JPH09330720A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JPH09330720A
JPH09330720A JP8173055A JP17305596A JPH09330720A JP H09330720 A JPH09330720 A JP H09330720A JP 8173055 A JP8173055 A JP 8173055A JP 17305596 A JP17305596 A JP 17305596A JP H09330720 A JPH09330720 A JP H09330720A
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
transition metal
boron
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP8173055A
Other languages
Japanese (ja)
Inventor
Mayumi Uehara
真弓 上原
Hiroyuki Fujimoto
洋行 藤本
Takuya Sunakawa
拓也 砂川
Mikiya Yamazaki
幹也 山崎
Toshiyuki Noma
俊之 能間
Koji Nishio
晃治 西尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP8173055A priority Critical patent/JPH09330720A/en
Publication of JPH09330720A publication Critical patent/JPH09330720A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To suppress the reaction of a positive electrode material with a nonaqueous electrolyte over a long period, and provide a lithium battery excellent in cycle characteristic in which the lowering of the service capacity is minimized even when charging and discharging are repeated by covering the particle surface of a lithium transition metal compound oxide used in a positive electrode with a compound containing lithium and boron. SOLUTION: This lithium battery has a positive electrode 1 using a lithium transition metal compound oxide, a negative electrode 2 using a lithium material or a material capable of storing and releasing lithium ion, and a nonaqueous electrolyte. At least a part of the particle surface of the lithium transition metal compound oxide used in the positive electrode 1 is covered with a compound containing lithium and boron. Thus, it is suppressed that the nonaquous electrolyte is reacted with the lithium transition metal compound oxide of the positive electrode and decomposed, and the drop of the service capacity is moderated to improve the cycle characteristic.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0002】[0002]

【発明の属する技術分野】この発明は、リチウム遷移金
属複合酸化物を用いた正極と、リチウム材料又はリチウ
ムイオンの吸蔵,放出が可能な材料を用いた負極と、非
水電解液とを備えたリチウム電池に係り、リチウム遷移
金属複合酸化物を用いた正極を改良したリチウム電池に
関するものである。
TECHNICAL FIELD The present invention comprises a positive electrode using a lithium transition metal composite oxide, a negative electrode using a lithium material or a material capable of inserting and extracting lithium ions, and a non-aqueous electrolyte. The present invention relates to a lithium battery, and relates to a lithium battery in which a positive electrode using a lithium transition metal composite oxide is improved.

【0003】[0003]

【従来の技術】近年、高出力,高エネルギー密度の新型
二次電池として、電解液に非水電解液を用い、リチウム
の酸化,還元を利用して放電,充電を行なうようにした
リチウム電池が利用されるようになった。
2. Description of the Related Art In recent years, as a new type of high-output, high-energy-density secondary battery, there has been a lithium battery that uses a non-aqueous electrolyte as an electrolyte and is discharged and charged by utilizing oxidation and reduction of lithium. It came to be used.

【0004】ここで、このようなリチウム電池として
は、負極にリチウム材料又はリチウムの吸蔵,放出が可
能な材料を使用する一方、正極にリチウムと遷移金属と
を含むリチウム遷移金属複合酸化物を使用したものが知
られている。
In such a lithium battery, a lithium material or a material capable of inserting and extracting lithium is used for the negative electrode, and a lithium transition metal composite oxide containing lithium and a transition metal is used for the positive electrode. What you have done is known.

【0005】しかし、このように正極にリチウム遷移金
属複合酸化物を使用した従来のリチウム電池の場合、充
放電を行なうサイクル時において、非水電解液が正極に
用いたリチウム遷移金属複合酸化物と反応して分解し、
充放電を繰り返して行なうと次第に放電容量が低下し
て、サイクル特性が悪いという問題があった。
However, in the case of the conventional lithium battery using the lithium-transition metal composite oxide in the positive electrode as described above, the non-aqueous electrolyte is mixed with the lithium-transition metal composite oxide used in the positive electrode during the cycle of charging and discharging. React and decompose,
When charging and discharging are repeated, there is a problem that the discharge capacity gradually decreases and the cycle characteristics are poor.

【0006】このため、従来においても、正極に使用す
るリチウム遷移金属複合酸化物の表面を、硫化チタンT
iS2 や硫化モリブデンMoS2 等で部分的に被覆し、
リチウム遷移金属複合酸化物と非水電解液とが反応する
のを抑制することが開発された。
Therefore, the surface of the lithium-transition metal composite oxide used for the positive electrode has been conventionally made to be titanium sulfide T.
Partially covered with iS 2 or molybdenum sulfide MoS 2
It has been developed to suppress the reaction between the lithium-transition metal composite oxide and the non-aqueous electrolyte.

【0007】しかし、このようにTiS2 やMoS2
リチウム遷移金属複合酸化物の表面を被覆した場合、リ
チウム遷移金属複合酸化物と非水電解液との反応がある
程度抑制されるが、充放電を200サイクル以上行なう
と、依然として非水電解液の分解等により放電容量が低
下するという問題があった。
However, when the surface of the lithium-transition metal composite oxide is coated with TiS 2 or MoS 2 as described above, the reaction between the lithium-transition metal composite oxide and the non-aqueous electrolyte is suppressed to some extent, but the charge and discharge are increased. However, there is a problem that the discharge capacity is lowered due to the decomposition of the non-aqueous electrolyte and the like.

【0008】[0008]

【発明が解決しようとする課題】この発明は、リチウム
遷移金属複合酸化物を用いた正極と、リチウム又はリチ
ウムイオンの吸蔵,放出が可能な材料を用いた負極と、
非水電解液とを備えたリチウム電池における上記のよう
な問題を解決することを課題とするものであり、非水電
解液が正極に用いたリチウム遷移金属複合酸化物と反応
して分解するのが十分に抑制され、充放電を繰り返して
行なった場合において、次第に放電容量が低下するとい
うことが少なく、長期にわたって安定して使用できるサ
イクル特性に優れたリチウム電池が得られるようにする
ことを課題とするものである。
SUMMARY OF THE INVENTION The present invention comprises a positive electrode using a lithium-transition metal composite oxide, a negative electrode using a material capable of inserting and extracting lithium or lithium ions,
The object is to solve the above problems in a lithium battery with a non-aqueous electrolyte, the non-aqueous electrolyte is decomposed by reacting with the lithium transition metal composite oxide used for the positive electrode Is sufficiently suppressed, the discharge capacity does not gradually decrease when repeatedly charged and discharged, and it is an object to obtain a lithium battery having excellent cycle characteristics that can be stably used for a long period of time. It is what

【0009】[0009]

【課題を解決するための手段】この発明におけるリチウ
ム電池においては、上記のような課題を解決するため
に、リチウム遷移金属複合酸化物を用いた正極と、リチ
ウム材料又はリチウムイオンの吸蔵,放出が可能な材料
を用いた負極と、非水電解液とを備えたリチウム電池に
おいて、正極に使用するリチウム遷移金属複合酸化物の
粒子表面の少なくとも一部をリチウムと硼素とを含む化
合物で被覆するようにしたのである。
In the lithium battery of the present invention, in order to solve the above problems, a positive electrode using a lithium transition metal composite oxide and a lithium material or lithium ion storage and release are provided. In a lithium battery provided with a negative electrode using a possible material and a non-aqueous electrolyte, at least a part of the particle surface of the lithium transition metal composite oxide used for the positive electrode is coated with a compound containing lithium and boron. I did it.

