JPH08287914A - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JPH08287914A
JPH08287914A JP11531595A JP11531595A JPH08287914A JP H08287914 A JPH08287914 A JP H08287914A JP 11531595 A JP11531595 A JP 11531595A JP 11531595 A JP11531595 A JP 11531595A JP H08287914 A JPH08287914 A JP H08287914A
Authority
JP
Grant status
Application
Patent type
Prior art keywords
active material
electrode active
lithium
positive electrode
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP11531595A
Other languages
Japanese (ja)
Inventor
So Arai
Shigeto Okada
Hideaki Otsuka
Yoji Sakurai
Junichi Yamaki
秀昭 大塚
準一 山木
重人 岡田
庸司 櫻井
創 荒井
Original Assignee
Nippon Telegr & Teleph Corp <Ntt>
日本電信電話株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Abstract

PURPOSE: To provide an inexpensive lithium battery having large discharging energy. CONSTITUTION: A compound given by a composition formula LiFe1-x MxO2 (M represents one or more kinds of elements selected from a first transition system element, a second transition system element, a III group element, an IVB group element and a VB group element, and 0<x<0.5 is realized) having the peak of spacing 4.8±0.3Åin X-ray diffraction, is contained as a positive electrode active material. Lithium or its compound is used as a negative electrode active material, and a substance which can move a lithium ion to perform electrochemical reaction with the positive electrode active material or the negative electrode active material, is used as an electrolytic substance. Therefore, a lithium battery can be utilized in various fields including a power source of various portable electronic equipments.

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明はリチウム電池、更に詳細には充放電可能なリチウム二次電池に関し、特に安価で放電エネルギーの大きい電池を提供する正極活物質に関する。 The present invention is a lithium battery BACKGROUND OF THE further relates rechargeable lithium secondary battery in particular, regarding the positive electrode active material to provide a particularly large cell inexpensive discharge energy.

【0002】 [0002]

【従来の技術】リチウムなどのアルカリ金属及びその化合物を負極活物質とする非水電解液電池は、負極金属イオンの正極活物質へのインサーション若しくはインターカレーション反応によって、その大放電容量と充放電可逆性を両立させている。 Alkali metal and a nonaqueous electrolyte battery using the compound as a negative electrode active material such as the Related Art Lithium by insertion or intercalation reaction to the positive electrode active material of the negative electrode metal ions, the large discharge capacity and charge and and is both a discharge reversibility. 従来からこれらの正極活物質には、単位重量当りの容量が大きく、また高電圧を有する正極材料LiCoO 2が開発されてきたが、LiCoO Conventional from these positive electrode active material, the capacity per unit weight is large, Although the positive electrode material LiCoO 2 having a high voltage have been developed, LiCoO
2は高価なコバルトを用いているため、実用的に不利である欠点を有していた。 Because 2 is used an expensive cobalt, it had practically disadvantageous drawbacks. そこで、安価で放電エネルギーの大きい材料が探索され、LiMO 2化合物群の中で最も安価なLiFeO 2で、X線回折において面間隔4. Therefore, a material having a large inexpensive discharge energy is searched, cheapest LiFeO 2 in LiMO 2 compounds, lattice spacing in the X-ray diffraction 4.
8±0.3Åのピークを有する相が可逆的な充放電が可能なことが分かっている。 Phase having a peak of 8 ± 0.3 Å has been found that capable of reversible charge and discharge. しかしこの化合物はイオン拡散が十分速くないため、容量特性が不十分であるという欠点を有していた。 However, this compound for ion diffusion is not fast enough, it had the disadvantage that the capacity characteristic is insufficient.

【0003】 [0003]

【発明が解決しようとする課題】本発明の目的は、現状の課題である上記のような不十分な容量特性を解決し、 The purpose of the 0008] The present invention is to solve the insufficient capacity properties as described above is an object of the present situation,
安価で放電エネルギーが大きいリチウム電池を提供することにある。 To provide a lithium battery discharge energy is large at low cost.

【0004】 [0004]

【課題を解決するための手段】本発明を概説すれば、本発明はリチウム電池に関する発明であって、X線回折において面間隔4.8±0.3Åのピークを有する組成式LiFe 1-xX2 (Mは第一遷移系列元素、第二遷移系列元素、III B族元素、IVB族元素、VB族元素から選ばれる一種類以上の元素、0<x≦0.5)で与えられる化合物を正極活物質として含み、リチウム又はその化合物を負極活物質とし、リチウムイオンが前記正極活物質あるいは前記負極活物質と電気化学反応をするための移動を行い得る物質を電解質物質としたことを特徴とする。 If outlined present invention According to an aspect of the present invention is an invention relating to a lithium battery, the composition formula LiFe 1-x with a peak of interplanar spacing 4.8 ± 0.3 Å in the X-ray diffraction M X O 2 (M is first transition series elements, the second transition series element, III B group element, at least one element selected IVB group elements, from VB group elements, 0 <x ≦ 0.5) given by include compounds is as a cathode active material, a lithium or an anode active material and the compound, the lithium ions are to the positive electrode active material or the negative electrode active material and the electrochemical reaction electrolyte material movement may perform a substance for the the features.

【0005】本発明者らは安価で放電エネルギーが大きいリチウム電池用材料を鋭意探索した結果、上述のようにX線回折において面間隔4.8±0.3Åのピークを有する組成式LiFe 1-xX2 (Mは第一遷移系列元素、第二遷移系列元素、III B族元素、IVB族元素、 [0005] The present inventors have result of intensive search for the lithium battery material discharge energy is large at a low cost, the composition formula has a peak of interplanar spacing 4.8 ± 0.3 Å in the X-ray diffraction as described above LiFe 1- x M X O 2 (M is first transition series elements, the second transition series element, III B group element, IVB group elements,
VB族元素から選ばれる一種類以上の元素、0<x≦ At least one element selected from VB group elements, 0 <x ≦
0.5)で与えられる化合物を正極活物質として含むことにより、従来のリチウム電池より、安価で放電エネルギーが大きいリチウム電池を構成できることを確かめ、 By containing the compound given by 0.5) as the positive electrode active material, than the conventional lithium batteries, sure you can configure the lithium battery discharge energy is large at low cost,
その認識の下に本発明を完成した。 The present invention has been completed under its recognition.

【0006】以下、本発明を更に詳しく説明する。 [0006] In the following, the present invention will be described in more detail. 本発明のリチウム電池が、X線回折において面間隔4.8± Lithium battery of the present invention, the surface interval 4.8 ± in X-ray diffraction
0.3Åのピークを有する組成式LiFeO 2を正極活物質に用いた電池に比べて放電エネルギーが大きい理由は必ずしも明らかではないが、M(Mは第一遷移系列元素、第二遷移系列元素、III B族元素、IVB族元素、V Is not necessarily clear why the discharge energy is larger than the composition formula LiFeO 2 with a peak of 0.3Å to battery using the positive electrode active material, M (M is first transition series elements, the second transition series element, III B group elements, IVB group elements, V
B族元素から選ばれる一種類以上の元素、0<x≦0. At least one element selected from B group element, 0 <x ≦ 0.
5)による部分的な置換により、リチウムイオンの拡散が速くなるためと考えられる。 The partial substitution of 5), presumably because the diffusion of lithium ions becomes faster. また、X線回折において面間隔4.8±0.3Åのピークを有しない場合は、層構造を取りにくいと考えられ、放電エネルギーは小さくなる。 Further, when no peak of interplanar spacing 4.8 ± 0.3 Å in the X-ray diffraction is considered to be difficult to take a layered structure, the discharge energy is small.

【0007】Mは第一遷移系列元素、第二遷移系列元素、III B族元素、IVB族元素、VB族元素から選ばれる一種類以上の元素で、具体的にはスカンジウム、チタン、バナジウム、クロム、マンガン、コバルト、ニッケル、銅、亜鉛、イットリウム、ジルコニウム、ニオブ、 [0007] M is first transition series elements, the second transition series element, III B group element, IVB group elements, at least one element selected from VB group elements, in particular scandium, titanium, vanadium, chromium , manganese, cobalt, nickel, copper, zinc, yttrium, zirconium, niobium,
モリブデン、銀、カドミウム、ホウ素、アルミニウム、 Molybdenum, silver, cadmium, boron, aluminum,
ガリウム、インジウム、タリウム、炭素、ケイ素、ゲルマニウム、スズ、鉛、窒素、リン、ヒ素、アンチモン、 Gallium, indium, thallium, carbon, silicon, germanium, tin, lead, nitrogen, phosphorus, arsenic, antimony,
ビスマス等を挙げることができる。 Mention may be made of bismuth or the like. より好ましくは三価の価数が安定な元素であり、スカンジウム、チタン、バナジウム、クロム、マンガン、コバルト、ニッケル、イットリウム、ニオブ、モリブデン、ホウ素、アルミニウム、ガリウム、インジウム、タリウム、アンチモン、ビスマス等を挙げることができる。 More preferably a stable element is the valence of trivalent, scandium, titanium, vanadium, chromium, manganese, cobalt, nickel, yttrium, niobium, molybdenum, boron, aluminum, gallium, indium, thallium, antimony, bismuth, etc. it can be mentioned. xは、置換効果が表れるために0<xが必要であり、また安価な鉄の酸化還元対を多く使う観点からx≦0.5の範囲で限定されるものであり、好ましくは0.05≦x≦0.3である。 x is required 0 <x for replacement effect it appears, also is intended to be limited by the scope of the x ≦ 0.5 from the viewpoint of using a lot of oxidation-reduction pair of inexpensive iron, preferably 0.05 a ≦ x ≦ 0.3.

【0008】本発明の正極活物質は、層状構造を有するM′Fe 1-xx2型の化合物(M′はリチウム以外の1価ないし2価の陽イオンとなりうる金属元素)のM′を、イオン交換等の手法によりリチウムに置換する、等の手法により合成することができる。 [0008] Positive electrode active material of the present invention, M of M'Fe 1-x M x O 2 type compounds having a layered structure (M 'metal element that can be a divalent cation to a monovalent no other than lithium) the 'is replaced with lithium by a technique such as ion exchange, it can be synthesized by a method like. M′の具体例としては、Na、K、H、Cu、Ag等を挙げることができる。 Specific examples of M ', can be mentioned Na, K, H, Cu, and Ag or the like. また、リチウムの挿入・脱離を繰り返し行うことができ、二次電池として用いることもできる。 Further, it is possible to repeat the insertion and desorption of lithium can be used as a secondary battery. 特にLiFe 1-xX2の状態からリチウム脱離を行うことにより、高い電圧を実現できる。 Particularly, by performing the lithium eliminated from the state of LiFe 1-x M X O 2 , it can achieve high voltages. この方法としては強力な酸化剤を用いてリチウムを脱離する方法、酸処理による不均化で脱離させる方法、あるいはLiFe 1-x How to desorb lithium with a strong oxidizing agent as this method, a method desorbed by disproportionation by acid treatment or LiFe 1-x M,
X2を正極材料として電池を構成し、その後充電を行い、正極材料を酸化して同時にリチウムを脱離する電気化学的手法、等を用いることができる。 The X O 2 to a battery as a cathode material, then subjected to charging, electrochemical method for desorbing lithium simultaneously by oxidizing positive electrode materials, or the like can be used. また本発明のリチウム電池で用いている正極活物質は、鉄を主体とする酸化物に属するため、前述の通り安価であり、しかも資源的に豊富な材料であるため、産業上の価値が非常に高い。 The positive electrode active material is used in a lithium battery of the present invention, since belonging to oxides mainly of iron, as described above it is inexpensive, and since it is resource enriched material, industrial value is very high.

【0009】この正極活物質を用いて正極を形成するには、前記化合物粉末とポリテトラフルオロエチレンのごとき結着剤粉末との混合物をステンレス等の支持体上に圧着成形する、あるいは、かかる混合物粉末に導電性を付与するためアセチレンブラックのような導電性粉末を混合し、これに更にポリテトラフルオロエチレンのような結着剤粉末を所要に応じて加え、この混合物を金属容器に入れる、あるいは前述の混合物をステンレスなどの支持体に圧着成形する、あるいは前述の混合物を有機溶剤等の溶媒中に分散してスラリー状にして金属板上に塗布する、等の手段によって形成される。 [0009] This forms a positive electrode using the positive electrode active material, crimping molding a mixture of such binder powders of the compound powder and polytetrafluoroethylene on a support such as stainless steel, or such a mixture powder was mixed with conductive powder such as acetylene black for imparting conductivity, which further addition if desired a binder powder such as polytetrafluoroethylene, add this mixture to the metal container, or the mixture of the foregoing crimping molded to a support, such as stainless steel, or slurried to be applied on a metal plate and dispersed in a solvent of an organic solvent such as a mixture of the foregoing, it is formed by means of an equal.

【0010】負極活物質であるリチウムは一般のリチウム電池のそれと同様にシート状にして、またそのシートをニッケル、ステンレス等の導電体網に圧着して負極として形成される。 [0010] an anode active material is a lithium similar to in the sheet-shaped general lithium batteries, also formed the sheet nickel, as by crimping the conductor network such as stainless steel anode. また負極活物質としては、リチウム以外にリチウム−アルミニウム合金等のリチウム合金を用いることができる。 As the negative electrode active material, lithium other than lithium - may be a lithium alloy aluminum alloy. 更に炭素など、いわゆるロッキングチェア電池(リチウムイオン電池)用の負極を用いることもでき、本発明の場合、充電反応により正極から供給されるリチウムイオンを電気化学的に挿入し、炭素−リチウム負極などとすることもできる。 Furthermore, carbon, can also be used a negative electrode for a so-called rocking chair battery (lithium ion battery) in the case of the present invention, the charging reaction electrochemically inserting lithium ions supplied from the cathode, the carbon - lithium anode such It can also be a.

【0011】電解液としては、例えばジメトキシエタン、2−メチルテトラヒドロフラン、エチレンカーボネート、メチルホルメート、ジメチルスルホキシド、プロピレンカーボネート、アセトニトリル、ブチロラクトン、ジメチルホルムアミド、ジメチルカーボネート、ジエチルカーボネート、スルホラン、エチルメチルカーボネート等の有機溶媒に、LiAsF 6 、LiBF 4 、L [0011] As the electrolyte solution, such as dimethoxyethane, 2-methyltetrahydrofuran, ethylene carbonate, methyl formate, dimethyl sulfoxide, propylene carbonate, acetonitrile, butyrolactone, dimethyl formamide, dimethyl carbonate, diethyl carbonate, sulfolane, or ethyl methyl carbonate in an organic solvent, LiAsF 6, LiBF 4, L
iPF 6 、LiAlCl 4 、LiClO 4等のルイス酸を溶解した非水電解質溶媒、あるいは固体電解質等が使用できる。 iPF 6, LiAlCl 4, LiClO 4, etc. non-aqueous electrolyte solvent to dissolve the Lewis acid, or a solid electrolyte and the like can be used. 更に、セパレータ、電池ケース等の構造材料等の他の要素についても従来公知の各種材料が使用でき、特に制限はない。 Furthermore, the separator, can also be used conventionally known various materials for other components, such as structural materials such as the battery case is not particularly limited.

【0012】下記の実施例では、M=Ni、Co、A [0012] In the following examples, M = Ni, Co, A
l、Vでx=0.1の場合について示したが、Mが第一遷移系列元素、第二遷移系列元素、III B族元素、IVB l, is shown for the case of x = 0.1 in V, M is the first transition series elements, the second transition series element, III B group element, IVB
族元素、VB族元素から選ばれる一種類以上の元素であり、0<x≦0.5である場合は同様な効果が生じることを確かめている。 Group element is at least one element selected from VB group elements, if it is 0 <x ≦ 0.5 is sure that the same effect occurs. また実施例では特定の方法により得られたLiFe 0.90.12 (Mは第一遷移系列元素、第二遷移系列元素、III B族元素、IVB族元素、V Also LiFe 0.9 M 0.1 O 2 (M obtained by the particular method in the embodiment the first transition series elements, the second transition series element, III B group element, IVB group elements, V
B族元素から選ばれる一種類以上の元素、0<x≦0. At least one element selected from B group element, 0 <x ≦ 0.
5)を正極活物質とする場合について示したが、この手法に限定されるものではなく、X線回折において面間隔4.8±0.3Åのピークを有する組成式LiFe 1-x Although 5) shows the case where the cathode active material, is not limited to this method, the composition formula LiFe 1-x with a peak of interplanar spacing 4.8 ± 0.3 Å in the X-ray diffraction
x2 (Mは第一遷移系列元素、第二遷移系列元素、 M x O 2 (M is first transition series elements, the second transition series element,
III B族元素、IVB族元素、VB族元素から選ばれる一種類以上の元素、0<x≦0.5)で与えられる化合物を正極活物質として含んでいる場合は同様な効果が生じることはいうまでもない。 III B group element, IVB group elements, at least one element selected from VB group elements, 0 <x ≦ 0.5) by the same effect if the compound contains as the positive electrode active material provided occurs needless to say.

【0013】 [0013]

【実施例】以下、実施例によって本発明の方法を更に具体的に説明するが、本発明はこれらによりなんら限定されるものではない。 EXAMPLES Hereinafter, a more detailed explanation of the method of the examples the present invention, the present invention is not intended to be limited thereto. なお、各例において電池の作成及び測定はアルゴン雰囲気下のドライボックス内で行った。 Incidentally, creation and measurement of the battery in each example were carried out in a dry box under an argon atmosphere.

【0014】実施例1 図1は本発明による電池の一具体例であるコイン型電池の断面図であり、図中1は封口板、2はガスケット、3 [0014] Example 1 FIG. 1 is a sectional view of a coin-type battery which is one embodiment of a battery according to the present invention, reference numeral 1 is sealing plate, 2 gaskets, 3
は正極ケース、4は負極、5はセパレータ、6は正極合剤ペレットを示す。 The positive electrode case, four anode, 5 a separator, 6 denotes a positive electrode material mixture pellet. 正極活物質には、Na 22とFe The positive electrode active material, Na 2 O 2 and Fe
34とNi(OH) 2を5:3:1のモル比で混合し酸素雰囲気下700℃で12時間焼成して得たNaFe 3 O 4 and Ni (OH) 2 to 5: 3: NaFe obtained by firing 12 hours mixing under 700 ° C. oxygen atmosphere at a molar ratio of
0.9 Ni 0.12をLiNO 3とLiClの混合溶融塩中空気中260℃で12時間イオン交換させた後水洗してLiNO 3 、及びLiCl等の水溶成分をろ過により除去した後100℃で真空乾燥することにより得たLi 0.9 Ni 0.1 O 2 vacuum-dried at LiNO 3, LiCl washed with water LiNO 3 After mixing molten salt in is 12 hours ion exchanged with 260 ° C. in air, and 100 ° C. After removal by filtration water component of LiCl such Li obtained by
Fe 0.9 Ni 0.12を用いた。 Using Fe 0.9 Ni 0.1 O 2. この試料をa1とする。 This sample and a1. 銅Kα線で試料a1のX線回折解析を行ったところ、4.8±0.3Åの面間隔に相当するピークが観察された。 It was subjected to X-ray diffraction analysis of samples a1 copper Kα ray, the peak corresponding to interplanar spacing of 4.8 ± 0.3 Å were observed. この試料a1を粉砕して粉末とし、導電剤(アセチレンブラック)、結着剤(ポリテトラフルオロエチレン)と共に混合の上、ロール成形し、正極合剤ペレット6(厚さ0.5mm、直径15mm)とした。 The samples a1 was ground to a powder, a conductive agent (acetylene black), on the mixing with the binder (polytetrafluoroethylene), and roll forming, positive electrode mixture pellets 6 (thickness 0.5 mm, diameter 15 mm) and the. 次にステンレス製の封口板1上に金属リチウムの負極4を加圧配置したものをポリプロピレン製ガスケット2の凹部に挿入し、負極4の上にポリプロピレン製で微孔性のセパレータ5、正極合剤ペレット6をこの順序に配置し、電解液としてエチレンカーボネートとジエチルカーボネートの等容積混合溶媒にLiPF 6を溶解させた1規定溶液を適量注入して含浸させた後に、ステンレス製の正極ケース3を被せてかしめることにより、厚さ2mm、直径23mmのコイン型電池を作製した。 Next, those pressure arranged anode 4 of lithium metal onto a stainless steel sealing plate 1 is inserted into the recess of a polypropylene gasket 2, the separator 5 of microporous made of polypropylene on the negative electrode 4, the cathode mixture place the pellet 6 to this sequence, after the 1 N solution obtained by dissolving LiPF 6 in equal volume mixed solvent of ethylene carbonate and diethyl carbonate impregnated with an appropriate amount injected as an electrolytic solution, covered with a stainless steel positive electrode case 3 Heck by caulking, thickness 2 mm, to prepare a coin battery having a diameter of 23 mm. このようにして作製した試料a1を正極活物質とする電池を、0.5m The batteries of the samples a1 fabricated in this manner with the positive electrode active material, 0.5 m
A/cm 2の電流密度で、4.5Vまで充電しその後2.5Vまで放電させた際の放電エネルギーを、後記表1に他の例と共に示す。 At a current density of A / cm 2, the discharge energy at the time of discharged thereafter until 2.5V was charged to 4.5V, together with other examples in the following Table 1. 放電エネルギーが大きく、高エネルギー密度電池として利用できる利点を有している。 Discharge energy is large, has the advantage that can be used as high energy density batteries.
またこの電池を、0.5mA/cm 2の充放電電流密度で2.5V〜4.5Vの電圧範囲規制で充放電させた際の1回目の放電容量、及び10回目の放電容量を表1に示す。 Also this battery, 0.5 mA / cm 1 st discharge capacity when allowed to discharge in a voltage range regulation 2.5V~4.5V in charge and discharge current density of 2, and Table 1 the 10th discharge capacity to show. これから明らかなようにサイクルによる容量低下が少ないことが分かる。 It can be seen that less capacity reduction due to the future can be seen in the cycle.

【0015】実施例2 実施例2では、以下のようにして合成したLiFe 0.9 [0015] Example 2 Example 2, LiFe 0.9 was synthesized in the following manner
Co 0.12で与えられる化合物を用いるほかは実施例1と同様にしてリチウム電池を作製した。 In addition to using Co 0.1 O 2 compound given by the lithium cell was produced in the same manner as in Example 1. 正極活物質には、Na 22とFe 34とCo 23を10:6: The positive electrode active material, Na 2 O 2 and Fe 3 O 4 and Co 2 O 3 and 10: 6:
1のモル比で混合し酸素雰囲気下700℃で12時間焼成して得たNaFe 0.9 Co 0.12をLiNO 3とL NaFe obtained by firing 12 hours mixing under 700 ° C. oxygen atmosphere in a molar ratio of 0.9 Co 0.1 O 2 and LiNO 3 and L
iClの混合溶融塩中空気中260℃で12時間イオン交換させた後水洗してLiNO 3及びLiCl等の水溶成分をろ過により除去した後100℃で真空乾燥することにより得たLiFe 0.9 Co 0.12を用いた。 LiFe 0.9 Co 0.1 O obtained by vacuum drying at 100 ° C. After removal by washing with water and filtered water components such as LiNO 3 and LiCl in after 12 hours to ion exchange in a mixed 260 ° C. in air molten salt iCl 2 was used. この試料をa2とする。 This sample and a2. 銅Kα線で試料a2のX線回折解析を行ったところ、4.8±0.3Åの面間隔に相当するピークが観察された。 It was subjected to X-ray diffraction analysis of the sample a2 copper Kα ray, the peak corresponding to interplanar spacing of 4.8 ± 0.3 Å were observed. このようにして作製した試料a2 Sample a2 which was fabricated in this manner
を正極活物質とする電池を、0.5mA/cm 2の電流密度で、4.5Vまで充電しその後2.5Vまで放電させた際の放電エネルギーを表1に示す。 The batteries for the cathode active material, a current density of 0.5 mA / cm 2, shows the discharge energy when discharged thereafter until 2.5V was charged to 4.5V in Table 1. 放電エネルギーが大きく、高エネルギー密度電池として利用できる利点を有している。 Discharge energy is large, has the advantage that can be used as high energy density batteries. またこの電池を、0.5mA/cm 2の充放電電流密度で2.5V〜4.5Vの電圧範囲規制で充放電させた際の1回目の放電容量、及び10回目の放電容量を表1に示す。 Also this battery, 0.5 mA / cm 1 st discharge capacity when allowed to discharge in a voltage range regulation 2.5V~4.5V in charge and discharge current density of 2, and Table 1 the 10th discharge capacity to show. これから明らかなようにサイクルによる容量低下が少ないことが分かる。 It can be seen that less capacity reduction due to the future can be seen in the cycle.

【0016】実施例3 実施例3では、以下のようにして合成したLiFe 0.9 [0016] Example 3 Example 3, LiFe 0.9 was synthesized in the following manner
Al 0.12で与えられる化合物を用いるほかは実施例1と同様にしてリチウム電池を作製した。 To prepare a lithium battery in addition to use al 0.1 O 2 compounds provided in the same manner as in Example 1. 正極活物質には、Na 22とFe 34とAl 23を10:6: The positive electrode active material, Na 2 O 2 and Fe 3 O 4 and Al 2 O 3 of 10: 6:
1のモル比で混合し酸素雰囲気下700℃で12時間焼成して得たNaFe 0.9 Al 0.12をLiNO 3とL NaFe obtained by firing 12 hours mixing under oxygen atmosphere 700 ° C. in a molar ratio of 0.9 Al 0.1 O 2 and LiNO 3 and L
iClの混合溶融塩中空気中260℃で12時間イオン交換させた後水洗してLiNO 3及びLiCl等の水溶成分をろ過により除去した後100℃で真空乾燥することにより得たLiFe 0.9 Al 0.12を用いた。 LiFe 0.9 Al 0.1 O obtained by vacuum drying at 100 ° C. After removal by washing with water and filtered water components such as LiNO 3 and LiCl in after 12 hours to ion exchange in a mixed 260 ° C. in air molten salt iCl 2 was used. この試料をa3とする。 This sample and a3. 銅Kα線で試料a3のX線回折解析を行ったところ、4.8±0.3Åの面間隔に相当するピークが観察された。 It was subjected to X-ray diffraction analysis of the sample a3 copper Kα ray, the peak corresponding to interplanar spacing of 4.8 ± 0.3 Å were observed. このようにして作製した試料a3 Sample a3 which was fabricated in this manner
を正極活物質とする電池を、0.5mA/cm 2の電流密度で、4.5Vまで充電しその後2.5Vまで放電させた際の放電エネルギーを表1に示す。 The batteries for the cathode active material, a current density of 0.5 mA / cm 2, shows the discharge energy when discharged thereafter until 2.5V was charged to 4.5V in Table 1. 放電エネルギーが大きく、高エネルギー密度電池として利用できる利点を有している。 Discharge energy is large, has the advantage that can be used as high energy density batteries. またこの電池を、0.5mA/cm 2の充放電電流密度で2.5V〜4.5Vの電圧範囲規制で充放電させた際の1回目の放電容量、及び10回目の放電容量を表1に示す。 Also this battery, 0.5 mA / cm 1 st discharge capacity when allowed to discharge in a voltage range regulation 2.5V~4.5V in charge and discharge current density of 2, and Table 1 the 10th discharge capacity to show. これから明らかなようにサイクルによる容量低下が少ないことが分かる。 It can be seen that less capacity reduction due to the future can be seen in the cycle.

【0017】実施例4 実施例4では、以下のようにして合成したLiFe 0.9 [0017] Example 4 Example 4, LiFe 0.9 was synthesized in the following manner
0.12で与えられる化合物を用いるほかは実施例1 Other embodiments using a compound given by V 0.1 O 2 1
と同様にしてリチウム電池を作製した。 To produce a lithium battery in the same manner as. 正極活物質には、Na 22とFe 34とV 23を10:6:1 The positive electrode active material, Na 2 O 2 and Fe 3 O 4 and V 2 O 3 and 10: 6: 1
のモル比で混合し酸素雰囲気下700℃で12時間焼成して得たNaFe 0.90.12をLiNO 3とLiC LiNO 3 and NaFe 0.9 V 0.1 O 2 obtained by firing 12 hours mixing under 700 ° C. oxygen atmosphere at a molar ratio of the LiC
lの混合溶融塩中空気中260℃で12時間イオン交換させた後水洗してLiNO 3及びLiCl等の水溶成分をろ過により除去した後100℃で真空乾燥することにより得たLiFe 0.90.12を用いた。 LiFe 0.9 V 0.1 O obtained by vacuum drying the water component of LiNO 3 and LiCl or the like, followed by washing with water mixed molten salt in is 12 hours ion exchanged with 260 ° C. in air at 100 ° C. After removal by filtration of the l 2 was used. この試料をa4とする。 This sample and a4. 銅Kα線で試料a4のX線回折解析を行ったところ、4.8±0.3Åの面間隔に相当するピークが観察された。 It was subjected to X-ray diffraction analysis of a sample a4 copper Kα ray, the peak corresponding to interplanar spacing of 4.8 ± 0.3 Å were observed. このようにして作製した試料a4を正極活物質とする電池を、0.5mA/cm 2の電流密度で、4.5Vまで充電しその後2.5Vまで放電させた際の放電エネルギーを表1に示す。 The batteries of the sample a4 were fabricated in this manner with the positive electrode active material, at a current density of 0.5 mA / cm 2, the discharge energy at the time of discharged thereafter until 2.5V was charged to 4.5V in Table 1 show. 放電エネルギーが大きく、高エネルギー密度電池として利用できる利点を有している。 Discharge energy is large, has the advantage that can be used as high energy density batteries. またこの電池を、0.5mA/cm 2の充放電電流密度で2.5V〜4.5Vの電圧範囲規制で充放電させた際の1回目の放電容量、及び10回目の放電容量を表1に示す。 Also this battery, 0.5 mA / cm 1 st discharge capacity when allowed to discharge in a voltage range regulation 2.5V~4.5V in charge and discharge current density of 2, and Table 1 the 10th discharge capacity to show. これから明らかなようにサイクルによる容量低下が少ないことが分かる。 It can be seen that less capacity reduction due to the future can be seen in the cycle.

【0018】比較例1 比較例1では、以下のようにして合成したLiFeO 2 [0018] In Comparative Example 1 Comparative Example 1, LiFeO was synthesized as follows 2
で与えられる化合物を用いるほかは実施例1と同様にしてリチウム電池を作製した。 To prepare a lithium battery except that a compound given by the same manner as in Example 1. すなわちNa 22とFe That Na 2 O 2 and Fe
34を3:2のモル比で混合し酸素雰囲気下700℃ 3 O 4 to 3: mixing an oxygen atmosphere at 700 ° C. 2 molar ratio
で12時間焼成して得たNaFeO 2をLiNO 3とL In a NaFeO 2 obtained by firing 12 hours LiNO 3 and L
iClの混合溶融塩中空気中260℃で12時間イオン交換させた後水洗してLiNO 3及びLiCl等の水溶成分をろ過により除去した後100℃で真空乾燥することにより得たLiFeO 2を用いた。 Using LiFeO 2 obtained by vacuum drying at 100 ° C. After removal by washing with water and filtered water components such as LiNO 3 and LiCl in after 12 hours to ion exchange in a mixed 260 ° C. in air molten salt iCl . この試料をbとする。 This sample and b. 銅Kα線で試料bのX線回折解析を行ったところ、 Was subjected to X-ray diffraction analysis of the sample b in the copper Kα line,
4.8±0.3Åの面間隔に相当するピークが観察された。 Peak corresponding to interplanar spacing of 4.8 ± 0.3 Å were observed. このようにして作製した試料bを正極活物質とする電池を、0.5mA/cm 2の電流密度で、4.5Vまで充電しその後2.5Vまで放電させた際の放電エネルギーを表1に示す。 The batteries of the sample b was prepared in this manner with the positive electrode active material, at a current density of 0.5 mA / cm 2, the discharge energy when allowed to discharge until the charge was then 2.5V to 4.5V in Table 1 show. この電池と比較すると、本発明の実施例で作製した電池は、放電エネルギーが大きいことが分かる。 Compared to the battery, the battery fabricated in Example of the present invention, it can be seen discharge energy is large.

【0019】 [0019]

【表1】 [Table 1]

【0020】 [0020]

【発明の効果】以上説明したように、本発明によれば、 As described in the foregoing, according to the present invention,
安価で放電エネルギーの大きいリチウム電池を構成することができ、携帯用の種々の電子機器の電源を始め、様々な分野に利用できるという利点を有する。 Can configure the large lithium battery discharge energy at low cost, it began power various electronic devices portable, has the advantage that available in a variety of fields.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】本発明の実施例におけるコイン型電池の構成例を示す断面図である。 It is a sectional view showing a configuration example of a coin-type battery in the embodiment of the present invention; FIG.

【符号の説明】 DESCRIPTION OF SYMBOLS

1:封口板、2:ガスケット、3:正極ケース、4:負極、5:セパレータ、6:正極合剤ペレット 1: sealing plate, 2: Gasket 3: positive electrode case, 4: anode, 5: separator, 6: positive electrode mixture pellets

───────────────────────────────────────────────────── フロントページの続き (72)発明者 岡田 重人 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 (72)発明者 山木 準一 東京都千代田区内幸町1丁目1番6号 日 本電信電話株式会社内 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Shigeto Okada, Chiyoda-ku, tokyo Uchisaiwaicho 1 chome No. 6 Date. this telegraph and telephone within Co., Ltd. (72) inventor Junichi Yamaki, Chiyoda-ku, tokyo Uchisaiwaicho 1 chome No. 6 Date. this telegraph and telephone in the Corporation

Claims (1)

    【特許請求の範囲】 [The claims]
  1. 【請求項1】 X線回折において面間隔4.8±0.3 1. A surface distance in the X-ray diffraction 4.8 ± 0.3
    Åのピークを有する組成式LiFe 1-xX2 (Mは第一遷移系列元素、第二遷移系列元素、IIIB族元素、I Formula LiFe 1-x M X O 2 (M is first transition series elements with a peak of Å, the second transition series element, IIIB group elements, I
    VB族元素、VB族元素から選ばれる一種類以上の元素、0<x≦0.5)で与えられる化合物を正極活物質として含み、リチウム又はその化合物を負極活物質とし、リチウムイオンが前記正極活物質あるいは前記負極活物質と電気化学反応をするための移動を行い得る物質を電解質物質としたことを特徴とするリチウム電池。 VB group elements, at least one element selected from VB group elements, 0 <include compounds given by x ≦ 0.5) as the positive electrode active material, lithium or a compound thereof as a negative electrode active material, lithium ions wherein the positive electrode active material or lithium battery, characterized in that the negative active material and a substance capable of performing movement for the electrochemical reaction and an electrolyte material.
JP11531595A 1995-04-18 1995-04-18 Lithium battery Pending JPH08287914A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP11531595A JPH08287914A (en) 1995-04-18 1995-04-18 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP11531595A JPH08287914A (en) 1995-04-18 1995-04-18 Lithium battery

Publications (1)

Publication Number Publication Date
JPH08287914A true true JPH08287914A (en) 1996-11-01

Family

ID=14659579

Family Applications (1)

Application Number Title Priority Date Filing Date
JP11531595A Pending JPH08287914A (en) 1995-04-18 1995-04-18 Lithium battery

Country Status (1)

Country Link
JP (1) JPH08287914A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0825661A1 (en) * 1996-08-23 1998-02-25 Matsushita Electric Industrial Co., Ltd. Lithium Battery
US6083474A (en) * 1996-08-23 2000-07-04 Toda Kogyo Corporation Lithium-iron oxide particles and process for producing the same
US6361756B1 (en) 1998-11-20 2002-03-26 Fmc Corporation Doped lithium manganese oxide compounds and methods of preparing same
US6579475B2 (en) * 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same
US6582852B1 (en) 1997-05-15 2003-06-24 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US6589499B2 (en) 1998-11-13 2003-07-08 Fmc Corporation Layered lithium cobalt oxides free of localized cubic spinel-like structural phases and method of making same
US8435678B2 (en) 2005-02-03 2013-05-07 A123 Systems, LLC Electrode material with enhanced ionic transport properties
JP2013203565A (en) * 2012-03-27 2013-10-07 Tokyo Univ Of Science Complex metal oxide, positive electrode active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP0825661A1 (en) * 1996-08-23 1998-02-25 Matsushita Electric Industrial Co., Ltd. Lithium Battery
US6083474A (en) * 1996-08-23 2000-07-04 Toda Kogyo Corporation Lithium-iron oxide particles and process for producing the same
US6270925B1 (en) 1996-08-23 2001-08-07 Toda Kogyo Corporation Lithium battery
US6794085B2 (en) 1997-05-15 2004-09-21 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US6582852B1 (en) 1997-05-15 2003-06-24 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US7074382B2 (en) 1998-11-13 2006-07-11 Fmc Corporation Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same
US6620400B2 (en) 1998-11-13 2003-09-16 Fmc Corporation Method of producing layered lithium metal oxides free of localized cubic spinel-like structural phases
US6589499B2 (en) 1998-11-13 2003-07-08 Fmc Corporation Layered lithium cobalt oxides free of localized cubic spinel-like structural phases and method of making same
US6361756B1 (en) 1998-11-20 2002-03-26 Fmc Corporation Doped lithium manganese oxide compounds and methods of preparing same
US6579475B2 (en) * 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same
US6932922B2 (en) 1999-12-10 2005-08-23 Fmc Corporation Lithium cobalt oxides and methods of making same
US8435678B2 (en) 2005-02-03 2013-05-07 A123 Systems, LLC Electrode material with enhanced ionic transport properties
JP2013203565A (en) * 2012-03-27 2013-10-07 Tokyo Univ Of Science Complex metal oxide, positive electrode active material for sodium secondary battery, positive electrode for sodium secondary battery, and sodium secondary battery

Similar Documents

Publication Publication Date Title
US6372384B1 (en) Rechargeable lithium battery comprising substituted lithium titanate electrodes
US5631104A (en) High voltage insertion compounds for lithium batteries
Tarascon et al. Li Metal‐Free Rechargeable Batteries Based on Li1+ x Mn2 O 4 Cathodes (0≤ x≤ 1) and Carbon Anodes
US5908716A (en) Lithium--containing sulfates, method of preparation and uses thereof
US5620812A (en) Non-aqueous electrolyte secondary battery
US20070218361A1 (en) Sodium ion secondary battery
US20050186474A1 (en) Positive electrodes for lithium batteries and their methods of fabrication
US5514490A (en) Secondary lithium battery using a new layered anode material
US5316875A (en) Secondary battery with nonaqueous electrolyte and method of manufacturing same
US20080070122A1 (en) Cathode active material and lithium battery employing the same
US5951919A (en) Method of preparing cathode material for lithium ion cell
US5744265A (en) Lithium cell having mixed lithium--metal--chalcogenide cathode
US20060093920A1 (en) Conductive agent - positive active material composite for lithium secondary battery, method of preparing the same, and positive electrode and lithium secondary battery comprising the same
JPH09134725A (en) Non-aqueous electrolyte secondary battery
JPH08236114A (en) Lithium secondary battery
US6667131B1 (en) Electrochemical cell
JPH08250120A (en) Lithium secondary battery
JPH1140156A (en) Nonaqueous electrolyte secondary battery
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
JP2003034534A (en) Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JP2002015735A (en) Lithium iron compound oxide for lithium secondary cell positive active material, its manufacturing method and lithium secondary cell using the same
JPH1027626A (en) Lithium secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JP2005078820A (en) Non-aqueous electrolyte secondary battery
US5834139A (en) Negative electrode material for use in lithium secondary batteries and lithium secondary batteries incorporating this material