JP3167577B2 - Lithium battery - Google Patents

Lithium battery

Info

Publication number
JP3167577B2
JP3167577B2 JP09435095A JP9435095A JP3167577B2 JP 3167577 B2 JP3167577 B2 JP 3167577B2 JP 09435095 A JP09435095 A JP 09435095A JP 9435095 A JP9435095 A JP 9435095A JP 3167577 B2 JP3167577 B2 JP 3167577B2
Authority
JP
Japan
Prior art keywords
lithium
positive electrode
battery
electrode active
active material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP09435095A
Other languages
Japanese (ja)
Other versions
JPH08264182A (en
Inventor
幹也 山崎
真弓 上原
良浩 小路
晃治 西尾
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP09435095A priority Critical patent/JP3167577B2/en
Publication of JPH08264182A publication Critical patent/JPH08264182A/en
Application granted granted Critical
Publication of JP3167577B2 publication Critical patent/JP3167577B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Primary Cells (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【産業上の利用分野】本発明は、リチウム電池に係わ
り、詳しくは高容量なリチウム電池を提供することを目
的とした、正極活物質の改良に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium battery, and more particularly to an improvement of a positive electrode active material for providing a high capacity lithium battery.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウム電池が、水の分解電圧を考慮する必要がなく、
正極活物質を適宜選定することにより高電圧化、高容量
化を図ることが可能であることから、注目されつつあ
る。
2. Description of the Related Art In recent years,
Lithium battery does not need to consider the decomposition voltage of water,
Attention has been paid to the fact that it is possible to increase the voltage and the capacity by appropriately selecting the positive electrode active material.

【0003】この種の電池の代表的な正極活物質は金属
酸化物である。例えば、正極活物質としてLiCoO2
(リチウム−コバルト複合酸化物)を使用したリチウム
電池が既に実用化されている。LiCoO2 は、リチウ
ム原料とコバルト原料との混合物を所定の温度で焼成す
る固相法により、120mAh/g以上のかなり大きな
容量を有するものが容易に得られる。
[0003] A typical positive electrode active material of this type of battery is a metal oxide. For example, as a positive electrode active material, LiCoO 2
Lithium batteries using (lithium-cobalt composite oxide) have already been put to practical use. LiCoO 2 having a considerably large capacity of 120 mAh / g or more can be easily obtained by a solid phase method in which a mixture of a lithium raw material and a cobalt raw material is fired at a predetermined temperature.

【0004】これに対して、LiFeO2 等のリチウム
−鉄複合酸化物は、自然界に豊富に存在する鉄を原材料
とするため安価である。それにもかかわらず、この種の
電池の正極活物質としてリチウム−鉄複合酸化物は従来
殆ど検討されていない。これは、リチウム−鉄複合酸化
物の容量が総じて小さいことによるものである。
[0004] On the other hand, lithium-iron composite oxides such as LiFeO 2 are inexpensive because they use iron which is abundant in nature as a raw material. Nevertheless, almost no lithium-iron composite oxide has been studied as a positive electrode active material for this type of battery. This is because the capacity of the lithium-iron composite oxide is generally small.

【0005】そこで、リチウム−鉄複合酸化物の正極材
料としての実用化を図るべく鋭意研究した結果、本発明
者らは、リチウム原料及び鉄原料として少なくともいず
れか一方に硫化物を使用するようにすれば、LiCoO
2 と比べても遜色のない大きな容量を有するリチウム−
鉄複合硫化物が固相法により容易に得られることを見出
した。
[0005] Accordingly, as a result of diligent research aimed at putting a lithium-iron composite oxide into practical use as a positive electrode material, the present inventors have found that a sulfide is used as at least one of a lithium raw material and an iron raw material. If you do, LiCoO
Lithium with a large capacity comparable to 2-
It has been found that iron complex sulfide can be easily obtained by the solid phase method.

【0006】本発明は、かかる知見に基づきなされたも
のであって、その目的とするところは、特定のリチウム
−鉄複合硫化物を正極活物質とする高容量なリチウム電
池を提供するにある。
The present invention has been made based on such findings, and an object of the present invention is to provide a high-capacity lithium battery using a specific lithium-iron composite sulfide as a positive electrode active material.

【0007】[0007]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るリチウム電池(本発明電池)は、式Li
x Fe1-y y z (式中、MはB、Al、Ti、V、
Cr、Mn、Co、Ni、Cu、Zn、Nb、Mo、R
u、Rh、Pd、Ag、Cd、W及びPtよりなる群か
ら選ばれた少なくとも1種の元素、0<x≦3.0、0
≦y≦0.20、1.8≦z≦2.2)で表されるリチ
ウム−鉄複合硫化物を正極活物質とするものである。
To achieve the above object, a lithium battery according to the present invention (battery of the present invention) has the formula Li
x Fe in 1-y M y S z (wherein, M is B, Al, Ti, V,
Cr, Mn, Co, Ni, Cu, Zn, Nb, Mo, R
at least one element selected from the group consisting of u, Rh, Pd, Ag, Cd, W and Pt, 0 <x ≦ 3.0, 0
.Ltoreq.y.ltoreq.0.20 and 1.8.ltoreq.z.ltoreq.2.2) as the positive electrode active material.

【0008】本発明電池のリチウムを活物質とする負極
は、リチウムイオンを電気化学的に吸蔵及び放出するこ
とが可能な物質又は金属リチウムを電極材料に使用して
作製される。リチウムイオンを電気化学的に吸蔵及び放
出することが可能な物質としては、黒鉛、コークス、有
機物焼成体等の炭素材料、リチウム合金(リチウム−ア
ルミニウム合金、リチウム−鉛合金、リチウム−錫合
金)及び正極に対して電位の卑な金属酸化物(例えばニ
オブ酸化物)が例示される。
The negative electrode using lithium as an active material of the battery of the present invention is manufactured using a material capable of electrochemically absorbing and releasing lithium ions or metallic lithium as an electrode material. Examples of the substance capable of electrochemically storing and releasing lithium ions include carbon materials such as graphite, coke, and fired organic materials, lithium alloys (lithium-aluminum alloy, lithium-lead alloy, lithium-tin alloy) and A metal oxide (for example, niobium oxide) having a potential lower than that of the positive electrode is exemplified.

【0009】本発明電池の正極活物質は、式Lix Fe
1-y y z (式中、MはB、Al、Ti、V、Cr、
Mn、Co、Ni、Cu、Zn、Nb、Mo、Ru、R
h、Pd、Ag、Cd、W及びPtよりなる群から選ば
れた少なくとも1種の元素、0<x≦3.0、0≦y≦
0.20、1.8≦z≦2.2)で表されるリチウム−
鉄複合硫化物である。このリチウム−鉄複合硫化物は、
例えばリチウム化合物(Li2 S、Li2 O、LiO
H、Li2 CO3 、CH3 COOLiなど)と、鉄化合
物(FeS、FeO、Fe2 3 、Fe3 4 、FeO
OH、FeSO4など)と、必要に応じて混合する元素
Mの化合物(Mの硫化物、酸化物など)との硫化物を含
む混合物を乾燥空気雰囲気下にて300〜600°Cの
温度で4〜40時間熱処理することにより得られる。リ
チウム原料及び鉄原料の少なくとも一方の原料としてそ
れらの硫化物を使用すれば固相法により容易にリチウム
−鉄複合硫化物を得ることができる。
The positive electrode active material of the battery of the present invention has the formula Li x Fe
1-y M y S z (wherein, M is B, Al, Ti, V, Cr,
Mn, Co, Ni, Cu, Zn, Nb, Mo, Ru, R
at least one element selected from the group consisting of h, Pd, Ag, Cd, W and Pt, 0 <x ≦ 3.0, 0 ≦ y ≦
0.20, 1.8 ≦ z ≦ 2.2)
It is an iron compound sulfide. This lithium-iron composite sulfide is
For example, lithium compounds (Li 2 S, Li 2 O, LiO
H, Li 2 CO 3 , CH 3 COOLi, etc.) and iron compounds (FeS, FeO, Fe 2 O 3 , Fe 3 O 4 , FeO)
OH, FeSO 4 , etc.) and a sulfide-containing mixture of a compound of element M (M sulfide, oxide, etc.), if necessary, in a dry air atmosphere at a temperature of 300 to 600 ° C. It is obtained by heat treatment for 4 to 40 hours. If a sulfide thereof is used as at least one of a lithium raw material and an iron raw material, a lithium-iron composite sulfide can be easily obtained by a solid phase method.

【0010】本発明の特徴は、リチウム電池の高容量化
を図るべく、容量の小さいリチウム−鉄複合酸化物に代
えて、容量の大きい特定のリチウム−鉄複合硫化物を正
極活物質として使用した点にある。それゆえ、非水電解
質など、電池を構成する他の部材については、従来リチ
ウム電池用として提案され、或いは実用されている種々
の材料を特に制限なく用いることが可能である。
A feature of the present invention is that a specific lithium-iron composite sulfide having a large capacity is used as a positive electrode active material instead of a lithium-iron composite oxide having a small capacity in order to increase the capacity of a lithium battery. On the point. Therefore, as for other members constituting the battery, such as a non-aqueous electrolyte, various materials conventionally proposed or used for lithium batteries can be used without any particular limitation.

【0011】例えば、非水電解質として液体電解質を使
用する場合の溶媒としては、エチレンカーボネート、ビ
ニレンカーボネート、プロピレンカーボネートなどの高
誘電率溶媒や、これらとジエチルカーボネート、ジメチ
ルカーボネート、1,2−ジメトキシエタン、1,2−
ジエトキシエタン、エトキシメトキシエタンなどの低沸
点溶媒との混合溶媒が、同溶質としては、LiPF6
LiClO4 、LiCF3 SO3 、LiN(CF3 SO
2 2 、LiBF4 、LiAsF6 が、それぞれ例示さ
れる。また、固体電解質を使用することも可能である。
For example, when a liquid electrolyte is used as the non-aqueous electrolyte, the solvent may be a high dielectric constant solvent such as ethylene carbonate, vinylene carbonate, propylene carbonate, etc., or a mixture thereof with diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane. , 1,2-
Diethoxyethane, a mixed solvent with a low boiling point solvent such as ethoxymethoxyethane, as the solute, LiPF 6 ,
LiClO 4 , LiCF 3 SO 3 , LiN (CF 3 SO
2 ) 2 , LiBF 4 and LiAsF 6 are each exemplified. It is also possible to use a solid electrolyte.

【0012】[0012]

【作用】容量の大きい特定のリチウム−鉄複合硫化物が
正極活物質として使用されているので、本発明電池は、
リチウム−鉄複合酸化物を正極活物質として使用した従
来公知のリチウム電池に比し、容量が格段大きい。
Since the specific lithium-iron composite sulfide having a large capacity is used as the positive electrode active material, the battery of the present invention is
The capacity is much larger than that of a conventionally known lithium battery using a lithium-iron composite oxide as a positive electrode active material.

【0013】[0013]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to the following examples, and the present invention may be practiced by appropriately changing the gist of the invention. Is possible.

【0014】(実施例1〜10) 〔正極の作製〕表1に示す種々のリチウム原料と鉄原料
とを、Li:Feの原子比が1:1となるように混合
し、乾燥空気雰囲気下にて500°Cで20時間熱処理
し、石川式らいかい乳鉢にて粉砕して、組成式LiFe
2 で表される正極活物質としてのリチウム−鉄複合硫
化物粉末を作製した。
(Examples 1 to 10) [Preparation of Positive Electrode] Various lithium raw materials and iron raw materials shown in Table 1 were mixed so that the atomic ratio of Li: Fe became 1: 1 and dried in a dry air atmosphere. Heat treatment at 500 ° C for 20 hours, pulverize in an Ishikawa-type rai mortar, and formula LiFe
Lithium as a positive electrode active material represented by S 2 - was produced iron composite sulfide powder.

【0015】[0015]

【表1】 [Table 1]

【0016】次いで、各リチウム−鉄複合硫化物粉末
と、導電剤としてのアセチレンブラックと、結着剤とし
てのフッ素樹脂粉末とを、重量比率90:6:4で混合
して正極合剤を調製し、この正極合剤を成形圧2トン/
cm2 で直径20mmの円盤状に加圧成型し、250°
Cで2時間熱処理して正極を作製した。
Next, each lithium-iron composite sulfide powder, acetylene black as a conductive agent, and a fluororesin powder as a binder are mixed at a weight ratio of 90: 6: 4 to prepare a positive electrode mixture. Then, the positive electrode mixture was molded at a molding pressure of 2 tons /
Pressure molding into a disc shape with a diameter of 20 mm in cm 2 and 250 °
C was heat-treated for 2 hours to produce a positive electrode.

【0017】〔負極の作製〕金属リチウム圧延板を直径
20mmの円盤状に打ち抜いて、負極を作製した。
[Preparation of Negative Electrode] A rolled metal lithium plate was punched into a disc having a diameter of 20 mm to prepare a negative electrode.

【0018】〔非水電解液の調製〕プロピレンカーボネ
ートと1,2−ジメトキシエタンとの体積比1:1の混
合溶媒に、LiClO4 を1モル/リットル溶かして非
水電解液を調製した。
[Preparation of Nonaqueous Electrolyte] LiClO 4 was dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1: 1 at 1 mol / L to prepare a nonaqueous electrolyte.

【0019】〔電池の組立〕以上の各正極と負極と非水
電解液とを用いて扁平型のリチウム電池A1〜A10を
組み立てた(電池寸法:直径24.0mm、厚さ3.0
mm)。なお、セパレータとしては、ポリプロピレン製
の微多孔膜を使用し、これに非水電解液を含浸させた。
[Assembly of batteries] Flat lithium batteries A1 to A10 were assembled using each of the above positive electrode, negative electrode, and nonaqueous electrolyte (battery dimensions: diameter: 24.0 mm, thickness: 3.0).
mm). In addition, a microporous film made of polypropylene was used as a separator, and this was impregnated with a non-aqueous electrolyte.

【0020】図1は、組み立てたリチウム電池の模式的
断面図であり、図示のリチウム電池Aは、正極1、負極
2、これら両電極1,2を互いに離間するセパレータ
3、正極缶4、負極缶5、正極集電体6、負極集電体7
及びポリプロピレン製の絶縁パッキング8などからな
る。
FIG. 1 is a schematic cross-sectional view of an assembled lithium battery. The illustrated lithium battery A has a positive electrode 1, a negative electrode 2, a separator 3 for separating the electrodes 1 and 2 from each other, a positive electrode can 4, a negative electrode Can 5, positive electrode current collector 6, negative electrode current collector 7
And an insulating packing 8 made of polypropylene.

【0021】正極1及び負極2は、非水電解液を含浸し
たセパレータ3を介して対向して正負両極缶4,5が形
成する電池ケース内に収納されており、正極1は正極集
電体6を介して正極缶4に、また負極2は負極集電体7
を介して負極缶5に接続され、電池内部に生じた化学エ
ネルギーを正極缶4及び負極缶5の両端子から電気エネ
ルギーとして外部へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are housed in a battery case formed with positive and negative bipolar cans 4 and 5 facing each other via a separator 3 impregnated with a non-aqueous electrolyte. 6, the negative electrode 2 is connected to the positive electrode can 4
Is connected to the negative electrode can 5 so that the chemical energy generated inside the battery can be taken out as electric energy from both terminals of the positive electrode can 4 and the negative electrode can 5.

【0022】(比較例1)LiOHとFeOOHとをモ
ル比1:1で混合し、850°Cで20時間熱処理した
後、粉砕して、組成式LiFeO2 で表されるリチウム
−鉄複合酸化物粉末を作製した。
Comparative Example 1 LiOH and FeOOH were mixed at a molar ratio of 1: 1 and heat-treated at 850 ° C. for 20 hours, and then pulverized to obtain a lithium-iron composite oxide represented by the composition formula LiFeO 2 . A powder was made.

【0023】次いで、このリチウム−鉄複合酸化物粉末
を正極活物質として使用したこと以外は実施例1〜10
と同様にして、比較電池B1を組み立てた。
Next, Examples 1 to 10 were repeated except that this lithium-iron composite oxide powder was used as a positive electrode active material.
In the same manner as in the above, a comparative battery B1 was assembled.

【0024】(比較例2)LiOHとCo(OH)2
をモル比1:1で混合し、850°Cで20時間熱処理
した後、粉砕して、組成式LiCoO2 で表されるリチ
ウム−コバルト複合酸化物粉末を作製した。
COMPARATIVE EXAMPLE 2 LiOH and Co (OH) 2 were mixed at a molar ratio of 1: 1 and heat-treated at 850 ° C. for 20 hours, and then pulverized to obtain a lithium compound represented by the composition formula LiCoO 2. A cobalt composite oxide powder was produced.

【0025】次いで、このリチウム−コバルト複合酸化
物粉末を正極活物質として使用したこと以外は実施例1
〜10と同様にして、比較電池B2を組み立てた。
Next, Example 1 was repeated except that this lithium-cobalt composite oxide powder was used as a positive electrode active material.
Comparative Battery B2 was assembled in the same manner as in Comparative Examples B to 10.

【0026】〔放電容量〕各電池を1mAで4.3Vま
で充電した後、3mAで2.0Vまで放電して、正極活
物質の単位重量当たりの放電容量を求めた。結果を先の
表1に示す。
[Discharge Capacity] Each battery was charged to 4.3 V at 1 mA and then discharged to 2.0 V at 3 mA to determine the discharge capacity per unit weight of the positive electrode active material. The results are shown in Table 1 above.

【0027】表1より、本発明電池A1〜A10に使用
した各正極活物質は、比較電池B1に使用した正極活物
質よりもはるかに大きな放電容量を有することが分か
る。
Table 1 shows that each of the positive electrode active materials used in the batteries A1 to A10 of the present invention has a much larger discharge capacity than the positive electrode active material used in the comparative battery B1.

【0028】(実施例11〜14)Li2 SとFeSと
CoSとをLi:Fe:Coの原子比が1:1−y:y
(y=0.05、0.1、0.15又は0.20)とな
るように混合し、500°Cで20時間熱処理した後、
粉砕して、組成式LiFe1-y Coy 2 で表される4
種のリチウム−鉄複合硫化物粉末を作製した。
(Examples 11 to 14) Li 2 S, FeS and CoS were prepared by changing the atomic ratio of Li: Fe: Co to 1: 1-y: y.
(Y = 0.05, 0.1, 0.15 or 0.20) and heat-treated at 500 ° C. for 20 hours.
After pulverization, 4 represented by the composition formula LiFe 1-y Co y S 2
Various lithium-iron composite sulfide powders were prepared.

【0029】次いで、これらの各リチウム−鉄複合硫化
物粉末を正極活物質として使用したこと以外は実施例1
〜10と同様にして、本発明電池A11(y=0.0
5)、A12(y=0.1)、A13(y=0.1
5)、A14(y=0.20)を組み立てた。
Next, Example 1 was repeated except that each of these lithium-iron composite sulfide powders was used as a positive electrode active material.
In the same manner as in Examples 10 to 10, the battery A11 of the present invention (y = 0.0
5), A12 (y = 0.1), A13 (y = 0.1
5), A14 (y = 0.20) was assembled.

【0030】(比較例3)Li2 SとFeSとCoSと
をLi:Fe:Coの原子比が1:0.79:0.21
となるように混合し、500°Cで20時間熱処理した
後、粉砕して、組成式LiFe0.79Co0.212 で表さ
れるリチウム−鉄複合硫化物粉末を作製した。
(Comparative Example 3) Li 2 S, FeS and CoS were prepared by mixing Li: Fe: Co at an atomic ratio of 1: 0.79: 0.21.
And heat-treated at 500 ° C. for 20 hours, and then pulverized to produce a lithium-iron composite sulfide powder represented by a composition formula: LiFe 0.79 Co 0.21 S 2 .

【0031】次いで、このリチウム−鉄複合硫化物粉末
を正極活物質として使用したこと以外は実施例1〜10
と同様にして、比較電池B3を組み立てた。
Next, Examples 1 to 10 were repeated except that this lithium-iron composite sulfide powder was used as a positive electrode active material.
In the same manner as in the above, a comparative battery B3 was assembled.

【0032】〔放電容量〕各電池を先と同じ条件で充放
電して、放電容量を求めた。結果を表2に示す。
[Discharge capacity] Each battery was charged and discharged under the same conditions as above, and the discharge capacity was determined. Table 2 shows the results.

【0033】[0033]

【表2】 [Table 2]

【0034】表2に示すように、本発明電池A11〜A
14に使用した各正極活物質は放電容量が大きいのに対
して比較電池B3に使用した正極活物質は放電容量が極
めて小さい。このことから、正極活物質として使用する
リチウム−鉄複合硫化物は鉄の一部を2種以上の置換元
素Mで置換したものであってもよいが、置換元素Mによ
る鉄のトータル置換量を式Lix Fe1-y y z 中の
yの値が0.20以下のものを使用する必要があること
が分かる。なお、他の置換元素Mについてもyの値が
0.20を越えると、放電容量が低下することを確認し
た。
As shown in Table 2, the batteries A11 to A of the present invention
Each of the positive electrode active materials used in 14 has a large discharge capacity, whereas the positive electrode active material used in Comparative Battery B3 has a very small discharge capacity. For this reason, the lithium-iron composite sulfide used as the positive electrode active material may be one in which a part of iron is replaced by two or more types of the substitution elements M. it can be seen that the value of the expression Li x Fe 1-y M y S z in y needs to use a 0.20 or less. In addition, it was confirmed that when the value of y exceeded 0.20 for the other substitution elements M, the discharge capacity decreased.

【0035】(実施例15〜32)LiS(リチウム原
料)と、FeS(鉄原料)と、表3に示す種々の置換元
素Mの原料とを、Li:Fe:Mの原子比が1:0.9
0:0.10となるように混合し、乾燥空気雰囲気下に
て500°Cで20時間熱処理し、石川式らいかい乳鉢
にて粉砕して、表3に示すリチウム−鉄複合硫化物粉末
を作製した。
(Examples 15 to 32) LiS (lithium raw material), FeS (iron raw material), and various raw materials of the substitution elements M shown in Table 3 were mixed at an atomic ratio of Li: Fe: M of 1: 0. .9
0: 0.10, heat-treated at 500 ° C. for 20 hours in a dry air atmosphere, and pulverized in an Ishikawa-type rai mortar to obtain a lithium-iron composite sulfide powder shown in Table 3. Produced.

【0036】次いで、これらのリチウム−鉄複合硫化物
粉末を正極活物質として使用したこと以外は実施例1〜
10と同様にして、本発明電池A15〜A32を組み立
てた。
Next, Examples 1 to 4 were used except that these lithium-iron composite sulfide powders were used as a positive electrode active material.
In the same manner as in No. 10, the batteries A15 to A32 of the present invention were assembled.

【0037】〔放電容量〕各電池を先と同じ条件で充放
電して、正極活物質の放電容量を求めた。結果を表3に
示す。
[Discharge Capacity] Each battery was charged and discharged under the same conditions as above, and the discharge capacity of the positive electrode active material was determined. Table 3 shows the results.

【0038】[0038]

【表3】 [Table 3]

【0039】表3に示すように、本発明電池A15〜A
32のうちA15〜A18、A20〜A21に使用した
正極活物質の放電容量が155mAh/g以上と特に大
きい。このこと及び表2中の本発明電池A12に使用し
た正極活物質の放電容量が大きいことから、鉄の置換元
素としては、B、Al、Ti、V、Mn、Co、Ni及
びCuが好ましいことが分かる。
As shown in Table 3, the batteries A15 to A of the present invention
Of the 32, the discharge capacity of the positive electrode active materials used for A15 to A18 and A20 to A21 is particularly large at 155 mAh / g or more. Because of this and the large discharge capacity of the positive electrode active material used in the battery A12 of the present invention in Table 2, B, Al, Ti, V, Mn, Co, Ni, and Cu are preferable as the iron substitution elements. I understand.

【0040】上記実施例では、本発明を扁平型電池に適
用する場合を例に挙げて説明したが、本発明は電池形状
に特に制限があるわけではなく、円筒型、角型など、他
の種々の形状のリチウム二次電池に適用し得るものであ
るとともに、一次電池及び二次電池のいずれにも適用可
能なものである。
In the above embodiment, the case where the present invention is applied to a flat type battery has been described as an example. However, the present invention is not particularly limited in the shape of the battery. The present invention can be applied to lithium secondary batteries of various shapes, and can be applied to both primary batteries and secondary batteries.

【0041】また、上記実施例では、非水電解質として
液体電解質を使用したが、本発明は固体電解質電池にも
適用可能なものである。
In the above embodiment, a liquid electrolyte is used as the non-aqueous electrolyte. However, the present invention can be applied to a solid electrolyte battery.

【0042】[0042]

【発明の効果】正極活物質として容量の大きい特定のリ
チウム−鉄複合硫化物が使用されているので、本発明電
池は容量が大きい。また、本発明電池は、正極活物質が
安価なために低コストで製造することができる。
Since the specific lithium-iron composite sulfide having a large capacity is used as the positive electrode active material, the battery of the present invention has a large capacity. Further, the battery of the present invention can be manufactured at low cost because the positive electrode active material is inexpensive.

【図面の簡単な説明】[Brief description of the drawings]

【図1】実施例で組み立てた扁平型のリチウム電池の断
面図である。
FIG. 1 is a cross-sectional view of a flat type lithium battery assembled in an example.

【符号の説明】[Explanation of symbols]

A リチウム電池 1 正極 2 負極 3 セパレータ A lithium battery 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三洋電機株式会社内 (56)参考文献 特開 平6−275315(JP,A) 特開 昭63−102163(JP,A) (58)調査した分野(Int.Cl.7,DB名) H01M 4/36 - 4/62 ──────────────────────────────────────────────────の Continuing on the front page (72) Koji Nishio, inventor 2-5-5, Keihanhondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Toshihiko Saito 2-5-2, Keihanhondori, Moriguchi-shi, Osaka No. 5 Inside Sanyo Electric Co., Ltd. (56) References JP-A-6-275315 (JP, A) JP-A-63-102163 (JP, A) (58) Fields investigated (Int. Cl. 7 , DB name) H01M 4/36-4/62

Claims (2)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】式Lix Fe1-y y z (式中、Mは
B、Al、Ti、V、Cr、Mn、Co、Ni、Cu、
Zn、Nb、Mo、Ru、Rh、Pd、Ag、Cd、W
及びPtよりなる群から選ばれた少なくとも1種の元
素、0<x≦3.0、0≦y≦0.20、1.8≦z≦
2.2)で表されるリチウム−鉄複合硫化物を正極活物
質とするリチウム電池。
1. A wherein Li x Fe 1-y M y S z ( wherein, M is B, Al, Ti, V, Cr, Mn, Co, Ni, Cu,
Zn, Nb, Mo, Ru, Rh, Pd, Ag, Cd, W
And at least one element selected from the group consisting of Pt and Pt, 0 <x ≦ 3.0, 0 ≦ y ≦ 0.20, 1.8 ≦ z ≦
A lithium battery using the lithium-iron composite sulfide represented by 2.2) as a positive electrode active material.
【請求項2】式Lix Fe1-y y z (式中、Mは
B、Al、Ti、V、Mn、Co、Ni及びCuよりな
る群から選ばれた少なくとも1種の元素、0<x≦3.
0、0≦y≦0.20、1.8≦z≦2.2)で表され
るリチウム−鉄複合硫化物を正極活物質とするリチウム
電池。
Wherein formula Li x Fe 1-y M y S z ( wherein, M is B, Al, Ti, V, Mn, Co, at least one element selected from the group consisting of Ni and Cu, 0 <x ≦ 3.
0, 0 ≦ y ≦ 0.20, 1.8 ≦ z ≦ 2.2) A lithium battery using a lithium-iron composite sulfide represented by the following formula:
JP09435095A 1995-03-27 1995-03-27 Lithium battery Expired - Fee Related JP3167577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP09435095A JP3167577B2 (en) 1995-03-27 1995-03-27 Lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP09435095A JP3167577B2 (en) 1995-03-27 1995-03-27 Lithium battery

Publications (2)

Publication Number Publication Date
JPH08264182A JPH08264182A (en) 1996-10-11
JP3167577B2 true JP3167577B2 (en) 2001-05-21

Family

ID=14107842

Family Applications (1)

Application Number Title Priority Date Filing Date
JP09435095A Expired - Fee Related JP3167577B2 (en) 1995-03-27 1995-03-27 Lithium battery

Country Status (1)

Country Link
JP (1) JP3167577B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005259629A (en) * 2004-03-15 2005-09-22 Sanyo Electric Co Ltd Positive electrode for nonaqueous electrolyte battery, its manufacturing method, battery using the electrode, and manufacturing method of the battery
KR100805910B1 (en) * 2006-12-29 2008-02-21 한양대학교 산학협력단 Olivine type positive active material for lithium battery, method for preparing the same, and lithium battery comprising the same
GB2464455B (en) * 2008-10-14 2010-09-15 Iti Scotland Ltd Lithium-containing transition metal sulfide compounds
US10854916B2 (en) * 2018-09-26 2020-12-01 University Of Maryland, College Park Lithium metal sulfides as lithium super-ionic conductors

Also Published As

Publication number Publication date
JPH08264182A (en) 1996-10-11

Similar Documents

Publication Publication Date Title
JP3600051B2 (en) Lithium secondary battery
EP1903627A1 (en) Cathode active material for a lithium battery
JP2000156229A (en) Nonaqueous electrolyte lithium secondary battery
JPH08250120A (en) Lithium secondary battery
JP2000030703A (en) Negative electrode material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using this negative electrode material
JP3197779B2 (en) Lithium battery
JPH06342673A (en) Lithium secondary battery
JP3649996B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
JP3188026B2 (en) Non-aqueous battery
JP3717544B2 (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JP3819663B2 (en) Lithium secondary battery charge / discharge method and lithium secondary battery
US6482546B1 (en) Rechargeable lithium battery
JP3167577B2 (en) Lithium battery
US6403258B1 (en) Lithium secondary battery comprising tungsten composite oxide
KR100555972B1 (en) Cathode active material and lithium secondary battery employing the same
JP3268924B2 (en) Non-aqueous electrolyte battery
JP2005317447A (en) Battery
US6383685B1 (en) Lithium secondary battery
JP2000100469A (en) Nonaqueous electrolyte battery
US6383684B1 (en) Lithium secondary battery comprising tungsten-containing oxide of monoclinic crystal structure
JPH06111820A (en) Nonaqueous battery
JP3670895B2 (en) Lithium secondary battery
JP4457441B2 (en) Nonaqueous electrolyte secondary battery
US6465131B1 (en) Lithium secondary cell with a stannous electrode material

Legal Events

Date Code Title Description
FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20090309

Year of fee payment: 8

LAPS Cancellation because of no payment of annual fees