【0010】そして、この発明におけるリチウム電池の
ように、正極に使用するリチウム遷移金属複合酸化物の
粒子表面の少なくとも一部を、リチウムと硼素とを含む
化合物で被覆すると、この正極材料と非水電解液との反
応が長期にわたって抑制されるようになり、充放電を繰
り返して行なった場合においても、従来のように非水電
解液が正極材料との反応により分解して放電容量が次第
に低下するということが少なくなり、サイクル特性に優
れたリチウム電池が得られるようになる。
Then, as in the lithium battery of the present invention, when at least a part of the surface of the particles of the lithium-transition metal composite oxide used for the positive electrode is coated with a compound containing lithium and boron, the positive electrode material and the non-aqueous material are mixed. The reaction with the electrolytic solution is suppressed for a long time, and even when charging and discharging are repeated, the non-aqueous electrolytic solution decomposes due to the reaction with the positive electrode material and the discharge capacity gradually decreases as in the conventional case. As a result, a lithium battery having excellent cycle characteristics can be obtained.

【0011】ここで、この発明におけるリチウム電池に
おいて、正極に用いるリチウム遷移金属複合酸化物の粒
子表面を被覆するリチウムと硼素とを含む化合物として
は、リチウムと硼素とを含む複合窒化物や、リチウムと
硼素とを含む複合酸化物等の様々な化合物を使用するこ
とができるが、特に、リチウムと硼素とを含む複合酸化
物を用いることが好ましく、更に好ましくは、LiBO
2 やLi247 を用いることが好ましい。これは、
リチウムと硼素とを含む複合窒化物等に比べて、リチウ
ムと硼素とを含む複合酸化物の方がリチウムイオンの透
過性に優れ、充放電による正極材料の劣化等が抑制さ
れ、よりサイクル特性が向上するものと考えられる。
Here, in the lithium battery according to the present invention, the compound containing lithium and boron for coating the particle surface of the lithium-transition metal composite oxide used for the positive electrode is a composite nitride containing lithium and boron, or lithium. Various compounds such as a complex oxide containing boron and boron can be used, but it is particularly preferable to use a complex oxide containing lithium and boron, and more preferably LiBO.
It is preferable to use 2 or Li 2 B 4 O 7 . this is,
Compared with a composite nitride containing lithium and boron, a composite oxide containing lithium and boron is superior in lithium ion permeability, deterioration of the positive electrode material due to charge and discharge is suppressed, and more cycle characteristics are obtained. It is expected to improve.

【0012】また、このようにリチウムと硼素とを含む
化合物によって上記のリチウム遷移金属複合酸化物の表
面を被覆するにあたり、このリチウムと硼素とを含む化
合物の量が少ないと、正極材料と非水電解液との接触に
よる非水電解液の分解等を十分に抑制することができな
くなる一方、このリチウムと硼素とを含む化合物の量が
多くなりすぎると、このリチウムと硼素とを含む化合物
自体におけるリチウムの吸蔵,放出能力が低く、正極全
体としてのリチウムの吸蔵,放出能力が低下してサイク
ル特性も悪くなるため、好ましくは、上記のリチウムと
硼素とを含む化合物の量が、正極に使用するリチウム遷
移金属複合酸化物に対して0.1〜20mol%の範囲
になるようにする。
Further, in coating the surface of the above-mentioned lithium-transition metal composite oxide with the compound containing lithium and boron, when the amount of the compound containing lithium and boron is small, the positive electrode material and the non-aqueous material are mixed. While it becomes impossible to sufficiently suppress decomposition of the non-aqueous electrolytic solution due to contact with the electrolytic solution, when the amount of the compound containing lithium and boron becomes too large, the compound itself containing lithium and boron is Since the ability to store and release lithium is low, and the ability to store and release lithium in the positive electrode as a whole is deteriorated to deteriorate cycle characteristics, the amount of the compound containing lithium and boron described above is preferably used for the positive electrode. It is set to a range of 0.1 to 20 mol% with respect to the lithium-transition metal composite oxide.

【0013】また、この発明におけるリチウム電池にお
いて、正極材料として使用するリチウム遷移金属複合酸
化物としては、リチウムイオンの吸蔵,放出が可能な材
料とし従来より一般に使用されているものを用いること
ができ、例えば、下記の構造式(1),(2)で表わさ
れるリチウム遷移金属複合酸化物等を用いることができ
る。特に、下記の構造式(1)で示される少なくともリ
チウムとニッケルとコバルトとを含むリチウム遷移金属
複合酸化物を用いると、このリチウム遷移金属複合酸化
物におけるリチウムイオンを吸蔵,放出する能力が優れ
ているため、よりサイクル特性に優れたリチウム電池が
得られるようになって好ましい。
In the lithium battery of the present invention, the lithium transition metal composite oxide used as the positive electrode material may be one that has been conventionally used as a material capable of inserting and extracting lithium ions. For example, a lithium transition metal composite oxide represented by the following structural formulas (1) and (2) can be used. In particular, when a lithium transition metal composite oxide containing at least lithium, nickel, and cobalt represented by the following structural formula (1) is used, the lithium transition metal composite oxide has excellent ability to store and release lithium ions. Therefore, a lithium battery having more excellent cycle characteristics can be obtained, which is preferable.

【0014】 Lix Niy Coz M1-y-z Oa (1) [この構造式(1)中において、MはB,Na,Mg,
Al,Si,K,Ca,Sc,Ti,V,Cr,Mn,
Fe,Cu,Zn,Ga,Ge,Zr,Nb,Ru,A
g,Ta,Bi,In,Mo,Wの中から選ばれる少な
くとも1種の元素であり、x,y,z及びaは、0<x
<1.3、0.5≦y+z≦1、1.8≦a≦2.2で
あり、xは充放電によって変化する。]
Lix Niy Coz M1-yz Oa (1) [In this structural formula (1), M is B, Na, Mg,
Al, Si, K, Ca, Sc, Ti, V, Cr, Mn,
Fe, Cu, Zn, Ga, Ge, Zr, Nb, Ru, A
At least one element selected from g, Ta, Bi, In, Mo and W, and x, y, z and a are 0 <x.
<1.3, 0.5 ≦ y + z ≦ 1, 1.8 ≦ a ≦ 2.2, and x changes depending on charge and discharge. ]

【0015】 Lix Fey Tiz M1-y-z Oa (2) [この構造式(2)中において、MはB,Na,Mg,
Al,Si,K,Ca,Sc,V,Cr,Mn,Cu,
Zn,Ga,Ge,Zr,Nb,Ru,Ag,Ta,B
i,In,Mo,W,Co,Niの中から選ばれる少な
くとも1種の元素であり、x,y,z及びaは、0<x
<1.3、0.5≦y+z≦1、1.8≦a≦2.2で
あり、xは充放電によって変化する。]
Lix Fey Tiz M1-yz Oa (2) [In this structural formula (2), M is B, Na, Mg,
Al, Si, K, Ca, Sc, V, Cr, Mn, Cu,
Zn, Ga, Ge, Zr, Nb, Ru, Ag, Ta, B
At least one element selected from i, In, Mo, W, Co, and Ni, and x, y, z, and a are 0 <x.
<1.3, 0.5 ≦ y + z ≦ 1, 1.8 ≦ a ≦ 2.2, and x changes depending on charge and discharge. ]

【0016】また、この発明におけるリチウム電池にお
いて、負極に使用する負極材料としては、金属リチウム
や、Li−Al,Li−In,Li−Sn,Li−P
b,Li−Bi,Li−Ga,Li−Sr,Li−S
i,Li−Zn,Li−Cd,Li−Ca,Li−Ba
等のリチウム合金の他に、リチウムイオンの吸蔵,放出
が可能な黒鉛,コークス,有機物焼成体等の炭素材料を
用いることができる。
In the lithium battery of the present invention, the negative electrode material used for the negative electrode includes metallic lithium, Li-Al, Li-In, Li-Sn, Li-P.
b, Li-Bi, Li-Ga, Li-Sr, Li-S
i, Li-Zn, Li-Cd, Li-Ca, Li-Ba
In addition to such lithium alloys as described above, a carbon material such as graphite, coke, or an organic material calcined material capable of inserting and extracting lithium ions can be used.

【0017】また、この発明におけるリチウム電池にお
いて使用する非水電解液としては、従来より一般に使用
されている非水電解液を用いることができる。
Further, as the non-aqueous electrolytic solution used in the lithium battery of the present invention, a non-aqueous electrolytic solution which has been generally used conventionally can be used.

【0018】そして、この非水電解液における溶媒とし
ては、例えば、プロピレンカーボネート、エチレンカー
ボネート、γ−ブチロラクトン、ジメチルカーボネー
ト、ジメチルスルホキシド、アセトニトリル、ブチレン
カーボネート、1,2−ジメトキシエタン、ジエチルカ
ーボネート等の有機溶媒を1種又は2種以上組み合わせ
て使用することができる。
The solvent in the non-aqueous electrolyte is, for example, an organic material such as propylene carbonate, ethylene carbonate, γ-butyrolactone, dimethyl carbonate, dimethyl sulfoxide, acetonitrile, butylene carbonate, 1,2-dimethoxyethane or diethyl carbonate. The solvent may be used alone or in combination of two or more.

【0019】また、この非水電解液において、上記の溶
媒に溶解させる溶質としては、例えば、トリフルオロメ
タンスルホン酸リチウムLiCF3 SO3 ,ヘキサフル
オロリン酸リチウムLiPF6 ,過塩素酸リチウムLi
ClO4 ,テトラフルオロホウ酸リチウムLiBF4
トリフルオロメタンスルホン酸イミドリチウムLiN
(CF3 SO22 等のリチウム化合物を使用すること
ができる。
Further, as the solute to be dissolved in the above solvent in this non-aqueous electrolyte, for example, lithium trifluoromethanesulfonate LiCF 3 SO 3 , lithium hexafluorophosphate LiPF 6 , lithium perchlorate Li
ClO 4 , lithium tetrafluoroborate LiBF 4 ,
Trifluoromethanesulfonic acid imide lithium LiN
Lithium compounds such as (CF 3 SO 2 ) 2 can be used.

【0020】[0020]

【実施例】以下、この発明に係るリチウム電池につい
て、実施例を挙げて具体的に説明すると共に、この発明
の実施例に係るリチウム電池がサイクル特性等の点で優
れていることを比較例を挙げて明らかにする。なお、こ
の発明におけるリチウム電池は、下記に示した実施例の
ものに限定されるものではなく、その要旨を変更しない
範囲において適宜変更して実施することができるもので
ある。
EXAMPLES Hereinafter, the lithium battery according to the present invention will be specifically described with reference to examples, and a comparative example showing that the lithium battery according to the examples of the present invention is excellent in terms of cycle characteristics and the like. List and clarify. The lithium battery according to the present invention is not limited to the examples shown below, and can be implemented with appropriate modifications without departing from the scope of the invention.

【0021】(実施例1)この実施例におけるリチウム
電池においては、下記のようにして作製した正極と負極
とを用いると共に、下記のようにして調製した非水電解
液を用いて、図1に示すような直径が24.0mm,厚
さが3.0mmの扁平型になったリチウム二次電池を得
るようにした。
Example 1 In the lithium battery of this example, the positive electrode and the negative electrode prepared as follows were used, and the non-aqueous electrolyte solution prepared as described below was used. As shown, a flat type lithium secondary battery having a diameter of 24.0 mm and a thickness of 3.0 mm was obtained.

【0022】[正極の作製]正極を作製するにあたって
は、Li2 CO3 とFe23 とをモル比1:1の割合
にして乳鉢内において混合させた後、この混合物を乾燥
空気雰囲気下において850℃で20時間熱処理し、そ
の後、これを石川式らいかい乳鉢中において粉砕して、
正極材料に使用するLiFeO2 の粉末を得た。
[Preparation of Positive Electrode] In preparing a positive electrode, Li 2 CO 3 and Fe 2 O 3 were mixed in a mortar at a molar ratio of 1: 1 and the mixture was dried in an atmosphere of dry air. At 850 ° C. for 20 hours and then crushed in an Ishikawa Raikai mortar,
A powder of LiFeO 2 used for the positive electrode material was obtained.

【0023】そして、この正極材料LiFeO2 粉末に
リチウムと硼素を含む複合窒化物Li3 BN2 を加え、
正極材料LiFeO2 粉末とリチウム硼素複合窒化物L
3BN2 とをモル比10:1の割合になるようにして
混合した後、この混合物を650℃で10時間熱処理
し、上記の正極材料LiFeO2 粉末の表面をこのリチ
ウム硼素複合窒化物Li3 BN2 で被覆させた。
Then, a composite nitride Li 3 BN 2 containing lithium and boron was added to the positive electrode material LiFeO 2 powder,
Positive electrode material LiFeO 2 powder and lithium boron composite nitride L
After mixing with i 3 BN 2 in a molar ratio of 10: 1, this mixture was heat-treated at 650 ° C. for 10 hours, and the surface of the above-mentioned positive electrode material LiFeO 2 powder was treated with this lithium-boron composite nitride Li. Coated with 3 BN 2 .

【0024】次いで、このように正極材料LiFeO2
粉末の表面がLi3 BN2 で被覆された材料と、導電剤
であるアセチレンブラックと、結着剤であるポリフッ化
ビニリデンとを重量比90:6:4の割合で混合して正
極合剤を調整し、この正極合剤を2トン/cm2 の圧力
で加圧して直径20mmの円板状に成型した後、これを
250℃で2時間熱処理して正極を作製した。
Then, in this way, the positive electrode material LiFeO 2
A material in which the surface of the powder was coated with Li 3 BN 2 , acetylene black as a conductive agent, and polyvinylidene fluoride as a binder were mixed at a weight ratio of 90: 6: 4 to form a positive electrode mixture. After adjustment, this positive electrode mixture was pressed at a pressure of 2 ton / cm 2 to be molded into a disk shape having a diameter of 20 mm, and this was heat-treated at 250 ° C. for 2 hours to prepare a positive electrode.

【0025】[負極の作製]負極を作製するにあたって
は、所定厚みの金属リチウムの圧延板を直径20mmの
円板状に打ち抜いて負極を作製した。
[Preparation of Negative Electrode] In preparing the negative electrode, a rolled plate of metallic lithium having a predetermined thickness was punched into a disk shape having a diameter of 20 mm to prepare the negative electrode.

【0026】[非水電解液の調製]非水電解液を調製す
るにあたっては、プロピレンカーボネートと1,2−ジ
メトキシエタンとを1:1の体積比で混合させた混合溶
媒を用い、この混合溶媒に溶質として過塩素酸リチウム
LiClO4 を1mol/lの割合で溶解させて非水電
解液を調製した。
[Preparation of Non-Aqueous Electrolyte] In preparing the non-aqueous electrolyte, a mixed solvent prepared by mixing propylene carbonate and 1,2-dimethoxyethane in a volume ratio of 1: 1 was used. Lithium perchlorate LiClO 4 was dissolved as a solute at a ratio of 1 mol / l to prepare a non-aqueous electrolyte solution.

【0027】[電池の作製]電池を作製するにあたって
は、図1に示すように、上記のようにして作製した円盤
状の正極1と負極2との間に上記の非水電解液を含浸さ
せたセパレータ3を挟み込み、これらを正極缶4aと負
極缶4bとによって形成される電池缶4内に収容させ、
正極1を正極集電体5を介して正極缶4aに接続させる
一方、負極2を負極集電体6を介して負極缶4bに接続
させ、この正極缶4aと負極缶4bとをポリプロピレン
製の絶縁性パッキン7により電気的に絶縁させて、リチ
ウム二次電池を作製した。そして、このリチウム二次電
池の内部で生じた化学エネルギーを正極缶4aと負極缶
4bの両端子から電気エネルギーとして外部へ取り出す
ようにした。
[Production of Battery] To produce a battery, as shown in FIG. 1, the above-mentioned nonaqueous electrolytic solution was impregnated between the disk-shaped positive electrode 1 and negative electrode 2 produced as described above. The separator 3 is sandwiched, and these are housed in the battery can 4 formed by the positive electrode can 4a and the negative electrode can 4b.
The positive electrode 1 is connected to the positive electrode can 4a via the positive electrode current collector 5, while the negative electrode 2 is connected to the negative electrode can 4b via the negative electrode current collector 6, and the positive electrode can 4a and the negative electrode can 4b are made of polypropylene. A lithium secondary battery was produced by being electrically insulated by the insulating packing 7. Then, the chemical energy generated inside the lithium secondary battery was taken out as electric energy from both terminals of the positive electrode can 4a and the negative electrode can 4b.

【0028】(比較例1)この比較例においては、正極
を作製するにあたり、正極材料として上記実施例1と同
様にして作製したLiFeO2 粉末を用いる一方、この
正極材料LiFeO2 粉末の表面を上記のリチウム硼素
複合窒化物Li3 BN2 で被覆しないようにし、それ以
外については、上記実施例1と同様にしてリチウム二次
電池を作製した。
Comparative Example 1 In this comparative example, when a positive electrode was prepared, LiFeO 2 powder prepared in the same manner as in Example 1 was used as the positive electrode material, while the surface of the positive electrode material LiFeO 2 powder was prepared as described above. A lithium secondary battery was prepared in the same manner as in Example 1 except that the lithium-boron composite nitride Li 3 BN 2 was not coated.

【0029】(実施例2)この実施例においては、正極
を作製するにあたり、Li2 Co3 とTiO2 とをモル
比1:2の割合になるようにして乳鉢内で混合させた
後、この混合物を乾燥空気雰囲気下において850℃で
20時間熱処理し、その後、これを石川式らいかい乳鉢
中において粉砕して、正極材料として使用するLiTi
2 の粉末を得た。
Example 2 In this example, when a positive electrode was prepared, Li 2 Co 3 and TiO 2 were mixed in a mortar in a molar ratio of 1: 2, and The mixture was heat-treated in a dry air atmosphere at 850 ° C. for 20 hours and then crushed in an Ishikawa-type Raikai mortar to prepare LiTi used as a positive electrode material.
To obtain a powder of O 2.

【0030】そして、この正極材料LiTiO2 粉末
と、上記の実施例1で用いたリチウム硼素複合窒化物L
3 BN2 とをモル比10:1の割合で混合した後、こ
の混合物を650℃で10時間熱処理して、正極材料L
iTiO2 粉末の表面をリチウム硼素複合窒化物Li3
BN2 で被覆させ、それ以外については、上記実施例1
と同様にしてリチウム二次電池を作製した。
Then, this positive electrode material LiTiO 2 powder and the lithium-boron composite nitride L used in Example 1 above were used.
After mixing with i 3 BN 2 in a molar ratio of 10: 1, this mixture was heat-treated at 650 ° C. for 10 hours to obtain a positive electrode material L.
The surface of the iTiO 2 powder was coated with lithium boron composite nitride Li 3
Coated with BN 2 , otherwise, above Example 1
A lithium secondary battery was produced in the same manner as in.

【0031】(比較例2)この比較例においては、正極
を作製するにあたり、正極材料として上記実施例2にお
いて得たLiTiO2 粉末を用いる一方、この正極材料
LiTiO2 粉末の表面を上記のリチウム硼素複合窒化
物Li3 BN2 で被覆しないようにし、それ以外につい
ては、上記実施例1と同様にしてリチウム二次電池を作
製した。
(Comparative Example 2) In this comparative example, the LiTiO 2 powder obtained in Example 2 was used as the positive electrode material for producing the positive electrode, while the surface of the positive electrode material LiTiO 2 powder was coated with the above-mentioned lithium boron. A lithium secondary battery was prepared in the same manner as in Example 1 except that the composite nitride Li 3 BN 2 was not coated.

【0032】(実施例3)この実施例においては、正極
を作製するにあたり、LiOHとNi(OH)2とCo
(OH)2 とをモル比2:1:1の割合になるようにし
て乳鉢内で混合した後、この混合物を乾燥空気雰囲気下
において750℃で20時間熱処理し、その後、これを
石川式らいかい乳鉢中において粉砕して、正極材料とし
て使用するLiNi0.5 Co0.52 粉末を得た。
Example 3 In this example, LiOH, Ni (OH) 2 and Co were used to prepare a positive electrode.
(OH) 2 was mixed in a mortar in a molar ratio of 2: 1: 1, and this mixture was heat-treated at 750 ° C. for 20 hours in a dry air atmosphere, and then this was mixed with Ishikawa formula. The powder was crushed in a mortar to obtain LiNi 0.5 Co 0.5 O 2 powder used as a positive electrode material.

【0033】そして、この正極材料LiNi0.5 Co
0.52 粉末と、上記の実施例1で用いたリチウム硼素
複合窒化物Li3 BN2 とをモル比10:1の割合で混
合した後、この混合物を650℃で10時間熱処理し
て、上記の正極材料LiNi0.5Co0.52 粉末の表
面をリチウム硼素複合窒化物Li3 BNで被覆させるよ
うにし、それ以外については、上記実施例1と同様にし
てリチウム二次電池を作製した。
Then, this positive electrode material LiNi 0.5 Co
0.5 O 2 powder and the lithium-boron composite nitride Li 3 BN 2 used in Example 1 above were mixed at a molar ratio of 10: 1, and this mixture was heat treated at 650 ° C. for 10 hours, The surface of the positive electrode material LiNi 0.5 Co 0.5 O 2 powder was covered with the lithium boron composite nitride Li 3 BN, and a lithium secondary battery was produced in the same manner as in Example 1 except for the above.

【0034】(比較例3)この比較例においては、正極
を作製するにあたり、正極材料として上記実施例3にお
いて得たLiNi0.5 Co0.52 粉末を用いる一方、
この正極材料LiNi0.5 Co0.52 粉末の表面を上
記のリチウム硼素複合窒化物Li3 BN2で被覆しない
ようにし、それ以外については、上記実施例1と同様に
してリチウム二次電池を作製した。
Comparative Example 3 In this Comparative Example, the LiNi 0.5 Co 0.5 O 2 powder obtained in Example 3 above was used as the positive electrode material in the production of the positive electrode.
A surface of this positive electrode material LiNi 0.5 Co 0.5 O 2 powder was not covered with the above lithium boron composite nitride Li 3 BN 2 , and otherwise a lithium secondary battery was produced in the same manner as in Example 1 above. .

【0035】次に、上記の実施例1〜3及び比較例1〜
3の各リチウム二次電池について、それぞれ充電電流密
度1mA/cm2 で4.3Vまで充電させた後、放電電
流密度3mA/cm2 で2.5Vまで放電させ、この工
程を1サイクルとして、このような充放電を250サイ
クル繰り返すサイクル試験を行なった。そして、1サイ
クル目における各リチウム二次電池の放電容量を測定す
ると共に、250サイクル目における各リチウム二次電
池の放電容量を測定し、1サイクル目の放電容量に対す
る250サイクル目の放電容量の容量劣化率(%)を求
め、その結果を下記の表1に示した。
Next, the above-mentioned Examples 1 to 3 and Comparative Examples 1 to 1
Each lithium secondary battery 3, after being charged with the respective charge current density 1 mA / cm 2 up to 4.3 V, at a discharge current density of 3mA / cm 2 was discharged to 2.5V, this process as one cycle, this A cycle test was performed in which such charging / discharging was repeated for 250 cycles. Then, the discharge capacity of each lithium secondary battery in the first cycle is measured, and the discharge capacity of each lithium secondary battery in the 250th cycle is measured to determine the capacity of the discharge capacity of the 250th cycle with respect to the discharge capacity of the first cycle. The deterioration rate (%) was determined and the results are shown in Table 1 below.

【0036】[0036]

【表1】 [Table 1]

【0037】この結果から明らかなように、リチウム遷
移金属複合酸化物からなる各正極材料の表面にリチウム
硼素複合窒化物Li3 BN2 を付着させた実施例1〜3
の各リチウム二次電池は、各正極材料の表面にリチウム
硼素複合窒化物Li3 BN2を付着させなかった比較例
1〜3の各リチウム二次電池に比べて容量劣化率が低く
なって、サイクル特性が向上されおり、特に、正極材料
としてリチウムとニッケルとコバルトを含む複合酸化物
であるLiNi0.5 Co0.52 を用いた場合には、よ
り容量劣化率が少なくなっていて、サイクル特性がさら
に向上されていた。
As is clear from these results, Examples 1 to 3 in which the lithium-boron composite nitride Li 3 BN 2 was adhered to the surface of each positive electrode material composed of the lithium-transition metal composite oxide
In each of the lithium secondary batteries of No. 3 , the capacity deterioration rate is lower than that of each of the lithium secondary batteries of Comparative Examples 1 to 3 in which the lithium boron composite nitride Li 3 BN 2 is not attached to the surface of each positive electrode material. The cycle characteristics are improved, and particularly when LiNi 0.5 Co 0.5 O 2 which is a composite oxide containing lithium, nickel and cobalt is used as the positive electrode material, the capacity deterioration rate is further reduced and the cycle characteristics are It was further improved.

【0038】(実施例4〜8)これらの実施例において
は、下記の表2に示すように、正極材料として上記の実
施例3において使用したLiNi0.5 Co0.52 粉末
を用いるようにし、この正極材料の表面を被覆するリチ
ウムと硼素とを含む化合物の種類を変更させ、それ以外
については、上記実施例1の場合と同様にして各リチウ
ム二次電池を作製した。
Examples 4 to 8 In these examples, as shown in Table 2 below, the LiNi 0.5 Co 0.5 O 2 powder used in Example 3 above was used as the positive electrode material. Each type of lithium secondary battery was manufactured in the same manner as in Example 1 except that the type of the compound containing lithium and boron that covers the surface of the positive electrode material was changed.

【0039】ここで、上記の正極材料LiNi0.5 Co
0.52 粉末の表面を被覆する被覆材料として、下記の
表2に示すように、実施例4においてはLiB35
を、実施例5においてはLi2813を、実施例6に
おいてはLi425 を、実施例7においてはLiB
2 を、実施例8においてはLi247 を用い、上
記の正極材料LiNi0.5 Co0.52 粉末とこれらの
リチウム硼素複合酸化物とをそれぞれモル比10:1の
割合になるようにして混合した後、この混合物を650
℃で10時間熱処理し、上記の正極材料LiNi0.5
0.52 粉末の表面を上記の各リチウム硼素複合窒化
物で被覆させるようにした。
Here, the above-mentioned positive electrode material LiNi 0.5 Co
As a coating material for coating the surface of 0.5 O 2 powder, as shown in Table 2 below, in Example 4, LiB 3 O 5 was used.
In Example 5, Li 2 B 8 O 13 , Li 4 B 2 O 5 in Example 6, and LiB in Example 7.
O 2 and Li 2 B 4 O 7 in Example 8 were used, and the above-mentioned positive electrode material LiNi 0.5 Co 0.5 O 2 powder and these lithium boron composite oxides were adjusted to a molar ratio of 10: 1. After mixing to 650
After heat treatment at ℃ for 10 hours, the above positive electrode material LiNi 0.5 C
The surface of the o 0.5 O 2 powder was coated with each of the above lithium boron composite nitrides.

【0040】そして、上記のようにして作製した実施例
4〜8の各リチウム二次電池についても、前記の場合と
同様にして、充放電のサイクル試験を行ない、1サイク
ル目の放電容量に対する250サイクル目の放電容量の
容量劣化率(%)を求め、その結果を、上記の実施例3
のリチウム二次電池の場合と合わせて下記の表2に示し
た。
Then, the lithium secondary batteries of Examples 4 to 8 produced as described above were also subjected to a charge / discharge cycle test in the same manner as in the above case, and the discharge capacity of the first cycle was set to 250. The capacity deterioration rate (%) of the discharge capacity at the cycle was calculated, and the result was used in Example 3 above.
It is shown in Table 2 below together with the case of the lithium secondary battery.

【0041】[0041]

【表2】 [Table 2]

【0042】この結果から明らかなように、正極材料の
表面を被覆するリチウムと硼素とを含む化合物に、上記
の実施例3のようにリチウム硼素複合窒化物Li3 BN
2 を用いた場合に比べ、実施例4〜8に示すようなリチ
ウム硼素複合酸化物を用いた方が容量劣化率が更に少な
くなっており、特に、LiBO2 やLi247 を用
いた場合には、容量劣化率が非常に少なくなっており、
サイクル特性が非常に向上した。
As is clear from these results, the compound containing lithium and boron coating the surface of the positive electrode material was added to the lithium-boron composite nitride Li 3 BN as in Example 3 above.
Compared with the case of using 2 , the capacity deterioration rate is further reduced by using the lithium-boron composite oxides as shown in Examples 4 to 8, and particularly, by using LiBO 2 or Li 2 B 4 O 7 . If it is, the capacity deterioration rate is very low,
The cycle characteristics are greatly improved.

【0043】(実施例9〜13)これらの実施例におい
ても、下記の表2に示すように、正極材料として、上記
の実施例3において使用したLiNi0.5 Co0.52
粉末を用いる一方、この正極材料の表面を被覆する被覆
材料として、上記の実施例7において用いたLiBO2
を使用するようにした。
(Examples 9 to 13) Also in these Examples, as shown in Table 2 below, LiNi 0.5 Co 0.5 O 2 used in Example 3 as a positive electrode material was used.
While using powder, as a coating material for coating the surface of this positive electrode material, LiBO 2 used in the above-mentioned Example 7 was used.
Was used.

【0044】そして、これらの実施例においては、上記
のLiNi0.5 Co0.52 粉末に対して加える被覆材
料LiBO2 のモル比を、下記の表3に示すように、実
施例9では0.05mol%、実施例10では0.1m
ol%、実施例11では2mol%、実施例12では2
0mol%、実施例13では22mol%になるように
してこれらを混合させ、この混合物を上記実施例7の場
合と同様に650℃で10時間熱処理し、それ以外につ
いては、上記実施例1の場合と同様にして各リチウム二
次電池を作製した。
In these Examples, the molar ratio of the coating material LiBO 2 added to the above LiNi 0.5 Co 0.5 O 2 powder was 0.05 mol in Example 9 as shown in Table 3 below. %, In Example 10 0.1 m
ol%, 2 mol% in Example 11, 2 in Example 12
0 mol%, 22 mol% in Example 13 were mixed, and this mixture was heat-treated at 650 ° C. for 10 hours in the same manner as in Example 7 above, otherwise, in Example 1 above. Each lithium secondary battery was produced in the same manner as.

【0045】そして、上記のようにして作製した実施例
9〜13の各リチウム二次電池についても、前記の場合
と同様にして、充放電のサイクル試験を行ない、1サイ
クル目の放電容量に対する250サイクル目の放電容量
の容量劣化率(%)を求め、その結果を下記の表3に上
記実施例7のリチウム二次電池の場合と合わせて示し
た。
Then, the lithium secondary batteries of Examples 9 to 13 produced as described above were also subjected to a charge / discharge cycle test in the same manner as described above, and the discharge capacity of the first cycle was set to 250. The capacity deterioration rate (%) of the discharge capacity at the cycle was obtained, and the results are shown in Table 3 below together with the case of the lithium secondary battery of Example 7 described above.

【0046】[0046]

【表3】 [Table 3]

【0047】この結果から明らかなように、正極材料で
あるLiNi0.5 Co0.52 粉末の表面をLiBO2
で被覆するにあたり、その被覆量を0.1〜20mol
%の範囲にすると、非常に容量劣化率が少なくなり、サ
イクル特性が非常に優れたリチウム二次電池が得られ
た。
As is clear from this result, the surface of the LiNi 0.5 Co 0.5 O 2 powder, which is the positive electrode material, was coated with LiBO 2
The coating amount is 0.1 to 20 mol.
Within the range of%, the capacity deterioration rate was extremely low, and a lithium secondary battery with excellent cycle characteristics was obtained.

【0048】[0048]

【発明の効果】以上詳述したように、この発明における
リチウム電池においては、正極に使用するリチウム遷移
金属複合酸化物の粒子表面の少なくとも一部を、リチウ
ムと硼素とを含む化合物で被覆したため、この正極材料
と非水電解液との反応等が長期にわたって抑制されるよ
うになり、充放電を繰り返して行なった場合においても
従来のリチウム電池のように放電容量が次第に低下する
ということが少なく、サイクル特性に優れたリチウム電
池が得られるようになった。
As described above in detail, in the lithium battery of the present invention, at least a part of the surface of the particles of the lithium transition metal composite oxide used for the positive electrode is coated with the compound containing lithium and boron. The reaction between the positive electrode material and the non-aqueous electrolytic solution will be suppressed for a long period of time, and even when the charging and discharging are repeated, the discharge capacity is unlikely to be gradually reduced unlike the conventional lithium battery, It has become possible to obtain a lithium battery having excellent cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】各実施例及び各比較例におけるリチウム電池の
内部構造を示した断面説明図である。
FIG. 1 is an explanatory cross-sectional view showing an internal structure of a lithium battery in each of Examples and Comparative Examples.

【符号の説明】[Explanation of symbols]

1 正極 2 負極 1 Positive electrode 2 Negative electrode

─────────────────────────────────────────────────────
─────────────────────────────────────────────────── ───

【手続補正書】[Procedure amendment]

【提出日】平成8年8月27日[Submission date] August 27, 1996

【手続補正1】[Procedure amendment 1]

【補正対象書類名】明細書[Document name to be amended] Statement

【補正対象項目名】0029[Name of item to be corrected] 0029

【補正方法】変更[Correction method] Change

【補正内容】[Correction contents]

【0029】(実施例2)この実施例においては、正極
を作製するにあたり、Li CO とTiOとをモル
比1:2の割合になるようにして乳鉢内で混合させた
後、この混合物を乾燥空気雰囲気下において850℃で
20時間熱処理し、その後、これを石川式らいかい乳鉢
中において粉砕して、正極材料として使用するLiTi
の粉末を得た。
Example 2 In this example, when a positive electrode was prepared, Li 2 CO 3 and TiO 2 were mixed in a mortar at a molar ratio of 1: 2, and then the positive electrode was prepared. The mixture was heat-treated in a dry air atmosphere at 850 ° C. for 20 hours and then crushed in an Ishikawa-type Raikai mortar to prepare LiTi used as a positive electrode material.
To obtain a powder of O 2.

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山崎 幹也 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 能間 俊之 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Mikiya Yamazaki 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshiyuki Noma 2-chome Keihanhondori, Moriguchi-shi, Osaka No.5-5 Sanyo Electric Co., Ltd. (72) Inventor Koji Nishio 2-5-5 Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 リチウム遷移金属複合酸化物を用いた正
極と、リチウム材料又はリチウムイオンの吸蔵,放出が
可能な材料を用いた負極と、非水電解液とを備えたリチ
ウム電池において、正極に使用するリチウム遷移金属複
合酸化物の粒子表面の少なくとも一部を、リチウムと硼
素とを含む化合物で被覆したことを特徴とするリチウム
電池。
1. A lithium battery comprising a positive electrode using a lithium-transition metal composite oxide, a negative electrode using a lithium material or a material capable of inserting and extracting lithium ions, and a non-aqueous electrolyte solution. A lithium battery, wherein at least a part of the surface of particles of the lithium-transition metal composite oxide used is coated with a compound containing lithium and boron.
【請求項2】 請求項1に記載したリチウム電池におい
て、正極に使用するリチウム遷移金属複合酸化物の粒子
表面の少なくとも一部を、リチウムと硼素とを含む複合
酸化物で被覆したことを特徴とするリチウム電池。 【0001】
2. The lithium battery according to claim 1, wherein at least a part of the surface of the particles of the lithium transition metal composite oxide used for the positive electrode is coated with the composite oxide containing lithium and boron. Lithium battery. [0001]
JP8173055A 1996-06-11 1996-06-11 Lithium battery Pending JPH09330720A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP8173055A JPH09330720A (en) 1996-06-11 1996-06-11 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP8173055A JPH09330720A (en) 1996-06-11 1996-06-11 Lithium battery

Publications (1)

Publication Number Publication Date
JPH09330720A true JPH09330720A (en) 1997-12-22

Family

ID=15953389

Family Applications (1)

Application Number Title Priority Date Filing Date
JP8173055A Pending JPH09330720A (en) 1996-06-11 1996-06-11 Lithium battery

Country Status (1)

Country Link
JP (1) JPH09330720A (en)

Cited By (28)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071649A (en) * 1997-10-31 2000-06-06 Motorola, Inc. Method for making a coated electrode material for an electrochemical cell
JP2006196433A (en) * 2004-12-13 2006-07-27 Matsushita Electric Ind Co Ltd Positive electrode activator, its manufacturing method and nonaqueous secondary battery
JP2006344523A (en) * 2005-06-09 2006-12-21 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion battery, battery using the same, and method of manufacturing positive electrode material for nonaqueous electrolyte lithium ion battery
JP2009152214A (en) * 2000-09-25 2009-07-09 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method therefor
KR20150050152A (en) * 2013-10-31 2015-05-08 주식회사 엘지화학 Manufacturing method of cathode active material, and cathode active material for lithium secondary battery manufactured thereby
US9269958B2 (en) 2012-12-07 2016-02-23 Samsung Electronics Co., Ltd. Cathode and all-solid battery including the same
WO2016099229A1 (en) * 2014-12-19 2016-06-23 주식회사 엘지화학 Mixed positive electrode active material, positive electrode comprising same, and secondary battery
WO2017047022A1 (en) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
WO2017047021A1 (en) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
JP2017531901A (en) * 2014-10-02 2017-10-26 エルジー・ケム・リミテッド Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
US20180111108A1 (en) * 2011-12-22 2018-04-26 Belenos Clean Power Holding Ag Coating and lithiation of inorganic oxidants by reaction with lithiated reductants
US10811672B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US10811671B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10811673B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US10818910B2 (en) 2015-07-23 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10818912B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Battery
US10826057B2 (en) 2014-12-19 2020-11-03 Lg Chem, Ltd. Mixed positive electrode active material, positive electrode comprising same, and secondary battery
US10833315B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833322B2 (en) 2017-01-19 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and lithium composite oxyfluoride, and battery including positive electrode containing positive electrode active material
US10833316B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US10840499B2 (en) 2016-11-15 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US10854876B2 (en) 2016-11-15 2020-12-01 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
WO2021039750A1 (en) * 2019-08-30 2021-03-04 パナソニック株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery
US11043661B2 (en) 2017-01-19 2021-06-22 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxyfluoride and organosilicon compound, and battery including positive electrode containing the positive electrode active material
US11081687B2 (en) 2016-12-02 2021-08-03 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery including positive-electrode active material
JP2022518416A (en) * 2019-03-22 2022-03-15 エルジー エナジー ソリューション リミテッド Positive electrode active material particles for sulfide-based all-solid-state batteries
US11575116B2 (en) 2019-03-22 2023-02-07 Lg Energy Solution, Ltd. Positive electrode active material particle for sulfide-based all-solid-state batteries
US11581572B2 (en) 2018-10-09 2023-02-14 University Of Maryland, College Park Lithium metal nitrides as lithium super-ionic conductors

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6071649A (en) * 1997-10-31 2000-06-06 Motorola, Inc. Method for making a coated electrode material for an electrochemical cell
JP2009152214A (en) * 2000-09-25 2009-07-09 Samsung Sdi Co Ltd Positive electrode active material for lithium secondary battery, and manufacturing method therefor
JP2006196433A (en) * 2004-12-13 2006-07-27 Matsushita Electric Ind Co Ltd Positive electrode activator, its manufacturing method and nonaqueous secondary battery
JP2006344523A (en) * 2005-06-09 2006-12-21 Nissan Motor Co Ltd Positive electrode material for nonaqueous electrolyte lithium ion battery, battery using the same, and method of manufacturing positive electrode material for nonaqueous electrolyte lithium ion battery
US20180111108A1 (en) * 2011-12-22 2018-04-26 Belenos Clean Power Holding Ag Coating and lithiation of inorganic oxidants by reaction with lithiated reductants
US11031583B2 (en) * 2011-12-22 2021-06-08 Belenos Clean Power Holding Ag Coating and lithiation of inorganic oxidants by reaction with lithiated reductants
US9269958B2 (en) 2012-12-07 2016-02-23 Samsung Electronics Co., Ltd. Cathode and all-solid battery including the same
KR20150050152A (en) * 2013-10-31 2015-05-08 주식회사 엘지화학 Manufacturing method of cathode active material, and cathode active material for lithium secondary battery manufactured thereby
JP2017531901A (en) * 2014-10-02 2017-10-26 エルジー・ケム・リミテッド Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery including the same
US10826057B2 (en) 2014-12-19 2020-11-03 Lg Chem, Ltd. Mixed positive electrode active material, positive electrode comprising same, and secondary battery
CN107078281A (en) * 2014-12-19 2017-08-18 株式会社Lg 化学 Blended anode active material, positive pole and secondary cell comprising it
JP2019175872A (en) * 2014-12-19 2019-10-10 エルジー・ケム・リミテッド Mixed positive electrode active material, and positive electrode and secondary battery that comprise the same
JP2018505508A (en) * 2014-12-19 2018-02-22 エルジー・ケム・リミテッド Mixed positive electrode active material, positive electrode and secondary battery including the same
WO2016099229A1 (en) * 2014-12-19 2016-06-23 주식회사 엘지화학 Mixed positive electrode active material, positive electrode comprising same, and secondary battery
CN107078281B (en) * 2014-12-19 2020-08-04 株式会社Lg 化学 Mixed positive electrode active material, positive electrode comprising same, and secondary battery
US10199641B2 (en) 2014-12-19 2019-02-05 Lg Chem, Ltd. Mixed positive electrode active material, positive electrode comprising same, and secondary battery
US10818910B2 (en) 2015-07-23 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US11637277B2 (en) 2015-07-23 2023-04-25 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10833315B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
US10811673B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US10833317B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10833316B2 (en) 2015-09-16 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Battery
CN107408688A (en) * 2015-09-16 2017-11-28 松下知识产权经营株式会社 Positive active material and battery
US10818912B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Battery
WO2017047021A1 (en) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
US11721800B2 (en) 2015-09-16 2023-08-08 Panasonic Intellectual Property Management Co., Ltd. Battery
US11569492B2 (en) 2015-09-16 2023-01-31 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10811671B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US10818911B2 (en) 2015-09-16 2020-10-27 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery
US11710816B2 (en) 2015-09-16 2023-07-25 Panasonic Intellectual Property Management Co., Ltd. Battery
US11588143B2 (en) 2015-09-16 2023-02-21 Panasonic Intellectual Property Management Co., Ltd. Battery
US11799067B2 (en) 2015-09-16 2023-10-24 Panasonic Intellectual Property Management Co., Ltd. Battery
JP2021073666A (en) * 2015-09-16 2021-05-13 パナソニックIpマネジメント株式会社 Cathode active material and cell
WO2017047022A1 (en) * 2015-09-16 2017-03-23 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
JPWO2017047022A1 (en) * 2015-09-16 2018-07-05 パナソニックIpマネジメント株式会社 Positive electrode active material and battery
US10811672B2 (en) 2015-09-16 2020-10-20 Panasonic Intellectual Property Management Co., Ltd. Battery
US10840499B2 (en) 2016-11-15 2020-11-17 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US10854876B2 (en) 2016-11-15 2020-12-01 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material and battery using positive electrode active material
US11081687B2 (en) 2016-12-02 2021-08-03 Panasonic Intellectual Property Management Co., Ltd. Positive-electrode active material and battery including positive-electrode active material
US11043661B2 (en) 2017-01-19 2021-06-22 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxyfluoride and organosilicon compound, and battery including positive electrode containing the positive electrode active material
US10833322B2 (en) 2017-01-19 2020-11-10 Panasonic Intellectual Property Management Co., Ltd. Positive electrode active material containing lithium composite oxide and lithium composite oxyfluoride, and battery including positive electrode containing positive electrode active material
US11581572B2 (en) 2018-10-09 2023-02-14 University Of Maryland, College Park Lithium metal nitrides as lithium super-ionic conductors
US11575116B2 (en) 2019-03-22 2023-02-07 Lg Energy Solution, Ltd. Positive electrode active material particle for sulfide-based all-solid-state batteries
JP2022518416A (en) * 2019-03-22 2022-03-15 エルジー エナジー ソリューション リミテッド Positive electrode active material particles for sulfide-based all-solid-state batteries
WO2021039750A1 (en) * 2019-08-30 2021-03-04 パナソニック株式会社 Positive electrode active material for nonaqueous electrolyte secondary batteries, and nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JPH09330720A (en) Lithium battery
JP3625680B2 (en) Lithium secondary battery
EP1738425B1 (en) Method for manufacturing an anode active material with improved electrochemical properties
JP3172388B2 (en) Lithium secondary battery
KR100807970B1 (en) The surface-coated cathode material for lithium secondary battery
JP5232631B2 (en) Non-aqueous electrolyte battery
JP4954481B2 (en) Lithium secondary battery
JP2004139743A (en) Nonaqueous electrolyte secondary battery
KR20070117827A (en) Positive active material for a lithium secondary battery, method of preparing thereof, and lithium secondary battery comprising the same
JP2006236830A (en) Lithium secondary battery
KR20180046689A (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
JP3197779B2 (en) Lithium battery
JP3649996B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP2000200607A (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP3625679B2 (en) Lithium secondary battery
JP2000100469A (en) Nonaqueous electrolyte battery
KR101298719B1 (en) Positive active material for rechargeable lithium battery, method of preparing the same, and rechargeable lithium battery including the same
KR100555972B1 (en) Cathode active material and lithium secondary battery employing the same
JPH0521067A (en) Nonaqueous electrolytic battery
JP3625630B2 (en) Method for producing cobalt oxide positive electrode material, and battery using cobalt oxide positive electrode material produced by the method
JPH08287914A (en) Lithium battery
JPH10144291A (en) Non-aqueous electrolyte battery and manufacture of its positive electrode
JPH06111822A (en) Lithium battery
JPH04328258A (en) Nonaqueous electrolyte secondary battery