JP3197779B2 - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JP3197779B2
JP3197779B2 JP09435195A JP9435195A JP3197779B2 JP 3197779 B2 JP3197779 B2 JP 3197779B2 JP 09435195 A JP09435195 A JP 09435195A JP 9435195 A JP9435195 A JP 9435195A JP 3197779 B2 JP3197779 B2 JP 3197779B2
Authority
JP
Japan
Prior art keywords
positive electrode
battery
lithium
electrode active
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09435195A
Other languages
Japanese (ja)
Other versions
JPH08264179A (en
Inventor
幹也 山崎
真弓 上原
良浩 小路
晃治 西尾
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP09435195A priority Critical patent/JP3197779B2/en
Publication of JPH08264179A publication Critical patent/JPH08264179A/en
Application granted granted Critical
Publication of JP3197779B2 publication Critical patent/JP3197779B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウム電池に係わ
り、詳しくは高容量なリチウム電池を提供することを目
的とした、正極活物質の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery, and more particularly to an improvement of a positive electrode active material for providing a high capacity lithium battery.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウム電池が、水の分解電圧を考慮する必要がなく、
正極活物質を適宜選定することにより高電圧化を図るこ
とが可能であることから、注目されつつある。
2. Description of the Related Art In recent years,
Lithium battery does not need to consider the decomposition voltage of water,
Since it is possible to increase the voltage by appropriately selecting a positive electrode active material, it is receiving attention.

【0003】この種の電池の代表的な正極活物質は金属
酸化物である。例えば、正極活物質としてLiCoO2
(リチウム−コバルト複合酸化物)を使用したリチウム
電池が既に実用化されている。LiCoO2 は、リチウ
ム原料とコバルト原料との所定の割合の混合物を所定の
温度で焼成する固相法により、120mAh/g以上の
かなり大きな容量を有するものが容易に得られる。
[0003] A typical positive electrode active material of this type of battery is a metal oxide. For example, as a positive electrode active material, LiCoO 2
Lithium batteries using (lithium-cobalt composite oxide) have already been put to practical use. LiCoO 2 having a considerably large capacity of 120 mAh / g or more can be easily obtained by a solid phase method in which a mixture of a lithium material and a cobalt material at a predetermined ratio is calcined at a predetermined temperature.

【0004】これに対して、LiTi2 4 等のリチウ
ム−チタン複合酸化物については、結晶構造からは充放
電に適していると思われるにもかかわらず、この種の電
池の正極活物質としては従来殆ど検討されていない。こ
れは、リチウム−チタン複合酸化物は、充放電電位が低
いために容量が総じて小さいことによるものである。
On the other hand, lithium-titanium composite oxides such as LiTi 2 O 4 are considered to be suitable for charge / discharge in view of the crystal structure, but are used as a positive electrode active material of this type of battery. Has not been studied so far. This is because the lithium-titanium composite oxide has a low charge-discharge potential and generally has a small capacity.

【0005】そこで、リチウム−チタン複合酸化物の正
極材料としての実用化を図るべく鋭意研究した結果、本
発明者らは、リチウム原料及びチタン原料の混合物を熱
処理する際にさらに特定の化合物を添加するようにすれ
ば、LiCoO2 と比べても遜色のない大きな容量を有
する複合酸化物が固相法により容易に得られることを見
出した。
[0005] Accordingly, as a result of diligent research aimed at putting a lithium-titanium composite oxide into practical use as a positive electrode material, the present inventors have found that when a mixture of a lithium raw material and a titanium raw material is heat-treated, a specific compound is added. By doing so, it has been found that a composite oxide having a large capacity comparable to that of LiCoO 2 can be easily obtained by the solid-phase method.

【0006】本発明は、かかる知見に基づきなされたも
のであって、その目的とするところは、特定の複合酸化
物を正極活物質とする高容量なリチウム電池を提供する
にある。
The present invention has been made based on such findings, and an object of the present invention is to provide a high-capacity lithium battery using a specific composite oxide as a positive electrode active material.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るリチウム電池(本発明電池)は、式Li
x Ti1-y y z (式中、MはB、Na、Mg、A
l、Si、K、Ca、ScCrFe、Co、Ni、
Cu、Zn、Ga、Ge、Zr、Nb、Ru、Ag、T
a、Bi、In、Mo及びWよりなる群から選ばれた少
なくとも一種の元素、0<x≦1.3、0.02≦y≦
0.20、1.8≦z≦2.2)で表される複合酸化物
を正極活物質とするものである。
To achieve the above object, a lithium battery according to the present invention (battery of the present invention) has the formula Li
x Ti in 1-y M y O z (wherein, M is B, Na, Mg, A
1, Si, K, Ca, Sc , Cr , Fe, Co, Ni,
Cu, Zn, Ga, Ge, Zr, Nb, Ru, Ag, T
at least one element selected from the group consisting of a, Bi, In, Mo and W, 0 <x ≦ 1.3, 0.02 ≦ y ≦
0.20, 1.8 ≦ z ≦ 2.2) as the positive electrode active material.

【0008】本発明電池のリチウムを活物質とする負極
は、リチウムイオンを電気化学的に吸蔵及び放出するこ
とが可能な物質又は金属リチウムを電極材料に使用して
作製される。リチウムイオンを電気化学的に吸蔵及び放
出することが可能な物質としては、黒鉛、コークス、有
機物焼成体等の炭素材料、リチウム合金(リチウム−ア
ルミニウム合金、リチウム−鉛合金、リチウム−錫合
金)及び正極に対して電位の卑な金属酸化物(例えばニ
オブ酸化物)が例示される。
The negative electrode using lithium as an active material of the battery of the present invention is manufactured using a material capable of electrochemically absorbing and releasing lithium ions or metallic lithium as an electrode material. Examples of the substance capable of electrochemically storing and releasing lithium ions include carbon materials such as graphite, coke, and fired organic materials, lithium alloys (lithium-aluminum alloy, lithium-lead alloy, lithium-tin alloy) and A metal oxide (for example, niobium oxide) having a potential lower than that of the positive electrode is exemplified.

【0009】本発明電池の正極活物質は、式Lix Ti
1-y y z (式中、MはB、Na、Mg、Al、S
i、K、Ca、ScCrFe、Co、Ni、Cu、
Zn、Ga、Ge、Zr、Nb、Ru、Ag、Ta、B
i、In、Mo及びWよりなる群から選ばれた少なくと
も一種の元素、0<x≦1.3、0.02≦y≦0.2
0、1.8≦z≦2.2)で表される複合酸化物であ
る。この複合酸化物は、例えばリチウム化合物(LiO
H、Li2 CO3 など)と、チタン化合物(TiO2
Ti(OH)4 など)と、元素Mの酸化物、水酸化物、
炭酸塩又は硝酸塩などとの混合物を乾燥空気雰囲気下に
て400〜1000°Cの温度で4〜40時間熱処理す
ることにより得られる。式中のyの値(チタン置換量)
が0.02〜0.20に規制されるのは、yの値が0.
02未満の場合は充放電電位が充分に高くならならない
ため、一方yの値が0.20を越えるとリチウム吸蔵放
出量が減少するため、いずれの場合も複合酸化物の容量
が小さくなり、本発明が企図する高容量なリチウム電池
が得られなくなるからである。
The positive electrode active material of the battery of the present invention has the formula Li x Ti
1-y M y O z (wherein, M is B, Na, Mg, Al, S
i, K, Ca, Sc , Cr , Fe, Co, Ni, Cu,
Zn, Ga, Ge, Zr, Nb, Ru, Ag, Ta, B
at least one element selected from the group consisting of i, In, Mo, and W, 0 <x ≦ 1.3, 0.02 ≦ y ≦ 0.2
0, 1.8 ≦ z ≦ 2.2). This composite oxide is, for example, a lithium compound (LiO
H, Li 2 CO 3, etc.) and a titanium compound (TiO 2 ,
Ti (OH) 4, etc.) and oxides and hydroxides of the element M,
It is obtained by heat-treating a mixture with a carbonate or a nitrate in a dry air atmosphere at a temperature of 400 to 1000 ° C. for 4 to 40 hours. The value of y in the formula (the amount of titanium substitution)
Is regulated to 0.02 to 0.20 when the value of y is 0.1.
When the value of y is less than 02, the charge / discharge potential does not become sufficiently high. On the other hand, when the value of y exceeds 0.20, the amount of lithium occlusion and release is reduced. This is because a high-capacity lithium battery intended by the present invention cannot be obtained.

【0010】本発明の特徴は、充放電電位の低いリチウ
ム−チタン複合酸化物に代えて、充放電電位の高い特定
の複合酸化物を正極活物質として使用した点にある。そ
れゆえ、非水電解質など、電池を構成する他の部材につ
いては、従来リチウム電池用として提案され、或いは実
用されている種々の材料を特に制限なく用いることが可
能である。
A feature of the present invention is that a specific composite oxide having a high charge / discharge potential is used as a positive electrode active material instead of the lithium-titanium composite oxide having a low charge / discharge potential. Therefore, as for other members constituting the battery, such as a non-aqueous electrolyte, various materials conventionally proposed or used for lithium batteries can be used without any particular limitation.

【0011】例えば、非水電解質として液体電解質を使
用する場合の溶媒としては、エチレンカーボネート、ビ
ニレンカーボネート、プロピレンカーボネートなどの高
誘電率溶媒や、これらとジエチルカーボネート、ジメチ
ルカーボネート、1,2−ジメトキシエタン、1,2−
ジエトキシエタン、エトキシメトキシエタンなどの低沸
点溶媒との混合溶媒が、同溶質としては、LiPF6
LiClO4 、LiCF3 SO3 、LiN(CF3 SO
2 2 、LiBF4 、LiAsF6 が、それぞれ例示さ
れる。また、固体電解質を使用することも可能である。
For example, when a liquid electrolyte is used as the non-aqueous electrolyte, the solvent may be a high dielectric constant solvent such as ethylene carbonate, vinylene carbonate, propylene carbonate, etc., or a mixture thereof with diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane. , 1,2-
Diethoxyethane, a mixed solvent with a low boiling point solvent such as ethoxymethoxyethane, as the solute, LiPF 6 ,
LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO
2 ) 2 , LiBF 4 and LiAsF 6 are each exemplified. It is also possible to use a solid electrolyte.

【0012】[0012]

【作用】充放電電位の高い特定の複合酸化物が正極活物
質として使用されているので、本発明電池は、LiTi
2 4 等のリチウム−チタン複合酸化物を正極活物質と
して使用したリチウム電池に比べて、容量が格段大き
い。
Since the specific composite oxide having a high charge / discharge potential is used as the positive electrode active material, the battery of the present invention is made of LiTi.
The capacity is much larger than that of a lithium battery using a lithium-titanium composite oxide such as 2 O 4 as a positive electrode active material.

【0013】[0013]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0014】(実施例1〜27) 〔正極の作製〕 LiOH(リチウム原料)と、TiO2 (チタン原料)
と、表1に示す各原料(M原料)とを種々の割合で混合
し、乾燥空気雰囲気下にて850°Cで20時間熱処理
(焼成)し、石川式らいかい乳鉢にて粉砕して、正極活
物質としての種々の複合酸化物粉末を作製した。表1中
のyは、各複合酸化物粉末の作製においてLiOHとT
iO2 と各M原料とをLi:Ti:Mの原子比が0.
5:1−y:yとなるように混合したことを示す。例え
ば、yの値が0.02の実施例1の複合酸化物は、Li
OHとTiO2 とB2 3 とをLi:Ti:の原子比
が0.5:0.98:0.02となるように混合して得
た混合物を焼成して得たものであり、組成式Li0.5
0.980.022 で表されるものである。
(Examples 1 to 27 ) [Preparation of positive electrode] LiOH (lithium raw material) and TiO 2 (titanium raw material)
And each raw material (M raw material) shown in Table 1 at various ratios, heat-treated (fired) at 850 ° C. for 20 hours in a dry air atmosphere, and pulverized in an Ishikawa-type rai mortar, Various composite oxide powders as positive electrode active materials were produced. In Table 1, y represents LiOH and T in the production of each composite oxide powder.
The atomic ratio of Li: Ti: M between iO 2 and each of the M raw materials is 0.
5: 1-y: indicates that they were mixed so as to be y. For example, the composite oxide of Example 1 in which the value of y is 0.02 is Li
It is obtained by calcining a mixture obtained by mixing OH, TiO 2 and B 2 O 3 so that the atomic ratio of Li: Ti: B is 0.5: 0.98: 0.02. , The composition formula Li 0.5 T
i 0.98 B 0.02 O 2 .

【0015】[0015]

【表1】 [Table 1]

【0016】次いで、各複合酸化物粉末と、導電剤とし
てのアセチレンブラックと、結着剤としてのフッ素樹脂
粉末とを、重量比率90:6:4で混合して正極合剤を
調製し、この正極合剤を成形圧2トン/cm2 で直径2
0mmの円盤状に加圧成型し、250°Cで2時間熱処
理して正極を作製した。
Next, each composite oxide powder, acetylene black as a conductive agent, and a fluororesin powder as a binder were mixed at a weight ratio of 90: 6: 4 to prepare a positive electrode mixture. diameter cathode mixture at a molding pressure of 2 t / cm 2 2
A positive electrode was prepared by press-molding into a 0 mm disk shape and heat-treating at 250 ° C. for 2 hours.

【0017】〔負極の作製〕金属リチウム圧延板を直径
20mmの円盤状に打ち抜いて、負極を作製した。
[Preparation of Negative Electrode] A rolled metal lithium plate was punched into a disc having a diameter of 20 mm to prepare a negative electrode.

【0018】〔非水電解液の調製〕プロピレンカーボネ
ートと1,2−ジメトキシエタンとの体積比1:1の混
合溶媒に、LiClO4 を1モル/リットル溶かして非
水電解液を調製した。
[Preparation of Nonaqueous Electrolyte] LiClO 4 was dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1: 1 at 1 mol / L to prepare a nonaqueous electrolyte.

【0019】〔電池の組立〕 以上の各正極と負極と非水電解液とを用いて扁平型のリ
チウム電池A1〜A11、A13、A15〜A29を組
み立てた(電池寸法:直径24.0mm、厚さ3.0m
m)。なお、セパレータとしては、ポリプロピレン製の
微多孔膜を使用し、これに非水電解液を含浸させた。
[Assembly of Batteries] Flat lithium batteries A1 to A11, A13, and A15 to A29 were assembled using each of the above positive electrode, negative electrode, and nonaqueous electrolyte (battery dimensions: diameter 24.0 mm, thickness 24.0 mm). 3.0m
m). In addition, a microporous film made of polypropylene was used as a separator, and this was impregnated with a non-aqueous electrolyte.

【0020】図1は、組み立てたリチウム電池の模式的
断面図であり、図示のリチウム電池Aは、正極1、負極
2、これら両電極1,2を互いに離間するセパレータ
3、正極缶4、負極缶5、正極集電体6、負極集電体7
及びポリプロピレン製の絶縁パッキング8などからな
る。
FIG. 1 is a schematic cross-sectional view of an assembled lithium battery. The illustrated lithium battery A has a positive electrode 1, a negative electrode 2, a separator 3 for separating the electrodes 1 and 2 from each other, a positive electrode can 4, a negative electrode Can 5, positive electrode current collector 6, negative electrode current collector 7
And an insulating packing 8 made of polypropylene.

【0021】正極1及び負極2は、非水電解液を含浸し
たセパレータ3を介して対向して正負両極缶4,5が形
成する電池ケース内に収納されており、正極1は正極集
電体6を介して正極缶4に、また負極2は負極集電体7
を介して負極缶5に接続され、電池内部に生じた化学エ
ネルギーを正極缶4及び負極缶5の両端子から電気エネ
ルギーとして外部へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are housed in a battery case formed with positive and negative bipolar cans 4 and 5 facing each other via a separator 3 impregnated with a non-aqueous electrolyte. 6, the negative electrode 2 is connected to the positive electrode can 4
Is connected to the negative electrode can 5 so that the chemical energy generated inside the battery can be taken out as electric energy from both terminals of the positive electrode can 4 and the negative electrode can 5.

【0022】(比較例1)LiOHとTiO2 とをモル
比0.5:1で混合し、850°Cで20時間熱処理し
た後、石川式らいかい乳鉢にて粉砕して、組成式LiT
2 4 で表されるリチウム−チタン複合酸化物粉末を
作製した。
Comparative Example 1 LiOH and TiO 2 were mixed at a molar ratio of 0.5: 1, heat-treated at 850 ° C. for 20 hours, pulverized in an Ishikawa-type rai mortar, and subjected to the composition formula LiT
lithium represented by i 2 O 4 - to prepare a titanium composite oxide powder.

【0023】次いで、この複合酸化物粉末を正極活物質
として使用したこと以外は実施例1〜27と同様にし
て、比較電池B1を組み立てた。
Next, a comparative battery B1 was assembled in the same manner as in Examples 1-27 except that this composite oxide powder was used as a positive electrode active material.

【0024】(比較例2〜27)LiOHと、TiO2
と、表2に示す各原料(M原料)とを、Li:Ti:M
の原子比が0.5:0.75:0.25となるように混
合し、乾燥空気雰囲気下にて850°Cで20時間熱処
理(焼成)し、石川式らいかい乳鉢にて粉砕して、正極
活物質としての種々の複合酸化物粉末を作製した。
Comparative Examples 2 to 27 LiOH and TiO 2
And each raw material (M raw material) shown in Table 2 by Li: Ti: M
, And heat-treated (fired) at 850 ° C. for 20 hours in a dry air atmosphere, and pulverized in an Ishikawa-type rai mortar. Then, various composite oxide powders as positive electrode active materials were produced.

【0025】[0025]

【表2】 [Table 2]

【0026】次いで、これらの各複合酸化物粉末を正極
活物質として使用したこと以外は実施例1〜27と同様
にして、比較電池B2〜B27を組み立てた。
Next, comparative batteries B2 to B27 were assembled in the same manner as in Examples 1 to 27 , except that each of these composite oxide powders was used as a positive electrode active material.

【0027】〔放電容量〕各電池を1mAで4.3Vま
で充電した後、3mAで2.0Vまで放電して、各正極
活物質の放電容量を求めた。結果を先の表1又は表2に
示す。また、本発明電池A1〜A4及び比較電池B1,
B2の結果については、図2にも示す。図2は、使用せ
る複合酸化物を表す組成式Li0.5 Ti1-y y 2
のyの値と放電容量の関係を、縦軸に正極活物質の単位
重量当たりの放電容量を、また横軸にyの値をとって、
示したグラフである。さらに、本発明電池A2と比較電
池B1の各放電曲線を図3に示す。図3は、縦軸に電池
電圧(V)を、また横軸に放電容量(mAh/g)をと
って示したグラフである。
[Discharge Capacity] Each battery was charged to 4.3 V at 1 mA and then discharged to 2.0 V at 3 mA to determine the discharge capacity of each positive electrode active material. The results are shown in Table 1 or Table 2 above. In addition, batteries A1 to A4 of the present invention and comparative batteries B1,
The result of B2 is also shown in FIG. FIG. 2 shows the relationship between the value of y and the discharge capacity in the composition formula Li 0.5 Ti 1-y B y O 2 representing the composite oxide to be used, and the vertical axis shows the discharge capacity per unit weight of the positive electrode active material. Also, by taking the value of y on the horizontal axis,
It is a graph shown. FIG. 3 shows the respective discharge curves of the battery A2 of the present invention and the comparative battery B1. FIG. 3 is a graph showing the battery voltage (V) on the vertical axis and the discharge capacity (mAh / g) on the horizontal axis.

【0028】表1及び表2より、本発明電池A1〜A1
1、A13、A15〜A29に使用した各正極活物質
は、比較電池B1に使用した正極活物質(LiTi2
4 :リチウム−チタン複合酸化物)よりもはるかに大き
な放電容量を有することが分かる。本発明電池A2及び
A5〜A11、A13、A15〜A29(いずれもyの
値は0.1)のうちA2、A7、A8、A9、A13、
A15〜A17、A24及びA26の正極活物質の放電
容量が130mAh/g以上と特に大きいことから、T
iの置換元素MとしてはB、Al、Si、KCr
e、Co、Ni、Ru及びInが特に好ましいことが分
かる。また、図2及び表2より、放電容量の大きい正極
活物質を得る上で、yの値は0.02〜0.20の範囲
内とする必要があることが分かる。なお、B以外の他の
元素でTiを置換する場合についてもyの値が0.02
〜0.20の範囲内とした場合に放電容量の大きい正極
活物質が得られることを確認した。また、yの値はリチ
ウム量すなわちxの値に関係なく0.02〜0.20の
範囲内とする必要があることも確認した。さらに、図3
より、本発明電池の正極活物質が比較電池の正極活物質
に比べて放電容量が大きい理由が、放電電圧が高いこと
によるものであることが分かる。
According to Tables 1 and 2, the batteries A1 to A1 of the present invention are shown.
The positive electrode active materials used in Comparative Battery B1 (LiTi 2 O) were the same as those used in Comparative Battery B1.
4 : lithium-titanium composite oxide). The batteries A2, A7, A8, A9, A13, and A2 of the battery A2 of the present invention and A5 to A11, A13, and A15 to A29 (each having a value of 0.1) were used .
Since the discharge capacities of the positive electrode active materials of A15 to A17, A24 and A26 are particularly large at 130 mAh / g or more, T
B, Al, Si, K , Cr , F
It can be seen that e, Co, Ni, Ru and In are particularly preferred. 2 and Table 2 show that in order to obtain a positive electrode active material having a large discharge capacity, the value of y needs to be within the range of 0.02 to 0.20. The value of y is 0.02 in the case where Ti is replaced by an element other than B.
It was confirmed that a positive electrode active material having a large discharge capacity was obtained when the content was in the range of ~ 0.20. It was also confirmed that the value of y had to be in the range of 0.02 to 0.20 regardless of the amount of lithium, that is, the value of x. Further, FIG.
Thus, it can be seen that the reason why the positive electrode active material of the battery of the present invention has a larger discharge capacity than the positive electrode active material of the comparative battery is due to the higher discharge voltage.

【0029】(実施例28〜31) LiOHとTiO2 とB2 3 とNaOHとをLi:T
i:B:Naの原子比が0.5:0.8:0.2−p:
p(p=0.18、0.1、0.05又は0.02)と
なるように混合し、乾燥空気雰囲気下にて850°Cで
20時間熱処理(焼成)し、石川式らいかい乳鉢にて粉
砕して、正極活物質としての組成式Li0.5 Ti0.8
0.2-p Nap 2 で表される4種の複合酸化物粉末を作
製した。
(Examples 28 to 31 ) LiOH, TiO 2 , B 2 O 3 and NaOH were mixed with Li: T
i: The atomic ratio of B: Na is 0.5: 0.8: 0.2-p:
p (p = 0.18, 0.1, 0.05 or 0.02), heat-treated (fired) at 850 ° C. for 20 hours in a dry air atmosphere, And the composition formula Li 0.5 Ti 0.8 B as the positive electrode active material
Four types of composite oxide powders represented by 0.2-p Na p O 2 were produced.

【0030】次いで、これらの各複合酸化物粉末を正極
活物質として使用したこと以外は実施例1〜27と同様
にして、本発明電池A30(p=0.18,y=0.2
0)、A31(p=0.1,y=0.20)、A32
(p=0.05,y=0.20)、A33(p=0.0
2,y=0.20)を組み立てた。
Next, a battery A30 of the present invention (p = 0.18, y = 0.2) was prepared in the same manner as in Examples 1-27 except that each of these composite oxide powders was used as a positive electrode active material.
0), A31 (p = 0.1, y = 0.20), A32
(P = 0.05, y = 0.20), A33 (p = 0.0
2, y = 0.20).

【0031】(比較例28)LiOHとTiO2 とB2
3 とNaOHとをLi:Ti:B:Naの原子比が
0.5:0.75:0.2:0.05となるように混合
し、乾燥空気雰囲気下にて850°Cで20時間熱処理
(焼成)し、石川式らいかい乳鉢にて粉砕して、正極活
物質としての複合酸化物粉末(y=0.25)を作製し
た。
Comparative Example 28 LiOH, TiO 2 and B 2
O 3 and NaOH are mixed at an atomic ratio of Li: Ti: B: Na of 0.5: 0.75: 0.2: 0.05, and dried at 850 ° C. under an atmosphere of dry air at 20 ° C. The mixture was heat-treated (fired) for an hour and pulverized in an Ishikawa-type rai mortar to prepare a composite oxide powder (y = 0.25) as a positive electrode active material.

【0032】次いで、この複合酸化物粉末を正極活物質
として使用したこと以外は実施例1〜27と同様にし
て、比較電池B28を組み立てた。
Next, a comparative battery B28 was assembled in the same manner as in Examples 1-27 except that this composite oxide powder was used as a positive electrode active material.

【0033】〔放電容量〕各電池を先と同じ条件で充放
電して、放電容量を求めた。結果を表3に示す。
[Discharge capacity] Each battery was charged and discharged under the same conditions as above, and the discharge capacity was determined. Table 3 shows the results.

【0034】[0034]

【表3】 [Table 3]

【0035】表3に示すように、本発明電池A30〜A
33に使用した正極活物質の放電容量が大きいのに対し
て比較電池B28に使用した正極活物質の放電容量は極
めて小さい。このことから、正極活物質として使用する
複合酸化物はチタンの一部を2種以上の置換元素Mで置
換したものであってもよいが、置換元素MによるTiの
トータル置換量を式Lix Ti1-y y z 中のyの値
が0.02〜0.20の範囲となるようにする必要があ
ることが分かる。なお、他の置換元素Mについてもyの
値がこの範囲を外れると、正極活物質の放電容量が低下
することを確認した。
As shown in Table 3, the batteries A30 to A of the present invention
The discharge capacity of the positive electrode active material used in Comparative Battery B28 is extremely small, while the discharge capacity of the positive electrode active material used in Reference Battery 33 is very small. Therefore, composite oxide used as the positive electrode active material may be one obtained by substituting a part of titanium in more than one substituent element M, and the equations of the total amount of Ti substituted by substituent element M Li x the value of y in the Ti 1-y M y O z it can be seen that it is necessary to be in the range of 0.02 to 0.20. It was also confirmed that the discharge capacity of the positive electrode active material was reduced when the value of y was outside this range for the other substitution elements M.

【0036】上記実施例では、本発明を扁平型のリチウ
ム二次電池に適用する場合を例に挙げて説明したが、本
発明は電池形状に特に制限があるわけではなく、円筒
型、角型など、他の種々の形状のリチウム二次電池に適
用し得るものであるとともに、一次電池にも適用可能な
ものである。
In the above embodiment, the case where the present invention is applied to a flat type lithium secondary battery has been described as an example. However, the present invention is not particularly limited in the shape of the battery, and the present invention is not limited to the cylindrical type and the square type. For example, the present invention can be applied to lithium secondary batteries of various other shapes, and also applicable to primary batteries.

【0037】また、上記実施例では、非水電解質として
液体電解質を使用したが、本発明は固体電解質電池にも
適用可能なものである。
In the above embodiment, a liquid electrolyte is used as the non-aqueous electrolyte. However, the present invention can be applied to a solid electrolyte battery.

【0038】[0038]

【発明の効果】正極活物質として充放電電位の高い特定
の複合酸化物が使用されているので、本発明電池は容量
が大きい。
Since the specific composite oxide having a high charge / discharge potential is used as the positive electrode active material, the battery of the present invention has a large capacity.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で組み立てた扁平型のリチウム電池の断
面図である。
FIG. 1 is a cross-sectional view of a flat type lithium battery assembled in an example.

【図2】式Li0.5 Ti1-y y 2 中のyの値と放電
容量の関係を示すグラフである。
2 is a graph showing the relationship between the value and the discharge capacity of the formula Li 0.5 Ti 1-y B y O 2 in of y.

【図3】本発明電池及び比較電池の放電曲線を示すグラ
フである。
FIG. 3 is a graph showing discharge curves of a battery of the present invention and a comparative battery.

【符号の説明】[Explanation of symbols]

A リチウム電池 1 正極 2 負極 3 セパレータ A lithium battery 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平6−275265(JP,A) 特開 平5−13082(JP,A) 特開 平6−310143(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/36 - 4/62 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Koji Nishio, Inventor 2-5-5, Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshihiko Saito 2-5-2, Keihanhondori, Moriguchi-shi, Osaka No. 5 Inside Sanyo Electric Co., Ltd. (56) References JP-A-6-275265 (JP, A) JP-A-5-13082 (JP, A) JP-A-6-310143 (JP, A) (58) Field (Int.Cl. 7 , DB name) H01M 4/36-4/62

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】式Lix Ti1-y y z (式中、Mは
B、Na、Mg、Al、Si、K、Ca、ScCr
Fe、Co、Ni、Cu、Zn、Ga、Ge、Zr、N
b、Ru、Ag、Ta、Bi、In、Mo及びWよりな
る群から選ばれた少なくとも一種の元素、0<x≦1.
3、0.02≦y≦0.20、1.8≦z≦2.2)で
表される複合酸化物を正極活物質とするリチウム電池。
During 1. A formula Li x Ti 1-y M y O z ( wherein, M is B, Na, Mg, Al, Si, K, Ca, Sc, Cr,
Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, N
b, Ru, Ag, Ta, Bi, In, Mo and W, at least one element selected from the group consisting of 0 <x ≦ 1.
3. A lithium battery using a composite oxide represented by 0.02 ≦ y ≦ 0.20, 1.8 ≦ z ≦ 2.2) as a positive electrode active material.
【請求項2】式Lix Ti1-y y z (式中、Mは
B、Al、Si、KCrFe、Co、Ni、Ru及
びInよりなる群から選ばれた少なくとも一種の元素、
0<x≦1.3、0.02≦y≦0.20、1.8≦z
≦2.2)で表される複合酸化物を正極活物質とするリ
チウム電池。
2. The formula Li x Ti 1 -y My O z (wherein M is at least one selected from the group consisting of B, Al, Si, K , Cr , Fe, Co, Ni, Ru and In. Element,
0 <x ≦ 1.3, 0.02 ≦ y ≦ 0.20, 1.8 ≦ z
≦ 2.2) A lithium battery using a composite oxide represented by the following formula: 2.2 as a positive electrode active material.
JP09435195A 1995-03-27 1995-03-27 Lithium battery Expired - Fee Related JP3197779B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09435195A JP3197779B2 (en) 1995-03-27 1995-03-27 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09435195A JP3197779B2 (en) 1995-03-27 1995-03-27 Lithium battery

Publications (2)

Publication Number Publication Date
JPH08264179A JPH08264179A (en) 1996-10-11
JP3197779B2 true JP3197779B2 (en) 2001-08-13

Family

ID=14107869

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09435195A Expired - Fee Related JP3197779B2 (en) 1995-03-27 1995-03-27 Lithium battery

Country Status (1)

Country Link
JP (1) JP3197779B2 (en)

Families Citing this family (15)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6277521B1 (en) * 1997-05-15 2001-08-21 Fmc Corporation Lithium metal oxide containing multiple dopants and method of preparing same
JP3045998B2 (en) 1997-05-15 2000-05-29 エフエムシー・コーポレイション Interlayer compound and method for producing the same
CN1155134C (en) * 1997-07-15 2004-06-23 索尼株式会社 Non-aqueous electrolyte secondary cell
JP3142522B2 (en) * 1998-07-13 2001-03-07 日本碍子株式会社 Lithium secondary battery
AU1720000A (en) 1998-11-13 2000-06-05 Fmc Corporation Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same
ATE225755T1 (en) 1998-11-20 2002-10-15 Fmc Corp DOPED LITHIUM-MANGANESE MIXED OXIDES AND METHOD FOR PRODUCING THE SAME
CN1243664C (en) * 1999-12-10 2006-03-01 Fmc公司 Lithium cobalt oxides and methods of making same
KR100389655B1 (en) * 2000-10-14 2003-06-27 삼성에스디아이 주식회사 Lithium-ion secondary thin-film battery exhibiting good cycling stability and high ion-conductivity
CA2327370A1 (en) 2000-12-05 2002-06-05 Hydro-Quebec New method of manufacturing pure li4ti5o12 from the ternary compound tix-liy-carbon: effect of carbon on the synthesis and conductivity of the electrode
JP4602306B2 (en) * 2006-09-29 2010-12-22 株式会社東芝 Anode active material for non-aqueous electrolyte battery, non-aqueous electrolyte battery, battery pack and automobile
JP5434632B2 (en) * 2010-01-28 2014-03-05 株式会社Gsユアサ Non-aqueous electrolyte secondary battery active material and non-aqueous electrolyte secondary battery
JP2011181222A (en) * 2010-02-26 2011-09-15 Hitachi Ltd Lithium ion battery
US9011713B2 (en) * 2011-07-05 2015-04-21 Samsung Sdi Co., Ltd. Composite, method of manufacturing the composite, anode active material including the composite, anode including the anode active material, and lithium secondary battery including the anode
EP2592050B1 (en) * 2011-11-11 2014-05-14 Samsung SDI Co., Ltd. Composite, method of manufacturing the composite, negative electrode active material including the composite, negative electrode including the negative electrode active material, and lithium secondary battery including the same
SE546073C2 (en) * 2020-08-14 2024-05-07 Tiotech As An electrode material and a battery comprising titanium dioxide bronze

Also Published As

Publication number Publication date
JPH08264179A (en) 1996-10-11

Similar Documents

Publication Publication Date Title
JP3625680B2 (en) Lithium secondary battery
JP3059832B2 (en) Lithium secondary battery
JP3141858B2 (en) Lithium transition metal halide oxide, method for producing the same and use thereof
JP3197779B2 (en) Lithium battery
JPH09330720A (en) Lithium battery
JPH06243871A (en) Nonaqueous secondary battery
JPH06342673A (en) Lithium secondary battery
JP3062304B2 (en) Non-aqueous solvent secondary battery
JP3649996B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3244389B2 (en) Lithium secondary battery
JP3717544B2 (en) Lithium secondary battery
JP3768046B2 (en) Lithium secondary battery
JPH0684542A (en) Nonaqueous electrolytic solution secondary battery
JP3625679B2 (en) Lithium secondary battery
US6403258B1 (en) Lithium secondary battery comprising tungsten composite oxide
US6391496B1 (en) Lithium secondary battery with orthorhombic molybdenum and niobium oxide electrodes
KR100555972B1 (en) Cathode active material and lithium secondary battery employing the same
US6383685B1 (en) Lithium secondary battery
JP3268924B2 (en) Non-aqueous electrolyte battery
US6383684B1 (en) Lithium secondary battery comprising tungsten-containing oxide of monoclinic crystal structure
JPH05182668A (en) Nonaqueous electrolyte secondary battery
JP3167577B2 (en) Lithium battery
JP3619702B2 (en) Lithium secondary battery
JP3615416B2 (en) Lithium secondary battery
JPH06243869A (en) Nonaqueous secondary battery

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20080608

Year of fee payment: 7

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090608

Year of fee payment: 8

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20100608

Year of fee payment: 9

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20110608

Year of fee payment: 10

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120608

Year of fee payment: 11

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130608

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees