JP2001283852A - Positive active material for nonaqueous electrolyte secondary battery - Google Patents

Positive active material for nonaqueous electrolyte secondary battery

Info

Publication number
JP2001283852A
JP2001283852A JP2000101063A JP2000101063A JP2001283852A JP 2001283852 A JP2001283852 A JP 2001283852A JP 2000101063 A JP2000101063 A JP 2000101063A JP 2000101063 A JP2000101063 A JP 2000101063A JP 2001283852 A JP2001283852 A JP 2001283852A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
present
nafeo
secondary battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2000101063A
Other languages
Japanese (ja)
Other versions
JP4765137B2 (en
Inventor
Atsushi Funabiki
厚志 船引
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Japan Storage Battery Co Ltd
Original Assignee
Japan Storage Battery Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Japan Storage Battery Co Ltd filed Critical Japan Storage Battery Co Ltd
Priority to JP2000101063A priority Critical patent/JP4765137B2/en
Publication of JP2001283852A publication Critical patent/JP2001283852A/en
Application granted granted Critical
Publication of JP4765137B2 publication Critical patent/JP4765137B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To provide an iron-containing positive electrode active substance for a nonaqueous electrolyte secondary battery which is of low cost and yet with large charge and discharge capacity and superb charge and discharge cycle characteristics. SOLUTION: As a positive active material, an alkali metal-containing iron oxide with hexagonal rock salt structure of which a part of the surface is clad with vanadium oxide. Further, it is preferable to use α-NaFeO2 as an alkali metal-containing iron oxide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質二次電
池用正極活物質に関する。
The present invention relates to a positive electrode active material for a non-aqueous electrolyte secondary battery.

【0002】[0002]

【従来の技術】近年、携帯用電話、ビデオカメラ等の小
型電源および電気自動車、電力平準化用の大型電源とし
て、高エネルギー密度、高出力密度を有する二次電池、
特にリチウム二次電池が大きな注目を受けている。この
リチウム二次電池に用いられる材料として、正極にはリ
チウム遷移金属酸化物が、負極には黒鉛、低温焼成炭
素、酸化物、リチウム合金およびリチウム金属が提案さ
れている。
2. Description of the Related Art In recent years, secondary batteries having a high energy density and a high output density have been used as small power sources such as portable telephones and video cameras and large power sources for electric vehicles and power leveling.
In particular, lithium secondary batteries have received great attention. As a material used for this lithium secondary battery, a lithium transition metal oxide has been proposed for the positive electrode, and graphite, low-temperature fired carbon, oxide, lithium alloy and lithium metal have been proposed for the negative electrode.

【0003】現在、正極活物質として使われているコバ
ルト酸リチウム(LiCoO2)は高価であり、将来予
測されるリチウム二次電池の大量消費に対応するために
は、より安価で埋蔵量が豊富な正極活物質の開発が重要
である。現在、マンガンやニッケル、鉄を含む酸化物が
リチウム二次電池用正極活物質として精力的に研究され
ている。中でも鉄は最も安価で環境負荷の小さい材料で
あるため、鉄を主体として含む酸化物は次世代リチウム
二次電池用正極活物質として大変魅力的である。
[0003] Lithium cobalt oxide (LiCoO 2 ) currently used as a positive electrode active material is expensive, and in order to cope with the mass consumption of lithium secondary batteries expected in the future, it is cheaper and has abundant reserves. It is important to develop a positive electrode active material. At present, oxides containing manganese, nickel, and iron are being vigorously studied as positive electrode active materials for lithium secondary batteries. Among them, iron is the cheapest and has a low environmental load, and thus an oxide mainly containing iron is very attractive as a positive electrode active material for a next-generation lithium secondary battery.

【0004】鉄を主体として含むリチウム二次電池用正
極活物質として、これまで種々のリチウム含有鉄酸化物
が提案されてきた。例えば、トンネル構造または層状ジ
グザグ構造を有するリチウム鉄複合酸化物(LiFeO
2)(例えばJ.Electrochem.Soc.,
143,2435(1996))、オリビン型LiFe
PO4(J.Electrochem.Soc.,14
,1609(1997))、さらに、六方晶層状岩塩
型構造を有するLiFeO2(例えば特開平10―67
519)等が挙げられる。
Various lithium-containing iron oxides have been proposed as positive electrode active materials for lithium secondary batteries containing iron as a main component. For example, a lithium iron composite oxide having a tunnel structure or a layered zigzag structure (LiFeO
2 ) (for example, J. Electrochem. Soc.,
143 , 2435 (1996)), olivine type LiFe
PO 4 (J. Electrochem. Soc., 14
4 , 1609 (1997)), and LiFeO 2 having a hexagonal layered rock salt type structure (for example, see JP-A-10-67).
519).

