JPH11185822A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JPH11185822A
JPH11185822A JP9351748A JP35174897A JPH11185822A JP H11185822 A JPH11185822 A JP H11185822A JP 9351748 A JP9351748 A JP 9351748A JP 35174897 A JP35174897 A JP 35174897A JP H11185822 A JPH11185822 A JP H11185822A
Authority
JP
Japan
Prior art keywords
positive electrode
current collector
negative electrode
positive
negative
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP9351748A
Other languages
Japanese (ja)
Inventor
Naoyuki Sugano
直之 菅野
Yoshito Inoue
嘉人 井上
Masashi Kumakawa
昌志 熊川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sony Corp
Original Assignee
Sony Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sony Corp filed Critical Sony Corp
Priority to JP9351748A priority Critical patent/JPH11185822A/en
Publication of JPH11185822A publication Critical patent/JPH11185822A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Abstract

PROBLEM TO BE SOLVED: To provide a good load performance and long charging/discharging cycles by using lithium manganese oxide as a positive electrode material, and specifying the weight ratio of a positive depolarizing mix and a negative depolarizing mix to the specified range, the thickness ratio of a positive deporizing mix layer and a positive current collector, and the thickness ratio of a negative depovizing mix layer and a negative current collector both to the specified range. SOLUTION: This nonaqueous electrolyte secondary battery is formed in such a way that a negative electrode formed by arranging a negative depolarizing mix layer 15 on both surfaces of a negative current collector 10, and a positive electrode 2 formed by arranging a positive depolarizing mix layer 16 containing lithium manganese oxide on both surfaces of a positive current collector 11 are spirally wound through a microporous film separator 3, an insulator 4 is placed on the top and bottom of the winding body, then they are housed in a battery can 5. In the battery, the ratio of the positive mix layer 16 and the negative mix layer 15 is specified to the range of 3:1-4:1, the thickness ratio of the positive mix layer 16 and the positive current collector 11 and that of the negative mix layer 15 and the negative current collector 10 are specified to the range of 2:1-4:1.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電池
に関し、特に負荷性能及び充放電サイクル特性の改善に
関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to an improvement in load performance and charge / discharge cycle characteristics.

【0002】[0002]

【従来の技術】近年、電子機器の小型軽量化に伴って、
電源となる二次電池に対して高いエネルギー密度を有す
ることが求められるようになっている。そのような要求
に応える二次電池として非水電解液二次電池が期待され
ている。
2. Description of the Related Art In recent years, as electronic devices have become smaller and lighter,
A secondary battery serving as a power supply has been required to have a high energy density. Non-aqueous electrolyte secondary batteries are expected as secondary batteries that meet such demands.

【0003】非水電池液二次電池としては、負極材料に
リチウム金属やリチウム合金を用い、正極材料にリチウ
ム含有化合物を用いたものが提案されている。
As a non-aqueous battery liquid secondary battery, one using lithium metal or lithium alloy as a negative electrode material and using a lithium-containing compound as a positive electrode material has been proposed.

【0004】しかしながら、リチウム金属やリチウム合
金を負極に用いた場合、充電過程において負極上でリチ
ウム金属がデンドライト状に析出し易い。このデンドラ
イト結晶の先端では非常に高い電流密度になるため、非
水電解液が分解してサイクル寿命が低下したり、また負
極から析出したデンドライト結晶が正極にまで到達し、
電池の内部短絡が発生するといった問題がある。
[0004] However, when lithium metal or lithium alloy is used for the negative electrode, the lithium metal tends to precipitate in a dendrite shape on the negative electrode during the charging process. At the tip of this dendrite crystal, the current density becomes very high, so that the non-aqueous electrolyte is decomposed and the cycle life is reduced, or the dendrite crystal deposited from the negative electrode reaches the positive electrode,
There is a problem that an internal short circuit occurs in the battery.

【0005】これに対して、リチウムイオンをドープ・
脱ドープすることが可能な炭素材料を負極材料に用いた
非水電解液二次電池が提案されている。この炭素材料と
しては、易黒鉛化性炭素、難黒鉛化性炭素、黒鉛類が用
いられる。このような炭素材料を用いる非水電解液二次
電池では、電池系内でリチウムが金属状態で存在しない
ためにデンドライトの形成が抑制され、良好なサイクル
特性が得られる。このため、ビデオカメラや携帯電話機
の電源として実用化されている。
On the other hand, lithium ions are doped.
Non-aqueous electrolyte secondary batteries using a undoped carbon material as a negative electrode material have been proposed. As the carbon material, graphitizable carbon, non-graphitizable carbon, and graphites are used. In a non-aqueous electrolyte secondary battery using such a carbon material, since lithium does not exist in a metal state in the battery system, formation of dendrites is suppressed, and good cycle characteristics are obtained. Therefore, it has been put to practical use as a power source for video cameras and mobile phones.

【0006】ところで、非水電解液二次電池の正極材料
としては、LiCoO2やLiNiO2が多く用いられて
いる。しかし、コバルトやニッケルは資源が稀少であ
り、これらを含有するコバルト化合物やニッケル化合物
は、鉛やマンガン化合物よりも高価になり、正極材料を
多量に使用する大型電池に用いるには無理がある。
By the way, LiCoO 2 and LiNiO 2 are often used as a positive electrode material of a non-aqueous electrolyte secondary battery. However, resources such as cobalt and nickel are scarce. Cobalt compounds and nickel compounds containing these are more expensive than lead and manganese compounds, making it unreasonable to use them in large batteries that use a large amount of positive electrode material.

【0007】そこで、比較的資源が豊富なMnを含有す
るリチウムマンガン酸化物の使用が検討され、例えば米
国特許4366215号、米国特許4828834号、
米国特許4980251号、特開平7−192768号
公報等においてスピネル型リチウムマンガン酸化物を正
極材料として用いることが提案されている。
Therefore, the use of lithium manganese oxide containing Mn, which is relatively rich in resources, has been studied. For example, US Pat. No. 4,366,215, US Pat. No. 4,828,834,
U.S. Pat. No. 4,980,251 and JP-A-7-192768 propose the use of a spinel-type lithium manganese oxide as a positive electrode material.

