JP3197779B2 - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JP3197779B2
JP3197779B2 JP9435195A JP9435195A JP3197779B2 JP 3197779 B2 JP3197779 B2 JP 3197779B2 JP 9435195 A JP9435195 A JP 9435195A JP 9435195 A JP9435195 A JP 9435195A JP 3197779 B2 JP3197779 B2 JP 3197779B2
Authority
JP
Grant status
Grant
Patent type
Prior art keywords
battery
positive electrode
lithium
active material
composite oxide
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP9435195A
Other languages
Japanese (ja)
Other versions
JPH08264179A (en )
Inventor
真弓 上原
良浩 小路
幹也 山崎
俊彦 斎藤
晃治 西尾
Original Assignee
三洋電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Grant date

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies or technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage
    • Y02E60/12Battery technologies with an indirect contribution to GHG emissions mitigation
    • Y02E60/122Lithium-ion batteries

Description

【発明の詳細な説明】 DETAILED DESCRIPTION OF THE INVENTION

【0001】 [0001]

【産業上の利用分野】本発明は、リチウム電池に係わり、詳しくは高容量なリチウム電池を提供することを目的とした、正極活物質の改良に関する。 The present invention relates to relates to a lithium battery, and the details aims to provide a high capacity lithium battery, relates to an improvement of a positive electrode active material.

【0002】 [0002]

【従来の技術及び発明が解決しようとする課題】近年、 BACKGROUND OF INVENTION Problems to be Solved In recent years,
リチウム電池が、水の分解電圧を考慮する必要がなく、 Lithium battery, it is not necessary to consider the decomposition voltage of water,
正極活物質を適宜選定することにより高電圧化を図ることが可能であることから、注目されつつある。 Since it is possible to achieve high voltage by selecting the cathode active material suitably is attracting attention.

【0003】この種の電池の代表的な正極活物質は金属酸化物である。 [0003] A typical positive electrode active material of this kind of battery is a metal oxide. 例えば、正極活物質としてLiCoO 2 For example, LiCoO 2 as the positive electrode active material
(リチウム−コバルト複合酸化物)を使用したリチウム電池が既に実用化されている。 Lithium batteries using - (lithium cobalt composite oxide) has already been put to practical use. LiCoO 2は、リチウム原料とコバルト原料との所定の割合の混合物を所定の温度で焼成する固相法により、120mAh/g以上のかなり大きな容量を有するものが容易に得られる。 LiCoO 2 is the solid-phase method of firing a mixture of a predetermined ratio of the lithium source and the cobalt raw material at a predetermined temperature, it can be easily obtained having a considerably larger capacity than 120 mAh / g.

【0004】これに対して、LiTi 24等のリチウム−チタン複合酸化物については、結晶構造からは充放電に適していると思われるにもかかわらず、この種の電池の正極活物質としては従来殆ど検討されていない。 [0004] In contrast, LiTi 2 O 4, etc. lithium - For titanium composite oxide, despite that may be suitable discharge from the crystal structure, as a cathode active material for this sort of battery It has not been studied conventional almost. これは、リチウム−チタン複合酸化物は、充放電電位が低いために容量が総じて小さいことによるものである。 This lithium - titanium composite oxide, the capacity for a low charge and discharge potential is due to generally small.

【0005】そこで、リチウム−チタン複合酸化物の正極材料としての実用化を図るべく鋭意研究した結果、本発明者らは、リチウム原料及びチタン原料の混合物を熱処理する際にさらに特定の化合物を添加するようにすれば、LiCoO 2と比べても遜色のない大きな容量を有する複合酸化物が固相法により容易に得られることを見出した。 [0005] Therefore, the lithium - result to the intensive study achieve practical use as the positive electrode material of titanium composite oxide, the present inventors have further adding a specific compound upon the heat treatment of mixtures of lithium source and titanium material if so that, found that a composite oxide having a large capacity no means inferior to that of LiCoO 2 it can be easily obtained by solid phase method.

【0006】本発明は、かかる知見に基づきなされたものであって、その目的とするところは、特定の複合酸化物を正極活物質とする高容量なリチウム電池を提供するにある。 [0006] The present invention was made based on this finding, it is an object to provide a high capacity lithium battery specific composite oxide as a positive electrode active material.

【0007】 [0007]

【課題を解決するための手段】上記目的を達成するための本発明に係るリチウム電池(本発明電池)は、式Li Lithium battery (present battery) according to the present invention for achieving the above object, according to an aspect of the formula Li
x Ti 1-yyz (式中、MはB、Na、Mg、A x Ti in 1-y M y O z (wherein, M is B, Na, Mg, A
l、Si、K、Ca、Sc Cr Fe、Co、Ni、 l, Si, K, Ca, Sc, Cr, Fe, Co, Ni,
Cu、Zn、Ga、Ge、Zr、Nb、Ru、Ag、T Cu, Zn, Ga, Ge, Zr, Nb, Ru, Ag, T
a、Bi、In、Mo及びWよりなる群から選ばれた少なくとも一種の元素、0<x≦1.3、0.02≦y≦ a, Bi, In, at least one element selected from the group consisting of Mo and W, 0 <x ≦ 1.3,0.02 ≦ y ≦
0.20、1.8≦z≦2.2)で表される複合酸化物を正極活物質とするものである。 The composite oxide represented by 0.20,1.8 ≦ z ≦ 2.2) is to the positive electrode active material.

【0008】本発明電池のリチウムを活物質とする負極は、リチウムイオンを電気化学的に吸蔵及び放出することが可能な物質又は金属リチウムを電極材料に使用して作製される。 [0008] A negative electrode for a lithium present battery active material is produced using a material or metallic lithium that is capable of electrochemically occluding and releasing lithium ions in the electrode material. リチウムイオンを電気化学的に吸蔵及び放出することが可能な物質としては、黒鉛、コークス、有機物焼成体等の炭素材料、リチウム合金(リチウム−アルミニウム合金、リチウム−鉛合金、リチウム−錫合金)及び正極に対して電位の卑な金属酸化物(例えばニオブ酸化物)が例示される。 Examples of the substance capable of electrochemically occluding and releasing lithium ions include graphite, coke, carbon materials such as calcined organic material, a lithium alloy (lithium - aluminum alloy, a lithium - lead alloy, lithium - tin alloy) and base metal oxide potential with respect to the positive electrode (e.g., niobium oxide) is exemplified.

【0009】本発明電池の正極活物質は、式Li x Ti [0009] Positive electrode active material of the present invention the battery, wherein Li x Ti
1-yyz (式中、MはB、Na、Mg、Al、S 1-y M y O z (wherein, M is B, Na, Mg, Al, S
i、K、Ca、Sc Cr Fe、Co、Ni、Cu、 i, K, Ca, Sc, Cr, Fe, Co, Ni, Cu,
Zn、Ga、Ge、Zr、Nb、Ru、Ag、Ta、B Zn, Ga, Ge, Zr, Nb, Ru, Ag, Ta, B
i、In、Mo及びWよりなる群から選ばれた少なくとも一種の元素、0<x≦1.3、0.02≦y≦0.2 i, an In, at least one element selected from the group consisting of Mo and W, 0 <x ≦ 1.3,0.02 ≦ y ≦ 0.2
0、1.8≦z≦2.2)で表される複合酸化物である。 A composite oxide represented by 0,1.8 ≦ z ≦ 2.2). この複合酸化物は、例えばリチウム化合物(LiO The composite oxide such as lithium compounds (LiO
H、Li 2 CO 3など)と、チタン化合物(TiO 2 H, and Li, etc. 2 CO 3), titanium compound (TiO 2,
Ti(OH) 4など)と、元素Mの酸化物、水酸化物、 And Ti (OH) 4, etc.), oxides of the elements M, hydroxide,
炭酸塩又は硝酸塩などとの混合物を乾燥空気雰囲気下にて400〜1000°Cの温度で4〜40時間熱処理することにより得られる。 A mixture of such carbonates or nitrates in a dry air atmosphere at a temperature of 400 to 1000 ° C obtained by heat treatment 4 to 40 hours. 式中のyの値(チタン置換量) The value of y in formula (titanium substitution amount)
が0.02〜0.20に規制されるのは、yの値が0. There being regulated to 0.02 to 0.20, the value of y is 0.
02未満の場合は充放電電位が充分に高くならならないため、一方yの値が0.20を越えるとリチウム吸蔵放出量が減少するため、いずれの場合も複合酸化物の容量が小さくなり、本発明が企図する高容量なリチウム電池が得られなくなるからである。 Since the charge and discharge potential of less than 02 is not if sufficiently high, whereas the value of y is reduced lithium occluding and releasing amount exceeds 0.20, in either case becomes small capacity of the composite oxide, the invention is because the high-capacity lithium batteries that contemplates not be obtained.

【0010】本発明の特徴は、充放電電位の低いリチウム−チタン複合酸化物に代えて、充放電電位の高い特定の複合酸化物を正極活物質として使用した点にある。 [0010] Features of the present invention, a low lithium of charge and discharge potential - in place of the titanium composite oxide, there a high specific composite oxides charge and discharge potential in that used as the positive electrode active material. それゆえ、非水電解質など、電池を構成する他の部材については、従来リチウム電池用として提案され、或いは実用されている種々の材料を特に制限なく用いることが可能である。 Therefore, such a non-aqueous electrolyte, the other members constituting the battery is conventionally proposed as a lithium battery, or a variety of materials that are practically used in particular can be used without limitation.

【0011】例えば、非水電解質として液体電解質を使用する場合の溶媒としては、エチレンカーボネート、ビニレンカーボネート、プロピレンカーボネートなどの高誘電率溶媒や、これらとジエチルカーボネート、ジメチルカーボネート、1,2−ジメトキシエタン、1,2− [0011] For example, as a solvent when using a liquid electrolyte as a nonaqueous electrolyte, ethylene carbonate, vinylene carbonate, a high dielectric constant and a solvent, these and diethyl carbonate such as propylene carbonate, dimethyl carbonate, 1,2-dimethoxyethane , 1,2
ジエトキシエタン、エトキシメトキシエタンなどの低沸点溶媒との混合溶媒が、同溶質としては、LiPF 6 Diethoxyethane, a mixed solvent of low boiling point solvent such as ethoxymethoxy ethane, as the same solute, LiPF 6,
LiClO 4 、LiCF 3 SO 3 、LiN(CF 3 SO LiClO 4, LiCF 3 SO 3, LiN (CF 3 SO
22 、LiBF 4 、LiAsF 6が、それぞれ例示される。 2) 2, LiBF 4, LiAsF 6 are respectively illustrated. また、固体電解質を使用することも可能である。 It is also possible to use a solid electrolyte.

【0012】 [0012]

【作用】充放電電位の高い特定の複合酸化物が正極活物質として使用されているので、本発明電池は、LiTi Since [action] high specific composite oxides charge and discharge potential is used as the positive electrode active material, the present invention battery, LiTi
24等のリチウム−チタン複合酸化物を正極活物質として使用したリチウム電池に比べて、容量が格段大きい。 Lithium, such as 2 O 4 - titanium composite oxide compared to the lithium battery using as the positive electrode active material, the capacity is much greater.

【0013】 [0013]

【実施例】以下、本発明を実施例に基づいてさらに詳細に説明するが、本発明は下記実施例に何ら限定されるものではなく、その要旨を変更しない範囲において適宜変更して実施することが可能なものである。 EXAMPLES The following provides a more detailed explanation of the present invention based on examples, the present invention is not intended to be limited to the following examples, it is carried out appropriately modified within a scope not changing the gist thereof it is those that can be.

【0014】(実施例1〜27 ) 〔正極の作製〕 LiOH(リチウム原料)と、TiO 2 (チタン原料) [0014] (Example 1-27) Preparation of Positive Electrode LiOH and (lithium source), TiO 2 (titanium material)
と、表1に示す各原料(M原料)とを種々の割合で混合し、乾燥空気雰囲気下にて850°Cで20時間熱処理(焼成)し、石川式らいかい乳鉢にて粉砕して、正極活物質としての種々の複合酸化物粉末を作製した。 When, the respective raw materials shown in Table 1 (M raw material) were mixed in various proportions, dried 20 hours at 850 ° C under an air atmosphere heat treatment (baking), and pulverized in an Ishikawa automated mortar mortar, to prepare a variety of composite oxide powder as a cathode active material. 表1中のyは、各複合酸化物粉末の作製においてLiOHとT y in Table 1, LiOH and T in the preparation of the mixed oxide powder
iO 2と各M原料とをLi:Ti:Mの原子比が0. The the iO 2 and each M material Li: Ti: atomic ratio of M is 0.
5:1−y:yとなるように混合したことを示す。 5: 1-y: indicating the mixed so as y. 例えば、yの値が0.02の実施例1の複合酸化物は、Li For example, a composite oxide of Example 1 of the value of y is 0.02, Li
OHとTiO 2とB 23とをLi:Ti: の原子比が0.5:0.98:0.02となるように混合して得た混合物を焼成して得たものであり、組成式Li 0.5 The OH and TiO 2 and B 2 O 3 Li: Ti: atomic ratio of B is 0.5: 0.98: are those obtained by firing a mixture obtained by mixing such that 0.02 , composition formula Li 0.5 T
0.980.022で表されるものである。 i 0.98 those represented by B 0.02 O 2.

【0015】 [0015]

【表1】 [Table 1]

【0016】次いで、各複合酸化物粉末と、導電剤としてのアセチレンブラックと、結着剤としてのフッ素樹脂粉末とを、重量比率90:6:4で混合して正極合剤を調製し、この正極合剤を成形圧2トン/cm 2で直径2 [0016] Then, each composite oxide powder, acetylene black as a conductive agent and fluororesin powder as a binder, the weight ratio 90: 6: a positive electrode mixture prepared by mixing at 4, the diameter cathode mixture at a molding pressure of 2 t / cm 2 2
0mmの円盤状に加圧成型し、250°Cで2時間熱処理して正極を作製した。 Pressure-molded to 0mm disk-shaped, to prepare a positive electrode was heat-treated for 2 hours at 250 ° C.

【0017】〔負極の作製〕金属リチウム圧延板を直径20mmの円盤状に打ち抜いて、負極を作製した。 [0017] The Preparation of Negative Electrode metallic lithium rolled plate was punched into a disc having a diameter of 20 mm, to prepare a negative electrode.

【0018】〔非水電解液の調製〕プロピレンカーボネートと1,2−ジメトキシエタンとの体積比1:1の混合溶媒に、LiClO 4を1モル/リットル溶かして非水電解液を調製した。 The volume ratio of propylene carbonate and 1,2-dimethoxyethane [nonaqueous electrolytic preparation of Solution] 1: in a mixed solvent of 1 to prepare a non-aqueous electrolyte solution by dissolving LiClO 4 1 mol / liter.

【0019】〔電池の組立〕 以上の各正極と負極と非水電解液とを用いて扁平型のリチウム電池A1 〜A11、A13、A15〜 A29を組み立てた(電池寸法:直径24.0mm、厚さ3.0m The lithium battery of the positive electrode and flat with the non-aqueous electrolyte negative [assembly Battery] or more A1 ~A11, A13, were assembled A15~ A29 (battery size: diameter 24.0 mm, thickness It is 3.0m
m)。 m). なお、セパレータとしては、ポリプロピレン製の微多孔膜を使用し、これに非水電解液を含浸させた。 As the separator, using a polypropylene microporous membrane, impregnated with a non-aqueous electrolyte thereto.

【0020】図1は、組み立てたリチウム電池の模式的断面図であり、図示のリチウム電池Aは、正極1、負極2、これら両電極1,2を互いに離間するセパレータ3、正極缶4、負極缶5、正極集電体6、負極集電体7 [0020] Figure 1 is a schematic cross-sectional view of a lithium assembled battery, lithium battery A shown, the positive electrode 1, negative electrode 2, a separator 3 for separating the both electrodes 1, 2 to each other, a positive electrode can 4, a negative electrode can 5, a positive electrode collector 6, a negative electrode collector 7
及びポリプロピレン製の絶縁パッキング8などからなる。 And the like polypropylene insulating packing 8.

【0021】正極1及び負極2は、非水電解液を含浸したセパレータ3を介して対向して正負両極缶4,5が形成する電池ケース内に収納されており、正極1は正極集電体6を介して正極缶4に、また負極2は負極集電体7 The positive electrode 1 and negative electrode 2, a non-aqueous housed in a battery case the positive and negative electrodes can 4 and 5 to form an electrolytic solution is opposed via a separator 3 impregnated, positive electrode 1 is the cathode current collector the positive electrode can 4 through 6, also the negative electrode 2 is the anode current collector 7
を介して負極缶5に接続され、電池内部に生じた化学エネルギーを正極缶4及び負極缶5の両端子から電気エネルギーとして外部へ取り出し得るようになっている。 It is connected to the negative electrode can 5 through the, so that may retrieve chemical energy generated inside the battery from the terminals of the positive electrode can 4 and the negative electrode can 5 to the outside as electric energy.

【0022】(比較例1)LiOHとTiO 2とをモル比0.5:1で混合し、850°Cで20時間熱処理した後、石川式らいかい乳鉢にて粉砕して、組成式LiT [0022] (Comparative Example 1) LiOH and TiO 2 and a molar ratio of 0.5: 1. The mixture was heat treated at 850 ° C 20 hours, and pulverized in an Ishikawa automated mortar mortar composition formula LiT
24で表されるリチウム−チタン複合酸化物粉末を作製した。 lithium represented by i 2 O 4 - to prepare a titanium composite oxide powder.

【0023】次いで、この複合酸化物粉末を正極活物質として使用したこと以外は実施例1〜27と同様にして、比較電池B1を組み立てた。 [0023] Then, the composite oxide powder except for using as the positive electrode active material in the same manner as in Example 1 to 27 were assembled comparative battery B1.

