JPH08250120A - Lithium secondary battery - Google Patents

Lithium secondary battery

Info

Publication number
JPH08250120A
JPH08250120A JP7078296A JP7829695A JPH08250120A JP H08250120 A JPH08250120 A JP H08250120A JP 7078296 A JP7078296 A JP 7078296A JP 7829695 A JP7829695 A JP 7829695A JP H08250120 A JPH08250120 A JP H08250120A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lithium
electrode active
battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP7078296A
Other languages
Japanese (ja)
Inventor
Mayumi Uehara
真弓 上原
Yoshihiro Shoji
良浩 小路
Mikiya Yamazaki
幹也 山崎
Koji Nishio
晃治 西尾
Toshihiko Saito
俊彦 斎藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sanyo Electric Co Ltd
Original Assignee
Sanyo Electric Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sanyo Electric Co Ltd filed Critical Sanyo Electric Co Ltd
Priority to JP7078296A priority Critical patent/JPH08250120A/en
Publication of JPH08250120A publication Critical patent/JPH08250120A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PURPOSE: To provide a lithium secondary battery having an increased charge/ discharge cycle characteristic. CONSTITUTION: This lithium secondary battery is provided with a positive electrode wherein a lithium-'transition metals' composite oxide is adopted as positive electrode active material, a negative electrode, and a nonaqueous electrolyte containing an organic solvent. The lithium-'transition metals' composite oxide has the sulfide of B, Na, Mg, Al, Si, K, Ca, Sc, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, Ga, Ge, Zr, Nb, Ru, Ag, Ta, Bi, In, Mo, or W, and a coating composed of selenide or telluride. Since the lithium-'transition metals' composite oxide, having a coating composed of specific chalcogenide on a particle surface, is used as positive electrode active material; the decomposition of the organic solvent is difficult to occur on the positive electrode side at the time of a charge/discharge cycle.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、リチウム二次電池に係
わり、詳しくは充放電サイクル特性に優れたリチウム二
次電池を提供することを目的とした、正極活物質の改良
に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a lithium secondary battery, and more particularly to improvement of a positive electrode active material for the purpose of providing a lithium secondary battery having excellent charge / discharge cycle characteristics.

【0002】[0002]

【従来の技術及び発明が解決しようとする課題】近年、
リチウム二次電池が、水の分解電圧を考慮する必要がな
く、正極活物質を適宜選定することにより高電圧化を達
成することが可能であることから、注目されつつある。
2. Description of the Related Art In recent years,
The lithium secondary battery is attracting attention because it is not necessary to consider the decomposition voltage of water and it is possible to achieve higher voltage by appropriately selecting the positive electrode active material.

【0003】この種の電池の代表的な正極活物質として
は、容易に作製することができるとともに、容量が大き
いことから、LiNiO2 、LiCoO2 、LiMn2
4などのリチウム−遷移金属複合酸化物が主に使用さ
れている。
A typical positive electrode active material for this type of battery is LiNiO 2 , LiCoO 2 , LiMn 2 because it can be easily manufactured and has a large capacity.
Lithium-transition metal composite oxides such as O 4 are mainly used.

【0004】しかしながら、リチウム−遷移金属複合酸
化物を正極活物質として使用したリチウム二次電池に
は、充放電サイクル特性が未だ実用上充分満足の行く程
度のものではないという問題がある。これは、リチウム
−遷移金属複合酸化物の粒子表面に存在する高活性な部
分で、非水電解液(有機溶媒)が分解することによるも
のである。
However, the lithium secondary battery using the lithium-transition metal composite oxide as the positive electrode active material has a problem that the charge / discharge cycle characteristics are not yet sufficiently satisfactory for practical use. This is because the non-aqueous electrolytic solution (organic solvent) is decomposed in the highly active portion existing on the particle surface of the lithium-transition metal composite oxide.

【0005】本発明は、かかる事情に鑑みなされたもの
であって、その目的とするところは、リチウム−遷移金
属複合酸化物の粒子表面の活性を低減させることにより
正極側での有機溶媒の分解を抑制し、もって充放電サイ
クル特性に優れたリチウム二次電池を提供するにある。
The present invention has been made in view of the above circumstances, and an object thereof is to decompose the organic solvent on the positive electrode side by reducing the activity of the particle surface of the lithium-transition metal composite oxide. And to provide a lithium secondary battery having excellent charge / discharge cycle characteristics.

【0006】[0006]

【課題を解決するための手段】上記目的を達成するため
の本発明に係るリチウム二次電池(本発明電池)は、リ
チウム−遷移金属複合酸化物を正極活物質とする正極
と、負極と、有機溶媒を含有する非水電解質とを備える
リチウム二次電池であって、前記リチウム−遷移金属複
合酸化物が、粒子表面に、B、Na、Mg、Al、S
i、K、Ca、Sc、Ti、V、Cr、Mn、Fe、C
o、Ni、Cu、Zn、Ga、Ge、Zr、Nb、R
u、Ag、Ta、Bi、In、Mo又はWの硫化物、セ
レン化物又はテルル化物からなる被膜を有してなる。
A lithium secondary battery according to the present invention (a battery of the present invention) for achieving the above object comprises a positive electrode using a lithium-transition metal composite oxide as a positive electrode active material, a negative electrode, A lithium secondary battery comprising a non-aqueous electrolyte containing an organic solvent, wherein the lithium-transition metal composite oxide is B, Na, Mg, Al, S on the particle surface.
i, K, Ca, Sc, Ti, V, Cr, Mn, Fe, C
o, Ni, Cu, Zn, Ga, Ge, Zr, Nb, R
It has a coating film made of a sulfide, selenide or telluride of u, Ag, Ta, Bi, In, Mo or W.

【0007】上記被膜としては、充放電サイクル特性に
特に優れた電池を得る上で、TiS2 、MoS2 又はこ
れらの混合物からなる被膜が特に好ましい。
As the above-mentioned coating, a coating made of TiS 2 , MoS 2 or a mixture thereof is particularly preferable in order to obtain a battery having particularly excellent charge-discharge cycle characteristics.

【0008】上記リチウム−遷移金属複合酸化物の代表
的なものとしては、LiMn2 4、LiMnO2 、L
iNiO2 、LiCoO2 、LiNi0.5 Co0.5 2
が挙げられる。充放電サイクル特性に特に優れたリチウ
ム二次電池を得る上で、一般式LiX Niy Coz
1-y-z a (式中、MはB、Na、Mg、Al、Si、
K、Ca、Sc、Ti、V、Cr、Mn、Fe、Cu、
Zn、Ga、Ge、Zr、Nb、Ru、Ag、Ta、B
i、In、Mo及びWよりなる群から選ばれた少なくと
も一種の元素、0<x<1.3、0≦y≦1、0≦z≦
1、0.5≦y+z≦1、1.8≦a≦2.2である)
で表されるリチウム−遷移金属複合酸化物が特に好まし
い。
Typical examples of the lithium-transition metal composite oxide are LiMn 2 O 4 , LiMnO 2 and L.
iNiO 2 , LiCoO 2 , LiNi 0.5 Co 0.5 O 2
Is mentioned. In order to obtain a lithium secondary battery having particularly excellent charge / discharge cycle characteristics, the general formula Li X Ni y Co z M
1-yz O a (where M is B, Na, Mg, Al, Si,
K, Ca, Sc, Ti, V, Cr, Mn, Fe, Cu,
Zn, Ga, Ge, Zr, Nb, Ru, Ag, Ta, B
at least one element selected from the group consisting of i, In, Mo and W, 0 <x <1.3, 0 ≦ y ≦ 1, 0 ≦ z ≦
1, 0.5 ≦ y + z ≦ 1, 1.8 ≦ a ≦ 2.2)
Particularly preferred is a lithium-transition metal composite oxide represented by

【0009】上記硫化物、上記セレン化物又は上記テル
ル化物の上記リチウム−遷移金属複合酸化物に対する好
適な割合は0.1〜20モル%である。同割合が0.1
モル%未満の場合は充放電サイクル特性が充分に改善さ
れず、一方同割合が20モル%を越えた場合は放電容量
が低下する。
A suitable ratio of the sulfide, selenide or telluride to the lithium-transition metal composite oxide is 0.1 to 20 mol%. The same ratio is 0.1
If it is less than mol%, the charge-discharge cycle characteristics are not sufficiently improved, while if it exceeds 20 mol%, the discharge capacity is reduced.

【0010】本発明における硫化物、セレン化物又はテ
ルル化物からなる被膜を粒子表面に有するリチウム−遷
移金属複合酸化物は、例えばリチウム−遷移金属複合酸
化物とB、Na、Mg等の特定の元素の硫化物、セレン
化物又はテルル化物との所定割合の混合物を所定の温度
(通常、400〜800°C)で10〜20時間程度熱
処理する固相法により容易に得ることができる。
The lithium-transition metal composite oxide having a coating film made of a sulfide, a selenide or a telluride on the particle surface in the present invention is, for example, a lithium-transition metal composite oxide and a specific element such as B, Na or Mg. It can be easily obtained by a solid-phase method in which a mixture of the sulfide, selenide or telluride in a predetermined ratio is heat-treated at a predetermined temperature (usually 400 to 800 ° C.) for about 10 to 20 hours.

【0011】本発明の特徴は、正極活物質として、リチ
ウム−遷移金属複合酸化物の粒子表面に特定の硫化物、
セレン化物又はテルル化物からなる被膜を形成したもの
を使用した点にある。それゆえ、負極材料、有機溶媒を
含有する非水電解質など、電池を構成する他の部材につ
いては、従来リチウム二次電池用として提案され、或い
は実用されている種々の材料を特に制限なく用いること
が可能である。
A feature of the present invention is that, as a positive electrode active material, a specific sulfide on the surface of particles of a lithium-transition metal composite oxide,
The point is that a film formed of selenide or telluride is used. Therefore, for other members constituting the battery, such as the negative electrode material and the non-aqueous electrolyte containing the organic solvent, various materials conventionally proposed or practically used for lithium secondary batteries should be used without particular limitation. Is possible.

【0012】例えば、負極材料としては、リチウムイオ
ンを電気化学的に吸蔵及び放出することが可能な物質又
は金属リチウムを使用することができる。リチウムイオ
ンを電気化学的に吸蔵及び放出することが可能な物質と
しては、黒鉛、コークス、有機物焼成体等の炭素材料、
LiNb2 5 等の金属酸化物及びリチウム合金(リチ
ウム−アルミニウム合金、リチウム−鉛合金、リチウム
−錫合金)が例示される。
For example, as the negative electrode material, a substance capable of electrochemically absorbing and desorbing lithium ions or metallic lithium can be used. Examples of the substance capable of electrochemically absorbing and desorbing lithium ions include carbon materials such as graphite, coke, and organic burned material,
Examples include metal oxides such as LiNb 2 O 5 and lithium alloys (lithium-aluminum alloys, lithium-lead alloys, lithium-tin alloys).

【0013】また、非水電解質の有機溶媒としては、エ
チレンカーボネート、ビニレンカーボネート、プロピレ
ンカーボネートなどの高誘電率溶媒や、これらとジエチ
ルカーボネート、ジメチルカーボネート、1,2−ジメ
トキシエタン、1,2−ジエトキシエタン、エトキシメ
トキシエタンなどの低沸点溶媒との混合溶媒が、同溶質
としては、LiPF6 、LiClO4 、LiCF3 SO
3 、LiN(CF3 SO2 2 、LiBF4 、LiAs
6 が、それぞれ例示される。なお、本発明における有
機溶媒を含有する非水電解質には、ゲル状固体電解質
(擬似固体電解質)も含まれる。
The organic solvent for the non-aqueous electrolyte may be a high dielectric constant solvent such as ethylene carbonate, vinylene carbonate or propylene carbonate, or diethyl carbonate, dimethyl carbonate, 1,2-dimethoxyethane, 1,2-dicarbonate or the like. A mixed solvent with a low-boiling-point solvent such as ethoxyethane or ethoxymethoxyethane has the same solute as LiPF 6 , LiClO 4 , LiCF 3 SO 4 .
3 , LiN (CF 3 SO 2 ) 2 , LiBF 4 , LiAs
Each of F 6 is exemplified. The non-aqueous electrolyte containing an organic solvent in the present invention also includes a gelled solid electrolyte (pseudo solid electrolyte).

【0014】[0014]

【作用】正極活物質としてのリチウム−遷移金属複合酸
化物の粒子表面に特定のカルコゲン化物からなる被膜が
形成されてその表面活性が低減されているので、充放電
サイクル時の正極側での有機溶媒(非水電解液中の有機
溶媒又はゲル状固体電解質中の有機溶媒)の分解が起こ
りにくくなる。
[Function] Since a film made of a specific chalcogenide is formed on the surface of particles of a lithium-transition metal composite oxide as a positive electrode active material and its surface activity is reduced, organic compounds on the positive electrode side during charge / discharge cycles are reduced. Decomposition of the solvent (organic solvent in the non-aqueous electrolytic solution or organic solvent in the gelled solid electrolyte) is less likely to occur.

【0015】[0015]

【実施例】以下、本発明を実施例に基づいてさらに詳細
に説明するが、本発明は下記実施例に何ら限定されるも
のではなく、その要旨を変更しない範囲において適宜変
更して実施することが可能なものである。
EXAMPLES The present invention will be described in more detail based on the following examples, but the invention is not intended to be limited to the following examples, and various modifications may be made without departing from the scope of the invention. Is possible.

【0016】(実施例1)扁平型のリチウム二次電池
(本発明電池)を組み立てた。
Example 1 A flat type lithium secondary battery (the battery of the present invention) was assembled.

【0017】〔正極〕Li2 CO3 とMnO2 とをモル
比1:4で乳鉢にて混合し、乾燥空気雰囲気下にて75
0°Cで20時間熱処理し、石川式らいかい乳鉢にて粉
砕して、LiMn2 4 (正極活物質)を得た。
[Positive electrode] Li 2 CO 3 and MnO 2 were mixed in a mortar at a molar ratio of 1: 4, and were mixed in a dry air atmosphere at 75
The mixture was heat-treated at 0 ° C. for 20 hours and crushed in an Ishikawa type mortar mortar to obtain LiMn 2 O 4 (positive electrode active material).

【0018】次いで、このLiMn2 4 100モル部
とTiSe2 10モル部とを混合し、650°Cで10
時間熱処理してLiMn2 4 の粒子表面にTiSe2
の被膜を形成し、正極活物質を作製した。LiMn2
4 の粒子表面に被膜が形成されたことは、X線光電子分
光法(X-ray Photoelectron Spectroscopy) により確認
した(以下の被膜についても同じ方法により確認し
た。)。
Next, 100 parts by mole of this LiMn 2 O 4 and 10 parts by mole of TiSe 2 were mixed, and the mixture was heated at 650 ° C. for 10 minutes.
After heat treatment for a long time, TiSe 2 was formed on the surface of the LiMn 2 O 4 particles.
To form a positive electrode active material. LiMn 2 O
It was confirmed by X-ray photoelectron spectroscopy (X-ray Photoelectron Spectroscopy) that the coating film was formed on the particle surface of 4 (the following coating films were also confirmed by the same method).

【0019】この正極活物質と、導電剤としてのアセチ
レンブラックと、結着剤としてのポリフッ化ビニリデン
とを、重量比90:6:4で混合して正極合剤を調製
し、この正極合剤を2トン/cm2 の成型圧で直径20
mmの円盤状に加圧成型した後、250°Cで2時間熱
処理して正極を作製した。
This positive electrode active material, acetylene black as a conductive agent, and polyvinylidene fluoride as a binder are mixed at a weight ratio of 90: 6: 4 to prepare a positive electrode mixture, and this positive electrode mixture is prepared. With a molding pressure of 2 tons / cm 2 and a diameter of 20
After pressure-molding into a disk shape of mm, heat treatment was carried out at 250 ° C. for 2 hours to prepare a positive electrode.

【0020】〔負極〕所定の厚みを有する金属リチウム
圧延板を直径20mmの円盤状に打ち抜いて負極を作製
した。
[Negative Electrode] A rolled lithium metal plate having a predetermined thickness was punched into a disk shape having a diameter of 20 mm to prepare a negative electrode.

【0021】〔非水電解液〕プロピレンカーボネートと
1,2−ジメトキシエタンとの体積比1:1の混合溶媒
に、過塩素酸リチウムを1M(モル/リットル)の割合
で溶かして非水電解液を調製した。
[Non-Aqueous Electrolyte] Lithium perchlorate was dissolved in a mixed solvent of propylene carbonate and 1,2-dimethoxyethane at a volume ratio of 1: 1 at a ratio of 1 M (mol / liter) to obtain a non-aqueous electrolyte. Was prepared.

【0022】〔電池の組立〕以上の正極、負極及び非水
電解液を用いて扁平型の本発明電池BA1を組み立てた
(電池寸法:直径24.0mm、厚さ3.0mm)。な
お、セパレータとしては、ポリプロピレン製の微多孔膜
を使用し、これに先の非水電解液を含浸させた。
[Battery Assembly] A flat type battery BA1 of the present invention was assembled using the above positive electrode, negative electrode and non-aqueous electrolyte (battery size: diameter 24.0 mm, thickness 3.0 mm). As the separator, a polypropylene microporous film was used, which was impregnated with the above non-aqueous electrolyte solution.

【0023】図1は、作製した本発明電池BA1を模式
的に示す断面図であり、図示の本発明電池BA1は、正
極1、負極2、これら両電極1,2を互いに離間するセ
パレータ3、正極缶4、負極缶5、正極集電体6、負極
集電体7及びポリプロピレン製の絶縁パッキング8など
からなる。
FIG. 1 is a sectional view schematically showing the produced battery BA1 of the present invention. The illustrated battery BA1 of the present invention comprises a positive electrode 1, a negative electrode 2, a separator 3 for separating these electrodes 1, 2 from each other, It comprises a positive electrode can 4, a negative electrode can 5, a positive electrode current collector 6, a negative electrode current collector 7, an insulating packing 8 made of polypropylene, and the like.

【0024】正極1及び負極2は、非水電解液を含浸し
たセパレータ3を介して対向して正負極缶4,5が形成
する電池ケース内に収納されており、正極1は正極集電
体6を介して正極缶4に、又負極2は負極集電体7を介
して負極缶5に接続され、電池内部に生じた化学エネル
ギーを正極缶4及び負極缶5の両端子から電気エネルギ
ーとして外部へ取り出し得るようになっている。
The positive electrode 1 and the negative electrode 2 are housed in a battery case formed by positive and negative electrode cans 4 and 5 facing each other with a separator 3 impregnated with a non-aqueous electrolytic solution interposed therebetween. The positive electrode 1 is a positive electrode current collector. The negative electrode 2 is connected to the positive electrode can 4 via 6 and the negative electrode 2 is connected to the negative electrode can 5 via the negative electrode current collector 7, and the chemical energy generated inside the battery is converted into electrical energy from both terminals of the positive electrode can 4 and the negative electrode can 5. It can be taken out.

【0025】(実施例2)LiMn2 4 モル部とTi
Te2 10モル部とを混合し、650°Cで10時間熱
処理してLiMn2 4 の粒子表面にTiTe2 被膜を
形成し、正極活物質を作製した。この正極活物質を使用
したこと以外は実施例1と同様にして、本発明電池BA
2を組み立てた。
(Example 2) LiMn 2 O 4 mol part and Ti
10 parts by mole of Te 2 was mixed and heat-treated at 650 ° C. for 10 hours to form a TiTe 2 coating film on the surface of the LiMn 2 O 4 particles to prepare a positive electrode active material. The battery BA of the present invention was prepared in the same manner as in Example 1 except that this positive electrode active material was used.
Assembled 2.

【0026】(実施例3)LiMn2 4 100モル部
とTiS2 10モル部とを混合し、650°Cで10時
間熱処理してLiMn2 4 の粒子表面にTiS2 被膜
を形成し、正極活物質を作製した。この正極活物質を使
用したこと以外は実施例1と同様にして、本発明電池B
A3を組み立てた。
Example 3 100 parts by mole of LiMn 2 O 4 and 10 parts by mole of TiS 2 were mixed and heat-treated at 650 ° C. for 10 hours to form a TiS 2 coating on the surface of LiMn 2 O 4 particles. A positive electrode active material was produced. Battery B of the present invention was prepared in the same manner as in Example 1 except that this positive electrode active material was used.
Assembled A3.

【0027】(実施例4)LiMn2 4 100モル部
とMoS2 10モル部とを混合し、650°Cで10時
間熱処理してLiMn2 4 の粒子表面にMoS2 被膜
を形成し、正極活物質を作製した。この正極活物質を使
用したこと以外は実施例1と同様にして、本発明電池B
A4を組み立てた。
Example 4 100 mol parts of LiMn 2 O 4 and 10 mol parts of MoS 2 were mixed and heat-treated at 650 ° C. for 10 hours to form a MoS 2 coating on the surface of LiMn 2 O 4 particles. A positive electrode active material was produced. Battery B of the present invention was prepared in the same manner as in Example 1 except that this positive electrode active material was used.
Assembled A4.

【0028】(実施例5)LiMn2 4 100モル部
とMoS2 5モル部とTiS2 5モル部とを混合し、6
50°Cで10時間熱処理してLiMn2 4 の粒子表
面にMoS2 とTiS2 とからなる被膜を形成し、正極
活物質を作製した。この正極活物質を使用したこと以外
は実施例1と同様にして、本発明電池BA5を組み立て
た。
(Example 5) 100 parts by mole of LiMn 2 O 4, 5 parts by mole of MoS 2 and 5 parts by mole of TiS 2 were mixed, and 6
A heat treatment was performed at 50 ° C. for 10 hours to form a coating film composed of MoS 2 and TiS 2 on the surface of the LiMn 2 O 4 particles to prepare a positive electrode active material. A battery BA5 of the present invention was assembled in the same manner as in Example 1 except that this positive electrode active material was used.

【0029】(実施例6)LiOHとNi(OH)2
Co(OH)2 とをモル比2:1:1で乳鉢にて混合
し、乾燥空気雰囲気下にて750°Cで20時間熱処理
し、石川式らいかい乳鉢にて粉砕して、LiNi0.5
0.5 2 (正極活物質)を得た。
Example 6 LiOH, Ni (OH) 2 and Co (OH) 2 were mixed in a mortar at a molar ratio of 2: 1: 1 and heat-treated at 750 ° C. for 20 hours in a dry air atmosphere. Then, crush it with an Ishikawa type Raikai mortar and add LiNi 0.5 C
o 0.5 O 2 (positive electrode active material) was obtained.

【0030】次いで、このLiNi0.5 Co0.5 2
00モル部とTiSe2 10モル部とを混合し、650
°Cで10時間熱処理してLiNi0.5 Co0.5 2
粒子表面にTiSe2 の被膜を形成し、正極活物質を作
製した。この正極活物質を使用したこと以外は実施例1
と同様にして、本発明電池BA6を組み立てた。
Next, this LiNi 0.5 Co 0.5 O 2 1
650 parts by mole and TiSe 2 10 parts by mole were mixed, and 650
A heat treatment was performed at 10 ° C. for 10 hours to form a TiSe 2 film on the surface of the LiNi 0.5 Co 0.5 O 2 particles, thus preparing a positive electrode active material. Example 1 except that this positive electrode active material was used
Battery BA6 of the present invention was assembled in the same manner as in.

【0031】(実施例7)LiNi0.5 Co0.5 2
00モル部とTiTe2 10モル部とを混合し、650
°Cで10時間熱処理してLiNi0.5 Co0.5 2
粒子表面にTiTe2 の被膜を形成し、正極活物質を作
製した。この正極活物質を使用したこと以外は実施例1
と同様にして、本発明電池BA7を組み立てた。
Example 7 LiNi 0.5 Co 0.5 O 2 1
650 parts by mole and TiTe 2 10 parts by mole were mixed, and 650
A positive electrode active material was prepared by forming a TiTe 2 film on the surface of LiNi 0.5 Co 0.5 O 2 particles by heat treatment at ° C for 10 hours. Example 1 except that this positive electrode active material was used
Battery BA7 of the present invention was assembled in the same manner as in.

【0032】(実施例8)LiNi0.5 Co0.5 2
00モル部とTiS2 10モル部とを混合し、650°
Cで10時間熱処理してLiNi0.5 Co0.5 2 の粒
子表面にTiS2の被膜を形成し、正極活物質を作製し
た。この正極活物質を使用したこと以外は実施例1と同
様にして、本発明電池BA8を組み立てた。
Example 8 LiNi 0.5 Co 0.5 O 2 1
00 parts by mole and TiS 2 10 parts by mole were mixed, and 650 °
A heat treatment was performed for 10 hours at C to form a TiS 2 film on the surface of the LiNi 0.5 Co 0.5 O 2 particles, and a positive electrode active material was produced. A battery BA8 of the present invention was assembled in the same manner as in Example 1 except that this positive electrode active material was used.

【0033】(実施例9)LiNi0.5 Co0.5 2
00モル部とMoS2 10モル部とを混合し、650°
Cで10時間熱処理してLiNi0.5 Co0.5 2 の粒
子表面にTiSe2 の被膜を形成し、正極活物質を作製
した。この正極活物質を使用したこと以外は実施例1と
同様にして、本発明電池BA9を組み立てた。
Example 9 LiNi 0.5 Co 0.5 O 2 1
00 parts by mole and 10 parts by mole of MoS 2 were mixed together, and 650 °
A heat treatment was performed for 10 hours in C to form a TiSe 2 coating on the surface of the LiNi 0.5 Co 0.5 O 2 particles, and a positive electrode active material was produced. A battery BA9 of the present invention was assembled in the same manner as in Example 1 except that this positive electrode active material was used.

【0034】(実施例10)LiNi0.5 Co0.5 2
100モル部とTiS2 5モル部とMoS2 5モル部と
を混合し、650°Cで10時間熱処理してLiNi
0.5 Co0.5 2 の粒子表面にTiSe2 とMoS2
からなる被膜を形成し、正極活物質を作製した。この正
極活物質を使用したこと以外は実施例1と同様にして、
本発明電池BA10を組み立てた。
(Example 10) LiNi 0.5 Co 0.5 O 2
100 mol parts, 5 mol parts of TiS 2 and 5 mol parts of MoS 2 are mixed and heat treated at 650 ° C. for 10 hours to obtain LiNi.
A film made of TiSe 2 and MoS 2 was formed on the surface of 0.5 Co 0.5 O 2 particles to prepare a positive electrode active material. In the same manner as in Example 1 except that this positive electrode active material was used,
The battery BA10 of the present invention was assembled.

【0035】(比較例1)正極活物質としてLiMn2
4 を用いたこと以外は実施例1と同様にして、比較電
池BC1を組み立てた。
Comparative Example 1 LiMn 2 as a positive electrode active material
A comparative battery BC1 was assembled in the same manner as in Example 1 except that O 4 was used.

【0036】(比較例2)正極活物質としてLiNi
0.5 Co0.5 2 を用いたこと以外は実施例1と同様に
して、比較電池BC2を組み立てた。
Comparative Example 2 LiNi as a positive electrode active material
A comparative battery BC2 was assembled in the same manner as in Example 1 except that 0.5 Co 0.5 O 2 was used.

【0037】〔充放電サイクル試験〕本発明電池BA1
〜BA10及び比較電池BC1,2について、充電電流
密度1mA/cm2 で4.3Vまで充電した後、放電電
流密度3mA/cm2 で2.5Vまで放電する工程を1
サイクルとする充放電サイクル試験を行い、1サイクル
目の放電容量に対する150サイクル目の放電容量の容
量劣化率〔容量劣化率(%)={(1サイクル目の放電
容量−150サイクル目の放電容量)/1サイクル目の
放電容量}×100〕を求めた。結果を表1に示す。
[Charge / Discharge Cycle Test] Battery BA1 of the Invention
-BA10 and comparative batteries BC1 and BC2 were charged with a charging current density of 1 mA / cm 2 to 4.3 V and then discharged with a discharging current density of 3 mA / cm 2 to 2.5 V.
Cycle, a charge-discharge cycle test is performed, and the capacity deterioration rate of the discharge capacity at the 150th cycle relative to the discharge capacity at the first cycle [capacity deterioration rate (%) = {(discharge capacity at the first cycle−discharge capacity at the 150th cycle ) / 1st cycle discharge capacity} × 100]. The results are shown in Table 1.

【0038】[0038]

【表1】 [Table 1]

【0039】表1より、粒子表面に特定の被膜を有する
リチウム−遷移金属複合酸化物を正極活物質として用い
た本発明電池BA1〜BA10は、粒子表面に被膜を有
しないリチウム−遷移金属複合酸化物を正極活物質とし
て用いた比較電池BC1,BC2に比べて、容量劣化率
が小さいことが分かる。また、被膜形成材料が同じ場
合、リチウム−遷移金属複合酸化物としてLiNi0.5
Co0.5 2 を使用した電池の容量劣化率が特に小さい
ことから、Li−Ni−Co系複合酸化物が特に好まし
いことが分かる。
From Table 1, the batteries BA1 to BA10 of the present invention using the lithium-transition metal composite oxide having a specific coating on the particle surface as the positive electrode active material show the lithium-transition metal composite oxide having no coating on the particle surface. It can be seen that the capacity deterioration rate is smaller than that of the comparative batteries BC1 and BC2 using the materials as the positive electrode active material. When the film forming materials are the same, LiNi 0.5 is used as the lithium-transition metal composite oxide.
Since the capacity deterioration rate of the battery using Co 0.5 O 2 is particularly small, it is understood that the Li-Ni-Co-based composite oxide is particularly preferable.

【0040】(実施例11)LiNi0.5 Co0.5 2
100モル部とTiS2 0.05モル部とを混合し、6
50°Cで10時間熱処理してLiNi0.5 Co0.5
2 の粒子表面にTiS2 の被膜を形成し、正極活物質を
作製した。この正極活物質を使用したこと以外は実施例
1と同様にして、本発明電池BA11を組み立てた。
Example 11 LiNi 0.5 Co 0.5 O 2
100 parts by mole and 0.05 parts by weight of TiS 2 are mixed to obtain 6
LiNi 0.5 Co 0.5 O after heat treatment at 50 ° C. for 10 hours
A film of TiS 2 was formed on the surface of particles 2 to prepare a positive electrode active material. Battery BA11 of the present invention was assembled in the same manner as in Example 1 except that this positive electrode active material was used.

【0041】(実施例12)LiNi0.5 Co0.5 2
100モル部とTiS2 0.1モル部とを混合し、65
0°Cで10時間熱処理してLiNi0.5 Co0.5 2
の粒子表面にTiS2 の被膜を形成し、正極活物質を作
製した。この正極活物質を使用したこと以外は実施例1
と同様にして、本発明電池BA12を組み立てた。
Example 12 LiNi 0.5 Co 0.5 O 2
100 parts by mole and 0.1 parts by weight of TiS 2 are mixed to obtain 65
LiNi 0.5 Co 0.5 O 2 after heat treatment at 0 ° C for 10 hours
A TiS 2 film was formed on the surface of the particles to prepare a positive electrode active material. Example 1 except that this positive electrode active material was used
The battery BA12 of the present invention was assembled in the same manner as.

【0042】(実施例13)LiNi0.5 Co0.5 2
100モル部とTiS2 2モル部とを混合し、650°
Cで10時間熱処理してLiNi0.5 Co0.5 2 の粒
子表面にTiS2 の被膜を形成し、正極活物質を作製し
た。この正極活物質を使用したこと以外は実施例1と同
様にして、本発明電池BA13を組み立てた。
Example 13 LiNi 0.5 Co 0.5 O 2
100 parts by mole and 2 parts by mole of TiS 2 are mixed, and 650 °
A heat treatment was performed for 10 hours at C to form a TiS 2 film on the surface of the LiNi 0.5 Co 0.5 O 2 particles, and a positive electrode active material was produced. A battery BA13 of the present invention was assembled in the same manner as in Example 1 except that this positive electrode active material was used.

【0043】(実施例14)LiNi0.5 Co0.5 2
100モル部とTiS2 20モル部とを混合し、650
°Cで10時間熱処理してLiNi0.5 Co0.5 2
粒子表面にTiS2の被膜を形成し、正極活物質を作製
した。この正極活物質を使用したこと以外は実施例1と
同様にして、本発明電池BA14を組み立てた。
Example 14 LiNi 0.5 Co 0.5 O 2
Mix 100 parts by mole and 20 parts by weight of TiS 2 to obtain 650
The positive electrode active material was produced by forming a TiS 2 film on the surface of LiNi 0.5 Co 0.5 O 2 particles by heat treatment at ° C for 10 hours. A battery BA14 of the present invention was assembled in the same manner as in Example 1 except that this positive electrode active material was used.

【0044】(実施例15)LiNi0.5 Co0.5 2
100モル部とTiS2 22モル部とを混合し、650
°Cで10時間熱処理してLiNi0.5 Co0.5 2
粒子表面にTiS2の被膜を形成し、正極活物質を作製
した。この正極活物質を使用したこと以外は実施例1と
同様にして、本発明電池BA15を組み立てた。
(Example 15) LiNi 0.5 Co 0.5 O 2
Mix 100 parts by mole and 22 parts by mole of TiS 2 to obtain 650
The positive electrode active material was produced by forming a TiS 2 film on the surface of LiNi 0.5 Co 0.5 O 2 particles by heat treatment at ° C for 10 hours. A battery BA15 of the present invention was assembled in the same manner as in Example 1 except that this positive electrode active material was used.

【0045】(実施例16)LiMn2 4 100モル
部とMoS2 0.05モル部とを混合し、650°Cで
10時間熱処理してLiMn2 4 の粒子表面にMoS
2 の被膜を形成し、正極活物質を作製した。この正極活
物質を使用したこと以外は実施例1と同様にして、本発
明電池BA16を組み立てた。
Example 16 100 parts by mole of LiMn 2 O 4 and 0.05 parts by weight of MoS 2 were mixed and heat-treated at 650 ° C. for 10 hours to form MoS on the particle surface of LiMn 2 O 4.
The coating film of 2 was formed to prepare a positive electrode active material. A battery BA16 of the present invention was assembled in the same manner as in Example 1 except that this positive electrode active material was used.

【0046】(実施例17)LiMn2 4 100モル
部とMoS2 0.1モル部とを混合し、650°Cで1
0時間熱処理してLiMn2 4 の粒子表面にMoS2
の被膜を形成し、正極活物質を作製した。この正極活物
質を使用したこと以外は実施例1と同様にして、本発明
電池BA17を組み立てた。
Example 17 100 parts by mole of LiMn 2 O 4 and 0.1 part by mole of MoS 2 were mixed and the mixture was mixed at 650 ° C. for 1 hour.
After heat treatment for 0 hours, MoS 2 was formed on the surface of the LiMn 2 O 4 particles.
To form a positive electrode active material. A battery BA17 of the present invention was assembled in the same manner as in Example 1 except that this positive electrode active material was used.

【0047】(実施例18)LiMn2 4 100モル
部とMoS2 2モル部とを混合し、650°Cで10時
間熱処理してLiMn2 4 の粒子表面にMoS2 の被
膜を形成し、正極活物質を作製した。この正極活物質を
使用したこと以外は実施例1と同様にして、本発明電池
BA18を組み立てた。
Example 18 100 parts by mole of LiMn 2 O 4 and 2 parts by mole of MoS 2 were mixed and heat-treated at 650 ° C. for 10 hours to form a MoS 2 film on the surface of LiMn 2 O 4 particles. A positive electrode active material was prepared. A battery BA18 of the present invention was assembled in the same manner as in Example 1 except that this positive electrode active material was used.

【0048】(実施例19)LiMn2 4 100モル
部とMoS2 20モル部とを混合し、650°Cで10
時間熱処理してLiMn2 4 の粒子表面にMoS2
被膜を形成し、正極活物質を作製した。この正極活物質
を使用したこと以外は実施例1と同様にして、本発明電
池BA19を組み立てた。
Example 19 100 parts by mole of LiMn 2 O 4 and 20 parts by mole of MoS 2 were mixed and the mixture was heated at 650 ° C. for 10 minutes.
Heat treatment was carried out for a period of time to form a MoS 2 film on the surface of the LiMn 2 O 4 particles, and a positive electrode active material was produced. A battery BA19 of the present invention was assembled in the same manner as in Example 1 except that this positive electrode active material was used.

【0049】(実施例20)LiMn2 4 100モル
部とMoS2 22モル部とを混合し、650°Cで10
時間熱処理してLiMn2 4 の粒子表面にMoS2
被膜を形成し、正極活物質を作製した。この正極活物質
を使用したこと以外は実施例1と同様にして、本発明電
池BA20を組み立てた。
Example 20 100 parts by mole of LiMn 2 O 4 and 22 parts by mole of MoS 2 were mixed and the mixture was heated at 650 ° C. for 10 minutes.
Heat treatment was carried out for a period of time to form a MoS 2 film on the surface of the LiMn 2 O 4 particles, and a positive electrode active material was produced. A battery BA20 of the present invention was assembled in the same manner as in Example 1 except that this positive electrode active material was used.

【0050】〔充放電サイクル試験〕本発明電池BA1
1〜BA20について先と同じ条件の充放電サイクル試
験を行い、各電池の容量劣化率を求めた。結果を表2に
示す。
[Charge / Discharge Cycle Test] Battery BA1 of the present invention
For 1 to BA20, a charge / discharge cycle test was performed under the same conditions as above to determine the capacity deterioration rate of each battery. Table 2 shows the results.

【0051】[0051]

【表2】 [Table 2]

【0052】表2に示すように、本発明電池BA11〜
BA15のうちBA12〜BA14の容量劣化率が5%
以下と特に小さく、また本発明電池BA16〜BA20
のうちBA17〜BA19の容量劣化率が15%以下と
特に小さい。このことから、リチウム−遷移金属複合酸
化物に対する硫化物、セレン化物又はテルル化物の割合
(平均被覆率)は0.1〜20モル%の範囲が好ましい
ことが分かる。
As shown in Table 2, the batteries BA11 to BA11 of the present invention.
The capacity deterioration rate of BA12 to BA14 of BA15 is 5%
The following is particularly small, and the batteries of the present invention BA16 to BA20
Among them, the capacity deterioration rate of BA17 to BA19 is particularly small at 15% or less. From this, it is understood that the ratio (average coverage) of the sulfide, selenide or telluride to the lithium-transition metal composite oxide is preferably in the range of 0.1 to 20 mol%.

【0053】(実施例21〜46)LiNi0.5 Co
0.5 2 100モル部と表3に示す種々の硫化物10モ
ル部とを混合し、650°Cで10時間熱処理してLi
Ni0.5 Co0.5 2 の粒子表面にそれらの各硫化物か
らなる被膜を形成し、正極活物質を作製した。これらの
各正極活物質を使用したこと以外は実施例1と同様にし
て、本発明電池BA21〜46を組み立てた。
(Examples 21 to 46) LiNi 0.5 Co
100 parts by mole of 0.5 O 2 and 10 parts by mole of various sulfides shown in Table 3 were mixed and heat treated at 650 ° C. for 10 hours to obtain Li.
A coating film made of each of these sulfides was formed on the surface of Ni 0.5 Co 0.5 O 2 particles to prepare a positive electrode active material. Inventive batteries BA21 to 46 were assembled in the same manner as in Example 1 except that each of these positive electrode active materials was used.

【0054】〔充放電サイクル試験〕本発明電池BA2
1〜BA46について先と同じ条件の充放電サイクル試
験を行い、各電池の容量劣化率を求めた。結果を表3に
示す。なお、表3中には、本発明電池BA8,BA9の
容量劣化率も表1より転記して示してある。
[Charge / Discharge Cycle Test] Battery BA2 of the present invention
For 1 to BA46, a charge-discharge cycle test was performed under the same conditions as above to determine the capacity deterioration rate of each battery. The results are shown in Table 3. It should be noted that in Table 3, the capacity deterioration rates of the batteries BA8 and BA9 of the present invention are also transcribed from Table 1.

【0055】[0055]

【表3】 [Table 3]

【0056】表3に示すように、本発明電池のうちでも
BA8,BA9の容量劣化率が5%以下と特に小さい。
このこと、及び、表1に示すように本発明電池BA10
の容量劣化率が4%と小さいことから、被膜形成材料と
してはTiS2 、MoS2 又はこれらの混合物が特に好
ましいことが分かる。
As shown in Table 3, among the batteries of the present invention, the capacity deterioration rate of BA8 and BA9 is 5% or less, which is particularly small.
This and the battery BA10 of the present invention as shown in Table 1.
It can be seen that TiS 2 , MoS 2 or a mixture thereof is particularly preferable as the film forming material since the capacity deterioration rate of 4 is as small as 4%.

【0057】[0057]

【発明の効果】特定のカルコゲン化物からなる被膜を粒
子表面に有するリチウム−遷移金属複合酸化物が正極活
物質として使用されているので、充放電サイクル時に正
極側で有機溶媒の分解が起こりにくい。このため、本発
明電池は充放電サイクル特性に優れる。
Since the lithium-transition metal composite oxide having a coating film made of a specific chalcogenide on the particle surface is used as the positive electrode active material, the organic solvent is unlikely to be decomposed on the positive electrode side during the charge / discharge cycle. Therefore, the battery of the present invention has excellent charge / discharge cycle characteristics.

【図面の簡単な説明】[Brief description of drawings]

【図1】実施例で組み立てた扁平型のリチウム二次電池
(本発明電池)の断面図である。
FIG. 1 is a cross-sectional view of a flat type lithium secondary battery (the battery of the present invention) assembled in an example.

【符号の説明】[Explanation of symbols]

BA1 扁平型のリチウム二次電池(本発明電池) 1 正極 2 負極 3 セパレータ BA1 flat type lithium secondary battery (battery of the present invention) 1 positive electrode 2 negative electrode 3 separator

───────────────────────────────────────────────────── フロントページの続き (72)発明者 西尾 晃治 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 (72)発明者 斎藤 俊彦 大阪府守口市京阪本通2丁目5番5号 三 洋電機株式会社内 ─────────────────────────────────────────────────── ─── Continuation of front page (72) Inventor Koji Nishio 2-5-5 Keihan Hondori, Moriguchi-shi, Osaka Sanyo Electric Co., Ltd. (72) Inventor Toshihiko Saito 2-chome, Keihanhondori, Moriguchi-shi, Osaka No. 5 Sanyo Electric Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】リチウム−遷移金属複合酸化物を正極活物
質とする正極と、負極と、有機溶媒を含有する非水電解
質とを備えるリチウム二次電池であって、前記リチウム
−遷移金属複合酸化物が、粒子表面に、B、Na、M
g、Al、Si、K、Ca、Sc、Ti、V、Cr、M
n、Fe、Co、Ni、Cu、Zn、Ga、Ge、Z
r、Nb、Ru、Ag、Ta、Bi、In、Mo又はW
の硫化物、セレン化物又はテルル化物からなる被膜を有
していることを特徴とするリチウム二次電池。
1. A lithium secondary battery comprising a positive electrode using a lithium-transition metal composite oxide as a positive electrode active material, a negative electrode, and a non-aqueous electrolyte containing an organic solvent, wherein the lithium-transition metal composite oxide is used. B, Na, M on the particle surface
g, Al, Si, K, Ca, Sc, Ti, V, Cr, M
n, Fe, Co, Ni, Cu, Zn, Ga, Ge, Z
r, Nb, Ru, Ag, Ta, Bi, In, Mo or W
A lithium secondary battery having a coating film made of the sulfide, selenide, or telluride of the above.
【請求項2】前記リチウム−遷移金属複合酸化物が、一
般式LiX Niy Coz 1-y-z a (式中、MはB、
Na、Mg、Al、Si、K、Ca、Sc、Ti、V、
Cr、Mn、Fe、Cu、Zn、Ga、Ge、Zr、N
b、Ru、Ag、Ta、Bi、In、Mo及びWよりな
る群から選ばれた少なくとも一種の元素、0<x<1.
3、0≦y≦1、0≦z≦1、0.5≦y+z≦1、
1.8≦a≦2.2である)で表される請求項1記載の
リチウム二次電池。
2. The lithium-transition metal composite oxide has a general formula of Li X Ni y Co z M 1-yz O a (wherein M is B,
Na, Mg, Al, Si, K, Ca, Sc, Ti, V,
Cr, Mn, Fe, Cu, Zn, Ga, Ge, Zr, N
b, Ru, Ag, Ta, Bi, In, Mo, and at least one element selected from the group consisting of W, 0 <x <1.
3, 0 ≦ y ≦ 1, 0 ≦ z ≦ 1, 0.5 ≦ y + z ≦ 1,
1.8 ≦ a ≦ 2.2), The lithium secondary battery according to claim 1.
【請求項3】前記被膜がTiS2 、MoS2 又はこれら
の混合物からなる請求項1記載のリチウム二次電池。
3. The lithium secondary battery according to claim 1, wherein the coating film is made of TiS 2 , MoS 2 or a mixture thereof.
【請求項4】前記硫化物、前記セレン化物又は前記テル
ル化物の前記リチウム−遷移金属複合酸化物に対する割
合が0.1〜20モル%である請求項1記載のリチウム
二次電池。
4. The lithium secondary battery according to claim 1, wherein the ratio of the sulfide, the selenide, or the telluride to the lithium-transition metal composite oxide is 0.1 to 20 mol%.
JP7078296A 1995-03-08 1995-03-08 Lithium secondary battery Pending JPH08250120A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP7078296A JPH08250120A (en) 1995-03-08 1995-03-08 Lithium secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP7078296A JPH08250120A (en) 1995-03-08 1995-03-08 Lithium secondary battery

Publications (1)

Publication Number Publication Date
JPH08250120A true JPH08250120A (en) 1996-09-27

Family

ID=13657972

Family Applications (1)

Application Number Title Priority Date Filing Date
JP7078296A Pending JPH08250120A (en) 1995-03-08 1995-03-08 Lithium secondary battery

Country Status (1)

Country Link
JP (1) JPH08250120A (en)

Cited By (32)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955210A (en) * 1995-08-11 1997-02-25 Sony Corp Positive active material and nonaqueous electrolytic secondary battery using the same
EP1056143A2 (en) * 1999-05-26 2000-11-29 NEC Mobile Energy Corporation Rechargeable spinel lithium batteries with improved elevated temperature cycle life
KR20000074958A (en) * 1999-05-27 2000-12-15 김순택 Positive active material for lithium secondary battery and lithium secondary by using the same
JP2001006676A (en) * 1999-04-23 2001-01-12 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode and lithium secondary battery
US6277521B1 (en) 1997-05-15 2001-08-21 Fmc Corporation Lithium metal oxide containing multiple dopants and method of preparing same
EP1136446A2 (en) 2000-03-24 2001-09-26 MERCK PATENT GmbH Coated lithium-mixed oxide particles and method for preparation
JP2001283852A (en) * 2000-04-03 2001-10-12 Japan Storage Battery Co Ltd Positive active material for nonaqueous electrolyte secondary battery
US6361756B1 (en) 1998-11-20 2002-03-26 Fmc Corporation Doped lithium manganese oxide compounds and methods of preparing same
US6579475B2 (en) * 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same
US6582852B1 (en) 1997-05-15 2003-06-24 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US6589499B2 (en) 1998-11-13 2003-07-08 Fmc Corporation Layered lithium cobalt oxides free of localized cubic spinel-like structural phases and method of making same
WO2003085755A2 (en) * 2002-04-05 2003-10-16 Merck Patent Gmbh Positive-electrode active material for non-aqueous electrolyte secondary cell and process for preparing the same
WO2004070863A1 (en) * 2003-02-03 2004-08-19 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2004311408A (en) * 2003-03-25 2004-11-04 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
WO2005008812A1 (en) * 2003-07-17 2005-01-27 Yuasa Corporation Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
JP2005216651A (en) * 2004-01-29 2005-08-11 Nichia Chem Ind Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode mixture for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2005251716A (en) * 2004-02-05 2005-09-15 Nichia Chem Ind Ltd Cathode active substance for nonaqueous electrolyte secondary battery, cathode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
JP2006196433A (en) * 2004-12-13 2006-07-27 Matsushita Electric Ind Co Ltd Positive electrode activator, its manufacturing method and nonaqueous secondary battery
WO2006101138A1 (en) * 2005-03-23 2006-09-28 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery and method for manufacturing same
JP2006302880A (en) * 2005-03-23 2006-11-02 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its manufacturing method
US7435510B2 (en) 2004-11-12 2008-10-14 Sanyo Electric Co. Nonaqueous electrolyte secondary battery
JP2008251520A (en) * 2007-03-07 2008-10-16 Osaka Prefecture Univ All solid lithium secondary battery
JP2008277307A (en) * 2001-10-16 2008-11-13 Hanyang Hak Won Co Ltd Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery containing the same
CN100442577C (en) * 2003-07-17 2008-12-10 株式会社杰士汤浅 Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
US7608363B2 (en) 2004-11-16 2009-10-27 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery with vinylene carbonate and divinyl sulfone containing electrolyte
US7615313B2 (en) 2003-06-24 2009-11-10 Canon Kabushiki Kaisha Electrode material for lithium secondary battery including particles having central portion and surface portion, electrode structure and lithium secondary battery
WO2014156116A1 (en) * 2013-03-28 2014-10-02 三洋電機株式会社 Positive electrode for nonaqueous-electrolyte secondary battery, method for manufacturing positive electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
JP2014197540A (en) * 2013-03-06 2014-10-16 日亜化学工業株式会社 Positive electrode active material for nonaqueous electrolytic secondary battery
EP2884565A1 (en) * 2013-12-10 2015-06-17 ETH Zurich Lithium-intercalating electrode material
JP2016184472A (en) * 2015-03-25 2016-10-20 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
CN108899509A (en) * 2018-07-03 2018-11-27 江苏乐能电池股份有限公司 A kind of method of modifying of trielement composite material
KR20190022396A (en) * 2017-08-24 2019-03-06 한양대학교 산학협력단 Positive active material, method of fabricating of the same, and lithium secondary battery comprising the same

Cited By (45)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0955210A (en) * 1995-08-11 1997-02-25 Sony Corp Positive active material and nonaqueous electrolytic secondary battery using the same
US6277521B1 (en) 1997-05-15 2001-08-21 Fmc Corporation Lithium metal oxide containing multiple dopants and method of preparing same
US6794085B2 (en) 1997-05-15 2004-09-21 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US6582852B1 (en) 1997-05-15 2003-06-24 Fmc Corporation Metal oxide containing multiple dopants and method of preparing same
US6589499B2 (en) 1998-11-13 2003-07-08 Fmc Corporation Layered lithium cobalt oxides free of localized cubic spinel-like structural phases and method of making same
US6620400B2 (en) 1998-11-13 2003-09-16 Fmc Corporation Method of producing layered lithium metal oxides free of localized cubic spinel-like structural phases
US7074382B2 (en) 1998-11-13 2006-07-11 Fmc Corporation Layered lithium metal oxides free of localized cubic spinel-like structural phases and methods of making same
US6361756B1 (en) 1998-11-20 2002-03-26 Fmc Corporation Doped lithium manganese oxide compounds and methods of preparing same
JP4706090B2 (en) * 1999-04-23 2011-06-22 三菱化学株式会社 Positive electrode material and positive electrode for lithium secondary battery, and lithium secondary battery
JP2001006676A (en) * 1999-04-23 2001-01-12 Mitsubishi Chemicals Corp Positive electrode material for lithium secondary battery, positive electrode and lithium secondary battery
EP1056143A2 (en) * 1999-05-26 2000-11-29 NEC Mobile Energy Corporation Rechargeable spinel lithium batteries with improved elevated temperature cycle life
KR20000074958A (en) * 1999-05-27 2000-12-15 김순택 Positive active material for lithium secondary battery and lithium secondary by using the same
US6579475B2 (en) * 1999-12-10 2003-06-17 Fmc Corporation Lithium cobalt oxides and methods of making same
US6932922B2 (en) 1999-12-10 2005-08-23 Fmc Corporation Lithium cobalt oxides and methods of making same
EP1136446A2 (en) 2000-03-24 2001-09-26 MERCK PATENT GmbH Coated lithium-mixed oxide particles and method for preparation
JP2001283852A (en) * 2000-04-03 2001-10-12 Japan Storage Battery Co Ltd Positive active material for nonaqueous electrolyte secondary battery
JP2008277307A (en) * 2001-10-16 2008-11-13 Hanyang Hak Won Co Ltd Positive electrode active material for lithium secondary battery, method for producing the same, and lithium secondary battery containing the same
WO2003085755A2 (en) * 2002-04-05 2003-10-16 Merck Patent Gmbh Positive-electrode active material for non-aqueous electrolyte secondary cell and process for preparing the same
WO2003085755A3 (en) * 2002-04-05 2004-03-25 Merck Patent Gmbh Positive-electrode active material for non-aqueous electrolyte secondary cell and process for preparing the same
CN1294660C (en) * 2002-04-05 2007-01-10 默克专利有限公司 Positive-electrode active material for non-aqueous electrolyte secondary cell and process for preparing the same
US7384664B2 (en) * 2002-04-05 2008-06-10 Merck Patent Gmbh Positive-electrode active material for non-aqueous electrolyte secondary cell and process for preparing the same
WO2004070863A1 (en) * 2003-02-03 2004-08-19 Sanyo Electric Co., Ltd. Nonaqueous electrolyte secondary battery
JP2004311408A (en) * 2003-03-25 2004-11-04 Nichia Chem Ind Ltd Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery
US7615313B2 (en) 2003-06-24 2009-11-10 Canon Kabushiki Kaisha Electrode material for lithium secondary battery including particles having central portion and surface portion, electrode structure and lithium secondary battery
US7640150B2 (en) 2003-06-24 2009-12-29 Canon Kabushiki Kaisha Method of judging the propriety of a positive electrode active material
US8153295B2 (en) 2003-07-17 2012-04-10 Gs Yuasa International Ltd. Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
WO2005008812A1 (en) * 2003-07-17 2005-01-27 Yuasa Corporation Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
JPWO2005008812A1 (en) * 2003-07-17 2006-09-07 株式会社ユアサコーポレーション Positive electrode active material, method for producing the same, and positive electrode for lithium secondary battery and lithium secondary battery using the same
CN100442577C (en) * 2003-07-17 2008-12-10 株式会社杰士汤浅 Positive electrode active material and its manufacturing method, positive electrode for lithium secondary cell using same, and lithium secondary cell
JP2005216651A (en) * 2004-01-29 2005-08-11 Nichia Chem Ind Ltd Positive electrode active material for non-aqueous electrolyte secondary battery, positive electrode mixture for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery
JP2005251716A (en) * 2004-02-05 2005-09-15 Nichia Chem Ind Ltd Cathode active substance for nonaqueous electrolyte secondary battery, cathode mixture for nonaqueous electrolyte secondary battery, and nonaqueous electrolyte secondary battery
US7435510B2 (en) 2004-11-12 2008-10-14 Sanyo Electric Co. Nonaqueous electrolyte secondary battery
US7608363B2 (en) 2004-11-16 2009-10-27 Sanyo Electric Co., Ltd. Non-aqueous electrolyte secondary battery with vinylene carbonate and divinyl sulfone containing electrolyte
JP2006196433A (en) * 2004-12-13 2006-07-27 Matsushita Electric Ind Co Ltd Positive electrode activator, its manufacturing method and nonaqueous secondary battery
WO2006101138A1 (en) * 2005-03-23 2006-09-28 Matsushita Electric Industrial Co., Ltd. Lithium ion secondary battery and method for manufacturing same
US7879494B2 (en) 2005-03-23 2011-02-01 Panasonic Corporation Lithium ion secondary battery and manufacturing method therefor
JP2006302880A (en) * 2005-03-23 2006-11-02 Matsushita Electric Ind Co Ltd Lithium ion secondary battery and its manufacturing method
JP2008251520A (en) * 2007-03-07 2008-10-16 Osaka Prefecture Univ All solid lithium secondary battery
JP2014197540A (en) * 2013-03-06 2014-10-16 日亜化学工業株式会社 Positive electrode active material for nonaqueous electrolytic secondary battery
WO2014156116A1 (en) * 2013-03-28 2014-10-02 三洋電機株式会社 Positive electrode for nonaqueous-electrolyte secondary battery, method for manufacturing positive electrode for nonaqueous-electrolyte secondary battery, and nonaqueous-electrolyte secondary battery
JPWO2014156116A1 (en) * 2013-03-28 2017-02-16 三洋電機株式会社 Non-aqueous electrolyte secondary battery positive electrode, non-aqueous electrolyte secondary battery manufacturing method and non-aqueous electrolyte secondary battery
EP2884565A1 (en) * 2013-12-10 2015-06-17 ETH Zurich Lithium-intercalating electrode material
JP2016184472A (en) * 2015-03-25 2016-10-20 Jx金属株式会社 Positive electrode active material for lithium ion battery, positive electrode for lithium ion battery, and lithium ion battery
KR20190022396A (en) * 2017-08-24 2019-03-06 한양대학교 산학협력단 Positive active material, method of fabricating of the same, and lithium secondary battery comprising the same
CN108899509A (en) * 2018-07-03 2018-11-27 江苏乐能电池股份有限公司 A kind of method of modifying of trielement composite material

Similar Documents

Publication Publication Date Title
JPH08250120A (en) Lithium secondary battery
JP3172388B2 (en) Lithium secondary battery
JP3157413B2 (en) Lithium secondary battery
CN100377416C (en) Nonaqueous electrolyte secondary battery
US20050266316A1 (en) Non-aqueous electrolyte secondary battery
US20070054191A1 (en) Non- aqueous electrolyte secondary battery
JPH08213015A (en) Positive active material for lithium secondary battery and lithium secondary battery
JP3281819B2 (en) Non-aqueous electrolyte secondary battery
JPH09330720A (en) Lithium battery
JP3744870B2 (en) Nonaqueous electrolyte secondary battery
JP3529750B2 (en) Non-aqueous electrolyte secondary battery
JPH06243871A (en) Nonaqueous secondary battery
WO2000033399A1 (en) Non-aqueous electrolyte secondary cell
JPH08279357A (en) Lithium secondary battery and its manufacture
JPH06342673A (en) Lithium secondary battery
JP3717544B2 (en) Lithium secondary battery
JPH09147863A (en) Nonaqueous electrolyte battery
JPH0982360A (en) Nonaqueous electrolyte secondary battery
US8642216B2 (en) Composite anode active material, with intermetallic compound, method of preparing the same, and anode and lithium battery containing the material
JP3530174B2 (en) Positive electrode active material and lithium ion secondary battery
JPH08171936A (en) Lithium secondary battery
JP5499649B2 (en) Anode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery using the same
US6451482B1 (en) Non-aqueous electrolyte secondary batteries
JPH0757780A (en) Non-aqueous electrolyte secondary battery and manufacture thereof
JPH10302766A (en) Lithium ion secondary battery