JPH0644970A - Nonaqueous electrolyte lithium battery - Google Patents

Nonaqueous electrolyte lithium battery

Info

Publication number
JPH0644970A
JPH0644970A JP4195100A JP19510092A JPH0644970A JP H0644970 A JPH0644970 A JP H0644970A JP 4195100 A JP4195100 A JP 4195100A JP 19510092 A JP19510092 A JP 19510092A JP H0644970 A JPH0644970 A JP H0644970A
Authority
JP
Japan
Prior art keywords
nickel
lithium
positive electrode
secondary battery
aqueous electrolyte
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP4195100A
Other languages
Japanese (ja)
Inventor
Yasuhiko Mifuji
靖彦 美藤
Sukeyuki Murai
祐之 村井
Masaki Hasegawa
正樹 長谷川
Shuji Ito
修二 伊藤
Yoshinori Toyoguchi
吉徳 豊口
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP4195100A priority Critical patent/JPH0644970A/en
Publication of JPH0644970A publication Critical patent/JPH0644970A/en
Pending legal-status Critical Current

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01MPROCESSES OR MEANS, e.g. BATTERIES, FOR THE DIRECT CONVERSION OF CHEMICAL ENERGY INTO ELECTRICAL ENERGY
    • H01M4/00Electrodes
    • H01M4/02Electrodes composed of, or comprising, active material
    • H01M4/36Selection of substances as active materials, active masses, active liquids
    • H01M4/48Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides
    • H01M4/52Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron
    • H01M4/525Selection of substances as active materials, active masses, active liquids of inorganic oxides or hydroxides of nickel, cobalt or iron of mixed oxides or hydroxides containing iron, cobalt or nickel for inserting or intercalating light metals, e.g. LiNiO2, LiCoO2 or LiCoOxFy
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PURPOSE:To improve capacity by constituting a nonaqueous electrolyte lithium secondary battery through using a positive electrode having a main body of composite oxide of lithium and nickel, obtained by a specific method. CONSTITUTION:A water soluble nickel salt aqueous solution is selected from the halide, sulfate, phosphate, and oxalate of the chloride or iodide, etc., of nickel. The aqueous solution of a water soluble basic lithium compound, selected from the hydroxide, carbonate, and hydrogencarbonate of equimolar lithium, is injectionally mixed in the water soluble nickel salt aqueous solution. A cake- state substance, obtained by dry-hardening this mixture, is baked at 600-800 deg.C. The composite oxide of lithium and nickel, obtained in this way, is used for the active material of an positive electrode 4 opposed via a negative electrode 2 and a separator 5. This can improve capacity to level equivalent to capacity level owned by a battery, having positive electrode active material of a composite oxide of lithium and cobalt, considered to have the largest capacity at present.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【産業上の利用分野】本発明は、高電圧で、かつ高容量
であることからポータブル機器用や電気自動車用などの
高エネルギー密度蓄電池として期待される比較的安価な
リチウムとニッケルとの複合酸化物を正極活物質とする
非水電解質リチウム二次電池に関する。
BACKGROUND OF THE INVENTION The present invention relates to a relatively inexpensive composite oxide of lithium and nickel, which is expected as a high energy density storage battery for portable devices, electric vehicles, etc. because of its high voltage and high capacity. TECHNICAL FIELD The present invention relates to a non-aqueous electrolyte lithium secondary battery using a material as a positive electrode active material.

【0002】[0002]

【従来の技術】各種ポータブル機器の小型軽量化および
電気自動車の一充電当たりの走行距離をはじめとする高
性能化を達成するために、高エネルギー密度蓄電池の研
究開発が世界各国で盛んに続けられている。近年、その
一環として金属リチウムまたはアルミニウム,ある種の
アルミニウム合金,鉛・錫・ビスマス・カドミウム系に
代表されるウッド合金(Wood′s metal)等
の常温下で容易にリチウムと合金化する金属やある種の
黒鉛のような炭素材や酸化物や硫化物やポリアセチレ
ン,ポリアニリンのような導電性ポリマー等のように充
放電によりリチウムが可逆的に吸蔵,放出を繰り返すこ
とが可能な活物質保持体を主体とする負極を用いる非水
電解質リチウム二次電池の研究開発と実用化が活発であ
る。
2. Description of the Related Art In order to achieve miniaturization and weight reduction of various portable devices and high performance such as mileage per charge of electric vehicles, research and development of high energy density storage batteries have been actively pursued all over the world. ing. In recent years, as a part thereof, metal such as metallic lithium or aluminum, an aluminum alloy of some kind, a wood alloy (Wood's metal) represented by lead-tin-bismuth-cadmium system, etc., which is easily alloyed with lithium at room temperature, An active material holder capable of reversibly occluding and releasing lithium reversibly by charge and discharge such as carbon materials such as certain graphite, oxides, sulfides, and conductive polymers such as polyacetylene and polyaniline Research and development and practical application of non-aqueous electrolyte lithium secondary batteries using a negative electrode mainly composed of are active.

【0003】それらの正極活物質としては、MnO2
TiS2,MoS2,V25,Cr2 5,Nb25,Li
CoO2,LiNiO2,LiFeO2,LiMnO2,L
iMn24などの遷移金属の酸化物,カルコゲン化合
物、リチウムとの複合酸化物等がよく知られている。こ
れらは層間化合物のような層状またはトンネル状の結晶
構造であって、充放電によりリチウムイオンが可逆的に
放出,吸蔵を繰り返すことが可能である。特に、LiC
oO2やLiNiO2やLiMn24などは4V級の高電
圧の非水電解質リチウム二次電池の正極活物質として注
目されているが、これらのなかで、LiCoO2で表さ
れるリチウムとコバルトとの複合酸化物が特性的に最も
優れている。しかし、コバルトが比較的高価であるばか
りでなく、産地が特定地域に偏在しているので、政治情
勢の変化による供給不安や価格高騰等の懸念が問題視さ
れている。
MnO is used as the positive electrode active material.2
TiS2, MoS2, V2OFive, Cr2O Five, Nb2OFive, Li
CoO2, LiNiO2, LiFeO2, LiMnO2, L
iMn2OFourOxides of transition metals, such as chalcogen compounds
Materials, complex oxides with lithium, and the like are well known. This
These are layered or tunnel-like crystals like intercalation compounds.
The structure is such that lithium ions are reversibly charged and discharged.
It is possible to repeat release and occlusion. In particular, LiC
oO2And LiNiO2And LiMn2OFourHigh voltage of 4V class
Pressure positive electrode active material of non-aqueous electrolyte lithium secondary battery
Of these, LiCoO2Represented by
The composite oxide of lithium and cobalt
Are better. But the idiot that cobalt is relatively expensive
Rural areas are unevenly distributed in specific areas,
Concerns about supply uncertainties and rising prices due to changes in tide have become a problem
Has been.

【0004】一方、LiMn24やLiNiO2で表わ
されるリチウムとマンガンまたはニッケルとの複合酸化
物の場合は、その原料のマンガンやニッケルの化合物は
比較的安価で、かつ安定した供給が可能で、コバルトの
ような心配はないが、特性、特に放電容量の面で、Li
CoO2より劣る欠点があった。したがって、これらの
複合酸化物の合成および処理条件を検討することにより
改質がはかられつつある。殊に、LiNiO2はLiC
oO2より0.2V程電圧が低いが、LiCoO 2と同様
な構造なので、高容量リチウム二次電池の正極活物質と
して大いに期待され、注目されている。
On the other hand, LiMn2OFourAnd LiNiO2Represented by
Oxidation of Lithium with Manganese or Nickel
In the case of products, the manganese and nickel compounds that are the raw materials are
Relatively cheap and stable supply is possible.
There is no such concern, but in terms of characteristics, especially discharge capacity, Li
CoO2There was a lesser drawback. Therefore, these
By examining the synthesis and processing conditions of complex oxides
Modifications are beginning to take place. Especially, LiNiO2Is LiC
oO20.2V lower than LiCoO 2same as
Because of its unique structure, it can be used as a positive electrode active material for high-capacity lithium secondary batteries.
It has been highly anticipated and attracted attention.

【0005】LiNiO2で表わされるリチウムとニッ
ケルとの複合酸化物の合成法としては、従来ジャーナ
ル・オブ・アメリカン・ケミカル・ソサエティ(J.A
merican Chemical Soc.)第76
巻,1499頁(1954)に記載されているように、
無水水酸化リチウムと金属ニッケルとを酸素雰囲気下で
加熱して反応させて合成されるがリチウム二次電池の正
極活物質としては、放電容量が小さく、満足できるもの
ではなかった。
As a method for synthesizing a composite oxide of lithium and nickel represented by LiNiO 2 , the conventional Journal of American Chemical Society (J.A.
american Chemical Soc. ) 76th
Vol., P. 1499 (1954),
It was synthesized by heating anhydrous lithium hydroxide and metallic nickel in an oxygen atmosphere to react with each other, but as a positive electrode active material of a lithium secondary battery, the discharge capacity was small and it was not satisfactory.

【0006】また、ケミストリー・エクスプレス(C
hemistry Express)第6巻,第3号,
161頁(1991)には、等モルの4.5mol/1
LiOH水溶液と1.0mol/1Ni(NO32水溶
液とを60℃に保ちながら混合し、同じ液温で長時間攪
拌した後、減圧乾燥して固化した前駆物質を得る。
In addition, Chemistry Express (C
hemisphere Express) Volume 6, No. 3,
On page 161, (1991), an equimolar amount of 4.5 mol / 1
A LiOH aqueous solution and a 1.0 mol / 1 Ni (NO 3 ) 2 aqueous solution are mixed while being maintained at 60 ° C., and the mixture is stirred at the same liquid temperature for a long time and dried under reduced pressure to obtain a solidified precursor.

【0007】次いで、この前駆物質を粉砕した粉末を3
00℃で予備焼成した後、800℃で本焼成して黒色の
リチウムとニッケルとの複合酸化物粉末が得られること
が記載されている。そして、この複合酸化物が比較的高
容量のリチウム二次電池用正極活物質になり得ることが
報告されている。
Next, the powder obtained by crushing this precursor is mixed with 3
It is described that a black composite oxide powder of lithium and nickel is obtained by pre-baking at 00 ° C. and then main baking at 800 ° C. It has been reported that this composite oxide can serve as a positive electrode active material for a lithium secondary battery having a relatively high capacity.

【0008】[0008]

【発明が解決しようとする課題】しかし、前述した従来
の合成法によるリチウムとニッケルとの複合酸化物は、
簡単な合成法で作製されるものは、非水電解質リチウム
二次電池用正極活物質として十分機能を果たさずに容量
が少なかったり、電池材料として比較的高容量であって
も、その製造に当たっては実験室的にはともかく、工業
的には条件管理が非常に微妙で、かつ煩雑であるばかり
か長時間を要し、再現性に乏しく、充放電特性はばらつ
きが大きいなどの問題があった。
However, the composite oxide of lithium and nickel produced by the conventional synthesis method described above is
Those produced by a simple synthesis method have a small capacity without sufficiently functioning as a positive electrode active material for a non-aqueous electrolyte lithium secondary battery, or have a relatively high capacity as a battery material. Regardless of the laboratory, industrially, the condition management was very delicate and complicated, and required a long time, poor reproducibility, and large variations in charge / discharge characteristics.

【0009】本発明は、比較的簡単な条件で作製できる
リチウムとニッケルとの複合酸化物を正極活物質に用い
ることにより、従来、最も高電圧、高容量であるが、原
料のコバルトが高価で、供給面で不安定だったリチウム
とコバルトとの複合酸化物を正極活物質とする電池に匹
敵する高容量の非水電解質リチウム二次電池を提供する
ことを目的とする。
In the present invention, the composite oxide of lithium and nickel, which can be produced under relatively simple conditions, is used as the positive electrode active material, so that it has the highest voltage and capacity in the past, but the raw material cobalt is expensive. An object of the present invention is to provide a high-capacity non-aqueous electrolyte lithium secondary battery comparable to a battery using a composite oxide of lithium and cobalt, which has been unstable in supply, as a positive electrode active material.

【0010】[0010]

【課題を解決するための手段】前述した目的を達成する
ために、本発明は、ニッケルの塩化物やヨウ化物等のハ
ロゲン化物,硫酸塩,リン酸塩,酢酸塩,シュウ酸塩の
なかから選ばれる少なくとも1種の水溶性ニッケル塩水
溶液に、前記ニッケル塩と等モルのリチウムの水酸化
物,炭酸塩,炭酸水素塩のなかから選ばれる少なくとも
1種の水溶性の塩基性リチウム化合物の水溶液を注加混
合した反応生成物を乾燥固化させたケーキ状物質を60
0〜800℃の温度範囲で焼成して得られたリチウムと
ニッケルとの複合酸化物を主体とする正極を用いること
により高容量の非水電解質リチウム二次電池を実現した
ものである。
In order to achieve the above-mentioned object, the present invention is made of nickel chloride, halide such as iodide, sulfate, phosphate, acetate and oxalate. An aqueous solution of at least one water-soluble basic lithium compound selected from hydroxides, carbonates and hydrogen carbonates of equimolar amounts of the nickel salt in at least one water-soluble nickel salt aqueous solution selected. The cake-like substance obtained by drying and solidifying the reaction product obtained by pouring and mixing
A high-capacity non-aqueous electrolyte lithium secondary battery was realized by using a positive electrode mainly composed of a composite oxide of lithium and nickel obtained by firing in a temperature range of 0 to 800 ° C.

【0011】[0011]

【作用】このような手段により得られるリチウムとニッ
ケルとの複合酸化物を主体とする正極を用いる非水電解
質リチウム二次電池を構成することにより、比較的安価
で、原材料の供給不安がなく、かつ高容量,高電圧の小
型軽量の高エネルギー密度の蓄電池が達成できる。
By constructing a non-aqueous electrolyte lithium secondary battery using a positive electrode mainly composed of a composite oxide of lithium and nickel obtained by such means, it is relatively inexpensive and there is no fear of supplying raw materials. In addition, a compact, lightweight, high energy density storage battery with high capacity and high voltage can be achieved.

【0012】[0012]

【実施例】以下、本発明の詳細について実施例をもっと
詳述する。
EXAMPLES Examples of the present invention will be described in more detail below.

【0013】(実施例1)塩化ニッケルNiCl2やヨ
ウ化ニッケルNiI2等のハロゲン化ニッケル,硫酸ニ
ッケルNiSO4,リン酸ニッケルNi3(PO42,酢
酸ニッケルNi(C 2322,シュウ酸ニッケルNi
24の20℃における飽和水溶液1モル分をそれぞれ
採取し、次いで、これらに、それぞれ1モル分の水酸化
リチウムLiOH,炭酸リチウムLi2CO3,炭酸水素
リチウムLiHCO3の20℃における飽和水溶液を攪
拌しながら少しずつ注加し、その後おのおのの混合物を
約3時間攪拌し続ける。上記注加混合は約30℃で行な
う。次いで、攪拌を続けながら80〜100℃で乾燥す
る。乾燥工程を減圧で行なえば、短時間に終了すること
ができる。生成したおのおののケーキ状固形物質を軽く
粉砕したのち、大気中で750℃で12時間加熱して黒
色焼成粉末を得る。焼成はロータリーキルン型の焼成炉
を使用すれば、連続焼成が可能になり、生産性が高く、
排気処理も容易になる。なお、得られた黒色焼成粉末
は、X線回析により、すべてLiNiO2で示されるリ
チウムとニッケルとの複合酸化物であることが同定され
た。
(Example 1) Nickel chloride NiCl2Yayo
Nickel Carbide NiI2Nickel halides such as
Axel NiSOFour, Nickel phosphate Ni3(POFour)2,vinegar
Nickel acid Ni (C 2H3O2)2, Nickel oxalate Ni
C2OFour1 mol of saturated aqueous solution at 20 ° C
Collect and then add to them one mole of hydroxylation
Lithium LiOH, Lithium carbonate Li2CO3, Hydrogen carbonate
Lithium LiHCO3The saturated aqueous solution at 20 ° C.
Pour little by little with stirring, then add each mixture.
Continue stirring for about 3 hours. The above pouring and mixing should be performed at about 30 ° C.
U Then, dry at 80-100 ° C with continuous stirring.
It If the drying process is performed under reduced pressure, it can be completed in a short time.
You can Lightly remove each cake-like solid substance produced.
After crushing, heat in air at 750 ° C for 12 hours to black
A colored fired powder is obtained. The firing is a rotary kiln type firing furnace
If you use, continuous firing becomes possible, high productivity,
Exhaust treatment is also easy. The obtained black fired powder
Are all made of LiNiO by X-ray diffraction.2Indicated by
Was identified as a complex oxide of titanium and nickel.
It was

【0014】上記したおのおののリチウムとニッケルと
の複合酸化物の充放電特性をR2320サイズ(外径2
3.0mm,高さ2.0mm)のコイン形電池を試作し
て確認した。試作電池の構造を図1に示す。図1におい
て、1は負極端子を兼ねるふた,2はふた1に圧着され
た正極の少なくとも3倍の容量のリチウム箔からなる負
極,3は正極端子を兼ねるケース,4は正極活物質であ
る前記複合酸化物と導電剤のアセチレンブラックと結着
剤のフッ素樹脂を重量比7:2:1で混合した合剤0.
15gを2t/cm2の圧力で直径17.5mmの円板
状に成型後充分乾燥した正極,5は微孔性ポリプロピレ
ンフィルム製セパレータ,6はポリプロピレン製ガスケ
ットで、非水電解質としては、1mol/1の過塩素酸
リチウムの炭酸プロピレン溶液を用いた。なお、同サイ
ズの従来例としての前記した文献によるチリウムとニ
ッケルとの複合酸化物による電池Bと、参考例としての
リチウムとコバルトとの複合酸化物、LiCoO2によ
る電池Cとを同様に試作して比較試料とした。各セルは
すべて正極により容量規制され、充放電試験は、20℃
で0.5mA定電流で4.3Vまで充電し、放電は3.
0Vで終止した。各条件の試作電池は10セルとし、各
セルの性能は5サイクル目の放電時の正極活物質の比容
量(mAh/g)の平均値によって比較した。電池Bの
比容量は、88mAh/g,電池Cは129mAh/g
で、本発明による各正極活物質による値を(表1)に示
す。
The charge and discharge characteristics of each of the above-mentioned composite oxides of lithium and nickel were measured according to the R2320 size (outer diameter 2
A coin-shaped battery having a size of 3.0 mm and a height of 2.0 mm) was manufactured and confirmed. The structure of the prototype battery is shown in FIG. In FIG. 1, 1 is a lid that also serves as a negative electrode terminal, 2 is a negative electrode made of lithium foil having a capacity of at least three times the capacity of the positive electrode pressed onto the lid 1, 3 is a case that also serves as a positive electrode terminal, and 4 is a positive electrode active material. A mixture of a complex oxide, acetylene black as a conductive agent, and a fluororesin as a binder in a weight ratio of 7: 2: 1.
A positive electrode was obtained by molding 15 g into a disk shape having a diameter of 17.5 mm at a pressure of 2 t / cm 2 and then sufficiently dried, 5 a microporous polypropylene film separator, 6 a polypropylene gasket, and 1 mol / mol as a non-aqueous electrolyte. A solution of 1 of lithium perchlorate in propylene carbonate was used. In the same manner, a battery B made of the above-mentioned composite oxide of tylium and nickel according to the above-mentioned literature as a conventional example and a battery C made of LiCoO 2 as a reference example of a composite oxide of lithium and cobalt were similarly manufactured. Was used as a comparative sample. The capacity of each cell is regulated by the positive electrode, and the charge / discharge test is 20 ° C.
At a constant current of 0.5 mA to 4.3 V and discharged at 3.
It stopped at 0V. The prototype battery under each condition was 10 cells, and the performance of each cell was compared by the average value of the specific capacities (mAh / g) of the positive electrode active material at the time of discharging at the 5th cycle. The specific capacity of Battery B is 88 mAh / g, and that of Battery C is 129 mAh / g.
The values for each positive electrode active material according to the present invention are shown in (Table 1).

【0015】[0015]

【表1】 [Table 1]

【0016】また(表1)中のシュウ酸ニッケルと炭酸
リチウムとを出発原料とする本発明による正極活物質に
用いた電池Aと上記従来例の電池Bおよび参考例の電池
Cの放電特性曲線を比較して図2に示す。本発明による
正極活物質を用いた各電池はすべて、従来例による電池
Bより比容量が大きく、放電電圧は約0.2V参考例の
電池Cより低いが、比容量はほぼ同水準の大きなものも
多く見受けられる。換言すれば、本発明による電池は、
従来例と放電電圧は同じであるが、比容量はすべて大き
く、従来最も高容量とされるリチウムとコバルトとの複
合酸化物を正極活物質値に用いた場合に匹敵する高容量
電池も実現可能である。
Further, the discharge characteristic curves of the battery A used as the positive electrode active material according to the present invention starting from nickel oxalate and lithium carbonate in (Table 1), the battery B of the conventional example and the battery C of the reference example. 2 are shown in comparison. Each of the batteries using the positive electrode active material according to the present invention has a larger specific capacity than the battery B according to the conventional example and a discharge voltage of about 0.2 V lower than that of the battery C of the reference example, but the specific capacity is almost the same level. There are many. In other words, the battery according to the invention is
The discharge voltage is the same as the conventional example, but all the specific capacities are large, and it is possible to realize a high capacity battery that is comparable to the case where the composite oxide of lithium and cobalt, which has the highest capacity in the past, is used for the positive electrode active material value. Is.

【0017】(実施例2)実施例1においては、すべて
焼成温度が750℃の場合について示したが、適切な焼
成温度範囲について検討した。
(Example 2) In Example 1, the case where the firing temperature was 750 ° C. was shown, but an appropriate firing temperature range was examined.

【0018】シュウ酸ニッケルの20℃における飽和水
溶液に、等モルの炭酸リチウムの同じく20℃における
飽和水溶液を少しずつ注加しながら攪拌し、80〜10
0℃で乾燥してケーキ状固形物質を得る。この固形物質
を550〜900℃まで50℃ずつ温度を変えて12時
間焼成した試料を正極活性活物質として実施例1と同様
にコイン形電池を試作した。実施例1と同じ条件で充放
電試験して得られた比容量を図3に示す。図3の結果か
ら焼成温度は600〜800℃の範囲が適切であること
が理解できる。なお、実施例2ではニッケル源にシュウ
酸ニッケル,リチウム源に炭酸リチウムを用いた場合を
例示したが、本発明のニッケル源およびリチウム源の組
み合わせのすべてにわたって、600〜800℃の温度
範囲が適切であることを確認している。
To a saturated aqueous solution of nickel oxalate at 20 ° C., a saturated aqueous solution of equimolar lithium carbonate at 20 ° C. was added little by little and stirred, and the mixture was stirred at 80 to 10%.
Dry at 0 ° C. to obtain a cake-like solid material. A coin-type battery was manufactured in the same manner as in Example 1, using a sample obtained by firing the solid substance at a temperature of 550 to 900 ° C. by 50 ° C. for 12 hours as a positive electrode active material. The specific capacity obtained by the charge / discharge test under the same conditions as in Example 1 is shown in FIG. From the result of FIG. 3, it can be understood that the firing temperature is appropriately in the range of 600 to 800 ° C. In Example 2, nickel oxalate was used as the nickel source and lithium carbonate was used as the lithium source. However, the temperature range of 600 to 800 ° C. is suitable over all combinations of the nickel source and the lithium source of the present invention. Have confirmed that.

【0019】(実施例3)実施例1の図2で示された電
池A,BおよびCの各正極活物質を用いて、図4に示さ
れる単3形(R6)電池を試作した。図4において、1
1は正極板で、アルミニウム箔の芯材両面に、実施例1
と同じ組成の正極合剤のペーストを塗着、乾燥後ローラ
ーで加圧して作製した。結着剤のフッ素樹脂にはディス
パージョンタイプのものを使用した。12は負極板で、
芯材の銅箔の両面にリチウムの活物質保持体である黒鉛
粉末と結着剤としてのポリ塩化ビニル(シクロヘキサノ
ン溶液)が重量比9:1のペーストを塗着,乾燥,加圧
して作製する。この正極板11,負極板12各1枚を微
孔性ポリプロピレンフィルム製のセパレータ13を介し
てきつく渦巻状に捲回して極板群を構成する。正極板1
1および負極板12にはそれぞれの芯材と同じ材質の正
極リード11aと負極リード12aが取り付けられてい
る。極板群の上下にポリエチレン製の絶縁板14および
15が配置された状態で、ケース16内に収容され、負
極リード12aは負極端子を兼ねるケース16の内底面
と電気的に接続される。17はふたで、ふた17はポリ
プロピレン製ふた本体17aに、アルミニウム製の下部
座金17C,上部座金17d間をリベッド 17eをか
しめて密封し、ニッケル鍍鋼製キャップ17bと上部座
金17d間を溶接して作製されたものである。正極リー
ド11aをふたの下部座金17Cに電気的に接続したの
ち、非水電解質を極板群が保持される量だけ注入しつい
で、ケース16の上縁部を湾曲させて密封口した。非水
電解質には実施例1と同じ組成のものを使用した。
Example 3 Using the positive electrode active materials of the batteries A, B and C shown in FIG. 2 of Example 1, an AA type (R6) battery shown in FIG. In FIG. 4, 1
Reference numeral 1 is a positive electrode plate, which was formed on both sides of the core material of the aluminum foil, and
A positive electrode mixture paste having the same composition as the above was applied, dried, and then pressed with a roller to prepare. The fluororesin used as the binder was a dispersion type. 12 is a negative electrode plate,
Prepared by applying a graphite powder, which is an active material holder for lithium, and polyvinyl chloride (cyclohexanone solution) as a binder in a weight ratio of 9: 1 on both sides of a copper foil as a core material, and drying and pressing. . Each of the positive electrode plate 11 and the negative electrode plate 12 is wound in a tight spiral through a separator 13 made of a microporous polypropylene film to form an electrode plate group. Positive plate 1
A positive electrode lead 11a and a negative electrode lead 12a made of the same material as the core material are attached to the 1 and the negative electrode plate 12, respectively. The insulation plates 14 and 15 made of polyethylene are arranged above and below the electrode plate group and housed in a case 16, and the negative electrode lead 12a is electrically connected to the inner bottom surface of the case 16 which also serves as a negative electrode terminal. Reference numeral 17 denotes a lid, and the lid 17 is a polypropylene lid main body 17a, a lower washer 17C and an upper washer 17d made of aluminum is caulked and sealed by caulking a rebed 17e, and a nickel plated steel cap 17b and an upper washer 17d are welded together. It was created. After the positive electrode lead 11a was electrically connected to the lower washer 17C of the lid, a non-aqueous electrolyte was injected in an amount enough to hold the electrode plate group, and then the upper edge of the case 16 was curved to form a sealing opening. The non-aqueous electrolyte having the same composition as in Example 1 was used.

【0020】正極活物質として、ニッケル源にシュウ酸
ニッケル,リチウム源に炭酸リチウムを用いて製した本
発明によるリチウムとニッケルとの複合酸化物を用いた
試作電池R6A,実施例1と同じ従来例および参考例の
正極活物質による試作電池をR6BおよびR6Cとして
5サイクル目の各10セルの平均的放電特性曲線を図5
に示す。本発明によるR6Aが、従来例R6Bより容量
が大きく、参考例R6Cより電圧は0.2V程低いが、
容量は同等であることが理解できる。本発明による正極
活物質の放電特性は1例しか示さなかったが、本発明に
よる各単味または混合ニッケル源および各単味または混
合リチウム源の組合せにて得られる正極活物質で作製さ
れる電池は、すべて従来例より高容量で、現在のところ
最も優れた正極活物質とされるリチウムとコバルトとの
複合酸化物による電池と遜色ない性能が得られた。
As a positive electrode active material, nickel oxalate was used as a nickel source and lithium carbonate was used as a lithium source, and a prototype battery R6A using a composite oxide of lithium and nickel according to the present invention, the same conventional example as in Example 1 was used. FIG. 5 shows an average discharge characteristic curve of each of 10 cells in the 5th cycle, where R6B and R6C are prototype batteries using the positive electrode active material of Reference Example.
Shown in. The capacity of R6A according to the present invention is larger than that of the conventional example R6B and the voltage thereof is lower than that of the reference example R6C by about 0.2V.
It can be seen that the capacities are comparable. Although only one example of the discharge characteristic of the positive electrode active material according to the present invention is shown, a battery made of the positive electrode active material obtained by the combination of each plain or mixed nickel source and each plain or mixed lithium source according to the present invention. All had higher capacities than the conventional example, and performance comparable to that of a battery using a composite oxide of lithium and cobalt, which is currently the most excellent positive electrode active material, was obtained.

【0021】なお、実施例1,2および3では負極にリ
チウムまたは黒鉛を用いた場合について例示したが、リ
チウムと合金化し易い金属やある種の酸化物,硫化物,
導電性ポリマー等充放電によりリチウムが吸蔵,放出を
繰り返すことが可能な活物質保持体を負極に用いる場合
も高容量のリチウム二次電池を構成することが可能であ
る。また、非水電解質として、リチウム塩の有機溶媒溶
液について説明したが、本発明は、これだけに限定され
るものではなく、ヨウ化リチウムやある種のリチウム塩
を分散させたポリエチレンオキサイドからなる固体電解
質にも適用可能である。
In Examples 1, 2 and 3, the case where lithium or graphite was used for the negative electrode was exemplified. However, a metal which is easily alloyed with lithium, some oxides, sulfides,
A high-capacity lithium secondary battery can be formed also when an active material holder capable of repeatedly occluding and releasing lithium by charging and discharging a conductive polymer is used for the negative electrode. Further, although the organic solvent solution of a lithium salt has been described as the non-aqueous electrolyte, the present invention is not limited to this, and a solid electrolyte made of polyethylene oxide in which lithium iodide or a certain lithium salt is dispersed. It is also applicable to.

【0022】[0022]

【発明の効果】以上のように本発明は、塩化ニッケルや
ヨウ化ニッケル等のハロゲン化ニッケル,硫酸ニッケ
ル,リン酸ニッケル,酢酸ニッケル,シュウ酸ニッケル
のなかから選ばれる少なくとも1種の水溶性ニッケル塩
水溶液に、前記ニッケル塩と等モルの水酸化リチウム,
炭酸リチウム,炭酸水素リチウムのなかから選ばれる少
なくとも1種の水溶性の塩基性の水溶液を注加混合した
反応生成物を乾燥固化させたケーキ状物質を600〜8
00℃の温度で焼成するという簡易な方法で作製される
リチウムとニッケルとの複合酸化物を主体とする正極を
用いることにより、従来、高電圧ではあるが、高容量化
することが困難であったリチウムとニッケルとの複合酸
化物を正極活物質とする非水電解質チリウム二次電池の
課題を、現在、最も高容量とされるリチウムとコバルト
との複合酸化物を正極活物質とする電池に匹敵する水準
まで容量を向上できるものである。
As described above, the present invention provides at least one water-soluble nickel selected from nickel halides such as nickel chloride and nickel iodide, nickel sulfate, nickel phosphate, nickel acetate and nickel oxalate. Lithium hydroxide in an equimolar amount to the nickel salt,
A cake-like substance obtained by drying and solidifying a reaction product obtained by pouring and mixing at least one water-soluble basic aqueous solution selected from lithium carbonate and lithium hydrogen carbonate to 600 to 8
By using a positive electrode mainly composed of a composite oxide of lithium and nickel, which is produced by a simple method of firing at a temperature of 00 ° C., it has been difficult to achieve a high capacity in the past although it has a high voltage. The problem of non-aqueous electrolyte thirium secondary battery using lithium-nickel composite oxide as the positive electrode active material is now considered to be the battery with the highest capacity lithium-cobalt composite oxide as the positive electrode active material. The capacity can be increased to a comparable level.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の一実施例のコイン形非水電解質リチウ
ム二次電池の断面図
FIG. 1 is a cross-sectional view of a coin type non-aqueous electrolyte lithium secondary battery according to an embodiment of the present invention.

【図2】従来例および参考例と比較した本発明によるコ
イン形電池の放電特性曲線図
FIG. 2 is a discharge characteristic curve diagram of a coin-type battery according to the present invention compared with a conventional example and a reference example.

【図3】本発明による正極活物質作製時の焼成温度と試
作電池の比容量との関係図
FIG. 3 is a diagram showing the relationship between the firing temperature and the specific capacity of a prototype battery during the production of the positive electrode active material according to the present invention.

【図4】本発明の他の実施例の円筒形非水電解質リチウ
ム二次電池の断面図
FIG. 4 is a sectional view of a cylindrical non-aqueous electrolyte lithium secondary battery according to another embodiment of the present invention.

【図5】従来例および参考例と比較した本発明による円
筒形電池の放電特性曲線図
FIG. 5 is a discharge characteristic curve diagram of the cylindrical battery according to the present invention in comparison with the conventional example and the reference example.

【符号の説明】[Explanation of symbols]

1 ふた 2 負極 3 ケース 4 正極 5 セパレータ 6 ガスケット 1 Lid 2 Negative electrode 3 Case 4 Positive electrode 5 Separator 6 Gasket

───────────────────────────────────────────────────── フロントページの続き (72)発明者 伊藤 修二 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 豊口 吉徳 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 ─────────────────────────────────────────────────── ─── Continuation of the front page (72) Inventor Shuji Ito 1006 Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd.

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 塩化ニッケルやヨウ化ニッケル等のハロ
ゲン化ニッケル,硫酸ニッケル,リン酸ニッケル,酢酸
ニッケル,シュウ酸ニッケルのなかから選ばれる少なく
とも1種の水溶性ニッケル塩水溶液に、前記ニッケル塩
と等モルの水酸化リチウム,炭酸リチウム,炭酸水素リ
チウムのなかから選ばれる少なくとも1種の水溶性の塩
基性リチウム化合物の水溶液を注加混合した反応生成物
を乾燥固化させたケーキ状物質を600〜800℃の温
度範囲で焼成して得られたチリウムとニッケルとの複合
酸化物を主体とする正極を用いた非水電解質リチウム二
次電池。
1. An aqueous solution of at least one water-soluble nickel salt selected from nickel halides such as nickel chloride and nickel iodide, nickel sulfate, nickel phosphate, nickel acetate, nickel oxalate and the nickel salt A cake-like substance obtained by drying and solidifying a reaction product obtained by pouring and mixing an aqueous solution of at least one water-soluble basic lithium compound selected from equimolar lithium hydroxide, lithium carbonate, and lithium hydrogen carbonate is 600 to A non-aqueous electrolyte lithium secondary battery using a positive electrode mainly composed of a composite oxide of tylium and nickel obtained by firing in a temperature range of 800 ° C.
【請求項2】 塩化ニッケルやヨウ化ニッケル等のハロ
ゲン化ニッケル,硫酸ニッケル,リン酸ニッケル,酢酸
ニッケル,シュウ酸ニッケルのなかから選ばれる少なく
とも1種の水溶性ニッケル塩水溶液に、前記ニッケル塩
と等モルの水酸化リチウム,炭酸リチウム,炭酸水素リ
チウムのなかから選ばれる少なくとも1種の水溶性の塩
基性リチウム化合物の水溶液を注加混合した反応生成物
を乾燥させるに当って、空気中または減圧下で攪拌混合
をしながら蒸発乾固させた請求項1記載の非水電解質リ
チウム二次電池。
2. An aqueous solution of at least one water-soluble nickel salt selected from nickel halides such as nickel chloride and nickel iodide, nickel sulfate, nickel phosphate, nickel acetate, nickel oxalate and the nickel salt In drying the reaction product obtained by pouring and mixing an equimolar solution of at least one water-soluble basic lithium compound selected from lithium hydroxide, lithium carbonate and lithium hydrogen carbonate, in air or under reduced pressure. The non-aqueous electrolyte lithium secondary battery according to claim 1, wherein the non-aqueous electrolyte lithium secondary battery is evaporated to dryness under stirring and mixing under the conditions below.
【請求項3】 金属リチウムを負極とする請求項1また
は2記載の非水電解質リチウム二次電池。
3. The non-aqueous electrolyte lithium secondary battery according to claim 1, wherein metallic lithium is used as the negative electrode.
【請求項4】 リチウムと合金化し易い金属,ある種の
炭素材や酸化物や硫化物や導電性ポリマー等の充放電に
よりリチウムが吸蔵,放出を繰り返すことが可能な活物
質保持体を主体とする負極を用いた請求項1または2記
載の非水電解質リチウム二次電池。
4. An active material holder which is capable of repeating occlusion and release of lithium by charge and discharge of a metal which is easily alloyed with lithium, a certain kind of carbon material, oxide, sulfide, conductive polymer or the like. The non-aqueous electrolyte lithium secondary battery according to claim 1 or 2, wherein the negative electrode is used.
JP4195100A 1992-07-22 1992-07-22 Nonaqueous electrolyte lithium battery Pending JPH0644970A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP4195100A JPH0644970A (en) 1992-07-22 1992-07-22 Nonaqueous electrolyte lithium battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP4195100A JPH0644970A (en) 1992-07-22 1992-07-22 Nonaqueous electrolyte lithium battery

Publications (1)

Publication Number Publication Date
JPH0644970A true JPH0644970A (en) 1994-02-18

Family

ID=16335525

Family Applications (1)

Application Number Title Priority Date Filing Date
JP4195100A Pending JPH0644970A (en) 1992-07-22 1992-07-22 Nonaqueous electrolyte lithium battery

Country Status (1)

Country Link
JP (1) JPH0644970A (en)

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985488A (en) * 1996-03-26 1999-11-16 Sharp Kabushiki Kaisha Process for preparing positive electrode active material, and nonaqueous secondary battery utilizing the same
US6015637A (en) * 1996-09-30 2000-01-18 Sharp Kabushiki Kaisha Process of producing lithium nickel oxide and nonaqueous secondary battery using the same
US6103421A (en) * 1996-09-27 2000-08-15 Sharp Kabushiki Kaisha Process of producing a positive electrode active material and nonaqueous secondary battery using the same
US6344294B1 (en) 1998-10-27 2002-02-05 Sharp Kabushiki Kaisha Process for preparing a positive electrode active material for a nonaqueous secondary battery by forming an oxalate precipitate
US6379644B2 (en) 1998-10-02 2002-04-30 Sharp Kabushiki Kaisha Process for producing a positive electrode active material for a nonaqueous secondary battery and a nonaqueous secondary battery using the active material
KR101108845B1 (en) * 2009-10-21 2012-02-06 한국특장차주식회사 The pallet equipment for large steel material transportation
CN103219510A (en) * 2013-03-21 2013-07-24 华中科技大学 Lithium battery negative electrode material preparation method and its product
US8709279B2 (en) * 2011-05-03 2014-04-29 Uchicago Argonne, Llc Production of battery grade materials via an oxalate method

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5985488A (en) * 1996-03-26 1999-11-16 Sharp Kabushiki Kaisha Process for preparing positive electrode active material, and nonaqueous secondary battery utilizing the same
US6103421A (en) * 1996-09-27 2000-08-15 Sharp Kabushiki Kaisha Process of producing a positive electrode active material and nonaqueous secondary battery using the same
US6015637A (en) * 1996-09-30 2000-01-18 Sharp Kabushiki Kaisha Process of producing lithium nickel oxide and nonaqueous secondary battery using the same
US6379644B2 (en) 1998-10-02 2002-04-30 Sharp Kabushiki Kaisha Process for producing a positive electrode active material for a nonaqueous secondary battery and a nonaqueous secondary battery using the active material
US6344294B1 (en) 1998-10-27 2002-02-05 Sharp Kabushiki Kaisha Process for preparing a positive electrode active material for a nonaqueous secondary battery by forming an oxalate precipitate
KR101108845B1 (en) * 2009-10-21 2012-02-06 한국특장차주식회사 The pallet equipment for large steel material transportation
US8709279B2 (en) * 2011-05-03 2014-04-29 Uchicago Argonne, Llc Production of battery grade materials via an oxalate method
US20140151598A1 (en) * 2011-05-03 2014-06-05 Uchicago Argonne, Llc Production of battery grade materials via an oxalate method
US9343738B2 (en) 2011-05-03 2016-05-17 Uchicago Argonne, Llc Production of battery grade materials via an oxalate method
CN103219510A (en) * 2013-03-21 2013-07-24 华中科技大学 Lithium battery negative electrode material preparation method and its product

Similar Documents

Publication Publication Date Title
JP3550783B2 (en) Lithium-containing transition metal composite oxide, method for producing the same, and use thereof
JP4713051B2 (en) Battery active material and method for producing the same
US5490320A (en) Method of making a positive electrode for lithium secondary battery
JP2000502831A (en) Electrode materials for lithium interlayer electrochemical cells
JPH10507031A (en) Method for synthesizing alkali metal intercalated manganese oxide material and electrode for electrochemical cell using this material
US6335119B1 (en) Lithium battery and method of producing positive electrode active material therefor
US6514638B2 (en) Non-aqueous electrolyte secondary battery including positive and negative electrodes
JP4785230B2 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP2967051B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JPH0644971A (en) Nonaqueous electrolyte lithium secondary battery
JPH0644970A (en) Nonaqueous electrolyte lithium battery
JP2002042812A (en) Positive electrode active material for lithium secondary battery and lithium secondary battery using the same
JP7329696B2 (en) Positive electrode active material, manufacturing method thereof, and lithium secondary battery including the same
JP3475759B2 (en) Non-aqueous electrolyte secondary battery
JP4581157B2 (en) Cathode active material for non-aqueous electrolyte secondary battery and method for producing the same
JP2002110152A (en) Nonaqueous electrolyte secondary battery
JP2000149943A (en) Process for lithium manganese compound oxide for lithium secondary battery positive active material
JPH0817471A (en) Non-aqueous electrolytic secondary battery
JPH1145742A (en) Nonaqueous electrolytic secondary battery
JP2002260661A (en) Negative electrode for nonaqueous electrolyte secondary battery
JP2003217568A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3052670B2 (en) Positive electrode for lithium secondary battery, method for producing the same, and nonaqueous electrolyte lithium secondary battery using the positive electrode
JPH08236115A (en) Secondary battery
JPH08180878A (en) Lithium secondary battery