【0024】(比較例2〜27)LiOHと、TiO 2 [0024] and (Comparative Example 2~27) LiOH, TiO 2
と、表2に示す各原料(M原料)とを、Li:Ti:M When, the respective raw materials shown in Table 2 (M material), Li: Ti: M
の原子比が0.5:0.75:0.25となるように混合し、乾燥空気雰囲気下にて850°Cで20時間熱処理(焼成)し、石川式らいかい乳鉢にて粉砕して、正極活物質としての種々の複合酸化物粉末を作製した。 Atomic ratio of 0.5: 0.75: 0.25 were mixed so that, dried for 20 hours at 850 ° C under an air atmosphere heat treatment (baking), and pulverized in an Ishikawa automated mortar mortar , to prepare a variety of composite oxide powder as a cathode active material.

【0025】 [0025]

【表2】 [Table 2]

【0026】次いで、これらの各複合酸化物粉末を正極活物質として使用したこと以外は実施例1〜27と同様にして、比較電池B2〜B27を組み立てた。 [0026] Then, except that the respective composite oxide powder was used as a positive electrode active material in the same manner as in Example 1 to 27 were assembled comparative battery B2~B27.

【0027】〔放電容量〕各電池を1mAで4.3Vまで充電した後、3mAで2.0Vまで放電して、各正極活物質の放電容量を求めた。 [0027] [discharging capacity] after charging the respective battery to 4.3V at 1 mA, and discharged at 3mA until 2.0 V, to determine the discharge capacity of each of the positive electrode active material. 結果を先の表1又は表2に示す。 The results are shown in Table 1 or Table 2 above. また、本発明電池A1〜A4及び比較電池B1, Further, the present invention battery A1~A4 and comparative batteries B1,
B2の結果については、図2にも示す。 The results of B2 is also shown in FIG. 図2は、使用せる複合酸化物を表す組成式Li 0.5 Ti 1-yy2中のyの値と放電容量の関係を、縦軸に正極活物質の単位重量当たりの放電容量を、また横軸にyの値をとって、 2, the relationship between the values and the discharge capacity of y in the composition formula Li 0.5 Ti 1-y B y O 2 representing the composite oxide to use, the longitudinal axis of the discharge capacity per unit weight of the positive electrode active material, also taking the value of y to the horizontal axis,
示したグラフである。 It is a graph showing. さらに、本発明電池A2と比較電池B1の各放電曲線を図3に示す。 Further, each discharge curve of Comparative Battery B1 and Battery A2 of the invention shown in FIG. 図3は、縦軸に電池電圧(V)を、また横軸に放電容量(mAh/g)をとって示したグラフである。 3, the battery voltage (V) on the vertical axis, also is a graph showing taking the horizontal axis the discharge capacity (mAh / g).

【0028】表1及び表2より、本発明電池A1 〜A1 [0028] From Table 1 and Table 2, the present invention cell A1 ~ A1
1、A13、A15〜 A29に使用した各正極活物質は、比較電池B1に使用した正極活物質(LiTi 2 1, A13, A15~ the positive electrode active material used in A29 is a positive electrode active material (LiTi 2 O used in the comparative battery B1
4 :リチウム−チタン複合酸化物)よりもはるかに大きな放電容量を有することが分かる。 4: Lithium - seen to have a much larger discharge capacity than the titanium composite oxide). 本発明電池A2及びA5〜 A11、A13、A15〜 A29(いずれもyの値は0.1)のうちA2、A7、A8、A9、 A13、 The present invention cells A2 and A5~ A11, A13, A15~ A29 A2 of (0.1 the value of both y), A7, A8, A9 , A13,
A15 〜A17、A24及びA26の正極活物質の放電容量が130mAh/g以上と特に大きいことから、T A15 ~A17, since the discharge capacity of the positive electrode active material of A24 and A26 is particularly large with 130 mAh / g or more, T
iの置換元素MとしてはB、Al、Si、K Cr i The substitution elements M B, Al, Si, K , Cr, F
e、Co、Ni、Ru及びInが特に好ましいことが分かる。 e, Co, Ni, be Ru and In is particularly preferable seen. また、図2及び表2より、放電容量の大きい正極活物質を得る上で、yの値は0.02〜0.20の範囲内とする必要があることが分かる。 Further, from FIG. 2 and Table 2, in order to obtain a positive electrode active material having a large discharge capacity, the value of y is found to be necessary in the range of 0.02 to 0.20. なお、B以外の他の元素でTiを置換する場合についてもyの値が0.02 Incidentally, the value of y also when replacing Ti with elements other than B 0.02
〜0.20の範囲内とした場合に放電容量の大きい正極活物質が得られることを確認した。 The positive electrode active material having a large discharge capacity when within the range of 0.20 and it was confirmed that the obtained. また、yの値はリチウム量すなわちxの値に関係なく0.02〜0.20の範囲内とする必要があることも確認した。 The value of y was also confirmed that it is necessary in the range of 0.02 to 0.20 irrespective of the value of the amount of lithium i.e. x. さらに、図3 In addition, as shown in FIG. 3
より、本発明電池の正極活物質が比較電池の正極活物質に比べて放電容量が大きい理由が、放電電圧が高いことによるものであることが分かる。 More why discharge capacity than the positive electrode active material of the positive electrode active material Comparative battery of the present invention the battery is large, it can be seen discharge voltage is due to a high.

【0029】(実施例28〜31 ) LiOHとTiO 2とB 23とNaOHとをLi:T [0029] a and NaOH (Example 28 to 31) LiOH and TiO 2 and B 2 O 3 Li: T
i:B:Naの原子比が0.5:0.8:0.2−p: i: B: atomic ratio of Na is 0.5: 0.8: 0.2-p:
p(p=0.18、0.1、0.05又は0.02)となるように混合し、乾燥空気雰囲気下にて850°Cで20時間熱処理(焼成)し、石川式らいかい乳鉢にて粉砕して、正極活物質としての組成式Li 0.5 Ti 0.8 Were mixed such that p (p = 0.18,0.1,0.05 or 0.02), in a dry air atmosphere at 850 ° C for 20 hours (baking), Ishikawa automated mortar mortar It was pulverized by a composition formula Li 0.5 Ti 0.8 B as the positive electrode active material
0.2-p Na p2で表される4種の複合酸化物粉末を作製した。 To prepare four kinds of composite oxide powder represented by 0.2-p Na p O 2.

【0030】次いで、これらの各複合酸化物粉末を正極活物質として使用したこと以外は実施例1〜27と同様にして、本発明電池A30(p=0.18,y=0.2 [0030] Then, except for using each of these composite oxide powder as a cathode active material in the same manner as in Example 1 to 27, the present invention cell A30 (p = 0.18, y = 0.2
0)、A31(p=0.1,y=0.20)、A32 0), A31 (p = 0.1, y = 0.20), A32
(p=0.05,y=0.20)、A33(p=0.0 (P = 0.05, y = 0.20), A33 (p = 0.0
2,y=0.20)を組み立てた。 2, y = 0.20) were assembled.

【0031】(比較例28)LiOHとTiO 2とB 2 [0031] (Comparative Example 28) LiOH and TiO 2 and B 2
3とNaOHとをLi:Ti:B:Naの原子比が0.5:0.75:0.2:0.05となるように混合し、乾燥空気雰囲気下にて850°Cで20時間熱処理(焼成)し、石川式らいかい乳鉢にて粉砕して、正極活物質としての複合酸化物粉末(y=0.25)を作製した。 O 3 and a NaOH Li: Ti: B: atomic ratio of Na is 0.5: 0.75: 0.2: 0.05 were mixed so that, 20 in a dry air atmosphere 850 ° C under time heat treatment (baking), and pulverized in an Ishikawa automated mortar mortar, to prepare a complex oxide powder as a positive electrode active material (y = 0.25).

【0032】次いで、この複合酸化物粉末を正極活物質として使用したこと以外は実施例1〜27と同様にして、比較電池B28を組み立てた。 [0032] Then, the composite oxide powder except for using as the positive electrode active material in the same manner as in Example 1 to 27 were assembled comparative battery B28.

【0033】〔放電容量〕各電池を先と同じ条件で充放電して、放電容量を求めた。 [0033] [discharge capacity] to charge and discharge under the same conditions as the previous each battery to determine the discharge capacity. 結果を表3に示す。 The results are shown in Table 3.

【0034】 [0034]

【表3】 [Table 3]

【0035】表3に示すように、本発明電池A30〜A As shown in Table 3, the present invention battery A30~A
33に使用した正極活物質の放電容量が大きいのに対して比較電池B28に使用した正極活物質の放電容量は極めて小さい。 Discharge capacity of the positive electrode active material used in Comparative Battery B28 while the discharge capacity of the positive electrode active material used in the 33 large is very small. このことから、正極活物質として使用する複合酸化物はチタンの一部を2種以上の置換元素Mで置換したものであってもよいが、置換元素MによるTiのトータル置換量を式Li x Ti 1-yyz中のyの値が0.02〜0.20の範囲となるようにする必要があることが分かる。 Therefore, composite oxide used as the positive electrode active material may be one obtained by substituting a part of titanium in more than one substituent element M, and the equations of the total amount of Ti substituted by substituent element M Li x the value of y in the Ti 1-y M y O z it can be seen that it is necessary to be in the range of 0.02 to 0.20. なお、他の置換元素Mについてもyの値がこの範囲を外れると、正極活物質の放電容量が低下することを確認した。 The value of y for the other substitution elements M are Outside this range, the discharge capacity of the positive electrode active material was confirmed to be decreased.

【0036】上記実施例では、本発明を扁平型のリチウム二次電池に適用する場合を例に挙げて説明したが、本発明は電池形状に特に制限があるわけではなく、円筒型、角型など、他の種々の形状のリチウム二次電池に適用し得るものであるとともに、一次電池にも適用可能なものである。 [0036] In the above embodiment, although the case of applying the present invention to a lithium secondary battery of flat has been described, the present invention is not be particularly limited to the battery shape, cylindrical, rectangular etc., along with those that may be applied to a lithium secondary battery of other various shapes, but also applicable to a primary battery.

【0037】また、上記実施例では、非水電解質として液体電解質を使用したが、本発明は固体電解質電池にも適用可能なものである。 [0037] In the above embodiment, instead of the liquid electrolyte as the non-aqueous electrolyte, the present invention can be applied to the solid electrolyte battery.

【0038】 [0038]

【発明の効果】正極活物質として充放電電位の高い特定の複合酸化物が使用されているので、本発明電池は容量が大きい。 Since certain high composite oxide of the charge-discharge potential as a cathode active material according to the present invention is used, the present invention battery capacity is large.

【図面の簡単な説明】 BRIEF DESCRIPTION OF THE DRAWINGS

【図1】実施例で組み立てた扁平型のリチウム電池の断面図である。 1 is a cross-sectional view of a lithium battery of flat assembled in the Examples.

【図2】式Li 0.5 Ti 1-yy2中のyの値と放電容量の関係を示すグラフである。 2 is a graph showing the relationship between the value and the discharge capacity of the formula Li 0.5 Ti 1-y B y O 2 in of y.

【図3】本発明電池及び比較電池の放電曲線を示すグラフである。 3 is a graph showing discharge curve of the present invention the battery and the comparative battery.

【符号の説明】 DESCRIPTION OF SYMBOLS

A リチウム電池 1 正極 2 負極 3 セパレータ A lithium battery 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平6−275265(JP,A) 特開 平5−13082(JP,A) 特開 平6−310143(JP,A) (58)調査した分野(Int.Cl. 7 ,DB名) H01M 4/36 - 4/62 ────────────────────────────────────────────────── ─── of the front page continued (72) inventor Nishio AkiraOsamu Osaka Prefecture Moriguchi Keihanhondori 2-chome No. 5 No. 5, Sanyo Electric Co., Ltd. in the (72) inventor Toshihiko Saito Osaka Prefecture Moriguchi Keihanhondori 2-chome No. 5 No. 5 Sanyo Electric Co., Ltd. in the (56) reference Patent flat 6-275265 (JP, a) JP flat 5-13082 (JP, a) JP flat 6-310143 (JP, a) (58) were investigated field (Int.Cl. 7, DB name) H01M 4/36 - 4/62

Claims (2)

    (57)【特許請求の範囲】 (57) [the claims]
  1. 【請求項1】式Li x Ti 1-yyz (式中、MはB、Na、Mg、Al、Si、K、Ca、Sc Cr During 1. A formula Li x Ti 1-y M y O z ( wherein, M is B, Na, Mg, Al, Si, K, Ca, Sc, Cr,
    Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、N Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, N
    b、Ru、Ag、Ta、Bi、In、Mo及びWよりなる群から選ばれた少なくとも一種の元素、0<x≦1. b, Ru, Ag, Ta, Bi, In, at least one element selected from the group consisting of Mo and W, 0 <x ≦ 1.
    3、0.02≦y≦0.20、1.8≦z≦2.2)で表される複合酸化物を正極活物質とするリチウム電池。 Lithium batteries a composite oxide as a positive electrode active material represented by 3,0.02 ≦ y ≦ 0.20,1.8 ≦ z ≦ 2.2).
  2. 【請求項2】式Li x Ti 1-yyz (式中、MはB、Al、Si、K Cr Fe、Co、Ni、Ru及びInよりなる群から選ばれた少なくとも一種の元素、 During wherein formula Li x Ti 1-y M y O z ( wherein, at least one M is selected B, Al, Si, K, Cr, Fe, Co, Ni, from the group consisting of Ru and In elements,
    0<x≦1.3、0.02≦y≦0.20、1.8≦z 0 <x ≦ 1.3,0.02 ≦ y ≦ 0.20,1.8 ≦ z
    ≦2.2)で表される複合酸化物を正極活物質とするリチウム電池。 Lithium battery and the positive electrode active material a composite oxide represented by ≦ 2.2).
JP9435195A 1995-03-27 1995-03-27 Lithium battery Expired - Fee Related JP3197779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9435195A JP3197779B2 (en) 1995-03-27 1995-03-27 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9435195A JP3197779B2 (en) 1995-03-27 1995-03-27 Lithium battery

Publications (2)

Publication Number Publication Date
JPH08264179A true JPH08264179A (en) 1996-10-11
JP3197779B2 true JP3197779B2 (en) 2001-08-13

Family

ID=14107869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9435195A Expired - Fee Related JP3197779B2 (en) 1995-03-27 1995-03-27 Lithium battery

Country Status (1)

Country Link
JP (1) JP3197779B2 (en)

Families Citing this family (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277521B1 (en) * 1997-05-15 2001-08-21 Fmc Corporation Lithium metal oxide containing multiple dopants and method of preparing same
JP3045998B2 (en) 1997-05-15 2000-05-29 エフエムシー・コーポレイション Intercalation compound and a manufacturing method thereof
JP4016429B2 (en) * 1997-07-15 2007-12-05 ソニー株式会社 Non-aqueous electrolyte secondary battery
DE69907261T3 (en) 1998-11-13 2016-07-21 Umicore Layer lattice structure possessing lithium-containing metal oxide that are free of localized cubic spinel-like phases, and preparation thereof
EP1242311B1 (en) 1999-12-10 2003-05-02 Fmc Corporation Lithium cobalt oxides and methods of making same
CA2327370A1 (en) * 2000-12-05 2002-06-05 Hydro-Quebec New method of manufacturing pure li4ti5o12 from the ternary compound tix-liy-carbon: effect of carbon on the synthesis and conductivity of the electrode
JP4602306B2 (en) * 2006-09-29 2010-12-22 株式会社東芝 Negative active material for a nonaqueous electrolyte battery, the nonaqueous electrolyte battery, battery pack and motor vehicle
JP5434632B2 (en) * 2010-01-28 2014-03-05 株式会社Gsユアサ Non-aqueous electrolyte secondary battery active material and a non-aqueous electrolyte secondary battery
JP2011181222A (en) * 2010-02-26 2011-09-15 Hitachi Ltd Lithium ion battery
US9011713B2 (en) * 2011-07-05 2015-04-21 Samsung Sdi Co., Ltd. Composite, method of manufacturing the composite, anode active material including the composite, anode including the anode active material, and lithium secondary battery including the anode
EP2592050B1 (en) * 2011-11-11 2014-05-14 Samsung SDI Co., Ltd. Composite, method of manufacturing the composite, negative electrode active material including the composite, negative electrode including the negative electrode active material, and lithium secondary battery including the same

Also Published As

Publication number Publication date Type
JPH08264179A (en) 1996-10-11 application

Similar Documents

Publication Publication Date Title
US5028500A (en) Carbonaceous electrodes for lithium cells
US6372384B1 (en) Rechargeable lithium battery comprising substituted lithium titanate electrodes
US6048645A (en) Method of preparing lithium ion electrochemical cells
US5352548A (en) Secondary battery
US5514490A (en) Secondary lithium battery using a new layered anode material
US5750288A (en) Modified lithium nickel oxide compounds for electrochemical cathodes and cells
US5443929A (en) Nonaqueous secondary battery
US5795558A (en) Positive electrode active material for lithium secondary battery method of producing
US6316145B1 (en) Non-aqueous electrolyte battery and charging method therefor
JP3244314B2 (en) Non-aqueous battery
US5631104A (en) High voltage insertion compounds for lithium batteries
US6346348B1 (en) Rechargeable lithium battery with a lithium molybdenum oxide electrode
US6203947B1 (en) Long cycle-life alkali metal battery
EP0782206A1 (en) Positive electrode active material for lithium secondary battery, method of producing thereof, and lithium secondary battery
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
JPH1167270A (en) Nonaqueous electrolyte secondary battery
JP2000195516A (en) Lithium secondary battery
JPH09147913A (en) Nonaqueous electrolyte battery
JPH1027626A (en) Lithium secondary battery
JP2001015102A (en) Nonaqueous electrolyte secondary battery and its manufacture
JPH10199525A (en) Nonaqueous electrolyte secondary battery
JP2001223008A (en) Lithium secondary battery, positive electrode active substance for it and their manufacturing method
JPH0945373A (en) Lithium secondary battery
JPH06275263A (en) Lithium secondary battery and manufacture of its negative electrode
JPH08236114A (en) Lithium secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees