en) Lithium secondary battery
JPH05307974A (en) Organic electrolyte secondary battery
JPH08180874A (en) Lithium secondary battery
JPH1125973A (en) Negative electrode mateal for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery having negative electrode using the same
JPH10116628A (en) Lithium secondary battery
JP3663694B2 (en) Non-aqueous electrolyte secondary battery
JPH08171937A (en) Lithium secondary battery
JPH11250936A (en) Lithium secondary battery
JP2003115326A (en) Nonaqueous electrolyte secondary battery
JPH07288140A (en) Lithium secondary battery
JPH09283183A (en) Non-aqueous electrolyte secondary battery