【0005】[0005]

【発明が解決しようとする課題】上記トンネル構造また
は層状ジグザグ構造を有するLiFeO2は、初期にL
iCoO2を凌ぐ高い充放電容量(150mAh/g以
上)を有するが、10サイクルの寿命試験で放電容量が
初期容量の80%以下に低下し、充放電サイクル特性が
低い問題点がある.オリビン型LiFePO4の放電容
量は140mAh/g以下であり、電池活物質として不
十分である。一方、六方晶層状岩塩型構造を有するLi
FeO2は、J.Electrochem.Soc.,
144,L177(1997)で示されているように、
充放電容量が極めて低く(10mAh/g以下)、さら
に充放電サイクル特性が低い課題がある。
The LiFeO 2 having the tunnel structure or the layered zigzag structure is initially L
Although it has a higher charge / discharge capacity (150 mAh / g or more) than iCoO 2 , the discharge capacity is reduced to 80% or less of the initial capacity in a 10-cycle life test, and the charge / discharge cycle characteristics are low. The discharge capacity of the olivine type LiFePO 4 is 140 mAh / g or less, which is insufficient as a battery active material. On the other hand, Li having a hexagonal layered rock salt type structure
FeO 2 is described in J. Electrochem. Soc. ,
144 , L177 (1997),
There is a problem that the charge / discharge capacity is extremely low (10 mAh / g or less) and the charge / discharge cycle characteristics are low.

【0006】従って、これまで150mAh/g以上の
高い放電容量を有し、なおかつ充放電サイクル特性に優
れたリチウム鉄複合酸化物は得られていない。
Therefore, a lithium iron composite oxide having a high discharge capacity of 150 mAh / g or more and excellent in charge / discharge cycle characteristics has not been obtained.

【0007】一方、アルカリ電池正極活物質であるMn
2の利用率向上に、Bi23およびPbO等の金属酸
化物を混合することが有効であることが知られている
(H.S.Wroblowa and N. Gupt
a,J.Electroanal. Chem.,23
,93(1987))。金属酸化物の作用として、近
年、触媒性が指摘されている(DeYanG Qu,
J.Appl.Electrochem.,29,51
1(1999))。マンガンにはBi23およびPbO
との混合が有効であるのに対し、他の遷移金属、例えば
鉄にいかなる金属酸化物が良好な作用をもたらすかは明
らかになっていない。
On the other hand, Mn, which is an alkaline battery positive electrode active material,
It is known that it is effective to mix metal oxides such as Bi 2 O 3 and PbO to improve the utilization of O 2 (HS Wroblowa and N. Gupt).
a, J. et al. Electroanal. Chem. , 23
8 , 93 (1987)). In recent years, catalytic properties have been pointed out as a function of metal oxides (DeYanG Qu,
J. Appl. Electrochem. , 29 , 51
1 (1999)). Manganese includes Bi 2 O 3 and PbO
It is not clear which metal oxides have a good effect on other transition metals, for example iron, while the mixing with is effective.

【0008】本発明はかかる金属酸化物の添加効果に注
目したものであり、その目的とするところは、高い充放
電容量を持ち、さらに良好な充放電サイクル特性を持つ
非水電解質二次用鉄含有正極活物質を提供することにあ
る。
The present invention focuses on the effect of the addition of such a metal oxide. The object of the present invention is to provide a non-aqueous electrolyte secondary iron having a high charge / discharge capacity and good charge / discharge cycle characteristics. It is to provide a contained positive electrode active material.

【0009】[0009]

【課題を解決するための手段】本発明の非水電解質二次
電池用正極活物質は、六方晶層状岩塩型構造を有するア
ルカリ金属含有鉄酸化物とバナジウム酸化物とが混合さ
れ、前記アルカリ金属含有鉄酸化物の表面の少なくとも
一部に前記バナジウム酸化物が担持されていることを特
徴とする。
The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is obtained by mixing an alkali metal-containing iron oxide having a hexagonal layered rock salt type structure and vanadium oxide, The vanadium oxide is supported on at least a part of the surface of the contained iron oxide.

【0010】さらに、本発明の非水電解質二次電池用正
極活物質では、前記アルカリ金属含有鉄酸化物がα−N
aFeO2であることを特徴とする。
Further, in the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention, the alkali metal-containing iron oxide is α-N
aFeO 2 .

【0011】[0011]

【発明の実施の形態】本発明では、六方晶層状岩塩型構
造を有するアルカリ金属含有鉄酸化物の表面の少なくと
も一部にバナジウム酸化物を担持させることにより、ア
ルカリ金属含有鉄酸化物の非水電解質二次電池用正極活
物質としての利用率を大幅に増加させ、サイクル特性を
良好にすることができる。
BEST MODE FOR CARRYING OUT THE INVENTION In the present invention, vanadium oxide is supported on at least a part of the surface of an alkali metal-containing iron oxide having a hexagonal layered rock-salt structure, so that non-aqueous The utilization factor as a positive electrode active material for an electrolyte secondary battery can be greatly increased, and the cycle characteristics can be improved.

【0012】本発明のアルカリ金属含有鉄酸化物には、
LiFeO2、a−NaFeO2を用いることができ、N
aを一部Liで置換したLi1-xNaxFeO2(0<x
<1)、および鉄の一部を他の遷移金属元素で置換した
LiM1- yFey2(M=Co,Mn,Ni)(0<y
<1)も用いることができる。ただし、いずれも六方晶
層状岩塩型構造を有することを特徴とする。
[0012] The alkali metal-containing iron oxide of the present invention includes:
LiFeO 2 or a-NaFeO 2 can be used.
a 1-x Na x FeO 2 (0 <x
<1) and LiM 1- y Fe y O 2 (M = Co, Mn, Ni) (0 <y
<1) can also be used. However, each of them is characterized by having a hexagonal layered rock salt type structure.

【0013】本発明で用いられるバナジウム酸化物に
は、V23、V24、V25を用いることが可能であ
る。
As the vanadium oxide used in the present invention, V 2 O 3 , V 2 O 4 and V 2 O 5 can be used.

【0014】[0014]

【実施例】以下に本発明なる非水電解質二次電池用正極
活物質の実施例を説明する。しかし、本発明は以下の実
施例に限定されるものではない。
EXAMPLES Examples of the positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention will be described below. However, the present invention is not limited to the following examples.

【0015】[実施例1]酸化第二鉄(a−Fe23
および過酸化ナトリウム(Na22)をそれぞれ0.0
3モル秤量し、乳鉢で混合し、ペレット化した後、酸素
雰囲気下、550℃で20時間焼成した。つづいて、試
料を粉砕し、再度550℃で20時間焼成することによ
り、六方晶層状岩塩型構造を有するa−NaFeO2を得
た。試料の秤量、乳鉢での混合はすべてアルゴン雰囲気
下のグローブボックス内で行った。
Example 1 Ferric oxide (a-Fe 2 O 3 )
And sodium peroxide (Na 2 O 2 )
After weighing 3 mol, mixing in a mortar, and pelletizing, the mixture was baked at 550 ° C. for 20 hours in an oxygen atmosphere. Subsequently, the sample was pulverized and fired again at 550 ° C. for 20 hours to obtain a-NaFeO 2 having a hexagonal layered rock salt type structure. All the samples were weighed and mixed in a mortar in a glove box under an argon atmosphere.

【0016】つぎに、上記で得られたa−NaFeO2
25をモル比が40:1になるようにメタノール中で
湿式混合し、80℃で乾燥することによって、a−Na
FeO2の表面にバナジウム酸化物が担持された正極活
物質を作製した。正極活物質としてのa−NaFeO2
25の混合物75重量部に、導電剤としてのアセチレ
ンブラック20重量部と、結着剤としてのポリフッカビ
ニリデン(PVDF)5重量部を加え、溶剤であるN―
メチルー2ピロリドンと湿式混合してスラリーにした。
このスラリーを集電体であるアルミニウムメッシュの両
面に塗付した後、1t/cm2で加圧成形し、真空下に
て230℃で乾燥し、大きさ15mm×15mm×0.
5mmの本発明正極板(A1)を作製した。
Next, the a-NaFeO 2 and V 2 O 5 obtained above were wet-mixed in methanol so that the molar ratio became 40: 1, and dried at 80 ° C. to obtain a-NaFeO 2.
A positive electrode active material in which vanadium oxide was supported on the surface of FeO 2 was produced. To 75 parts by weight of a mixture of a-NaFeO 2 and V 2 O 5 as a positive electrode active material, 20 parts by weight of acetylene black as a conductive agent, and 5 parts by weight of polyfukkavinylidene (PVDF) as a binder were added. N-
Slurry was obtained by wet mixing with methyl-2-pyrrolidone.
This slurry was applied to both sides of an aluminum mesh as a current collector, then molded under pressure at 1 t / cm 2 , dried at 230 ° C. under vacuum, and sized 15 mm × 15 mm × 0.
A 5 mm positive electrode plate (A1) of the present invention was produced.

【0017】[実施例2]実施例1に基づき得られるa
−NaFeO2とV25をモル比が40:2になるよう
に混合し、正極活物質としたこと以外は実施例1と同様
にして、本発明正極板(A2)を作製した。
[Embodiment 2] a obtained based on Embodiment 1
-NaFeO 2 and V 2 O 5 molar ratio of 40 were mixed at 2, except that a cathode active material in the same manner as in Example 1 to prepare a present invention positive electrode plate (A2).

【0018】[実施例3]実施例1に基づき得られるa
−NaFeO2とV25をモル比が40:4になるよう
に混合し、正極活物質としたこと以外は実施例1と同様
にして、本発明正極板(A3)を作製した。
[Embodiment 3] a obtained based on Embodiment 1
-NaFeO 2 and V 2 O 5 molar ratio of 40 were mixed so that the 4, except that a cathode active material in the same manner as in Example 1 to prepare a present invention positive electrode plate (A3).

【0019】[実施例4]実施例1に基づき得られるa
−NaFeO2とV25をモル比が40:10になるよ
うに混合し、正極活物質としたこと以外は実施例1と同
様にして、本発明正極板(A4)を作製した。
[Embodiment 4] a obtained based on Embodiment 1
A positive electrode plate (A4) of the present invention was produced in the same manner as in Example 1 except that -NaFeO 2 and V 2 O 5 were mixed at a molar ratio of 40:10 to obtain a positive electrode active material.

【0020】[実施例5]実施例1に基づき得られるa
−NaFeO2とV25をモル比が40:20になるよ
うに混合し、正極活物質としたこと以外は実施例1と同
様にして、本発明正極板(A5)を作製した。
[Embodiment 5] a obtained based on Embodiment 1
A positive electrode plate (A5) of the present invention was produced in the same manner as in Example 1, except that -NaFeO 2 and V 2 O 5 were mixed at a molar ratio of 40:20 to prepare a positive electrode active material.

【0021】[実施例6]実施例1に基づき得られるa
−NaFeO2とV25をモル比が40:40になるよ
うに混合し、正極活物質としたこと以外は実施例1と同
様にして、本発明正極板(A6)を作製した。
[Embodiment 6] a obtained based on Embodiment 1
-NaFeO 2 and V 2 O 5 molar ratio were mixed so that the 40:40, except that a cathode active material in the same manner as in Example 1 to prepare a present invention positive electrode plate (A6).

【0022】[実施例7]実施例1に基づき得られるa
−NaFeO2とV25をモル比が40:60になるよ
うに混合し、正極活物質としたこと以外は実施例1と同
様にして、本発明正極板(A7)を作製した。
[Embodiment 7] a obtained based on Embodiment 1
-NaFeO 2 and V 2 O 5 molar ratio were mixed so that the 40:60, except that a cathode active material in the same manner as in Example 1 to prepare a present invention positive electrode plate (A7).

【0023】[実施例8]実施例1に基づき得られるa
−NaFeO2とV25をモル比が40:80になるよ
うに混合し、正極活物質としたこと以外は実施例1と同
様にして、本発明正極板(A8)を作製した。
[Embodiment 8] a obtained based on Embodiment 1
-NaFeO 2 and V 2 O 5 molar ratio were mixed so that the 40:80, except that a cathode active material in the same manner as in Example 1 to prepare a present invention positive electrode plate (A8).

【0024】[実施例9]実施例1に基づき得られるa
−NaFeO2とV25をモル比が40:100になる
ように混合し、正極活物質としたこと以外は実施例1と
同様にして、本発明正極板(A9)を作製した。
[Embodiment 9] a obtained based on Embodiment 1
-NaFeO 2 and V 2 O 5 molar ratio of 40 were mixed so that the 100, except that the positive electrode active material in the same manner as in Example 1 to prepare a present invention positive electrode plate (A9).

【0025】[実施例10]実施例1に基づき得られる
a−NaFeO2とV25をモル比が40:120になる
ように混合し、正極活物質としたこと以外は実施例1と
同様にして、本発明正極板(A10)を作製した。
[Embodiment 10] Obtained based on Embodiment 1.
A positive electrode plate (A10) of the present invention was produced in the same manner as in Example 1 except that a-NaFeO 2 and V 2 O 5 were mixed at a molar ratio of 40: 120 to obtain a positive electrode active material.

【0026】[比較例1]正極活物質としてa−NaF
eO2を単独で用いたこと以外は実施例1と同様にし
て、比較正極板(B1)を作製した。
Comparative Example 1 a-NaF as a positive electrode active material
A comparative positive electrode plate (B1) was produced in the same manner as in Example 1 except that eO 2 was used alone.

【0027】[充放電特性]本発明正極板(A1)〜
(A10)および比較正極板(B1)をそれぞれ試験極
基材とし、実験用セルを構成した。対極および参照極に
リチウム金属、非水電解液に1mol/l の過塩素酸リ
チウムを溶解させたエチレンカーボネートとジエチルカ
ーボネートの体積比1:1の混合溶液を用いた。
[Charge / Discharge Characteristics] The positive electrode plate (A1) of the present invention
(A10) and the comparative positive electrode plate (B1) were each used as a test electrode base material to constitute an experimental cell. A mixed solution of ethylene carbonate and diethyl carbonate in which 1 mol / l of lithium perchlorate was dissolved in a non-aqueous electrolyte at a volume ratio of 1: 1 was used.

【0028】上記実験用セルを用いて、正極充放電特性
を調べた。本発明正極板(A1)〜(A10)、および
比較正極板(B1)について、電流密度2mA/gで
1.5Vまで放電した後、折り返し2mA/gで3.5
Vまで充電した。放電容量をC1、充電容量をC2とお
くとき、充放電サイクル効率を以下の式から算出した。
充放電サイクル効率(%)=(C2/C1)×100な
お、充放電試験は放電(リチウム挿入)から開始した。
The charge / discharge characteristics of the positive electrode were examined using the above experimental cell. The positive electrode plates (A1) to (A10) of the present invention and the comparative positive electrode plate (B1) were discharged to 1.5 V at a current density of 2 mA / g, and then turned back to 3.5 at 2 mA / g.
Charged to V When the discharge capacity is C1 and the charge capacity is C2, the charge / discharge cycle efficiency was calculated from the following equation.
Charge / discharge cycle efficiency (%) = (C2 / C1) × 100 The charge / discharge test was started from discharge (lithium insertion).

【0029】a−NaFeO2とV25のモル比をx、y
とするとき、本発明正極板(A1)〜(A10)および
比較正極板(B1)の(y/x)の値と各サイクルにお
ける充電容量との関係を表1に示す。また、本発明正極
板(A1)〜(A10)および比較正極板(B1)の各
サイクルにおけるサイクル効率を表2に示す。さらに、
本発明正極板(A6)と比較正極板(B1)の3サイク
ル目における充放電曲線をそれぞれ図1、図2に示す。
The molar ratio between a-NaFeO 2 and V 2 O 5 is x, y
Table 1 shows the relationship between the (y / x) value of the positive electrode plates (A1) to (A10) of the present invention and the comparative positive electrode plate (B1) and the charge capacity in each cycle. Table 2 shows the cycle efficiency in each cycle of the positive electrode plates (A1) to (A10) of the present invention and the comparative positive electrode plate (B1). further,
The charge and discharge curves of the positive electrode plate of the present invention (A6) and the comparative positive electrode plate (B1) in the third cycle are shown in FIGS. 1 and 2, respectively.

【0030】[0030]

【表1】 [Table 1]

【0031】[0031]

【表2】 [Table 2]

【0032】図1、図2から、a−NaFeO2とV25
の混合物(A6)ではa−NaFeO2(B1)と比較
し、その充放電曲線が大きく異なることが分かる。すな
わち、a−NaFeO2(B1)では電位がなだらかに変
化したのに対し、a−NaFeO2とV25の混合物(A
6)では約2Vに電位の平坦性が確認された。約2Vの
電位の平坦性はV25を活物質とした場合の初期サイク
ルにおいても同様にして現れるが、以後のサイクルで
は、構造がアモルファス化し、電位がなだらかに変化す
ることが報告されている(小柴ら,DENKI KAG
AKU,332(1994))。また、本発明正極板に
おいてV25のみ反応に寄与していると仮定し、初期サ
イクル放電過程における容量(2.1V〜1.5V)を
比較すると、本発明正極板(A4)では240mAh/
gとなるのに対し、V25では約200mAh/gとな
る(小柴ら,DENKI KAGAKU,332 (19
94))。
FIGS. 1 and 2 show that a-NaFeO 2 and V 2 O 5
It can be seen that the charge-discharge curve of the mixture (A6) is significantly different from that of a-NaFeO 2 (B1). That is, while the potential of a-NaFeO 2 (B1) gradually changed, a mixture of a-NaFeO 2 and V 2 O 5 (A
In 6), the flatness of the potential was confirmed at about 2 V. The flatness of the potential of about 2 V appears similarly in the initial cycle when V 2 O 5 is used as the active material, but it is reported that in the subsequent cycles, the structure becomes amorphous and the potential changes gradually. (Koshiba et al., DENKI KAG
AKU, 332 (1994)). Further, assuming that only V 2 O 5 contributes to the reaction in the positive electrode plate of the present invention, and comparing the capacities (2.1 V to 1.5 V) in the initial cycle discharge process, the positive electrode plate of the present invention (A4) has a capacity of 240 mAh. /
g, whereas for V 2 O 5 it is about 200 mAh / g (Koshiba et al., DENKI KAGAKU, 332 (19).
94)).

【0033】以上の結果、本発明正極板では、V25
独の特性が現れているのでなく、a−NaFeO2が充放
電反応に大きく寄与していると考えられる。V25との
混合により、比較正極板(B1)と比べて本発明正極板
の容量が増加したのは、a−NaFeO2の利用率の向上
に起因すると考えられる。
As a result, it is considered that, in the positive electrode plate of the present invention, the characteristics of V 2 O 5 alone do not appear, and a-NaFeO 2 greatly contributes to the charge / discharge reaction. The increase in the capacity of the positive electrode plate of the present invention as compared with the comparative positive electrode plate (B1) due to the mixing with V 2 O 5 is considered to be due to the improvement in the utilization of a-NaFeO 2 .

【0034】Feの2価/3価の酸化還元反応は約2V
でおこることが報告されている(K.Amine e
t.al.,J.Power.Sources,81−
82,221(1999))。従って、本発明正極板で
出現した約2Vの電位の平坦性(図1)は、a−NaF
eO2へのリチウムの挿入・脱離にともなうFeの2価
/3価の酸化還元反応に起因し、a−NaFeO2の利用
率の向上によってもたらされたと考えられる。
The divalent / trivalent redox reaction of Fe is about 2 V
(K. Amine e)
t. al. , J. et al. Power. Sources, 81-
82 , 221 (1999)). Therefore, the flatness of the potential of about 2 V that appeared in the positive electrode plate of the present invention (FIG. 1) is a-NaF
Due to the bivalent / trivalent redox reaction of Fe with the insertion and extraction of lithium into eO 2, it is believed to have been brought about by improving the utilization of a-NaFeO 2.

【0035】表1から、(y/x)の値が1〜3.0で
ある本発明正極活物質は大きな放電容量(130〜20
0mAh/g)を有することが分かる。また、表2か
ら、(y/x)の値が0〜2.5である本発明正極活物
質は、比較正極板と比べてサイクル特性が優れているこ
とが分かる。従って、(y/x)の値が1〜2.5であ
るa−NaFeO2とV25の混合物を用いることが、高
容量で、良好なサイクル特性を有する非水電解質正極活
物質を得る上で好ましいことが分かる。
From Table 1, it can be seen that the cathode active material of the present invention in which the value of (y / x) is 1 to 3.0 has a large discharge capacity (130 to 20).
0 mAh / g). In addition, Table 2 shows that the positive electrode active material of the present invention in which the value of (y / x) is 0 to 2.5 has excellent cycle characteristics as compared with the comparative positive electrode plate. Therefore, using a mixture of a-NaFeO 2 and V 2 O 5 having a value of (y / x) of 1 to 2.5 makes it possible to obtain a nonaqueous electrolyte positive electrode active material having high capacity and good cycle characteristics. It turns out that it is preferable in obtaining.

【0036】本実施例では、アルカリ金属含有鉄酸化物
にa−NaFeO2、バナジウム酸化物にV25を選んで
説明したが、a−NaFeO2にV23、V24を混合し
た活物質や、LiFeO2、FeOOHにV23、V2
4、V25を混合した活物質においても同様にして、高
容量で、良好なサイクル特性が得られた。
In this embodiment, a-NaFeO 2 was selected as the alkali metal-containing iron oxide and V 2 O 5 was selected as the vanadium oxide. However, V 2 O 3 and V 2 O 4 were selected as the a-NaFeO 2. V 2 O 3 , V 2 O on mixed active material, LiFeO 2 , FeOOH
4. Similarly, a high capacity and good cycle characteristics were obtained in the active material mixed with V 2 O 5 .

【0037】本発明により、高容量で充放電特性に優れ
たアルカリ金属含有鉄酸化物を得ることに初めて成功
し、安価で環境負荷の小さい非水電解質二次電池用正極
活物質の開発に大きく寄与するものである。
According to the present invention, an alkali metal-containing iron oxide having high capacity and excellent charge / discharge characteristics was successfully obtained for the first time, and has been greatly developed for the development of a positive electrode active material for a nonaqueous electrolyte secondary battery which is inexpensive and has a small environmental load. It will contribute.

【0038】[0038]

【発明の効果】本発明の非水電解質二次電池用正極活物
質は、アルカリ金属含有鉄酸化物の表面の少なくとも一
部にバナジウム酸化物を担持したことを特徴とし、アル
カリ金属含有鉄酸化物にa−NaFeO2を、バナジウム
酸化物にV25を用いた場合、a−NaFeO2とV25
のモル比をx、yとすると、0<(y/x)<3、さら
に好ましくは1<(y/x)<2.5とした時に、高容
量で、サイクル特性が特に良好となる。
The positive electrode active material for a non-aqueous electrolyte secondary battery according to the present invention is characterized in that vanadium oxide is supported on at least a part of the surface of an alkali metal-containing iron oxide. If the a-NaFeO 2, with V 2 O 5 in the vanadium oxide, a-NaFeO 2 and V 2 O 5
Assuming that the molar ratio of x and y is 0 <(y / x) <3, more preferably 1 <(y / x) <2.5, the capacity is high and the cycle characteristics are particularly good.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明正極板(A6)の3サイクル目における
充放電特性を示す図である。
FIG. 1 is a diagram showing charge / discharge characteristics of a positive electrode plate (A6) of the present invention in a third cycle.

【図2】比較正極板(B1)の3サイクル目における充
放電特性を示す図である。
FIG. 2 is a diagram showing charge / discharge characteristics of a comparative positive electrode plate (B1) in a third cycle.

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】六方晶層状岩塩型構造を有するアルカリ金
属含有鉄酸化物とバナジウム酸化物とが混合され、前記
アルカリ金属含有鉄酸化物の表面の少なくとも一部に前
記バナジウム酸化物が担持されていることを特徴とする
非水電解質二次電池用正極活物質。
An alkali metal-containing iron oxide having a hexagonal layered rock salt type structure and a vanadium oxide are mixed, and the vanadium oxide is supported on at least a part of the surface of the alkali metal-containing iron oxide. A positive electrode active material for a non-aqueous electrolyte secondary battery.
【請求項2】前記アルカリ金属含有鉄酸化物がα−Na
FeO2であることを特徴とする非水電解質二次電池用
正極活物質。
2. The method according to claim 1, wherein the alkali metal-containing iron oxide is α-Na
A positive electrode active material for a non-aqueous electrolyte secondary battery, which is FeO 2 .
JP2000101063A 2000-04-03 2000-04-03 Cathode active material for non-aqueous electrolyte secondary battery Expired - Fee Related JP4765137B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000101063A JP4765137B2 (en) 2000-04-03 2000-04-03 Cathode active material for non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000101063A JP4765137B2 (en) 2000-04-03 2000-04-03 Cathode active material for non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2001283852A true JP2001283852A (en) 2001-10-12
JP4765137B2 JP4765137B2 (en) 2011-09-07

Family

ID=18615182

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000101063A Expired - Fee Related JP4765137B2 (en) 2000-04-03 2000-04-03 Cathode active material for non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP4765137B2 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2005096415A1 (en) * 2004-03-31 2005-10-13 Sumitomo Chemical Company, Limited Positive electrode active material for non-aqueous electrolyte secondary cell
JP2005317511A (en) * 2004-03-31 2005-11-10 Junichi Yamaki Anode active material for non-aqueous electrolyte secondary battery
US7045250B2 (en) 2000-11-13 2006-05-16 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery

Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487152A (en) * 1990-07-27 1992-03-19 Sanyo Electric Co Ltd Nonaqueous battery
JPH06275273A (en) * 1993-03-17 1994-09-30 Sanyo Electric Co Ltd Nonaqueous secondary battery
JPH08250120A (en) * 1995-03-08 1996-09-27 Sanyo Electric Co Ltd Lithium secondary battery
JPH09293508A (en) * 1996-04-25 1997-11-11 Sony Corp Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it
JPH09330719A (en) * 1996-06-11 1997-12-22 Sanyo Electric Co Ltd Lithium secondary battery
JPH1067519A (en) * 1996-08-27 1998-03-10 Agency Of Ind Science & Technol Production of laminar rock salt type lithium ferrite by solvothermal ion exchange method
JPH10241667A (en) * 1997-02-26 1998-09-11 Toyota Central Res & Dev Lab Inc Electrode active substance for nonaqueous battery
JPH1140156A (en) * 1997-07-16 1999-02-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Patent Citations (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0487152A (en) * 1990-07-27 1992-03-19 Sanyo Electric Co Ltd Nonaqueous battery
JPH06275273A (en) * 1993-03-17 1994-09-30 Sanyo Electric Co Ltd Nonaqueous secondary battery
JPH08250120A (en) * 1995-03-08 1996-09-27 Sanyo Electric Co Ltd Lithium secondary battery
JPH09293508A (en) * 1996-04-25 1997-11-11 Sony Corp Positive electrode material for lithium secondary battery, its manufacture and nonaqueous electrolyte secondary battery using it
JPH09330719A (en) * 1996-06-11 1997-12-22 Sanyo Electric Co Ltd Lithium secondary battery
JPH1067519A (en) * 1996-08-27 1998-03-10 Agency Of Ind Science & Technol Production of laminar rock salt type lithium ferrite by solvothermal ion exchange method
JPH10241667A (en) * 1997-02-26 1998-09-11 Toyota Central Res & Dev Lab Inc Electrode active substance for nonaqueous battery
JPH1140156A (en) * 1997-07-16 1999-02-12 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US7045250B2 (en) 2000-11-13 2006-05-16 Sanyo Electric Co., Ltd. Non-aqueous electrolyte battery
WO2005096415A1 (en) * 2004-03-31 2005-10-13 Sumitomo Chemical Company, Limited Positive electrode active material for non-aqueous electrolyte secondary cell
JP2005317511A (en) * 2004-03-31 2005-11-10 Junichi Yamaki Anode active material for non-aqueous electrolyte secondary battery
US7794879B2 (en) 2004-03-31 2010-09-14 Jun-ichi Yamaki Positive electrode active material for non-aqueous electrolyte secondary cell

Also Published As

Publication number Publication date
JP4765137B2 (en) 2011-09-07

Similar Documents

Publication Publication Date Title
US9660253B2 (en) Positive electrode active material for sodium battery, and method of producing the same
US6066414A (en) Material of negative electrode and nonaqueous-electrolyte secondary battery using the same
JP3550783B2 (en) Lithium-containing transition metal composite oxide, method for producing the same, and use thereof
US8313721B2 (en) Lithium-oxygen (AIR) electrochemical cells and batteries
JP3848250B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP2014058442A (en) Method for producing lithium metal phosphate
JPH05174818A (en) Manufacture of nonaqueous electrolyte secondary battery and negative electrode active material thereof
US6335119B1 (en) Lithium battery and method of producing positive electrode active material therefor
CN112018344B (en) Carbon-coated nickel sulfide electrode material and preparation method and application thereof
JP2003034534A (en) Carbon-containing lithium iron complex oxide for positive electrode active substance for lithium secondary cell and method for producing the same
JPH09270253A (en) Manufacture of lithium nickelate positive plate and lithium battery
JP5516463B2 (en) Method for producing positive electrode active material for lithium ion secondary battery
JP5051770B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JP2000348722A (en) Nonaqueous electrolyte battery
KR100454238B1 (en) composite cathode with MgxNi1-xO for rechargeable Li/S secondary cell, Li/S secondary cell
JP2006127848A (en) Aqueous lithium secondary battery
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JP4765137B2 (en) Cathode active material for non-aqueous electrolyte secondary battery
CN115148970A (en) Olivine NaMPO 4 High-nickel-coated ternary or lithium-rich manganese-based positive electrode material and preparation method thereof
JP4431785B2 (en) Positive electrode material for lithium secondary battery, method for producing the same, and lithium secondary battery using the same
JPH0644970A (en) Nonaqueous electrolyte lithium battery
JP3354611B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2001006673A (en) Nonaqueous electrolyte lithium secondary battery and its positive electrode active material
JP2006040572A (en) Positive active material for aqueous lithium secondary battery and aqueous lithium secondary battery
Choi et al. Performance Improvement of NiMH-Based Fuel Cell/Battery (FCB) with α-Ni (OH) 2

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20051213

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070309

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100325

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100608

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100610

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20110517

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20110530

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20140624

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees