JP2003217568A - Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery - Google Patents

Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Info

Publication number
JP2003217568A
JP2003217568A JP2002008957A JP2002008957A JP2003217568A JP 2003217568 A JP2003217568 A JP 2003217568A JP 2002008957 A JP2002008957 A JP 2002008957A JP 2002008957 A JP2002008957 A JP 2002008957A JP 2003217568 A JP2003217568 A JP 2003217568A
Authority
JP
Japan
Prior art keywords
positive electrode
aqueous electrolyte
secondary battery
lithium
mass
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2002008957A
Other languages
Japanese (ja)
Inventor
Katsuaki Kobayashi
克明 小林
Tsutomu Hashimoto
勉 橋本
Hidehiko Tajima
英彦 田島
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Heavy Industries Ltd
Original Assignee
Mitsubishi Heavy Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Heavy Industries Ltd filed Critical Mitsubishi Heavy Industries Ltd
Priority to JP2002008957A priority Critical patent/JP2003217568A/en
Publication of JP2003217568A publication Critical patent/JP2003217568A/en
Withdrawn legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

<P>PROBLEM TO BE SOLVED: To provide a non-aqueous electrolyte secondary battery that has high capacity and is superior in cycle characteristics as well as heat resistance. <P>SOLUTION: This is a non-aqueous electrolyte secondary battery that comprises a positive electrode active material made of a mixture of a lithium manganese complex oxide as expressed by LiMn<SB>2-x</SB>M<SB>x</SB>O<SB>4</SB>(provided that the element M is at least one kind selected from Co, Ni, Fe, Mg, Cr, and Al and the composition ratio x is 0<x≤0.4) and a lithium nickel complex oxide as expressed by LiNi<SB>1-y</SB>L<SB>y</SB>O<SB>2</SB>(provided that the element L is at least one kind selected from Co, Ni, Fe, Mg, Cr, and Al, and the composition ratio y is 0<y≤0.5). The composition ratio of the lithium nickel complex oxide in the positive electrode active material is 0.1 mass % or more and 5 mass % or less. <P>COPYRIGHT: (C)2003,JPO

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、非水電解質2次電
池用正極及び非水電解質2次電池に関するものであり、
特に、電力貯蔵装置、電気自動車、屋外UPS等の電源
として使用可能な非水電解質2次電池の耐熱性向上の技
術に関するものである。
TECHNICAL FIELD The present invention relates to a positive electrode for a non-aqueous electrolyte secondary battery and a non-aqueous electrolyte secondary battery,
In particular, the present invention relates to a technique for improving heat resistance of a non-aqueous electrolyte secondary battery that can be used as a power source for a power storage device, an electric vehicle, an outdoor UPS, and the like.

【0002】[0002]

【従来の技術】最近のエネルギー問題、環境問題の高ま
りを背景に、高性能のリチウム二次電池の開発が急がれ
ている。種々のリチウム二次電池のうち、金属酸化物を
正極活物質に用いたリチウム二次電池は高いエネルギー
密度を有する点で最も有望視されている。従来から、金
属酸化物としてコバルト酸リチウム(LiCoO2)を
用いた電池が市販されているが、コバルトは希少資源で
あって高価格なことから、最近ではコバルト酸リチウム
に代えてより安価なマンガン酸リチウム(LiMn
24)の使用が検討されている。
2. Description of the Related Art With the recent increase in energy and environmental problems, development of high-performance lithium secondary batteries is urgently needed. Among various lithium secondary batteries, a lithium secondary battery using a metal oxide as a positive electrode active material is most promising in that it has a high energy density. Conventionally, batteries using lithium cobalt oxide (LiCoO 2 ) as a metal oxide have been commercially available. However, since cobalt is a rare resource and is expensive, recently, lithium cobalt oxide has been replaced with cheaper manganese. Lithium acid (LiMn
The use of 2 O 4 ) is under consideration.

【0003】マンガン酸リチウムはコバルト酸リチウム
より安価な反面、有機電解液中に60℃の高温で貯蔵す
るとマンガンの一部が有機電解液に溶出し、高温時のリ
チウム二次電池のサイクル特性並びに自己放電の劣化が
激しくなるといった問題がある。またマンガン酸リチウ
ムはコバルト酸リチウムよりも理論容量が低いため、リ
チウム二次電池のエネルギー密度が低下するといった問
題もある。そこで最近では、マンガン酸リチウムやコバ
ルト酸リチウムよりも比較的高容量なニッケル酸リチウ
ム(LiNiO2)を、マンガン酸リチウムに添加して
電池の高容量化を図る試みが検討されている。
Lithium manganate is cheaper than lithium cobaltate, but when stored in an organic electrolyte at a high temperature of 60 ° C., a part of manganese elutes in the organic electrolyte, and the cycle characteristics of the lithium secondary battery at high temperature and There is a problem that self-discharge is severely deteriorated. Further, since lithium manganate has a theoretical capacity lower than that of lithium cobalt oxide, there is a problem that the energy density of the lithium secondary battery decreases. Therefore, recently, an attempt is being made to increase the capacity of the battery by adding lithium nickel oxide (LiNiO 2 ) having a relatively higher capacity than lithium manganate or lithium cobalt oxide to lithium manganate.

【0004】ニッケル酸リチウムはマンガン酸リチウム
より高容量である反面、100〜200℃といった比較
的高温で熱分解しやすいという性質がある。そこで、マ
ンガン酸リチウムと同様に、ニッケル酸リチウムに含ま
れるニッケルの一部を他の元素で置換することにより、
耐熱性を高める試みがなされているが、現状では十分で
はない。
Lithium nickelate has a higher capacity than lithium manganate, but has the property of being easily thermally decomposed at a relatively high temperature of 100 to 200 ° C. Therefore, like lithium manganate, by substituting a part of nickel contained in lithium nickelate with another element,
Attempts have been made to increase heat resistance, but at present it is not sufficient.

【0005】[0005]

【発明が解決しようとする課題】上述した一連の正極活
物質にはそれぞれ一長一短があるが、電力貯蔵等に用い
られる大容量のリチウム二次電池においては、コスト低
減の観点から安価な材料を用いることが望ましく、従っ
て上述した正極活物質の中でマンガン酸リチウムが最も
有望である。よって、マンガン酸リチウムの高容量化並
びにサイクル特性の改善が求められている。
Each of the above-mentioned series of positive electrode active materials has merits and demerits, but in a large capacity lithium secondary battery used for power storage etc., an inexpensive material is used from the viewpoint of cost reduction. Therefore, lithium manganate is most promising among the above-mentioned positive electrode active materials. Therefore, it is required to increase the capacity of lithium manganate and improve the cycle characteristics.

【0006】本発明は、上記事情に鑑みてなされたもの
であって、高容量でサイクル特性に優れた非水電解質2
次電池を提供することを目的とする。
The present invention has been made in view of the above circumstances, and is a non-aqueous electrolyte 2 having a high capacity and excellent cycle characteristics.
The purpose is to provide a secondary battery.

【0007】[0007]

【課題を解決するための手段】上記の目的を達成するた
めに、本発明は以下の構成を採用した。本発明の非水電
解質2次電池用電極は、LiMn2-xx4(ただし元
素MはCo、Ni、Fe、Mg、Cr、Alの中から選
択される少なくとも1種であり、組成比xは0<x≦
0.4である)で表されるリチウムマンガン複合酸化物
と、LiNi1-yy2(ただし元素LはCo、Ni、
Fe、Mg、Cr、Alの中から選択される少なくとも
1種であり、組成比yは0<y≦0.5である)で表さ
れるリチウムニッケル複合酸化物とが混合されてなる正
極活物質を具備してなり、前記正極活物質における前記
リチウムニッケル複合酸化物の組成比が0.1質量%以
上5質量%以下の範囲であることを特徴とする。
In order to achieve the above object, the present invention has the following constitutions. The electrode for a non-aqueous electrolyte secondary battery of the present invention comprises LiMn 2-x M x O 4 (where the element M is at least one selected from Co, Ni, Fe, Mg, Cr and Al, and the composition is The ratio x is 0 <x ≦
Lithium manganese composite oxide represented by 0.4) and LiNi 1-y L y O 2 (where the element L is Co, Ni,
At least one selected from Fe, Mg, Cr, and Al, and the composition ratio y is 0 <y ≦ 0.5). And a composition ratio of the lithium nickel composite oxide in the positive electrode active material is in the range of 0.1% by mass or more and 5% by mass or less.

【0008】係る非水電解質2次電池用電極は、リチウ
ムマンガン複合酸化物と0.1〜5質量%のリチウムニ
ッケル複合酸化物からなる正極活物質を具備してなり、
リチウムマンガン複合酸化物を主体としているので、従
来の非水電解質2次電池よりも耐熱性に優れた電池を提
供できる。また、リチウムニッケル複合酸化物は、リチ
ウムマンガン複合酸化物より高容量かつサイクル特性に
優れるので、0.1〜5質量%の範囲で添加することに
より、リチウムマンガン複合酸化物の短所を補うことが
できる。
The non-aqueous electrolyte secondary battery electrode comprises a positive electrode active material composed of a lithium manganese composite oxide and 0.1 to 5% by mass of a lithium nickel composite oxide,
Since the lithium manganese composite oxide is the main component, a battery having higher heat resistance than the conventional non-aqueous electrolyte secondary battery can be provided. In addition, since the lithium-nickel composite oxide has a higher capacity and excellent cycle characteristics than the lithium-manganese composite oxide, the disadvantage of the lithium-manganese composite oxide can be compensated by adding it in the range of 0.1 to 5 mass%. it can.

【0009】また本発明の非水電解質2次電池用電極
は、先に記載の非水電解質2次電池用電極であって、前
記正極活物質における前記リチウムニッケル複合酸化物
の組成比が0.1質量%以上3質量%未満の範囲である
ことを特徴とする。
The electrode for a non-aqueous electrolyte secondary battery of the present invention is the electrode for a non-aqueous electrolyte secondary battery described above, wherein the composition ratio of the lithium nickel composite oxide in the positive electrode active material is 0. It is characterized by being in the range of 1% by mass or more and less than 3% by mass.

【0010】係る非水電解質2次電池用電極によれば、
リチウムニッケル複合酸化物の添加量が0.1質量%以
上3質量%未満の範囲に限定されるので、電池の温度が
上昇した場合でも、正極活物質の熱分解が防止され、電
池の充放電容量が低下することがない。
According to the non-aqueous electrolyte secondary battery electrode,
Since the addition amount of the lithium nickel composite oxide is limited to the range of 0.1% by mass or more and less than 3% by mass, thermal decomposition of the positive electrode active material is prevented even when the temperature of the battery rises, and charge / discharge of the battery is performed. Capacity does not decrease.

【0011】また本発明の非水電解質2次電池用電極
は、先に記載の非水電解質2次電池用電極であって、前
記正極活物質にポリアニリンが0.1質量%以上5質量
%以下の範囲で含まれることを特徴とする。
The non-aqueous electrolyte secondary battery electrode of the present invention is the above-mentioned non-aqueous electrolyte secondary battery electrode, wherein the positive electrode active material contains polyaniline in an amount of 0.1% by mass or more and 5% by mass or less. It is characterized by being included in the range of.

【0012】係る非水電解質2次電池用電極によれば、
正極活物質にポリアニリンが含まれており、正極活物質
自体の抵抗を小さくできるので、電池の内部インピーダ
ンスを低下させて充放電容量を高めることができる。
According to the non-aqueous electrolyte secondary battery electrode,
Since the positive electrode active material contains polyaniline and the resistance of the positive electrode active material itself can be reduced, the internal impedance of the battery can be reduced and the charge / discharge capacity can be increased.

【0013】次に本発明の非水電解質2次電池は、Li
Mn2-xx4(ただし元素MはCo、Ni、Fe、M
g、Cr、Alの中から選択される少なくとも1種であ
り、組成比xは0<x≦0.4である)で表されるリチ
ウムマンガン複合酸化物と、LiNi1-yy2(ただ
し元素LはCo、Ni、Fe、Mg、Cr、Alの中か
ら選択される少なくとも1種であり、組成比yは0<y
≦0.5である)で表されるリチウムニッケル複合酸化
物とが混合されてなる正極活物質を具備してなり、前記
正極活物質における前記リチウムニッケル複合酸化物の
組成比が0.1質量%以上5質量%以下の範囲であるこ
とを特徴とする。
Next, the non-aqueous electrolyte secondary battery of the present invention is made of Li
Mn 2-x M x O 4 (where element M is Co, Ni, Fe, M
g, Cr, at least one selected from among Al, and lithium-manganese composite oxide represented by the composition ratio x is 0 <x ≦ 0.4), LiNi 1-y L y O 2 (However, the element L is at least one selected from Co, Ni, Fe, Mg, Cr, and Al, and the composition ratio y is 0 <y.
≦ 0.5), and a composition ratio of the lithium nickel composite oxide in the positive electrode active material is 0.1 mass. % Or more and 5 mass% or less.

【0014】係る非水電解質2次電池は、リチウムマン
ガン複合酸化物と0.1〜5質量%のリチウムニッケル
複合酸化物からなる正極活物質を具備してなり、リチウ
ムマンガン複合酸化物を主体としているので、従来の非
水電解質2次電池よりも耐熱性を向上できる。また、リ
チウムニッケル複合酸化物は、リチウムマンガン複合酸
化物より高容量かつサイクル特性に優れるので、0.1
〜5質量%の範囲で添加することにより、リチウムマン
ガン複合酸化物の短所を補うことができる。
The non-aqueous electrolyte secondary battery comprises a positive electrode active material composed of a lithium manganese composite oxide and 0.1 to 5% by mass of a lithium nickel composite oxide, and is mainly composed of the lithium manganese composite oxide. Therefore, the heat resistance can be improved as compared with the conventional non-aqueous electrolyte secondary battery. In addition, since the lithium nickel composite oxide has a higher capacity and better cycle characteristics than the lithium manganese composite oxide,
By adding in the range of up to 5% by mass, the disadvantage of the lithium manganese composite oxide can be compensated.

【0015】また本発明の非水電解質2次電池は、先に
記載の非水電解質2次電池であって、前記正極活物質に
おける前記リチウムニッケル複合酸化物の組成比が0.
1質量%以上3質量%未満の範囲であることを特徴とす
る。
The non-aqueous electrolyte secondary battery of the present invention is the non-aqueous electrolyte secondary battery described above, wherein the composition ratio of the lithium nickel composite oxide in the positive electrode active material is 0.1.
It is characterized by being in the range of 1% by mass or more and less than 3% by mass.

【0016】係る非水電解質2次電池によれば、リチウ
ムニッケル複合酸化物の添加量が0.1質量%以上3質
量%未満の範囲に限定されるので、電池の温度が上昇し
た場合でも、正極活物質の熱分解が防止され、電池の充
放電容量が低下することがない。
According to such a non-aqueous electrolyte secondary battery, since the amount of the lithium nickel composite oxide added is limited to the range of 0.1% by mass or more and less than 3% by mass, even when the temperature of the battery rises, The thermal decomposition of the positive electrode active material is prevented, and the charge / discharge capacity of the battery does not decrease.

【0017】また本発明の非水電解質2次電池は、先に
記載の非水電解質2次電池であって、前記正極活物質に
ポリアニリンが0.1質量%以上5質量%以下の範囲で
含まれることを特徴とする。
The non-aqueous electrolyte secondary battery of the present invention is the non-aqueous electrolyte secondary battery described above, wherein the positive electrode active material contains polyaniline in a range of 0.1% by mass or more and 5% by mass or less. It is characterized by being

【0018】係る非水電解質2次電池によれば、正極活
物質にポリアニリンが含まれており、正極活物質自体の
抵抗を小さくできるので、電池の内部インピーダンスを
低下させて充放電容量を高めることができる。
According to such a non-aqueous electrolyte secondary battery, since the positive electrode active material contains polyaniline and the resistance of the positive electrode active material itself can be reduced, the internal impedance of the battery is lowered and the charge / discharge capacity is increased. You can

【0019】[0019]

【発明の実施の形態】以下、本発明の実施の形態を図面
を参照して説明する。図1には、本発明の実施形態であ
る非水電解質2次電池の一例を示す。この非水電解質2
次電池1は、いわゆる角型と呼ばれるもので、複数の正
極電極(電極)2…と、複数の負極電極3…と、正極電
極2と負極電極3との間にそれぞれ配置されたセパレー
タ4…と、非水電解液(非水電解質)とを主体として構
成されている。正極電極2…、負極電極3…及びセパレ
ータ4…並びに非水電解液は、ステンレス等からなる電
池ケース5に収納されている。そして電池ケース5の上
部には封口板6が取り付けられている。この封口板6の
ほぼ中央には電池の内圧上昇を防止する安全弁9が設け
られている。セパレータ4には、ポリエチレン、ポリプ
ロピレン等の多孔性高分子材料膜、ガラス繊維、各種高
分子繊維からなる不織布等が用いられる。
BEST MODE FOR CARRYING OUT THE INVENTION Embodiments of the present invention will be described below with reference to the drawings. FIG. 1 shows an example of a non-aqueous electrolyte secondary battery that is an embodiment of the present invention. This non-aqueous electrolyte 2
The secondary battery 1 is of a so-called prismatic type, and has a plurality of positive electrode electrodes (electrodes) 2, a plurality of negative electrode electrodes 3, and separators 4 arranged between the positive electrode electrode 2 and the negative electrode electrode 3. And a non-aqueous electrolytic solution (non-aqueous electrolyte). The positive electrode 2, the negative electrode 3, the separator 4, and the nonaqueous electrolytic solution are housed in a battery case 5 made of stainless steel or the like. A sealing plate 6 is attached to the upper part of the battery case 5. A safety valve 9 for preventing an increase in the internal pressure of the battery is provided at substantially the center of the sealing plate 6. For the separator 4, a porous polymer material film such as polyethylene or polypropylene, glass fiber, or a non-woven fabric made of various polymer fibers is used.

【0020】正極電極2…の一端には正極タブ12…が
形成され、正極タブ12a…の上部には該正極タブ12
a…を連結する正極リード12bが取り付けられてい
る。この正極リード12bには、封口板6を貫通する正
極端子7が取り付けられている。同様に、負極電極3…
の一端には負極タブ13a…が形成され、負極タブ13
a…の上部には該負極タブ13a…を連結する負極リー
ド13bが取り付けられている。この負極リード13b
には、封口板6を貫通する負極端子8が取り付けられて
いる。上記構成により、正極端子7及び負極端子8から
電流を取り出せるようになっている。
A positive electrode tab 12 is formed at one end of the positive electrode 2, and the positive electrode tab 12 is formed above the positive electrode tab 12a.
A positive electrode lead 12b for connecting a ... Is attached. A positive electrode terminal 7 penetrating the sealing plate 6 is attached to the positive electrode lead 12b. Similarly, the negative electrode 3 ...
Is formed at one end of the negative electrode tab 13a.
A negative electrode lead 13b for connecting the negative electrode tabs 13a is attached to the upper part of a. This negative electrode lead 13b
A negative electrode terminal 8 penetrating the sealing plate 6 is attached to the. With the above configuration, current can be taken out from the positive electrode terminal 7 and the negative electrode terminal 8.

【0021】次に図2に示すように負極電極3は、Cu
箔等からなる負極集電体3aと、この負極集電体3a上
に成膜された負極電極膜3bとから構成されている。負
極集電体3aの一端に前述の負極タブ13aが突出して
形成されている。負極電極膜3bは、例えば、黒鉛等の
負極活物質粉末とポリフッ化ビニリデン等の結着材とが
混合されて形成されている。尚、負極電極膜3bにカー
ボンブラック等の導電助材粉末が添加される場合もあ
る。
Next, as shown in FIG. 2, the negative electrode 3 is made of Cu.
It is composed of a negative electrode collector 3a made of foil or the like, and a negative electrode film 3b formed on the negative electrode collector 3a. The above-mentioned negative electrode tab 13a is formed to project at one end of the negative electrode current collector 3a. The negative electrode film 3b is formed, for example, by mixing a negative electrode active material powder such as graphite and a binder such as polyvinylidene fluoride. In addition, a conductive auxiliary material powder such as carbon black may be added to the negative electrode film 3b.

【0022】負極活物質としては、黒鉛の他に、コーク
ス、無定形炭素、黒鉛化炭素繊維、各種高分子材料の焼
成体等の各種炭素材料を用いることができる。また炭素
材料の他に、金属リチウム、リチウムと各種金属との合
金、スズに代表される各種金属酸化物等を用いることも
できる。金属リチウムや合金は必ずしも粉末に限られ
ず、箔状のものでもよい。また、負極電極3の結着材と
しては、ポリフッ化ビニリデンの他に、ポリ4フッ化エ
チレン、ポリイミド等を用いることができる。
As the negative electrode active material, in addition to graphite, various carbon materials such as coke, amorphous carbon, graphitized carbon fiber, and a fired body of various polymer materials can be used. In addition to the carbon material, lithium metal, alloys of lithium and various metals, various metal oxides represented by tin, and the like can also be used. The metallic lithium or alloy is not necessarily limited to powder and may be foil-like. Further, as the binder for the negative electrode 3, besides poly (vinylidene fluoride), poly (tetrafluoroethylene), polyimide or the like can be used.

【0023】同様に正極電極2は、例えばAl箔等から
なる正極集電体(集電体)2aと、正極集電体2a上に
成膜された正極電極膜(電極膜)2bとから構成されて
いる。正極集電体2aの一端に前述の正極タブ12aが
突出して形成されている。正極電極膜2bは、固形分と
結着材とが混合されて膜状に成形されたもので、固形分
には少なくとも正極活物質粉末(電極活物質)及び導電
助材粉末が含まれる。
Similarly, the positive electrode 2 is composed of a positive electrode current collector (current collector) 2a made of, for example, Al foil, and a positive electrode electrode film (electrode film) 2b formed on the positive electrode current collector 2a. Has been done. The positive electrode tab 12a described above is formed to project from one end of the positive electrode current collector 2a. The positive electrode film 2b is formed into a film by mixing a solid content and a binder, and the solid content contains at least a positive electrode active material powder (electrode active material) and a conductive auxiliary material powder.

【0024】そして図2に示すように、正極電極膜2b
と負極電極膜3bがセパレータ4を介して対向してい
る。なお、図2においては説明を簡略にするために、各
集電体2a、3aの片面に各電極膜2b、3bを成膜し
た形態を示しているが、各電極膜2b、3bを各集電体
2a、3aの両面に成膜してもよいのはもちろんであ
る。
Then, as shown in FIG. 2, the positive electrode film 2b
And the negative electrode film 3b face each other via the separator 4. In FIG. 2, the electrode films 2b and 3b are formed on one surface of each of the current collectors 2a and 3a for the sake of simplification of description. Needless to say, the films may be formed on both surfaces of the electric bodies 2a and 3a.

【0025】正極電極膜2bには、少なくとも正極活物
質と導電助材と結着材とが含まれている。正極活物質
は、組成式LiMn2-xx4で表されるリチウムマン
ガン複合酸化物と、一般式LiNi1-yy2で表され
るリチウムニッケル複合酸化物とが混合されてなり、リ
チウムマンガン複合酸化物を主成分とし、リチウムニッ
ケル複合酸化物を副成分として含むものである。リチウ
ムマンガン複合酸化物は、理論容量が比較的小さく、サ
イクル寿命も比較的短い反面、100〜200℃といっ
た高温下においても比較的安定で、熱分解しにくいとい
う性質がある。一方、リチウムニッケル複合酸化物は、
理論容量並びにサイクル寿命に優れる反面、100〜2
00℃といった高温下において比較的不安定で、分解し
やすいという性質がある。
The positive electrode film 2b contains at least a positive electrode active material, a conductive auxiliary material, and a binder. The positive electrode active material is a mixture of a lithium manganese composite oxide represented by the composition formula LiMn 2-x M x O 4 and a lithium nickel composite oxide represented by the general formula LiNi 1-y L y O 2. In other words, the lithium manganese composite oxide is contained as the main component and the lithium nickel composite oxide is contained as the auxiliary component. The lithium-manganese composite oxide has a relatively small theoretical capacity and a relatively short cycle life, but has a property that it is relatively stable even at a high temperature of 100 to 200 ° C. and is hardly decomposed by heat. On the other hand, the lithium nickel composite oxide is
Excellent theoretical capacity and cycle life, but 100-2
It has the property of being relatively unstable at high temperatures such as 00 ° C and easily decomposed.

【0026】この正極活物質は、リチウムマンガン複合
酸化物を主体としているので、電池内温度が100〜2
00℃程度に上昇した場合でも正極活物質が熱分解する
おそれがなく、電池の充放電容量を高く維持することが
できる。また、リチウムニッケル複合酸化物は、リチウ
ムマンガン複合酸化物より高容量かつサイクル特性に優
れるので、リチウムニッケル複合酸化物を添加すること
でリチウムマンガン複合酸化物の短所を補い、正極活物
質を高容量にするとともにサイクル特性を向上できる。
Since the positive electrode active material is mainly composed of lithium manganese composite oxide, the temperature inside the battery is 100 to 2
Even when the temperature rises to about 00 ° C., the positive electrode active material is not likely to be thermally decomposed, and the charge / discharge capacity of the battery can be maintained high. In addition, since the lithium nickel composite oxide has a higher capacity and superior cycle characteristics than the lithium manganese composite oxide, adding the lithium nickel composite oxide compensates for the disadvantages of the lithium manganese composite oxide and makes the positive electrode active material have a high capacity. And the cycle characteristics can be improved.

【0027】リチウムマンガン複合酸化物は、LiMn
2-xx4(ただし元素MはCo、Ni、Fe、Mg、
Cr、Alの中から選択される少なくとも1種であり、
組成比xは0<x≦0.4である)で表されるもので、
スピネル結晶構造を示すLiMn24のMn(マンガ
ン)の一部を元素Mで置換したものである。元素Mを添
加することにより、充放電反応により引き起こされるヤ
ーン・テラー転移に伴う結晶構造の変位や、複合酸化物
内におけるリチウムの拡散速度の低下を防止する効果が
あるとされている。元素Mの組成比xは0<x≦0.4
の範囲が好ましい。元素Mを添加しない場合にはヤーン
・テラー転移による結晶構造の変位が生じ、スピネル結
晶構造を維持できなくなるので好ましくなく、元素Mの
組成比xが0.4を越えると、活物質の結晶構造上,マ
ンガンの占有サイト数の減少により充放電容量が低下す
るため好ましくない。
The lithium manganese composite oxide is LiMn.
2-x M x O 4 (However, element M is Co, Ni, Fe, Mg,
At least one selected from Cr and Al,
The composition ratio x is represented by 0 <x ≦ 0.4),
A part of Mn (manganese) of LiMn 2 O 4 showing a spinel crystal structure is replaced with the element M. It is said that the addition of the element M is effective in preventing the displacement of the crystal structure due to the yarn-Teller transition caused by the charge / discharge reaction and the reduction of the diffusion rate of lithium in the composite oxide. The composition ratio x of the element M is 0 <x ≦ 0.4
Is preferred. When the element M is not added, the crystal structure is displaced due to the yarn-Teller transition, and the spinel crystal structure cannot be maintained, which is not preferable. When the composition ratio x of the element M exceeds 0.4, the crystal structure of the active material is not obtained. In addition, it is not preferable because the charge / discharge capacity is reduced due to the decrease in the number of manganese occupied sites.

【0028】また、リチウムニッケル複合酸化物は、L
iNi1-yy2(ただし元素LはCo、Ni、Fe、
Mg、Cr、Alの中から選択される少なくとも1種で
あり、組成比yは0<y≦0.5である)で表されるも
ので、層状岩塩構造を示すLiNiO2のNi(ニッケ
ル)の一部を元素Lで置換したものである。元素Lを添
加することにより、リチウムニッケル複合酸化物の耐熱
性を向上させ、高温時の熱分解を防止することができ
る。元素Lの組成比yは0<y≦0.5の範囲が好まし
い。元素Lを添加しない場合にはリチウムニッケル複合
酸化物に耐熱性が低下し、100〜200℃程度で熱分
解するので好ましくなく、元素Lの組成比yが0.5を
越えると、LiNiO2相の組成が相対的に減少するた
め充放電容量が低下すると同時に,活物質自体の電子伝
導性が低下するため電池内部抵抗の増大をもたらす恐れ
があるため好ましくない。
The lithium nickel composite oxide is L
iNi 1-y L y O 2 (provided that the element L is Co, Ni, Fe,
It is at least one selected from Mg, Cr and Al, and the composition ratio y is represented by 0 <y ≦ 0.5), and Ni (nickel) of LiNiO 2 showing a layered rock salt structure. In which a part of is replaced by the element L. By adding the element L, it is possible to improve the heat resistance of the lithium nickel composite oxide and prevent thermal decomposition at high temperatures. The composition ratio y of the element L is preferably in the range of 0 <y ≦ 0.5. When the element L is not added, the heat resistance of the lithium nickel composite oxide is lowered and the lithium nickel composite oxide is thermally decomposed at about 100 to 200 ° C., which is not preferable. If the composition ratio y of the element L exceeds 0.5, the LiNiO 2 phase Since the composition is relatively decreased, the charge / discharge capacity is decreased, and at the same time, the electron conductivity of the active material itself is decreased, which may increase the internal resistance of the battery, which is not preferable.

【0029】正極活物質におけるリチウムニッケル複合
酸化物の組成比は、0.1質量%以上5質量%以下の範
囲が好ましく、0.1質量%以上3質量%未満の範囲が
より好ましい。リチウムニッケル複合酸化物の組成比が
0.1質量%未満であると、正極活物質の充放電容量が
低下するとともにサイクル特性が劣化するので好ましく
なく、組成比が5質量%を越えると、正極活物質の耐熱
性が低下するので好ましくない。更にリチウムニッケル
複合酸化物の組成比を3質量%未満とすれば、非水電解
質2次電池の耐熱性をより向上させることができる。具
体的には、釘差し試験等の過酷な破壊試験を行うことに
よって電池温度が上昇した場合でも、正極活物質が分解
することなく、電池の耐熱性を高めることができる。
The composition ratio of the lithium nickel composite oxide in the positive electrode active material is preferably 0.1% by mass or more and 5% by mass or less, and more preferably 0.1% by mass or more and less than 3% by mass. When the composition ratio of the lithium-nickel composite oxide is less than 0.1% by mass, the charge / discharge capacity of the positive electrode active material is lowered and the cycle characteristics are deteriorated, which is not preferable. It is not preferable because the heat resistance of the active material decreases. Further, if the composition ratio of the lithium nickel composite oxide is less than 3% by mass, the heat resistance of the non-aqueous electrolyte secondary battery can be further improved. Specifically, the heat resistance of the battery can be improved without decomposing the positive electrode active material even when the battery temperature rises by performing a severe destructive test such as a nailing test.

【0030】また、正極活物質には、ポリアニリン、ポ
リピロール、ポリチオフェン、ポリイミダゾール等の導
電性高分子材料を添加することが好ましく、特にポリア
ニリンを添加することが好ましい。導電性高分子材料は
電気化学的に安定であり、しかも電子伝導性に優れてい
るため、これらの導電性高分子材料を添加することで正
極電極膜2bの抵抗が低減され、電池の内部インピーダ
ンスが低下して充放電容量が向上する効果がある。正極
活物質におけるポリアニリン等の導電性高分子材料の組
成比は、0.1質量%以上5質量%以下の範囲が好まし
い。組成比が0.1質量%未満では上述した導電性高分
子材料の添加効果がみられないので好ましくなく、組成
比が5質量%を越えると導電性高分子材料の過剰な被覆
による電子伝導性が阻害されるので好ましくない。
Further, it is preferable to add a conductive polymer material such as polyaniline, polypyrrole, polythiophene and polyimidazole to the positive electrode active material, and it is particularly preferable to add polyaniline. Since the conductive polymer material is electrochemically stable and has excellent electronic conductivity, the resistance of the positive electrode film 2b is reduced by adding these conductive polymer materials, and the internal impedance of the battery is reduced. Has the effect of lowering the charge and discharge capacity. The composition ratio of the conductive polymer material such as polyaniline in the positive electrode active material is preferably 0.1% by mass or more and 5% by mass or less. If the composition ratio is less than 0.1% by mass, the above-described effect of the addition of the conductive polymer material is not observed, which is not preferable, and if the composition ratio exceeds 5% by mass, the electron conductivity due to excessive coating of the conductive polymer material is caused. Is inhibited, which is not preferable.

【0031】次に導電助材としては、カーボンブラッ
ク、アセチレンブラック、黒鉛、炭素繊維等の炭素材料
を用いることが好ましい。また結着材としてはポリフッ
化ビニリデン、ポリ4フッ化エチレン、ポリイミド等の
高分子結着材を用いることが好ましい。また正極集電体
2aとしては、金属箔、金属網、エキスパンドメタル等
を用いることが好ましく、またこれらの材質はAl、T
i、ステンレス等が好ましい。
Next, a carbon material such as carbon black, acetylene black, graphite or carbon fiber is preferably used as the conductive auxiliary material. As the binder, it is preferable to use a polymer binder such as polyvinylidene fluoride, polytetrafluoroethylene, or polyimide. Further, as the positive electrode current collector 2a, it is preferable to use a metal foil, a metal net, an expanded metal or the like, and these materials are Al and T.
i, stainless steel, etc. are preferable.

【0032】正極電極膜2bの組成比は、正極活物質が
60〜90重量%、導電助材が5〜20質量%、結着材
が5〜20質量%の範囲が好ましい。なお、このときの
正極活物質には、リチウムマンガン複合酸化物、リチウ
ムニッケル複合酸化物及び導電性高分子材料が含まれ
る。
The composition ratio of the positive electrode film 2b is preferably in the range of 60 to 90% by weight of the positive electrode active material, 5 to 20% by weight of the conductive auxiliary material, and 5 to 20% by weight of the binder. The positive electrode active material at this time includes a lithium manganese composite oxide, a lithium nickel composite oxide, and a conductive polymer material.

【0033】次に非水電解液(非水電解質)としては、
例えば、エチレンカーボネート、ブチレンカーボネート
等の環状炭酸エステルと、ジメチルカーボネート、メチ
ルエチルカーボネート、ジエチルカーボネート等の鎖状
炭酸エステルとを混合した混合溶媒に、LiPF6、L
iBF4、LiAsF6、LiClO4、LiCF3
3、Li(CF3SO22N等のリチウム塩からなる溶
質の1種または2種以上を溶解させたものを用いること
ができる。
Next, as the non-aqueous electrolyte (non-aqueous electrolyte),
For example, in a mixed solvent obtained by mixing a cyclic carbonic acid ester such as ethylene carbonate and butylene carbonate and a chain carbonic acid ester such as dimethyl carbonate, methyl ethyl carbonate and diethyl carbonate, LiPF 6 , L
iBF 4 , LiAsF 6 , LiClO 4 , LiCF 3 S
It is possible to use one in which one or two or more solutes composed of a lithium salt such as O 3 and Li (CF 3 SO 2 ) 2 N are dissolved.

【0034】また、上記のセパレータ4及び非水電解液
に代えて、固体電解質(非水電解質)を用いることもで
きる。固体電解質としては、上記の溶質を含有するポリ
エチレンオキサイド等のリチウムイオン伝導高分子や、
ポリエチレンオキサイド、ポリフッ化ビニリデン、ポリ
アクリロニトリル等の高分子マトリックスに上記非水電
解液を含浸させてなるゲル電解質等を用いることができ
る。
A solid electrolyte (non-aqueous electrolyte) may be used instead of the separator 4 and the non-aqueous electrolyte solution. As the solid electrolyte, a lithium ion conductive polymer such as polyethylene oxide containing the above solute,
A gel electrolyte obtained by impregnating a polymer matrix such as polyethylene oxide, polyvinylidene fluoride, polyacrylonitrile or the like with the above non-aqueous electrolyte can be used.

【0035】正極電極2の製造方法としては、特に制限
はないが、リチウムマンガン複合酸化物の粉末とリチウ
ムニッケル複合酸化物の粉末を、カーボンブラック等の
導電助材と混合し、この混合物を、予めポリフッ化ビニ
リデン等の結着材及びポリアニリンを溶解させたNMP
等の分散媒に添加してスラリーとし、このスラリーを正
極集電体にドクターブレード法等により塗布した後、分
散媒を加熱除去し、プレス等により圧縮することにより
得られる。
The method for producing the positive electrode 2 is not particularly limited, but the lithium manganese composite oxide powder and the lithium nickel composite oxide powder are mixed with a conductive auxiliary material such as carbon black, and this mixture is mixed. NMP in which a binder such as polyvinylidene fluoride and polyaniline are dissolved in advance
It is obtained by adding a dispersion medium such as the above to form a slurry, applying the slurry to a positive electrode current collector by a doctor blade method or the like, removing the dispersion medium by heating, and compressing by a press or the like.

【0036】[0036]

【実施例】[実験例1(高温時の容量維持率の調査)]
マンガン酸リチウムの合成には、出発原料として炭酸リ
チウムと二酸化マンガンを用いた。これらの出発原料を
十分に粉砕してからLi/Mn=1/2(原子比)とな
るように混合し、酸素雰囲気中850℃で焼成すること
により、LiMn24なる組成のマンガン酸リチウムを
得た。次に、ニッケル酸リチウムの合成には、出発原料
として硝酸リチウムと水酸化ニッケルを用いた。これら
の出発原料を十分に粉砕してからLi/Ni=1/1
(原子比)となるように混合し、酸素雰囲気中700℃
で焼成することにより、LiNiO2なる組成のニッケ
ル酸リチウムを得た。マンガン酸リチウムの平均粒径
は、15μm、比表面積は0.1m2/gであり、ニッ
ケル酸リチウムの平均粒径は、11μm、比表面積は
0.2m2/gであった。
[Example] [Experimental Example 1 (Investigation of capacity retention rate at high temperature)]
For the synthesis of lithium manganate, lithium carbonate and manganese dioxide were used as starting materials. Lithium manganate having a composition of LiMn 2 O 4 was obtained by sufficiently pulverizing these starting materials, mixing them so that Li / Mn = 1/2 (atomic ratio), and firing at 850 ° C. in an oxygen atmosphere. Got Next, for the synthesis of lithium nickelate, lithium nitrate and nickel hydroxide were used as starting materials. After sufficiently pulverizing these starting materials, Li / Ni = 1/1
(Atomic ratio) and mix in an oxygen atmosphere at 700 ° C
By firing at, lithium nickel oxide having a composition of LiNiO 2 was obtained. The lithium manganate had an average particle diameter of 15 μm and a specific surface area of 0.1 m 2 / g, and the lithium nickel oxide had an average particle diameter of 11 μm and a specific surface area of 0.2 m 2 / g.

【0037】上記のマンガン酸リチウムとニッケル酸リ
チウムを表1に示す混合比で混合して正極活物質とし、
この正極活物質90重量部に対し、導電助材としてカー
ボンブラックを10重量部添加して混合物とした。得ら
れた混合物に、予めポリフッ化ビニリデンを溶解させた
NMP(N−メチルピロリドン)を混合してスラリーと
し、このスラリーをアルミニウム箔に塗布して乾燥し、
更にプレスすることにより、正極電極膜を形成した。こ
のようにして、正極活物質が82質量%、カーボンブラ
ックが9質量%、ポリフッ化ビニリデンが9質量%であ
り、正極電極膜における正極活物質の密度が25mg/
cm2、正極電極膜の密度が2.4g/cm3である正極
電極を製造した。なお、正極電極は直径16mmの円形
に打ち抜いたものを用いた。
The above-mentioned lithium manganate and lithium nickelate were mixed at a mixing ratio shown in Table 1 to prepare a positive electrode active material,
To 90 parts by weight of this positive electrode active material, 10 parts by weight of carbon black as a conduction aid was added to obtain a mixture. The obtained mixture is mixed with NMP (N-methylpyrrolidone) in which polyvinylidene fluoride is dissolved in advance to form a slurry, and the slurry is applied to an aluminum foil and dried,
Further pressing was performed to form a positive electrode film. Thus, the positive electrode active material was 82% by mass, the carbon black was 9% by mass, the polyvinylidene fluoride was 9% by mass, and the density of the positive electrode active material in the positive electrode film was 25 mg /
A positive electrode having a cm 2 and a density of the positive electrode film of 2.4 g / cm 3 was manufactured. The positive electrode used was punched into a circular shape having a diameter of 16 mm.

【0038】次に、天然黒鉛に、予めポリフッ化ビニリ
デンを溶解させたNMP(N−メチルピロリドン)を混
合してスラリーとし、このスラリーを銅箔に塗布して乾
燥し、更にプレスすることにより、負極電極膜を形成し
た。このようにして、天然黒鉛が90質量%、ポリフッ
化ビニリデンが10質量%であり、負極電極膜における
天然黒鉛の密度が10mg/cm2、負極電極膜の密度
が1.2g/cm3である負極電極を製造した。なお、
負極電極も正極電極と同様に、直径16mmの円形に打
ち抜いたものを用いた。
Next, natural graphite is mixed with NMP (N-methylpyrrolidone) in which polyvinylidene fluoride is dissolved in advance to form a slurry. The slurry is applied to a copper foil, dried, and further pressed. A negative electrode film was formed. Thus, 90% by mass of natural graphite and 10% by mass of polyvinylidene fluoride, the density of natural graphite in the negative electrode film is 10 mg / cm 2 , and the density of the negative electrode film is 1.2 g / cm 3 . A negative electrode was manufactured. In addition,
As with the positive electrode, the negative electrode was also punched into a circular shape having a diameter of 16 mm.

【0039】正極電極と負極電極とによって多孔質ポリ
プロピレン製のセパレータを挟んだ状態で電池容器に収
納し、有機電解液を注液してから封口することにより、
直径16mm、厚さ3mmのコイン型の非水電解質2次
電池(実施例1〜3及び比較例1、2)を得た。尚、有
機電解液の組成は、エチレンカーボネート(EC)とジメチ
ルカーボネート(DMC)の混合溶媒(体積比でEC:DMC=1:2)
に1モル/Lの濃度となるようにLiPF6を添加した
ものを用いた。
By putting a porous polypropylene separator between the positive electrode and the negative electrode in a battery container, injecting an organic electrolytic solution, and then sealing the container,
A coin type non-aqueous electrolyte secondary battery (Examples 1 to 3 and Comparative Examples 1 and 2) having a diameter of 16 mm and a thickness of 3 mm was obtained. The composition of the organic electrolyte is a mixed solvent of ethylene carbonate (EC) and dimethyl carbonate (DMC) (EC: DMC = 1: 2 by volume ratio).
LiPF 6 was added so that the concentration became 1 mol / L.

【0040】得られた非水電解質2次電池に対して、充
放電サイクルを繰り返しつつ、高温時の容量維持率を測
定した。充電は、電流1/3Cで電圧が4.2Vになる
まで定電流充電した後に、4.2Vで5時間の定電圧充
電を行うことし、放電は電流1/3Cで電圧が2.2V
になるまで定電流放電を行うこととした。この条件で
サイクルまで充放電を行った後、充電状態で温度60℃
で30日間貯蔵した後に放電を行い、貯蔵前後の放電容
量の変化の割合を容量維持率として求めた。結果を表1
に示す。
With respect to the obtained non-aqueous electrolyte secondary battery, the capacity retention at high temperature was measured while repeating the charge / discharge cycle. For charging, constant current charging is performed at a current of 1 / 3C until the voltage reaches 4.2V, and then constant voltage charging is performed at 4.2V for 5 hours, and discharging is performed at a current of 1 / 3C and a voltage of 2.2V.
It was decided to carry out constant current discharge until. 5 under this condition
After charging and discharging until the cycle, the temperature is 60 ℃ in the charged state.
After 30 days of storage, discharge was performed, and the rate of change in discharge capacity before and after storage was determined as the capacity retention rate. The results are shown in Table 1.
Shown in.

【0041】[0041]

【表1】 [Table 1]

【0042】表1に示すように、実施例1〜3について
は、ニッケル酸リチウムの組成比が高くなるにつれて容
量維持率が高くなっている。これは、高温貯蔵時のサイ
クル特性がマンガン酸リチウムより比較的良好なニッケ
ル酸リチウムが増加したためと考えられる。また,容量
維持率は,正極中へのポリアニリンの添加によりさらに
改善されることを確認した。これは,ポリアニリンが正
極活物質粒子を適度に被覆するため,マンガンの溶出が
抑えられたためと考えられる。尚、比較例1及び2は、
マンガン酸リチウム、ニッケル酸リチウムをそれぞれ単
独で添加したものであり、マンガン酸酸リチウムよりも
ニッケル酸リチウムの方が高温時の容量維持率に優れて
いることを示している。
As shown in Table 1, in Examples 1 to 3, the capacity retention rate increased as the composition ratio of lithium nickel oxide increased. It is considered that this is because the amount of lithium nickel oxide, which has relatively better cycle characteristics during high temperature storage than lithium manganate, increased. It was also confirmed that the capacity retention rate was further improved by adding polyaniline to the positive electrode. It is considered that this is because the elution of manganese was suppressed because polyaniline appropriately covered the positive electrode active material particles. In addition, Comparative Examples 1 and 2
Lithium manganate and lithium nickelate were added individually, and it is shown that lithium nickelate is superior to lithium manganate in the capacity retention rate at high temperatures.

【0043】[実験例2(耐熱性調査)]正極電極とし
て帯状に切り出したもの準備し、また、負極電極として
帯状に切り出したものを準備し、これら正負極電極の間
に多孔質ポリプロピレン製のセパレータを配置して正負
極電極とともに渦巻き状に巻回して電池容器に挿入した
こと以外は、上記実験例1の場合と同様にして、直径1
8mm、高さ650mmの円筒型の非水電解質2次電池
を製造した。得られた非水電解質2次電池に対して、電
流1/3Cで電圧が4.15Vになるまで定電流充電し
た後に、4.15Vで5時間の定電圧充電を行うことに
より、電池を満充電状態とした。この満充電状態の非水
電解質2次電池に、直径2mm、長さ50mmの釘を打
ち込むことによって釘刺し試験を行い、電池の挙動を調
査した。結果を表2に示す。供試電池毎のばらつきの影
響を補正するため,各条件毎に3個電池を製作して試験
を行った。尚、表2中、電池挙動の結果の欄に示す“1
/3”等の記載は、例えば、各実施例について電池3個
を試験した場合のうちの1つが弁作動等を起こしたこと
を意味する。
[Experimental Example 2 (Investigation of heat resistance)] A strip electrode was prepared as a positive electrode, and a strip electrode was prepared as a negative electrode. Porous polypropylene made between these positive and negative electrodes was prepared. A diameter of 1 was obtained in the same manner as in the case of Experimental Example 1 above, except that a separator was placed and spirally wound together with the positive and negative electrodes and inserted into the battery container.
A cylindrical non-aqueous electrolyte secondary battery having a height of 8 mm and a height of 650 mm was manufactured. The obtained non-aqueous electrolyte secondary battery was charged with a constant current at a current of 1/3 C until the voltage reached 4.15 V, and then charged with a constant voltage at 4.15 V for 5 hours to fully charge the battery. Charged. A nail penetration test was performed by driving a nail having a diameter of 2 mm and a length of 50 mm into the fully charged non-aqueous electrolyte secondary battery to investigate the behavior of the battery. The results are shown in Table 2. In order to correct the influence of variations for each test battery, three batteries were manufactured under each condition and tested. In Table 2, "1" shown in the column of result of battery behavior
The description such as "/ 3" means that, for example, one of the three batteries tested for each example caused valve operation.

【0044】[0044]

【表2】 [Table 2]

【0045】表2に示すように、実施例6〜7について
は、安全弁の作動、白煙の発生が起きたが、内蔵固体の
漏出は起きず、発火も起きなかった。マンガン酸リチウ
ムを100%含む比較例3についても実施例6〜7と同
じであった。しかしながら,ニッケル酸リチウムの組成
が増えるにつれて,内蔵固体漏出する頻度も高まり,実
施例9に示すようにニッケル酸リチウムを5質量%含む
条件では,3本中2本の電池が内蔵固体の漏出に至り,
一方、ニッケル酸リチウムを100%含む比較例4で
は、安全弁の作動、白煙の発生の他に、内容物が噴出
し、更に発火が起きるまでに至った。以上の結果は,ニ
ッケル酸リチウムがマンガン酸リチウムよりも低温で熱
暴走しやすいことに因るものであり,供試電池が内蔵固
体漏出にまで至らないニッケル酸リチウムの添加組成と
して,3.0質量%以下が好ましいことを確認した。
As shown in Table 2, in Examples 6 to 7, the operation of the safety valve and the generation of white smoke occurred, but the leak of the built-in solid did not occur and the ignition did not occur. Comparative Example 3 containing 100% lithium manganate was also the same as Examples 6-7. However, as the composition of lithium nickelate increases, the frequency of leakage of built-in solids increases, and as shown in Example 9, under the condition of containing 5 mass% of lithium nickelate, two out of three batteries leak to the built-in solids. Really
On the other hand, in Comparative Example 4 containing 100% lithium nickelate, in addition to the operation of the safety valve and the generation of white smoke, the contents spouted and further ignition occurred. The above results are due to the fact that lithium nickel oxide is more likely to cause thermal runaway at a lower temperature than lithium manganate. It was confirmed that the content is preferably not more than mass%.

【0046】上記の実験例1及び2から明らかなよう
に、マンガン酸リチウムの一部をニッケル酸リチウムに
した実施例1〜6の非水電解質2次電池は、マンガン酸
リチウムまたはニッケル酸リチウムを単独で含む比較例
1,2の電池よりも、高温時の容量維持率に優れるとと
もに耐熱性が高いことが判明した。
As is clear from Experimental Examples 1 and 2, the non-aqueous electrolyte secondary batteries of Examples 1 to 6 in which a part of lithium manganate was lithium nickelate were manufactured using lithium manganate or lithium nickelate. It was found that the batteries of Comparative Examples 1 and 2 which contained alone had a higher capacity retention rate at high temperature and a higher heat resistance.

【0047】[0047]

【発明の効果】以上、詳細に説明したように、本発明の
非水電解質2次電池によれば、リチウムマンガン複合酸
化物と0.1〜5質量%のリチウムニッケル複合酸化物
からなる正極活物質を具備してなり、リチウムマンガン
複合酸化物を主体としているので、従来の非水電解質2
次電池よりも耐熱性を向上できる。また、リチウムニッ
ケル複合酸化物は、リチウムマンガン複合酸化物より高
容量かつサイクル特性に優れるので、0.1〜5質量%
の範囲で添加することにより、リチウムマンガン複合酸
化物の短所を補うことができる。
As described above in detail, according to the non-aqueous electrolyte secondary battery of the present invention, the positive electrode active material composed of the lithium manganese composite oxide and the lithium nickel composite oxide of 0.1 to 5 mass% is used. Since it is made of a substance and is mainly composed of lithium manganese composite oxide, the conventional non-aqueous electrolyte 2
The heat resistance can be improved as compared with the secondary battery. Moreover, since the lithium nickel composite oxide has a higher capacity and better cycle characteristics than the lithium manganese composite oxide, 0.1 to 5% by mass is used.
Addition within this range can compensate for the disadvantages of the lithium-manganese composite oxide.

【図面の簡単な説明】[Brief description of drawings]

【図1】 本発明の実施形態である非水電解質2次電池
の一例を示す斜視図である。
FIG. 1 is a perspective view showing an example of a non-aqueous electrolyte secondary battery according to an embodiment of the present invention.

【図2】 図1に示す非水電解質2次電池の要部を示す
斜視図である。
FIG. 2 is a perspective view showing a main part of the non-aqueous electrolyte secondary battery shown in FIG.

【符号の説明】[Explanation of symbols]

1 非水電解質2次電池 2 正極電極(電極) 2a 正極集電体(集電体) 2b 正極電極膜(電極膜) 3 負極電極 3a 負極集電体 3b 負極電極膜 4 セパレータ 5 電池ケース 6 封口板 1 Non-aqueous electrolyte secondary battery 2 Positive electrode (electrode) 2a Positive electrode current collector (current collector) 2b Positive electrode film (electrode film) 3 Negative electrode 3a Negative electrode current collector 3b Negative electrode film 4 separator 5 battery case 6 sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 田島 英彦 長崎県長崎市飽の浦町1番1号 三菱重工 業株式会社長崎造船所内 Fターム(参考) 5H029 AJ03 AJ05 AJ12 AK03 AK16 AK18 AL02 AL06 AL07 AL12 AM03 AM05 AM07 AM16 BJ02 CJ08 DJ16 DJ17 HJ01 HJ02 5H050 AA07 AA08 AA15 BA17 CA08 CA09 CA20 CA29 CB02 CB07 CB08 CB12 DA02 FA17 FA19 GA10 HA01 HA02    ─────────────────────────────────────────────────── ─── Continued front page    (72) Inventor Hidehiko Tajima             1-1 Satinoura Town, Nagasaki City, Nagasaki Prefecture Mitsubishi Heavy Industries             Nagasaki Shipyard Co., Ltd. F term (reference) 5H029 AJ03 AJ05 AJ12 AK03 AK16                       AK18 AL02 AL06 AL07 AL12                       AM03 AM05 AM07 AM16 BJ02                       CJ08 DJ16 DJ17 HJ01 HJ02                 5H050 AA07 AA08 AA15 BA17 CA08                       CA09 CA20 CA29 CB02 CB07                       CB08 CB12 DA02 FA17 FA19                       GA10 HA01 HA02

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 LiMn2-xx4(ただし元素MはC
o、Ni、Fe、Mg、Cr、Alの中から選択される
少なくとも1種であり、組成比xは0<x≦0.4であ
る)で表されるリチウムマンガン複合酸化物と、LiN
1-yy2(ただし元素LはCo、Ni、Fe、M
g、Cr、Alの中から選択される少なくとも1種であ
り、組成比yは0<y≦0.5である)で表されるリチ
ウムニッケル複合酸化物とが混合されてなる正極活物質
を具備してなり、 前記正極活物質における前記リチウムニッケル複合酸化
物の組成比が0.1質量%以上5質量%以下の範囲であ
ることを特徴とする非水電解質2次電池用正極。
1. LiMn 2-x M x O 4 (where the element M is C
o, Ni, Fe, Mg, Cr, Al, and at least one kind, and the composition ratio x is 0 <x ≦ 0.4.
i 1-y L y O 2 (provided that the element L is Co, Ni, Fe, M
g, Cr, Al, which is at least one selected from the group consisting of Al, and the composition ratio y is 0 <y ≦ 0.5). A positive electrode for a non-aqueous electrolyte secondary battery, characterized in that the composition ratio of the lithium nickel composite oxide in the positive electrode active material is in the range of 0.1% by mass or more and 5% by mass or less.
【請求項2】 前記正極活物質における前記リチウムニ
ッケル複合酸化物の組成比が0.1質量%以上3質量%
未満の範囲であることを特徴とする請求項1に記載の非
水電解質2次電池用正極。
2. The composition ratio of the lithium nickel composite oxide in the positive electrode active material is 0.1% by mass or more and 3% by mass.
The positive electrode for a non-aqueous electrolyte secondary battery according to claim 1, wherein the positive electrode is in the range below.
【請求項3】 前記正極活物質にポリアニリンが0.1
質量%以上5質量%以下の範囲で含まれることを特徴と
する請求項1または請求項2に記載の非水電解質2次電
池用正極。
3. The positive electrode active material contains polyaniline in an amount of 0.1.
The positive electrode for a non-aqueous electrolyte secondary battery according to claim 1 or 2, wherein the positive electrode is contained in the range of 5% by mass or more and 5% by mass or less.
【請求項4】 LiMn2-xx4(ただし元素MはC
o、Ni、Fe、Mg、Cr、Alの中から選択される
少なくとも1種であり、組成比xは0<x≦0.4であ
る)で表されるリチウムマンガン複合酸化物と、LiN
1-yy2(ただし元素LはCo、Ni、Fe、M
g、Cr、Alの中から選択される少なくとも1種であ
り、組成比yは0<y≦0.5である)で表されるリチ
ウムニッケル複合酸化物とが混合されてなる正極活物質
を具備してなり、 前記正極活物質における前記リチウムニッケル複合酸化
物の組成比が0.1質量%以上5質量%以下の範囲であ
ることを特徴とする非水電解質2次電池。
4. LiMn 2-x M x O 4 (provided that the element M is C
o, Ni, Fe, Mg, Cr, Al, and at least one kind, and the composition ratio x is 0 <x ≦ 0.4.
i 1-y L y O 2 (provided that the element L is Co, Ni, Fe, M
g, Cr, Al, which is at least one selected from the group consisting of Al, and the composition ratio y is 0 <y ≦ 0.5). The non-aqueous electrolyte secondary battery, wherein the composition ratio of the lithium nickel composite oxide in the positive electrode active material is in the range of 0.1% by mass or more and 5% by mass or less.
【請求項5】 前記正極活物質における前記リチウムニ
ッケル複合酸化物の組成比が0.1質量%以上3質量%
未満の範囲であることを特徴とする請求項4に記載の非
水電解質2次電池。
5. The composition ratio of the lithium nickel composite oxide in the positive electrode active material is 0.1% by mass or more and 3% by mass.
The non-aqueous electrolyte secondary battery according to claim 4, wherein the non-aqueous electrolyte secondary battery is in a range below.
【請求項6】 前記正極活物質にポリアニリンが0.1
質量%以上5質量%以下の範囲で含まれることを特徴と
する請求項4または請求項5に記載の非水電解質2次電
池。
6. Polyaniline is added to the positive electrode active material in an amount of 0.1.
The non-aqueous electrolyte secondary battery according to claim 4 or 5, wherein the non-aqueous electrolyte secondary battery is contained in the range of 5% by mass or more and 5% by mass or less.
JP2002008957A 2002-01-17 2002-01-17 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery Withdrawn JP2003217568A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2002008957A JP2003217568A (en) 2002-01-17 2002-01-17 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2002008957A JP2003217568A (en) 2002-01-17 2002-01-17 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2003217568A true JP2003217568A (en) 2003-07-31

Family

ID=27647081

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2002008957A Withdrawn JP2003217568A (en) 2002-01-17 2002-01-17 Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2003217568A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196250A (en) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd Lithium secondary battery
JP2010517238A (en) * 2007-01-24 2010-05-20 エルジー・ケム・リミテッド Secondary battery with excellent safety
JP2010529608A (en) * 2007-06-04 2010-08-26 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ New composition for the production of electrodes, and electrodes and batteries obtained from the composition
JP2010262914A (en) * 2009-04-29 2010-11-18 Samsung Sdi Co Ltd Lithium secondary battery
WO2014142281A1 (en) * 2013-03-15 2014-09-18 日産自動車株式会社 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using same
CN115911375A (en) * 2022-11-08 2023-04-04 江苏正力新能电池技术有限公司 Negative pole piece and battery

Cited By (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2006196250A (en) * 2005-01-12 2006-07-27 Sanyo Electric Co Ltd Lithium secondary battery
JP2010517238A (en) * 2007-01-24 2010-05-20 エルジー・ケム・リミテッド Secondary battery with excellent safety
JP2010529608A (en) * 2007-06-04 2010-08-26 コミサリア ア レネルジィ アトミーク エ オ ゼネ ルジイ アルテアナティーフ New composition for the production of electrodes, and electrodes and batteries obtained from the composition
JP2010262914A (en) * 2009-04-29 2010-11-18 Samsung Sdi Co Ltd Lithium secondary battery
US8597833B2 (en) 2009-04-29 2013-12-03 Samsung Sdi Co., Ltd. Rechargeable lithium battery
WO2014142281A1 (en) * 2013-03-15 2014-09-18 日産自動車株式会社 Positive electrode for non-aqueous electrolyte secondary battery, and non-aqueous electrolyte secondary battery using same
JP6070823B2 (en) * 2013-03-15 2017-02-01 日産自動車株式会社 Nonaqueous electrolyte secondary battery
CN115911375A (en) * 2022-11-08 2023-04-04 江苏正力新能电池技术有限公司 Negative pole piece and battery

Similar Documents

Publication Publication Date Title
JP4061586B2 (en) Positive electrode active material for nonaqueous electrolyte secondary battery and nonaqueous electrolyte secondary battery using the same
KR100331209B1 (en) Non-aqueous Electrolyte Secondary Battery
JP2002203553A (en) Positive-electrode active material and non-aqueous electrolyte secondary battery
CN104953174A (en) Nonaqueous-electrolyte battery
JP2005339970A (en) Cathode activator and nonaqueous electrolyte secondary battery
TW200301022A (en) Lithium ion secondary battery
JP2010080407A (en) Positive electrode active material, positive electrode, and non-aqueous electrolyte secondary battery
JP2004134207A (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP3468098B2 (en) Method for producing positive electrode active material for lithium secondary battery
JPH10208777A (en) Non-aqueous electrolyte secondary battery
JPH0982360A (en) Nonaqueous electrolyte secondary battery
JP2003331840A (en) Positive pole active substance for lithium ion secondary battery and method of manufacturing the active substance, and lithium ion secondary battery
JP2003217568A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP3111927B2 (en) Non-aqueous electrolyte secondary battery and method of manufacturing the same
JP2924329B2 (en) Non-aqueous electrolyte secondary battery
JP2002025626A (en) Aging method for lithium secondary battery
JP4447831B2 (en) Positive electrode active material and non-aqueous electrolyte secondary battery
JP2001052760A (en) Charging method of nonaqueous electrolyte secondary battery
JP2003229179A (en) Nonaqueous electrolyte secondary battery
JP2002203606A (en) Nonaqueous electrolyte solution battery
JPH11273726A (en) Nonaqueous electrolyte secondary battery
JPH11185822A (en) Nonaqueous electrolyte secondary battery
JP2003331841A (en) Positive active material for lithium ion secondary battery and its manufacturing method, and lithium ion secondary battery
JP2004022239A (en) Positive electrode active material and nonaqueous electrolyte secondary battery
JP3089662B2 (en) Non-aqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20050405