JPH1125973A - Negative electrode mateal for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery having negative electrode using the same - Google Patents
Negative electrode mateal for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery having negative electrode using the sameInfo
- Publication number
- JPH1125973A JPH1125973A JP9175442A JP17544297A JPH1125973A JP H1125973 A JPH1125973 A JP H1125973A JP 9175442 A JP9175442 A JP 9175442A JP 17544297 A JP17544297 A JP 17544297A JP H1125973 A JPH1125973 A JP H1125973A
- Authority
- JP
- Japan
- Prior art keywords
- negative electrode
- aqueous electrolyte
- secondary battery
- electrolyte secondary
- active material
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Pending
Links
Classifications
-
- Y—GENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
- Y02—TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
- Y02E—REDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
- Y02E60/00—Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
- Y02E60/10—Energy storage using batteries
Landscapes
- Secondary Cells (AREA)
- Battery Electrode And Active Subsutance (AREA)
Abstract
Description
【0001】[0001]
【発明の属する技術分野】本発明は、非水電解質二次電
池の、特に負極材料に関するものである。BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, particularly to a negative electrode material.
【0002】[0002]
【従来の技術】非水電解質二次電池は、小型,軽量で、
かつ高エネルギー密度を有しているため、機器のポータ
ブル化,コードレス化が進む中で、その期待は大きい。2. Description of the Related Art Non-aqueous electrolyte secondary batteries are small and lightweight.
In addition, because of the high energy density, portable devices and cordless devices are expected to have high expectations.
【0003】従来、非水電解質二次電池の正極活物質と
してはLiCoO2 ,LiNiO2等のリチウム含有金
属酸化物が知られており、一方、負極としては金属リチ
ウムとか、リチウム合金等のリチウムを吸蔵したり放出
したりすることのできる黒鉛材料等が知られ、一部実用
化されている。さらに放電容量が大きい材料として特開
平5−159780号公報に示されているように、Fe
Si2 で表される化合部が負極材料に使用されることが
提案されている。Conventionally, lithium-containing metal oxides such as LiCoO 2 and LiNiO 2 have been known as a positive electrode active material of a non-aqueous electrolyte secondary battery. On the other hand, as a negative electrode, metal lithium or lithium such as a lithium alloy has been used. Graphite materials and the like that can be occluded and released are known and some have been put to practical use. As disclosed in JP-A-5-159780 as a material having a larger discharge capacity, Fe
It has been proposed that a compound represented by Si 2 be used for a negative electrode material.
【0004】[0004]
【発明が解決しようとする課題】しかしながら、FeS
i2 は放電させる電流密度が3.2mA/cm2 以下と
いうローレートで充電し、かつローレートで放電する場
合は、黒鉛よりも放電容量が大きく、またサイクル寿命
が長いリチウムイオン二次電池を提供することができる
が、ローレートで充電し電流密度が3.2mA/cm2
以上のハイレートで放電させると、放電容量が黒鉛以下
になるという問題があった。However, FeS
i 2 current density for discharge is charged in the low rate of 3.2 mA / cm 2 or less, and when a discharge is low rate, the larger discharge capacity than graphite, and cycle life provides a longer lithium ion secondary battery It can be charged at a low rate and has a current density of 3.2 mA / cm 2
When the battery is discharged at the above high rate, there is a problem that the discharge capacity is reduced to graphite or less.
【0005】本発明は、このような課題を解決して、ハ
イレート放電で特性の優れた非水電解質二次電池を提供
しようとするものである。An object of the present invention is to solve such a problem and to provide a non-aqueous electrolyte secondary battery having excellent characteristics at high rate discharge.
【0006】[0006]
【課題を解決するための手段】これらの課題を解決する
ため本発明の非水電解質二次電池用負極材料は、リチウ
ムを吸蔵したり放出できる材料としてCoSi2 かNi
Si2 のいずれか一方の化合物を含むか、またはCoS
i2 とNiSi2 の両方の化合物を含むFeSi2 を用
いたものでFe1-(x+y)CoxNiySi2 で表わされ、
0≦x<1,0≦y<1,0<x+y<1の条件を満足
するものである。In order to solve these problems, a negative electrode material for a non-aqueous electrolyte secondary battery according to the present invention uses CoSi 2 or Ni as a material capable of inserting and extracting lithium.
Containing either one of Si 2 compounds or CoS
Fe 1-(x + y) Co x Ni y Si 2 using FeSi 2 containing both i 2 and NiSi 2 compounds,
It satisfies the condition of 0 ≦ x <1, 0 ≦ y <1, 0 <x + y <1.
【0007】[0007]
【発明の実施の形態】FeSi2 はローレートで充電す
る場合ではそれほど過電圧が大きくならず、黒鉛より大
きい放電容量を得ることができる。しかし、ローレート
で充電しハイレートで放電する場合では、FeSi2 の
電気伝導率が4×103S/cmと低いため、放電時に
過電圧が大きくなり、放電容量が黒鉛以下になってしま
う。ところが本発明の負極材料は、FeSi2 のFeを
NiやCoで一部置換したものであり、8×104S/
cmという高い電気伝導率を示すCoSi2 や、3×1
04S/cmという高い電気伝導率を示すNiSi2 を
FeSi2 に固溶させることにより、FeSi2 の電気
伝導率を高くしハイレート放電における過電圧を抑制し
たものである。従って、ハイレート放電時においても大
きな放電容量が得られ、またサイクル特性も向上させる
ことができる。BEST MODE FOR CARRYING OUT THE INVENTION When charging at a low rate, the overvoltage of FeSi 2 is not so large, and a discharge capacity larger than graphite can be obtained. However, when charging at a low rate and discharging at a high rate, the electric conductivity of FeSi 2 is as low as 4 × 10 3 S / cm, so that the overvoltage at the time of discharging increases and the discharge capacity becomes less than graphite. However, the negative electrode material of the present invention is obtained by partially replacing Fe of FeSi 2 with Ni or Co, and is 8 × 10 4 S /
CoSi 2 showing a high electric conductivity of cm and, 3 × 1
0 4 NiSi exhibits a high electrical conductivity as S / cm 2 The by solid solution in FeSi 2, it is obtained by suppressing the overvoltage of the raised rate discharge electrical conductivity of the FeSi 2. Accordingly, a large discharge capacity can be obtained even at the time of high-rate discharge, and the cycle characteristics can be improved.
【0008】以上から本発明の化合物は、上記課題に対
して優れたハイレート放電特性を示す非水電解質二次電
池を提供する負極材料である。As described above, the compound of the present invention is a negative electrode material for providing a nonaqueous electrolyte secondary battery exhibiting excellent high-rate discharge characteristics with respect to the above problems.
【0009】以上の理由により、本発明は各請求項記載
の形態により実施できるものである。すなわち請求項1
記載のように、CoSi2 かNiSi2 のいずれか一方
とFeSi2 の化合物か、またはCoSi2 とNiSi
2 の両方とFeSi2 の化合物を負極材料とすることに
より高い電気伝導率を示す負極材料とすることができ
る。For the above reasons, the present invention can be implemented by the embodiments described in the claims. That is, claim 1
As described, either one of CoSi 2 or NiSi 2 and a compound of FeSi 2 , or CoSi 2 and NiSi 2
By using both FeSi 2 and FeSi 2 as a negative electrode material, a negative electrode material having high electric conductivity can be obtained.
【0010】また、請求項2記載のように、非水電解質
と、正極と、リチウムを吸蔵したり放出したりすること
のできる負極を有する非水電解質二次電池において、前
記負極の構成材料に、CoSi2 かNiSi2 のいずれ
か一方とFeSi2 の化合物か、またはCoSi2 とN
iSi2 の両方とFeSi2 の化合物を用いることによ
り、ハイレート放電時においても大きな放電容量が得ら
れ、またサイクル特性の優れた非水電解質リチウム二次
電池を実現することができる。According to a second aspect of the present invention, there is provided a non-aqueous electrolyte secondary battery having a non-aqueous electrolyte, a positive electrode, and a negative electrode capable of inserting and extracting lithium. , CoSi 2 or NiSi 2 Or a compound of FeSi 2 or CoSi 2 and N 2
iSi 2 By using both of these and a compound of FeSi 2, a large discharge capacity can be obtained even during high-rate discharge, and a nonaqueous electrolyte lithium secondary battery having excellent cycle characteristics can be realized.
【0011】[0011]
【実施例】以下、図面と共に本発明の実施例を詳しく説
明する。DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiments of the present invention will be described below in detail with reference to the drawings.
【0012】(実施例1)図1に本発明のコイン型非水
電解質二次電池の縦断面図を示す。図において1は耐有
機電解液性のステンレス鋼板を加工した電池ケース、2
はステンレス鋼板の封口板、3はステンレス鋼板の集電
体で、電池ケース1の内面にスポット溶接されている。
4は金属リチウムで、封口板2の内部に圧着されてい
る。5は本発明の実施例の負極である。Embodiment 1 FIG. 1 is a longitudinal sectional view of a coin-type nonaqueous electrolyte secondary battery of the present invention. In the figure, reference numeral 1 denotes a battery case processed from an organic electrolytic solution-resistant stainless steel sheet;
Is a sealing plate made of a stainless steel plate, and 3 is a current collector made of a stainless steel plate, which is spot-welded to the inner surface of the battery case 1.
Reference numeral 4 denotes metallic lithium, which is pressed inside the sealing plate 2. Reference numeral 5 denotes a negative electrode according to an example of the present invention.
【0013】負極5作製に当たっては、まず一般市販品
であるFeSi2 とCoSi2 をモル比99:1の割合
で混合し、アルゴン雰囲気中で1200℃で24時間焼
成することにより、負極活物質Fe0.99Co0.01Si2
を得た。合成組成は原子吸光分析にて確認し、またX
線回析により単相であることを確認した。この合成物を
メノウ乳鉢で100メッシュアンダーまで粉砕し負極活
物質とした。In preparing the negative electrode 5, first, FeSi 2 and CoSi 2 , which are commercially available products, are mixed at a molar ratio of 99: 1, and calcined in an argon atmosphere at 1200 ° C. for 24 hours to obtain a negative electrode active material Fe. 0.99 Co 0.01 Si 2
I got The composition was confirmed by atomic absorption spectroscopy.
The single phase was confirmed by line diffraction. This composite was ground in an agate mortar to 100 mesh under to obtain a negative electrode active material.
【0014】そして負極活物質85重量部に対し、結着
剤としてポリフッ化ビニリデン10重量部と導電剤とし
てアセチレンブラック5重量部を混合して得られる合剤
の所定量を集電体3の上に成形したものである。これら
の集電体を80℃で減圧乾燥した後、電池組立てに用い
た。6は微孔性のポリプロピレン製のセパレーター、7
はポリプロピレン製の絶縁ガスケットである。電解液は
エチレンカーボネート,ジエチルカーボネートの等体積
混合溶媒に溶質として六フッ化リン酸リチウムを1モル
/リットルの濃度で溶解して用いた。このようにそれぞ
れの試料と参考資料を用いて、寸法が直径20mm,電
池総高1.6mmである電池を構成し電気化学的評価を
行った。評価方法は充電を電流密度0.5mA/cm2
で(ローレート)で行い、放電は0.5mA/cm2
(ローレート)と5mA/cm2 (ハイレート)で行っ
た。電気容量計算は電圧範囲1.5Vから0Vで行い、
活物質体積あたりの電気容量で表わした。その結果を表
1に示した。A predetermined amount of a mixture obtained by mixing 10 parts by weight of polyvinylidene fluoride as a binder and 5 parts by weight of acetylene black as a conductive agent with respect to 85 parts by weight of the negative electrode active material is charged on the current collector 3. It is molded into. After drying these current collectors under reduced pressure at 80 ° C., they were used for battery assembly. 6 is a microporous polypropylene separator, 7
Is an insulating gasket made of polypropylene. The electrolytic solution was prepared by dissolving lithium hexafluorophosphate at a concentration of 1 mol / liter as a solute in a mixed solvent of equal volumes of ethylene carbonate and diethyl carbonate. Using the respective samples and reference materials as described above, a battery having a size of 20 mm in diameter and a total height of 1.6 mm was constructed, and electrochemical evaluation was performed. The evaluation method was as follows: charging was performed at a current density of 0.5 mA / cm 2.
(Low rate) and discharge is 0.5 mA / cm 2
(Low rate) and 5 mA / cm 2 (high rate). The electric capacity calculation is performed in the voltage range of 1.5V to 0V,
It was represented by the electric capacity per active material volume. The results are shown in Table 1.
【0015】(実施例2)負極活物質として一般市販品
であるFeSi2 とNiSi2 をモル比99:1の割合
で混合し、アルゴン雰囲気中で1200℃で24時間焼
成することにより、Fe0.99Ni0.01Si2 を得、合
成組成を原子吸光分析にて確認し、X線回析により単相
であることを確認した。それを用いて実施例1に準じて
コイン型非水電解質二次電池を作製した。そして同様の
評価条件で充放電試験を行い充放電容量を計算した。そ
の結果を表1に示した。(Example 2) As a negative electrode active material, FeSi 2 and NiSi 2 , which are commercially available products, were mixed at a molar ratio of 99: 1, and calcined in an argon atmosphere at 1200 ° C. for 24 hours to obtain Fe 0.9 9 Ni 0.01 Si 2 was obtained, the synthesized composition was confirmed by atomic absorption analysis, and it was confirmed that the composition was a single phase by X-ray diffraction. Using this, a coin-type non-aqueous electrolyte secondary battery was manufactured according to Example 1. Then, a charge / discharge test was performed under the same evaluation conditions, and a charge / discharge capacity was calculated. The results are shown in Table 1.
【0016】(実施例3)負極活物質として一般市販品
であるFeSi2 ,CoSi2 ,NiSi2 をモル比9
9:0.5:0.5の割合で混合し、アルゴン雰囲気中
で1250℃で24時間焼成することにより、Fe
0.99Co0.005Ni0.005Si2 を得、合成組成を原子
吸光分析にて確認し、X線回析により単相であることを
確認した。それを用いて実施例1に準じてコイン型非水
電解質二次電池を作製した。そして同様の評価条件で充
放電試験を行い充放電容量を計算した。その結果を表1
に示した。Example 3 FeSi 2 , CoSi 2 , and NiSi 2 , which are commercially available products, are used as a negative electrode active material at a molar ratio of 9
By mixing at a ratio of 9: 0.5: 0.5 and firing at 1250 ° C. for 24 hours in an argon atmosphere, Fe
0.99 Co 0.005 Ni 0.005 Si 2 was obtained, the synthesized composition was confirmed by atomic absorption analysis, and it was confirmed that the composition was a single phase by X-ray diffraction. Using this, a coin-type non-aqueous electrolyte secondary battery was manufactured according to Example 1. Then, a charge / discharge test was performed under the same evaluation conditions, and a charge / discharge capacity was calculated. Table 1 shows the results.
It was shown to.
【0017】(実施例4)負極活物質として一般市販品
であるFeSi2 とCoSi2 をモル比90:10の割
合で混合し、アルゴン雰囲気中で1200℃で24時間
焼成することにより、Fe0.9Co0.1Si2 を得、合成
組成を原子吸光分析にて確認し、X線回析により単相で
あることを確認した。それを用いて実施例1に準じてコ
イン型非水電解質二次電池を作製した。そして同様の評
価条件で充放電試験を行い充放電容量を計算した。その
結果を表1に示した。Example 4 FeSi 2 and CoSi 2 , which are commercially available products, were mixed as a negative electrode active material at a molar ratio of 90:10, and calcined in an argon atmosphere at 1200 ° C. for 24 hours to obtain Fe 0.9. Co 0.1 Si 2 was obtained, the synthesized composition was confirmed by atomic absorption analysis, and it was confirmed that the composition was a single phase by X-ray diffraction. Using this, a coin-type non-aqueous electrolyte secondary battery was manufactured according to Example 1. Then, a charge / discharge test was performed under the same evaluation conditions, and a charge / discharge capacity was calculated. The results are shown in Table 1.
【0018】(実施例5)負極活物質として一般市販品
であるFeSi2 とNiSi2 をモル比90:10の割
合で混合し、アルゴン雰囲気中で1200℃で24時間
焼成することにより、Fe0.9Ni0.1Si2 を得、合成
組成を原子吸光分析にて確認し、X線回析により単相で
あることを確認した。それを用いて実施例1に準じてコ
イン型非水電解質二次電池を作製した。そして同様の評
価条件で充放電試験を行い充放電容量を計算した。その
結果を表1に示した。Example 5 As a negative electrode active material, FeSi 2 and NiSi 2 , which are commercially available products, were mixed at a molar ratio of 90:10, and calcined at 1200 ° C. for 24 hours in an argon atmosphere to obtain Fe 0.9. Ni 0.1 Si 2 was obtained, the synthesized composition was confirmed by atomic absorption analysis, and it was confirmed that the composition was a single phase by X-ray diffraction. Using this, a coin-type non-aqueous electrolyte secondary battery was manufactured according to Example 1. Then, a charge / discharge test was performed under the same evaluation conditions, and a charge / discharge capacity was calculated. The results are shown in Table 1.
【0019】(実施例6)負極活物質として一般市販品
であるFeSi2 ,CoSi2 ,NiSi2 をモル比9
0:5:5の割合で混合し、アルゴン雰囲気中で125
0℃で24時間焼成することにより、Fe0.9Co0.05
Ni0.05Si2 を得、合成組成を原子吸光分析にて確認
し、X線回析により単相であることを確認した。それを
用いて実施例1に準じてコイン型非水電解質二次電池を
作製した。そして同様の評価条件で充放電試験を行い充
放電容量を計算した。その結果を表1に示した。[0019] (Example 6) FeSi 2 is generally commercially available as an anode active material, CoSi 2, a NiSi 2 molar ratio 9
Mix at a ratio of 0: 5: 5, and add 125 under argon atmosphere.
By firing at 0 ° C. for 24 hours, Fe 0.9 Co 0.05
Ni 0.05 Si 2 was obtained, the synthesized composition was confirmed by atomic absorption analysis, and it was confirmed that the composition was a single phase by X-ray diffraction. Using this, a coin-type non-aqueous electrolyte secondary battery was manufactured according to Example 1. Then, a charge / discharge test was performed under the same evaluation conditions, and a charge / discharge capacity was calculated. The results are shown in Table 1.
【0020】(実施例7)負極活物質として一般市販品
であるFeSi2 とCoSi2 をモル比80:20の割
合で混合し、アルゴン雰囲気中で1200℃で24時間
焼成することにより、Fe0.8Co0.2Si2 を得、合成
組成を原子吸光分析にて確認し、X線回析により単相で
あることを確認した。それを用いて実施例1に準じてコ
イン型非水電解質二次電池を作製した。そして同様の評
価条件で充放電試験を行い充放電容量を計算した。その
結果を表1に示した。Example 7 A commercially available negative electrode active material, FeSi 2 and CoSi 2 , was mixed at a molar ratio of 80:20 and calcined in an argon atmosphere at 1200 ° C. for 24 hours to obtain Fe 0.8 Co 0.2 Si 2 was obtained, the synthesized composition was confirmed by atomic absorption analysis, and it was confirmed that the composition was a single phase by X-ray diffraction. Using this, a coin-type non-aqueous electrolyte secondary battery was manufactured according to Example 1. Then, a charge / discharge test was performed under the same evaluation conditions, and a charge / discharge capacity was calculated. The results are shown in Table 1.
【0021】(実施例8)負極活物質として一般市販品
であるFeSi2 とNiSi2 をモル比80:20の割
合で混合し、アルゴン雰囲気中で1200℃で24時間
焼成することにより、Fe0.8Ni0.2Si2 を得、合成
組成を原子吸光分析にて確認し、X線回析により単相で
あることを確認した。それを用いて実施例1に準じてコ
イン型非水電解質二次電池を作製した。そして同様の評
価条件で充放電試験を行い充放電容量を計算した。その
結果を表1に示した。Example 8 As a negative electrode active material, FeSi 2 and NiSi 2 , which are commercially available products, were mixed at a molar ratio of 80:20, and calcined at 1200 ° C. for 24 hours in an argon atmosphere to obtain Fe 0.8 Ni 0.2 Si 2 was obtained, the synthesized composition was confirmed by atomic absorption analysis, and it was confirmed that the composition was a single phase by X-ray diffraction. Using this, a coin-type non-aqueous electrolyte secondary battery was manufactured according to Example 1. Then, a charge / discharge test was performed under the same evaluation conditions, and a charge / discharge capacity was calculated. The results are shown in Table 1.
【0022】(実施例9)負極活物質として一般市販品
であるFeSi2 ,CoSi2 ,NiSi2 をモル比8
0:10:10の割合で混合し、アルゴン雰囲気中で1
250℃で24時間焼成することにより、Fe0.8Co
0.1Ni0.1Si2 を得、合成組成を原子吸光分析にて確
認し、X線回析により単相であることを確認した。それ
を用いて実施例1に準じてコイン型非水電解質二次電池
を作製した。そして同様の評価条件で充放電試験を行い
充放電容量を計算した。その結果を表1に示した。(Example 9) As a negative electrode active material, FeSi 2 , CoSi 2 , and NiSi 2 which are commercially available products have a molar ratio of 8
Mix at a ratio of 0:10:10, and add 1 in an argon atmosphere.
By firing at 250 ° C. for 24 hours, Fe 0.8 Co
0.1 Ni 0.1 Si 2 was obtained, the synthesized composition was confirmed by atomic absorption analysis, and it was confirmed that the composition was a single phase by X-ray diffraction. Using this, a coin-type non-aqueous electrolyte secondary battery was manufactured according to Example 1. Then, a charge / discharge test was performed under the same evaluation conditions, and a charge / discharge capacity was calculated. The results are shown in Table 1.
【0023】(実施例10)負極活物質として一般市販
品であるFeSi2 とCoSi2 をモル比70:30の
割合で混合し、アルゴン雰囲気中で1200℃で24時
間焼成することにより、Fe0.7Co0.3Si2 を得、合
成組成を原子吸光分析にて確認し、X線回析により単相
であることを確認した。それを用いて実施例1に準じて
コイン型非水電解質二次電池を作製した。そして同様の
評価条件で充放電試験を行い充放電容量を計算した。そ
の結果を表1に示した。Example 10 A commercially available negative electrode active material, FeSi 2 and CoSi 2 , was mixed at a molar ratio of 70:30 and calcined at 1200 ° C. for 24 hours in an argon atmosphere to obtain Fe 0.7 Co 0.3 Si 2 was obtained, the synthesized composition was confirmed by atomic absorption analysis, and it was confirmed by X-ray diffraction that it was a single phase. Using this, a coin-type non-aqueous electrolyte secondary battery was manufactured according to Example 1. Then, a charge / discharge test was performed under the same evaluation conditions, and a charge / discharge capacity was calculated. The results are shown in Table 1.
【0024】(比較例1)比較例として負極活物質に一
般市販品であるFeSi2 を用いて、実施例1に準じて
コイン型非水電解質二次電池を作製した。そして同様の
評価条件で充放電試験を行い充放電容量を計算した。そ
の結果を表1に示した。Comparative Example 1 As a comparative example, a coin-type non-aqueous electrolyte secondary battery was manufactured in the same manner as in Example 1 except that FeSi 2, which was a commercially available product, was used as the negative electrode active material. Then, a charge / discharge test was performed under the same evaluation conditions, and a charge / discharge capacity was calculated. The results are shown in Table 1.
【0025】(比較例2)比較例として負極活物質に一
般市販品である黒鉛を用いて、実施例1に準じてコイン
型非水電解質二次電池を作製した。そして同様の評価条
件で充放電試験を行い充放電容量を計算した。その結果
を表1に示した。Comparative Example 2 As a comparative example, a coin-type non-aqueous electrolyte secondary battery was produced in the same manner as in Example 1 except that a commercially available graphite was used as the negative electrode active material. Then, a charge / discharge test was performed under the same evaluation conditions, and a charge / discharge capacity was calculated. The results are shown in Table 1.
【0026】[0026]
【表1】 [Table 1]
【0027】以上、表1より本発明の実施例であるFe
1-(x+y)CoxNiySi2 と比較例1のFeSi2 の化
合物はローレート(0.5mA/cm2 )での放電容量
は比較例2の黒鉛より大きい。しかしハイレート(5m
A/cm2 )での放電では、FeSi2 の放電容量は黒
鉛以下に低下するが、Fe1-(x+y)CoxNiySi2の放
電容量は黒鉛やFeSi2 に比べ約150mAh/cm
3 以上大きい。この要因は、実施例1〜10で作製され
た負極活物質の電気伝導率が全てFeSi2の電気伝導
率より高い値を示しており、これにより過電圧が抑えら
れたためと考えられる。As described above, Table 1 shows that the embodiment of the present invention
The compound of 1- (x + y) Co x Ni y Si 2 and FeSi 2 of Comparative Example 1 has a higher discharge capacity at a low rate (0.5 mA / cm 2 ) than the graphite of Comparative Example 2. But high rate (5m
The discharge at A / cm 2), although the discharge capacity of the FeSi 2 is reduced below the graphite, the discharge capacity of Fe 1- (x + y) Co x Ni y Si 2 about compared with the graphite or FeSi 2 150 mAh / cm
3 or more. This factor is considered to be due to the fact that the electric conductivity of all of the negative electrode active materials prepared in Examples 1 to 10 was higher than the electric conductivity of FeSi 2 , thereby suppressing the overvoltage.
【0028】以上から本発明のFe1-(x+y)CoxNiy
Si2 で表わされる化合物は、優れたハイレート放電特
性を示す非水電解質二次電池を提供する負極材料である
ことがわかる。As described above, the Fe 1- (x + y) Co x Ni y of the present invention is used.
It can be seen that the compound represented by Si 2 is a negative electrode material that provides a nonaqueous electrolyte secondary battery exhibiting excellent high-rate discharge characteristics.
【0029】さらに、本発明の負極材料を非水電解質二
次電池に用いる場合、正極活物質には、リチウムを含有
するTi,Mo,W,Nb,V,Mn,Fe,Cr,N
i,Co等の1種以上の遷移金属の複合酸化物や複合硫
化物等を用いることができる。特に高電圧,高エネルギ
ー密度が期待でき、従来から知られているLiCo
O 2 ,LiNiO2 ,LiMn2O4 等の正極活物質は
好適である。Further, the negative electrode material of the present invention is
When used for secondary batteries, the positive electrode active material contains lithium
Ti, Mo, W, Nb, V, Mn, Fe, Cr, N
composite oxides or sulfurs of at least one transition metal such as i, Co, etc.
And the like. Especially high voltage and high energy
-Density can be expected and the conventionally known LiCo
O Two, LiNiOTwo, LiMnTwoOFourAnd other positive electrode active materials
It is suitable.
【0030】さらに、本発明の負極材料を非水電解質二
次電池に用いる場合、非水電解質の溶媒としては、エチ
レンカーボネート,プロピレンカーボネート,ジメチル
カーボネート,エチルメチルカーボネート,ジエチルカ
ーボネート等の鎖状エステル類、γ−ブチロラクトン等
のγ−ラクトン類、1,2−ジメトキシエタン,1,2
−ジエトキシエタン,エトキシメトキシエタン等の鎖状
エーテル類、テトラヒドロフラン等の環状エーテル類、
アセトニトリル等のニトリル類等から選ばれた溶媒もし
くは2種以上の混合溶媒を用いることができる。特にエ
チレンカーボネートを必須成分として含む混合溶媒を使
用することが好適である。そして非水電解質の溶質とし
ては、LiAsF6 ,LiPF6 ,LiAlCl4 ,L
iClO 4 ,LiCF3SO3 ,LiSbF6 ,LiS
CN,LiCl,LiC6HSO3,Li(CF3SO2)
2 ,LiC(CF3SO2)3 ,C4F6SO3Li等のリ
チウム塩およびこれらの混合物を用いることができる。Further, the negative electrode material of the present invention is
When used in secondary batteries, solvents for the non-aqueous electrolyte
Lencarbonate, propylene carbonate, dimethyl
Carbonate, ethyl methyl carbonate, diethyl carbonate
Chain esters such as carbonate, γ-butyrolactone, etc.
Γ-lactones, 1,2-dimethoxyethane, 1,2
-Chain forms such as diethoxyethane, ethoxymethoxyethane, etc.
Ethers, cyclic ethers such as tetrahydrofuran,
Solvent selected from nitriles such as acetonitrile
Alternatively, two or more kinds of mixed solvents can be used. Especially d
Use a mixed solvent containing titanium carbonate as an essential component.
It is preferred to use And as a non-aqueous electrolyte solute
And LiAsF6 , LiPF6 , LiAlClFour , L
iCLO Four , LiCFThreeSOThree , LiSbF6 , LiS
CN, LiCl, LiC6HSOThree, Li (CFThreeSOTwo)
Two , LiC (CFThreeSOTwo)Three , CFourF6SOThreeLi and others
Titanium salts and mixtures thereof can be used.
【0031】また、電池の形状に関しては、本実施例で
はコイン型を用いたが、円筒型,角型,その他いかなる
形状の電池でも使用できる。In the present embodiment, the shape of the battery is a coin type. However, a battery having a cylindrical shape, a square shape, or any other shape can be used.
【0032】[0032]
【発明の効果】本発明は、リチウムの吸蔵ならびに放出
のできる非水電解質二次電池の負極材料としてFeSi
2 にCoSi2 かNiSi2 のいずれかを含ませるか、
その両方を含ませたもので、Fe1-(x+y)CoxNiyS
i2 (x,yは、x≧0、かつy≧0、かつ1>x+y
>0の条件を満たす)で表わされる化合物を提供し、優
れたハイレート放電特性の非水電解質二次電池を実現で
きる。According to the present invention, FeSi is used as a negative electrode material for a non-aqueous electrolyte secondary battery capable of inserting and extracting lithium.
2 contains either CoSi 2 or NiSi 2 ,
Both of them are included and Fe 1- (x + y) Co x Ni y S
i 2 (x and y are x ≧ 0, y ≧ 0, and 1> x + y
≫ 0), and a non-aqueous electrolyte secondary battery having excellent high rate discharge characteristics can be realized.
【図1】本発明の実施例におけるコイン型電池の縦断面
図FIG. 1 is a longitudinal sectional view of a coin-type battery according to an embodiment of the present invention.
1 電池ケース 2 封口板 3 集電体 4 金属リチウム 5 負極 6 セパレーター 7 絶縁ガスケット DESCRIPTION OF SYMBOLS 1 Battery case 2 Sealing plate 3 Current collector 4 Metal lithium 5 Negative electrode 6 Separator 7 Insulating gasket
Claims (2)
れ、かつ前記化学式において0≦x<1,0≦y<1,
0<x+y<1の条件を満足する化合物であることを特
徴とする非水電解質二次電池用負極材料。1. The chemical formula represented by Fe 1-(x + y) Co x Ni y Si 2 , wherein 0 ≦ x <1, 0 ≦ y <1,
A negative electrode material for a non-aqueous electrolyte secondary battery, which is a compound satisfying the following condition: 0 <x + y <1.
したり放出することができる負極を有する非水電解質二
次電池において、Fe1-(x+y)CoxNiySi2で表わさ
れ、かつ前記化学式において0≦x<1,0≦y<1,
0<x+y<1の条件を満足する化合物を用いた負極を
備えたことを特徴とする非水電解質二次電池。2. A non-aqueous electrolyte secondary battery having a non-aqueous electrolyte, a positive electrode, and a negative electrode capable of inserting and extracting lithium, wherein Fe 1-(x + y) Co x Ni y Si 2 is used. And 0 ≦ x <1, 0 ≦ y <1,
A non-aqueous electrolyte secondary battery comprising a negative electrode using a compound satisfying the following condition: 0 <x + y <1.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9175442A JPH1125973A (en) | 1997-07-01 | 1997-07-01 | Negative electrode mateal for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery having negative electrode using the same |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP9175442A JPH1125973A (en) | 1997-07-01 | 1997-07-01 | Negative electrode mateal for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery having negative electrode using the same |
Publications (1)
Publication Number | Publication Date |
---|---|
JPH1125973A true JPH1125973A (en) | 1999-01-29 |
Family
ID=15996163
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP9175442A Pending JPH1125973A (en) | 1997-07-01 | 1997-07-01 | Negative electrode mateal for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery having negative electrode using the same |
Country Status (1)
Country | Link |
---|---|
JP (1) | JPH1125973A (en) |
Cited By (5)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000051196A1 (en) * | 1999-02-22 | 2000-08-31 | Matsushita Electric Industrial Co., Ltd. | Non-aqueous electrolyte secondary cell and material for negative plate used therefor |
JP2007329010A (en) * | 2006-06-07 | 2007-12-20 | Sumitomo Electric Ind Ltd | Electrode for lithium secondary battery, and its manufacturing method |
JP2008159533A (en) * | 2006-12-26 | 2008-07-10 | Sumitomo Electric Ind Ltd | Electrode for lithium secondary battery and its manufacturing method |
JP2013171839A (en) * | 2012-02-21 | 2013-09-02 | Samsung Sdi Co Ltd | Electrode for lithium secondary battery, method for producing the same, and lithium secondary battery using the same |
CN108011093A (en) * | 2016-10-31 | 2018-05-08 | 捷恩智株式会社 | Lithium occlusion releasable material, electrode, the manufacture method of lithium rechargeable battery and lithium occlusion releasable material |
-
1997
- 1997-07-01 JP JP9175442A patent/JPH1125973A/en active Pending
Cited By (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
WO2000051196A1 (en) * | 1999-02-22 | 2000-08-31 | Matsushita Electric Industrial Co., Ltd. | Non-aqueous electrolyte secondary cell and material for negative plate used therefor |
US6576366B1 (en) | 1999-02-22 | 2003-06-10 | Matsushita Electric Industrial Co., Ltd. | Non-aqueous electrolyte secondary cell, and material for negative electrode used therefor |
JP2007329010A (en) * | 2006-06-07 | 2007-12-20 | Sumitomo Electric Ind Ltd | Electrode for lithium secondary battery, and its manufacturing method |
JP2008159533A (en) * | 2006-12-26 | 2008-07-10 | Sumitomo Electric Ind Ltd | Electrode for lithium secondary battery and its manufacturing method |
JP2013171839A (en) * | 2012-02-21 | 2013-09-02 | Samsung Sdi Co Ltd | Electrode for lithium secondary battery, method for producing the same, and lithium secondary battery using the same |
CN108011093A (en) * | 2016-10-31 | 2018-05-08 | 捷恩智株式会社 | Lithium occlusion releasable material, electrode, the manufacture method of lithium rechargeable battery and lithium occlusion releasable material |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP3873717B2 (en) | Positive electrode material and battery using the same | |
US7635542B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH08213052A (en) | Nonaqueous electrolyte secondary battery | |
JPH09330720A (en) | Lithium battery | |
JPH06342673A (en) | Lithium secondary battery | |
JP3649996B2 (en) | Cathode active material for non-aqueous electrolyte secondary battery | |
JPH09147863A (en) | Nonaqueous electrolyte battery | |
JP3717544B2 (en) | Lithium secondary battery | |
JP2006024415A (en) | Cathode material and battery | |
JP4167809B2 (en) | Positive electrode active material for lithium secondary battery and method for producing the same | |
JP3625679B2 (en) | Lithium secondary battery | |
JP2002170566A (en) | Lithium secondary cell | |
JP2000048820A (en) | Lithium secondary battery | |
JP2001297750A (en) | Power-generating element for lithium secondary battery and lithium secondary battery using same | |
US6383685B1 (en) | Lithium secondary battery | |
JPH08171936A (en) | Lithium secondary battery | |
JPH1125973A (en) | Negative electrode mateal for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery having negative electrode using the same | |
US6383684B1 (en) | Lithium secondary battery comprising tungsten-containing oxide of monoclinic crystal structure | |
JP3637690B2 (en) | Non-aqueous electrolyte secondary battery | |
JPH1140155A (en) | Negative electrode material for nonaqueous electrolyte secondary battery | |
JPH06111820A (en) | Nonaqueous battery | |
JP3615416B2 (en) | Lithium secondary battery | |
JP2004006293A (en) | Positive electrode material, its manufacturing method, and battery using it | |
JP4356127B2 (en) | Lithium secondary battery | |
JP3289259B2 (en) | Negative electrode for lithium secondary battery |