【0008】なお、このような炭素材料やリチウム含有
化合物を電極材料として電極を形成する場合、例えば負
極は炭素材料の粉末と結着剤を負極集電体に塗布するこ
とによって形成し、また正極はリチウム含有化合物の粉
末と導電剤及び結着剤を正極集電体に塗布することによ
って形成する。
When an electrode is formed using such a carbon material or a lithium-containing compound as an electrode material, for example, a negative electrode is formed by applying a powder of a carbon material and a binder to a negative electrode current collector. Is formed by applying a lithium-containing compound powder, a conductive agent and a binder to a positive electrode current collector.

【0009】[0009]

【発明が解決しようとする課題】しかしながら、リチウ
ムマンガン酸化物を正極材料として使用した場合、Li
CoO2やLiNiO2を正極材料として用いる場合に比
べてどうしても電池性能が劣ってしまう。
However, when lithium manganese oxide is used as the cathode material, Li
The battery performance is inevitably inferior to the case where CoO 2 or LiNiO 2 is used as the cathode material.

【0010】すなわち、リチウムマンガン酸化物を正極
材料として使用した電池では、充放電に伴って可逆性が
失われ、それによる容量低下が著しい。また、高温環境
下で連続して充放電を行った場合に、充放電サイクルの
進行に伴って容量が大きく低下する。さらに、大電流条
件での充放電では、充放電サイクルにリチウムの出入り
が追従ず、負荷性能に劣るといった問題がある。
That is, in a battery using lithium manganese oxide as a positive electrode material, reversibility is lost with charging and discharging, and the capacity is significantly reduced. In addition, when charging and discharging are continuously performed in a high-temperature environment, the capacity is significantly reduced with the progress of the charging and discharging cycle. Furthermore, in charging and discharging under a large current condition, there is a problem that the inflow and out of lithium do not follow the charging and discharging cycle, resulting in poor load performance.

【0011】そこで、本発明はこのような従来の実情に
鑑みて提案されたものであり、リチウムマンガン酸化物
を正極材料として使用する二次電池であって、負荷性能
及び充放電サイクル特性に優れた非水電解液二次電池を
提供することを目的とする。
Accordingly, the present invention has been proposed in view of such a conventional situation, and is a secondary battery using lithium manganese oxide as a positive electrode material, which is excellent in load performance and charge / discharge cycle characteristics. And a non-aqueous electrolyte secondary battery.

【0012】[0012]

【課題を解決するための手段】上述の目的を達成するた
めに、本発明の非水電解液二次電池は、炭素材料を含有
する負極合剤層が負極集電体に保持されてなる負極と、
リチウムマンガン酸化物を含有する正極合剤層が正極集
電体に保持されてなる正極と、非水溶媒に電解質塩が溶
解されてなる非水電解液を有してなり、上記正極合剤層
と負極合剤層の重量比が、3:1〜4:1であることを
特徴とするものである。
In order to achieve the above-mentioned object, a non-aqueous electrolyte secondary battery of the present invention comprises a negative electrode comprising a negative electrode mixture layer containing a carbon material held by a negative electrode current collector. When,
The positive electrode mixture layer comprising a positive electrode in which a positive electrode mixture layer containing lithium manganese oxide is held by a positive electrode current collector, and a nonaqueous electrolyte in which an electrolyte salt is dissolved in a nonaqueous solvent. And a weight ratio of the negative electrode mixture layer to the negative electrode mixture layer is 3: 1 to 4: 1.

【0013】リチウムマンガン酸化物を正極材料として
使用する非水電解液二次電池において、正極合剤層と負
極合剤層の重量比が3:1〜4:1の範囲になされてい
ると、負荷性能及び充放電サイクル特性が改善される。
そして、さらに正極合剤層と正極集電体の厚さの比及
び、上記負極合剤層と負極集電体の厚さの比がともに
2:1〜4:1の範囲になされていると、負荷性能及び
充放電サイクル特性がより一層改善される。
In a non-aqueous electrolyte secondary battery using lithium manganese oxide as a cathode material, if the weight ratio of the cathode mixture layer to the anode mixture layer is in the range of 3: 1 to 4: 1, Load performance and charge / discharge cycle characteristics are improved.
Further, the ratio of the thickness of the positive electrode mixture layer to the thickness of the positive electrode current collector and the ratio of the thickness of the negative electrode mixture layer to the thickness of the negative electrode current collector are both in the range of 2: 1 to 4: 1. , Load performance and charge / discharge cycle characteristics are further improved.

【0014】[0014]

【発明の実施の形態】本発明の具体的な実施の形態につ
いて説明する。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Specific embodiments of the present invention will be described.

【0015】本発明の非水電解液二次電池は、炭素材料
を含有する負極合剤層が負極集電体に保持されてなる負
極と、リチウムマンガン酸化物を含有する正極合剤層が
正極集電体に保持されてなる正極と、非水溶媒に電解質
塩が溶解されてなる非水電解液を有して構成される。
The nonaqueous electrolyte secondary battery according to the present invention comprises a negative electrode comprising a carbon material-containing negative electrode mixture layer held by a negative electrode current collector, and a positive electrode mixture layer comprising lithium manganese oxide comprising a positive electrode mixture layer. It comprises a positive electrode held by a current collector and a non-aqueous electrolyte in which an electrolyte salt is dissolved in a non-aqueous solvent.

【0016】まず、負極において、負極合剤層はリチウ
ムイオンのドープ・脱ドープがなされる炭素材料が含有
される層であり、少なくとも前記炭素材料と、この炭素
材料を負極集電体に保持するための結着剤によって構成
される。
First, in the negative electrode, the negative electrode mixture layer is a layer containing a carbon material to be doped / dedoped with lithium ions, and holds at least the carbon material and the carbon material on a negative electrode current collector. Composed of a binder for

【0017】上記炭素材料としては例えば難黒鉛化性炭
素材料が用いられる。この難黒鉛化性炭素材料は、X線
回折測定で求められる(002)面の面間隔dが0.3
6nm以上を示すもので、結晶構造を有する領域と無定
形領域が共存する。このような構造を有することによっ
てリチウムイオンのスムースな吸蔵・放出反応が行われ
る。
As the carbon material, for example, a non-graphitizable carbon material is used. This non-graphitizable carbon material has a (002) plane spacing d determined by X-ray diffraction measurement of 0.3.
It indicates 6 nm or more, and a region having a crystal structure and an amorphous region coexist. With such a structure, a smooth occlusion / release reaction of lithium ions is performed.

【0018】このような難黒鉛化性炭素材料は、石油ピ
ッチ、高分子樹脂、各種有機化合物を熱処理することに
よって得られ、この焼成体を粉砕処理等によって適当な
粒径に調整したものが負極材料として用いられる。
Such a non-graphitizable carbon material is obtained by heat-treating petroleum pitch, a polymer resin, and various organic compounds. Used as a material.

【0019】この負極材料として用いられる難黒鉛化性
炭素材料粉末は、粒子径が1μm以上50μm以下、平
均粒径が15μm以下であることが好ましい。また、B
ET法による比表面積が0.1〜20m2/gであるの
が望ましい。
The non-graphitizable carbon material powder used as the negative electrode material preferably has a particle diameter of 1 μm or more and 50 μm or less, and an average particle diameter of 15 μm or less. Also, B
It is desirable that the specific surface area by the ET method is 0.1 to 20 m 2 / g.

【0020】この他に負極材料としては、黒鉛粉末、メ
ソフェーズマイクロビーズ、熱分解炭素繊維、メソフェ
ーズピッチ系炭素繊維、高温処理化易黒鉛化性炭素等も
使用できるが、優れた充放電性能や充放電電位が得られ
ることから上述のような難黒鉛化性炭素材料を用いるの
が望ましい。
Other examples of the negative electrode material include graphite powder, mesophase microbeads, pyrolytic carbon fiber, mesophase pitch-based carbon fiber, and high-temperature-processable graphitizable carbon. It is desirable to use the above non-graphitizable carbon material because a discharge potential can be obtained.

【0021】炭素材料を負極集電体に保持するための結
着剤や負極集電体としては、通常用いられるものを使用
することができる。例えば、結着剤としてはポリフッ化
ビニリデン等のフッ素系樹脂、集電体としては銅箔等が
使用される。
As the binder and the negative electrode current collector for holding the carbon material on the negative electrode current collector, those commonly used can be used. For example, a fluorine-based resin such as polyvinylidene fluoride is used as the binder, and a copper foil or the like is used as the current collector.

【0022】一方、正極において、正極合剤層は正極活
物質となるリチウムマンガン酸化物が含有される層であ
り、少なくとも前記リチウムマンガン酸化物と、導電剤
及びこれらを正極集電体に保持するための結着剤によっ
て構成される。
On the other hand, in the positive electrode, the positive electrode mixture layer is a layer containing lithium manganese oxide serving as a positive electrode active material, and holds at least the lithium manganese oxide, a conductive agent, and these on a positive electrode current collector. Composed of a binder for

【0023】上記リチウムマンガン酸化物としては、例
えばスピネル構造を有するLiMn24またはLiMn
24に所定量のLiを添加したもの、例えばLixMn
y(但し、xは0.50〜0.52であり、yは1.
96〜2.00である)で表されるものが用いられる。
このうちLiMn24に所定量のLiを添加したLix
MnOyは、700〜750℃で8時間以上の加熱処理
を行った後に、粉末X線回折測定で観測される(31
1)回折面と(400)回折面のピーク比[(311)
回折面:(400)回折面]が1:1.10〜1:1.
20であるのが望ましい。ピーク比がこの範囲にあるL
xMnOyは、スピネル型類似の結晶構造を有する。ピ
ーク比がこの範囲から外れる場合には充放電サイクルの
繰り返しに伴い低級マンガン化合物が発生し、充放電サ
イクルの進行に伴って容量が低下する虞がある。なお、
正極の材料としては、この他にLi4Mn512も用いる
ことができる。
Examples of the lithium manganese oxide include LiMn 2 O 4 and LiMn having a spinel structure.
A substance obtained by adding a predetermined amount of Li to 2 O 4 , for example, Li x Mn
O y (where x is 0.50 to 0.52, y is 1.
96 to 2.00).
Among them, Li x obtained by adding a predetermined amount of Li to LiMn 2 O 4
MnO y is observed by powder X-ray diffraction measurement after performing heat treatment at 700 to 750 ° C. for 8 hours or more (31).
1) Peak ratio between diffraction plane and (400) diffraction plane [(311)
Diffractive surface: (400) diffractive surface].
Preferably, it is 20. L whose peak ratio is in this range
i x MnO y has a spinel type crystal structure similar. When the peak ratio is out of this range, a lower manganese compound is generated as the charge / discharge cycle is repeated, and the capacity may be reduced as the charge / discharge cycle progresses. In addition,
Li 4 Mn 5 O 12 can also be used as a material for the positive electrode.

【0024】このようなリチウムマンガン酸化物は、水
酸化リチウム等のリチウム源と、マンガン源を混合し、
酸素存在雰囲気下で熱処理することによって合成され
る。
Such a lithium manganese oxide is prepared by mixing a lithium source such as lithium hydroxide and a manganese source,
It is synthesized by heat treatment in an oxygen-containing atmosphere.

【0025】マンガン源としては、炭酸マンガンや硝酸
マンガン、硫酸マンガン、酢酸マンガンもしくはこれら
を加熱/酸化したもの、電解二酸化マンガン、化学合成
二酸化マンガン、Mn23、Mn34等が使用できる。
As the manganese source, manganese carbonate, manganese nitrate, manganese sulfate, manganese acetate or those obtained by heating / oxidizing them, electrolytic manganese dioxide, chemically synthesized manganese dioxide, Mn 2 O 3 , Mn 3 O 4 and the like can be used. .

【0026】正極に導電性を付与するための導電剤、正
極活物質を正極集電体に保持するための結着剤及び正極
集電体としては通常用いられているものが使用できる。
例えば導電剤としてはグラファイト、結着剤としてはポ
リフッ化ビニリデン等のフッ素系樹脂、正極集電体とし
てはアルミニウム箔がそれぞれ使用される。
As the conductive agent for imparting conductivity to the positive electrode, the binder for holding the positive electrode active material on the positive electrode current collector, and the positive electrode current collector, those commonly used can be used.
For example, graphite is used as the conductive agent, fluorine resin such as polyvinylidene fluoride is used as the binder, and aluminum foil is used as the positive electrode current collector.

【0027】負極と正極は以上のような構成とされる
が、本発明の非水電解液二次電池では特に、これら負極
と正極において、正極合剤の重量:負極合剤の重量が、
3:1〜4:1に規制される。
The negative electrode and the positive electrode are configured as described above. In the nonaqueous electrolyte secondary battery of the present invention, in particular, the weight of the positive electrode mixture:
It is regulated at 3: 1 to 4: 1.

【0028】正極合剤と負極合剤の重量比が上記範囲と
なされていると、充放電に当たって電極へのリチウムの
出入りが円滑に行われるようになり、良好な負荷性能及
び充放電サイクル特性が得られるようになる。また、高
温保存性能も向上する。さらに正極合剤と負極合剤の重
量比のより好ましい範囲は、3.2:1〜3.9:1、
さらには3.4:1〜3.7:1である。
When the weight ratio of the positive electrode mixture and the negative electrode mixture is within the above range, lithium can smoothly enter and leave the electrode during charging and discharging, and good load performance and good charge / discharge cycle characteristics can be obtained. Will be obtained. In addition, high-temperature storage performance is also improved. Furthermore, the more preferable range of the weight ratio of the positive electrode mixture and the negative electrode mixture is 3.2: 1 to 3.9: 1,
Further, the ratio is 3.4: 1 to 3.7: 1.

【0029】そして、これに加えて、正極合剤層の厚
さ:正極集電体の厚さ及び、負極合剤層の厚さ:負極集
電体の厚さがともに2:1〜4:1の範囲となされてい
ると負荷性能及び充放電サイクル特性がより一層改善さ
れる。また、正極の厚さ:負極の厚さも電池性能に影響
し、1.1:1〜1.8:1、さらには1.3:1〜
1.5:1とされているのが望ましい。
In addition to this, the thickness of the positive electrode mixture layer: the thickness of the positive electrode current collector and the thickness of the negative electrode mixture layer: the thickness of the negative electrode current collector are both 2: 1 to 4: When the range is 1, the load performance and the charge / discharge cycle characteristics are further improved. Further, the thickness of the positive electrode: the thickness of the negative electrode also affects the battery performance, and is 1.1: 1 to 1.8: 1, and further 1.3: 1 to 1.3: 1.
Preferably, the ratio is 1.5: 1.

【0030】なお、この非水電解液二次電池において非
水電解液の非水溶媒、電解質塩としては例えば次のよう
なものが用いられる。
In this non-aqueous electrolyte secondary battery, the following are used as the non-aqueous solvent and the electrolyte salt of the non-aqueous electrolyte.

【0031】非水溶媒としては、炭酸プロピレン,炭酸
エチレン,炭酸ブチレン等の環状カーボネート、炭酸ジ
メチル,炭酸ジエチル,炭酸ジプロピル,炭酸エチルメ
チル等の鎖状カーボネート、ジメトキシエタン,テトラ
ヒドロフラン等のエーテル化合物、γ−ブチロラクトン
等の環状エステル類、スルホラン類等が単独もしくは混
合して用いられる。
Examples of the non-aqueous solvent include cyclic carbonates such as propylene carbonate, ethylene carbonate and butylene carbonate; chain carbonates such as dimethyl carbonate, diethyl carbonate, dipropyl carbonate and ethyl methyl carbonate; ether compounds such as dimethoxyethane and tetrahydrofuran; -Cyclic esters such as butyrolactone, sulfolane and the like are used alone or in combination.

【0032】また、電解質塩としてはLiPF6、Li
BF4、LiCF3SO3、LiClO4、LiAsF6
のリチウム塩が使用される。これら電解質塩は0.5〜
2mol/lなる濃度で非水溶媒に溶解される。
As the electrolyte salt, LiPF 6 , LiPF
Lithium salts such as BF 4 , LiCF 3 SO 3 , LiClO 4 and LiAsF 6 are used. These electrolyte salts are 0.5 to
It is dissolved in a non-aqueous solvent at a concentration of 2 mol / l.

【0033】本発明は各種タイプの非水電解液二次電池
に適用でき、特に帯状正極と帯状負極をセパレータを介
して積層、巻回してなる巻回電極体を用いる円筒型電池
や、板状正極と帯状負極をセパレータを介して積層した
積層電極体を用いる角形電池等に適用して好適である。
The present invention can be applied to various types of non-aqueous electrolyte secondary batteries. In particular, a cylindrical battery using a wound electrode body obtained by laminating and winding a strip-shaped positive electrode and a strip-shaped negative electrode via a separator, and a plate-shaped battery It is suitable to be applied to a prismatic battery or the like using a laminated electrode body in which a positive electrode and a strip-shaped negative electrode are laminated with a separator interposed therebetween.

【0034】このうち円筒型非水電解液二次電池の一例
を図1に示す。
FIG. 1 shows an example of a cylindrical non-aqueous electrolyte secondary battery.

【0035】この非水電解液二次電池は、図1に示すよ
うに、負極集電体9の両面に負極合剤層15を形成して
なる負極1と、正極集電体10の両面に正極合剤層16
を形成してなる正極2とを、ポリプロピレンやポリエチ
レン等よりなる微多孔膜セパレータ3を介して巻回し、
この巻回体の上下に絶縁体4を載置した状態で電池缶5
に収納してなるものである。
As shown in FIG. 1, this non-aqueous electrolyte secondary battery has a negative electrode 1 in which a negative electrode mixture layer 15 is formed on both surfaces of a negative electrode current collector 9, and a positive electrode current collector 10 Positive electrode mixture layer 16
Is wound through a microporous membrane separator 3 made of polypropylene, polyethylene, or the like,
With the insulator 4 placed above and below the wound body, the battery can 5
It is to be stored in.

【0036】前記電池缶5には電池蓋7が封口ガスケッ
ト6を介してかしめることによって取付けられ、それぞ
れ負極リード11及び正極リード12を介して負極1あ
るいは正極2と電気的に接続され、電池の負極あるいは
正極として機能するように構成されている。
A battery lid 7 is attached to the battery can 5 by caulking via a sealing gasket 6, and is electrically connected to the negative electrode 1 or the positive electrode 2 via a negative electrode lead 11 and a positive electrode lead 12, respectively. Is configured to function as a negative electrode or a positive electrode.

【0037】そして、この電池では、前記正極リード1
2は電流遮断用薄板8に溶接されて取り付けられ、この
電流遮断用薄板8と感熱抵抗素子13を介して電池蓋7
との電気的接続が図られている。
In this battery, the positive electrode lead 1
2 is welded and attached to the current interrupting thin plate 8, and the battery cover 7 is connected to the current interrupting thin plate 8 via the thermal resistance element 13.
Electrical connection with the device.

【0038】このような構成を有する電池においては、
電池内部の圧力が上昇すると、前記電流遮断等薄板8が
押し上げられて変形する。すると、正極リード12が電
流遮断用薄板8と溶接された部分を残して切断され、電
流が遮断される。
In a battery having such a configuration,
When the pressure inside the battery rises, the thin plate 8 such as the current interrupter is pushed up and deformed. Then, the positive electrode lead 12 is cut leaving a portion welded to the current interrupting thin plate 8, and the current is interrupted.

【0039】そして、この電池では特に、正極合剤層と
負極合剤層の重量比が3:1〜4:1、さらには正極合
剤層と集電体の厚さの比及び負極合剤層と負極集電体の
厚さの比がともに2:1〜4:1の範囲になされる。こ
れにより、良好な負荷性能及び充放電サイクル特性が得
られることになる。なお、この電池では、正極合剤層及
び負極合剤層が集電体の両面に形成されるが、このよう
に合剤層が集電体の両面に形成されている場合、両面を
合わせた正極合剤と負極合剤の重量比、両面の合剤層を
合わせた厚さと集電体の厚さの比が所定範囲に規制され
る。
In this battery, in particular, the weight ratio of the positive electrode mixture layer to the negative electrode mixture layer is 3: 1 to 4: 1, furthermore, the ratio of the thickness of the positive electrode mixture layer to the current collector and the negative electrode mixture layer The thickness ratio between the layer and the negative electrode current collector is both in the range of 2: 1 to 4: 1. Thereby, good load performance and charge / discharge cycle characteristics can be obtained. In this battery, the positive electrode mixture layer and the negative electrode mixture layer are formed on both sides of the current collector. When the mixture layer is thus formed on both sides of the current collector, the both sides are combined. The weight ratio of the positive electrode mixture to the negative electrode mixture, and the ratio of the total thickness of the mixture layers on both surfaces and the thickness of the current collector are regulated to predetermined ranges.

【0040】[0040]

【実施例】以下、本発明の実施例について実験結果に基
づいて説明する。
Embodiments of the present invention will be described below based on experimental results.

【0041】実施例1 正極合剤層の厚さ:正極集電体の厚さ=3.1:1、負
極合剤層の厚さ:負極集電体の厚さ=3.0:1、正極
合剤層の重量:負極合剤層の重量=3.5:1となされ
た非水電解液二次電池の例である。
Example 1 Thickness of positive electrode mixture layer: thickness of positive electrode current collector = 3.1: 1, thickness of negative electrode mixture layer: thickness of negative electrode current collector = 3.0: 1, This is an example of a non-aqueous electrolyte secondary battery in which the weight of the positive electrode mixture layer: the weight of the negative electrode mixture layer = 3.5: 1.

【0042】このような非水電解液二次電池を次のよう
に作製した。
[0042] Such a non-aqueous electrolyte secondary battery was manufactured as follows.

【0043】まず、正極を次のようにして作製した。First, a positive electrode was manufactured as follows.

【0044】水酸化リチウムと、30μm以下の粒径に
粉砕した電解二酸化マンガンをLi:Mn(原子比)が
1.04:2となるように計量し、乳鉢に投入した。
Lithium hydroxide and electrolytic manganese dioxide pulverized to a particle size of 30 μm or less were weighed so that the Li: Mn (atomic ratio) became 1.04: 2, and charged into a mortar.

【0045】そして、これらを十分混合した後アルミナ
製坩堝に入れ、酸素存在雰囲気となされた電気炉内で、
350℃で6時間熱処理し、さらに780℃で12時間
熱処理し、室温まで冷却した後、粗く粉砕することで正
極材料を得た。
After sufficiently mixing them, the mixture was put into an alumina crucible and placed in an electric furnace in an atmosphere containing oxygen.
Heat treatment was performed at 350 ° C. for 6 hours, further heat treatment at 780 ° C. for 12 hours, and after cooling to room temperature, the mixture was coarsely ground to obtain a positive electrode material.

【0046】この正極材料について粉末X線回折法によ
る測定を行ったところ、観測されたピークはスピネル型
LiMn24のピークに一致していた。なお、(31
1)回折面と(400)回折面のピーク比[(311)
回折面:(400)回折面]は1:1.12であった。
When the positive electrode material was measured by a powder X-ray diffraction method, the observed peak coincided with the peak of spinel type LiMn 2 O 4 . (31
1) Peak ratio between diffraction plane and (400) diffraction plane [(311)
Diffraction plane: (400) diffraction plane] was 1: 1.12.

【0047】この正極材料90重量部、導電材となるグ
ラファイト6重量部、結着材となるポリフッ化ビニリデ
ン(PVDF)4重量部を混合し、さらに溶剤となるN
−メチル−2−ピロリドンを加えて混合することによっ
て正極合剤ミックスを調製した。次に、この正極合剤ミ
ックスを、厚さ20μmのアルミニウム箔(正極集電
体)の両面に、リード溶着部を除いて均一に塗布し、乾
燥させることで厚さ62μmの正極合剤層を形成し、所
定の大きさに裁断した。そして、正極集電体のリード溶
着部にアルミニウム製リード体を溶着させることで正極
を作製した。ここで正極合剤層の厚さ:正極集電体の厚
さは3.1:1であった。
90 parts by weight of this positive electrode material, 6 parts by weight of graphite serving as a conductive material, and 4 parts by weight of polyvinylidene fluoride (PVDF) serving as a binder are mixed, and N is used as a solvent.
-Methyl-2-pyrrolidone was added and mixed to prepare a positive electrode mixture. Next, this positive electrode mixture mix is uniformly applied to both surfaces of a 20 μm-thick aluminum foil (positive electrode current collector) except for a lead welding portion, and dried to form a 62 μm-thick positive electrode mixture layer. It was formed and cut into a predetermined size. Then, a positive electrode was manufactured by welding an aluminum lead body to the lead welding portion of the positive electrode current collector. Here, the thickness of the positive electrode mixture layer: the thickness of the positive electrode current collector was 3.1: 1.

【0048】負極を次のようにして作製した。A negative electrode was manufactured as follows.

【0049】石油ピッチを、酸素存在雰囲気となされた
電気炉内で1000℃で熱処理することによって酸素架
橋が形成された難黒鉛化性炭素粉末を生成した。
The petroleum pitch was heat-treated at 1000 ° C. in an electric furnace in an oxygen-containing atmosphere to produce a non-graphitizable carbon powder having an oxygen cross-link.

【0050】この難黒鉛化性炭素粉末について粒子径分
布測定を行ったところ、50%累積径が9μmで、粒径
が1〜30μmに分布していた。また、X線回折法で測
定された(002)面の面間隔は0.37nmであっ
た。
When the particle size distribution of this non-graphitizable carbon powder was measured, it was found that the 50% cumulative diameter was 9 μm and the particle size was 1 to 30 μm. The (002) plane spacing measured by the X-ray diffraction method was 0.37 nm.

【0051】この炭素粉末90重量部、結着剤となるポ
リフッ化ビニリデン10重量部を混合し、さらに溶剤と
なるN−メチル−2−ピロリドンを加えて混合すること
によって負極合剤ミックスを調製した。次に、この負極
合剤ミックスを、厚さ10μmの銅箔(負極集電体)の
両面に、リード溶着部を除いて均一に塗布し、乾燥させ
ることで厚さ30μmの負極合剤層を形成し、所定の大
きさに裁断した。そして、負極集電体のリード溶着部に
ニッケル製リード体を溶着させることで負極を作製し
た。ここで負極合剤層の厚さ:負極集電体の厚さは3:
1であり、正極合剤層と負極合剤層の重量比は3.5:
1であった。
A mixture of negative electrodes was prepared by mixing 90 parts by weight of this carbon powder and 10 parts by weight of polyvinylidene fluoride as a binder, and further adding and mixing N-methyl-2-pyrrolidone as a solvent. . Next, this negative electrode mixture mix is uniformly applied to both surfaces of a copper foil (negative electrode current collector) having a thickness of 10 μm except for a lead welding portion, and dried to form a negative electrode mixture layer having a thickness of 30 μm. It was formed and cut into a predetermined size. Then, a negative electrode was manufactured by welding a nickel lead body to the lead welded portion of the negative electrode current collector. Here, the thickness of the negative electrode mixture layer: the thickness of the negative electrode current collector is 3:
1, and the weight ratio of the positive electrode mixture layer to the negative electrode mixture layer was 3.5:
It was one.

【0052】このようにして作製された正極と負極を、
セパレータとなるポリプロピレン製微多孔膜を介して積
層し、多数回巻回することで渦巻状電極素子を作製し
た。
The positive electrode and the negative electrode thus produced were
The laminate was laminated via a microporous polypropylene membrane serving as a separator, and wound many times to produce a spiral electrode element.

【0053】そして、この渦巻状電極素子に絶縁板を取
り付けて電池缶に挿入し、負極リード体を電池缶に溶接
するとともに正極リード体を電流遮断用薄板に溶接し
た。次いで、炭酸プロピレンと炭酸ジメチル混合液にL
iPF6を1モル/lなる濃度で溶解させた電解液を電
池缶に注入し、電流遮断用薄板上に電池蓋を載置した。
そして、電池缶の上部を、カシメ機を用いてかしめるこ
とで缶を密閉し、外径18mm、高さ65mmの円筒型
電池を作製した。
Then, an insulating plate was attached to the spiral electrode element and inserted into a battery can. The negative electrode lead was welded to the battery can and the positive electrode lead was welded to a current interrupting thin plate. Next, L was added to a mixture of propylene carbonate and dimethyl carbonate.
An electrolytic solution in which iPF 6 was dissolved at a concentration of 1 mol / l was poured into a battery can, and the battery lid was placed on a current interrupting thin plate.
Then, the upper part of the battery can was caulked using a caulking machine to seal the can, and a cylindrical battery having an outer diameter of 18 mm and a height of 65 mm was produced.

【0054】実施例2〜実施例5 正極合剤層及び正極集電体の厚さ、負極合剤層及び負極
集電体の厚さを表1に示すように変えたこと以外は実施
例1と同じ構成の電池の例である。
Examples 2 to 5 Example 1 was repeated except that the thickness of the positive electrode mixture layer and the positive electrode current collector and the thickness of the negative electrode mixture layer and the negative electrode current collector were changed as shown in Table 1. This is an example of a battery having the same configuration as that of FIG.

【0055】比較例1,比較例2 正極合剤層及び正極集電体の厚さ、負極合剤層及び負極
集電体の厚さを表1に示すように変え、これらの厚さ比
及び重量比のいずれかを所定範囲外としたこと以外は実
施例1と同じ構成の電池の例である。
Comparative Examples 1 and 2 The thicknesses of the positive electrode mixture layer and the positive electrode current collector, and the thicknesses of the negative electrode mixture layer and the negative electrode current collector were changed as shown in Table 1, and the thickness ratio and This is an example of a battery having the same configuration as in Example 1 except that one of the weight ratios is out of the predetermined range.

【0056】[0056]

【表1】 [Table 1]

【0057】これら電池の正極合剤層の厚さ:正極集電
体の厚さ、負極合剤層の厚さ:負極集電体の厚さ、正極
合剤層の重量:負極合剤層の重量を表2に示す。
Thickness of positive electrode mixture layer of these batteries: thickness of positive electrode current collector, thickness of negative electrode mixture layer: thickness of negative electrode current collector, weight of positive electrode mixture layer: weight of negative electrode mixture layer The weight is shown in Table 2.

【0058】[0058]

【表2】 [Table 2]

【0059】このようにして作製された電池について、
0.3Aで上限電圧4.2Vまで8時間充電し、次に
0.5Aで終止電圧2.5Vまで放電させた。そして、
1Aで上限電圧4.2Vまで3時間充電した後、1Aで
終止電圧2.5Vまで3時間放電を行うといった充放電
サイクルを5サイクル行った。
With respect to the battery thus manufactured,
The battery was charged at 0.3 A to an upper limit voltage of 4.2 V for 8 hours, and then discharged at 0.5 A to a final voltage of 2.5 V. And
Five charge / discharge cycles were performed in which the battery was charged at 1 A to an upper limit voltage of 4.2 V for 3 hours and then discharged at 1 A to a final voltage of 2.5 V for 3 hours.

【0060】この後、次のような放電負荷試験及び充放
電サイクル試験を行い、電池の性能を評価した。
Thereafter, the following discharge load test and charge / discharge cycle test were performed to evaluate the performance of the battery.

【0061】放電負荷試験:1A電流で上限電圧4.2
Vまで3時間充電した後、終止電圧2.5Vまで放電さ
せた。なお、放電に際する電流は0.1〜10Aの範囲
で変化させた。
Discharge load test: 1 A current and upper limit voltage 4.2
After charging to V for 3 hours, the battery was discharged to a final voltage of 2.5V. In addition, the electric current at the time of discharge was changed in the range of 0.1 to 10A.

【0062】充放電サイクル試験:1Aの電流で上限電
圧4.2Vまで3時間充電した後、0.5A電流で終止
電圧2.5Vまで放電させるといった充放電サイクルを
200回行った。
Charge / discharge cycle test: A charge / discharge cycle was performed 200 times in which the battery was charged with a current of 1 A to an upper limit voltage of 4.2 V for 3 hours and then discharged with a current of 0.5 A to a final voltage of 2.5 V.

【0063】放電負荷特性を図2に、充放電サイクル特
性を図3に示す。
FIG. 2 shows the discharge load characteristics, and FIG. 3 shows the charge / discharge cycle characteristics.

【0064】図2に示すように、正極合剤層と正極集電
体の厚さの比、負極合剤層と負極集電体の厚さの比、正
極合剤層と負極合剤層の重量比が所定範囲内にある実施
例1〜実施例5の電池は放電電流を10Aに上げた場合
でも十分な放電容量が得られ、比較例1,比較例2の電
池に比べて優れた放電負荷特性が得られる。
As shown in FIG. 2, the ratio of the thickness of the positive electrode mixture layer to the thickness of the positive electrode current collector, the ratio of the thickness of the negative electrode mixture layer to the thickness of the negative electrode current collector, The batteries of Examples 1 to 5 in which the weight ratio is within the predetermined range can obtain a sufficient discharge capacity even when the discharge current is increased to 10 A, and are excellent in the discharge as compared with the batteries of Comparative Examples 1 and 2. Load characteristics can be obtained.

【0065】また、図3に示す充放電特性についても、
実施例1〜実施例5の電池は充放電サイクルの繰り返し
に伴う容量低下が小さく、比較例1,比較例2の電池に
比べて優れている。
The charge / discharge characteristics shown in FIG.
The batteries of Examples 1 to 5 showed a small decrease in capacity due to repeated charge / discharge cycles, and were superior to the batteries of Comparative Examples 1 and 2.

【0066】このことから、正極合剤層の重量:負極合
剤層の重量を3:1〜4:1とし、さらに正極合剤層の
厚さ:正極集電体の厚さ及び、負極合剤層の厚さ:負極
集電体の厚さをともに2:1〜4:1とすることによっ
て電池の大電流での充放電性能や充放電サイクル特性が
改善されることがわかった。
From this, the weight of the positive electrode mixture layer: the weight of the negative electrode mixture layer was set to 3: 1 to 4: 1, and the thickness of the positive electrode mixture layer: the thickness of the positive electrode current collector and the thickness of the negative electrode mixture layer. It was found that the charge / discharge performance and the charge / discharge cycle characteristics at a large current of the battery were improved by setting the thickness of the agent layer: the thickness of the negative electrode current collector to 2: 1 to 4: 1.

【0067】[0067]

【発明の効果】以上の説明からも明らかなように、本発
明の非水電解液二次電池は、正極材料としてリチウムマ
ンガン酸化物を使用しており、正極合剤と負極合剤の重
量比が3:1〜4:1に規制され、さらには正極合剤層
と正極集電体の厚さの比及び上記負極合剤層と負極集電
体の厚さの比がともに2:1〜4:1であるので、良好
な負荷性能及び充放電サイクル特性が得られる。また、
この非水電解液二次電池で正極材料として使用するリチ
ウムマンガン酸化物は、リチウムコバルト複合酸化物や
リチウムニッケル複合酸化物のように資源が稀少なC
o,Niを含んでいないので入手が容易である。したが
って、本発明の非水電解液二次電池は、正極材料を多量
に使用する大型電池としても好適である。
As is clear from the above description, the nonaqueous electrolyte secondary battery of the present invention uses lithium manganese oxide as the positive electrode material, and the weight ratio of the positive electrode mixture to the negative electrode mixture Is regulated to 3: 1 to 4: 1, and the ratio of the thickness of the positive electrode mixture layer to the thickness of the positive electrode current collector and the ratio of the thickness of the negative electrode mixture layer to the thickness of the negative electrode current collector are both 2: 1 to 1 Since the ratio is 4: 1, good load performance and charge / discharge cycle characteristics can be obtained. Also,
Lithium manganese oxide used as a cathode material in this non-aqueous electrolyte secondary battery is a rare resource such as lithium cobalt composite oxide and lithium nickel composite oxide.
Since it does not contain o and Ni, it is easy to obtain. Therefore, the nonaqueous electrolyte secondary battery of the present invention is also suitable as a large battery using a large amount of the positive electrode material.

【図面の簡単な説明】[Brief description of the drawings]

【図1】本発明を適用した非水電解液二次電池の一例を
示す概略縦断面図である。
FIG. 1 is a schematic longitudinal sectional view showing an example of a non-aqueous electrolyte secondary battery to which the present invention is applied.

【図2】非水電解液二次電池の放電負荷特性を示す特性
図である。
FIG. 2 is a characteristic diagram showing a discharge load characteristic of a nonaqueous electrolyte secondary battery.

【図3】非水電解液二次電池の充放電サイクル特性を示
す特性図である。
FIG. 3 is a characteristic diagram showing charge / discharge cycle characteristics of a nonaqueous electrolyte secondary battery.

【符号の説明】[Explanation of symbols]

1 負極、2 正極、10 負極集電体、11 正極集
電体、15 負極合剤層、16 正極合剤層
Reference Signs List 1 negative electrode, 2 positive electrode, 10 negative electrode current collector, 11 positive electrode current collector, 15 negative electrode mixture layer, 16 positive electrode mixture layer

フロントページの続き (51)Int.Cl.6 識別記号 FI H01M 4/58 H01M 4/58 (72)発明者 熊川 昌志 福島県郡山市日和田町高倉字下杉下1番地 の1 株式会社ソニー・エナジー・テック 内Continued on the front page (51) Int.Cl. 6 Identification symbol FI H01M 4/58 H01M 4/58 (72) Inventor Masashi Kumakawa 1-1-1 Shimosugishita, Takakura, Hiwadacho, Koriyama-shi, Fukushima 1 Sony Energy Corporation・ Tech

Claims (4)

【特許請求の範囲】[Claims] 【請求項1】 炭素材料を含有する負極合剤層が負極
集電体に保持されてなる負極と、リチウムマンガン酸化
物を含有する正極合剤層が正極集電体に保持されてなる
正極と、非水溶媒に電解質塩が溶解されてなる非水電解
液を有してなり、 上記正極合剤層と負極合剤層の重量比が、3:1〜4:
1であることを特徴とする非水電解液二次電池。
1. A negative electrode in which a negative electrode mixture layer containing a carbon material is held on a negative electrode current collector, and a positive electrode in which a positive electrode mixture layer containing lithium manganese oxide is held on a positive electrode current collector And a non-aqueous electrolyte obtained by dissolving an electrolyte salt in a non-aqueous solvent, wherein the weight ratio of the positive electrode mixture layer and the negative electrode mixture layer is 3: 1 to 4:
1. A non-aqueous electrolyte secondary battery, wherein
【請求項2】 正極合剤層と正極集電体の厚さの比及
び、負極合剤層と負極集電体の厚さの比がともに2:1
〜4:1であることを特徴とする請求項1記載の非水電
解液二次電池。
2. The ratio of the thickness of the positive electrode mixture layer to the thickness of the positive electrode current collector and the ratio of the thickness of the negative electrode mixture layer to the thickness of the negative electrode current collector are both 2: 1.
The non-aqueous electrolyte secondary battery according to claim 1, wherein the ratio is up to 4: 1.
【請求項3】 炭素材料は、難黒鉛化性炭素材料である
ことを特徴とする請求項1記載の非水電解液二次電池。
3. The non-aqueous electrolyte secondary battery according to claim 1, wherein the carbon material is a non-graphitizable carbon material.
【請求項4】 リチウムマンガン酸化物は、LixMn
y(但し、xは0.505〜0.525であり、yは
1.96〜2.00である)で表されることを特徴とす
る請求項1記載の非水電解液二次電池。
4. The lithium manganese oxide is Li x Mn
2. The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is represented by O y (where x is 0.505 to 0.525 and y is 1.96 to 2.00). .
JP9351748A 1997-12-19 1997-12-19 Nonaqueous electrolyte secondary battery Pending JPH11185822A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP9351748A JPH11185822A (en) 1997-12-19 1997-12-19 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP9351748A JPH11185822A (en) 1997-12-19 1997-12-19 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JPH11185822A true JPH11185822A (en) 1999-07-09

Family

ID=18419340

Family Applications (1)

Application Number Title Priority Date Filing Date
JP9351748A Pending JPH11185822A (en) 1997-12-19 1997-12-19 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JPH11185822A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077102A (en) * 1998-08-28 2000-03-14 Sony Corp Nonaqueous electrolyte secondary battery
JP2001023614A (en) * 1999-07-09 2001-01-26 Sony Corp Positive electrode and secondary battery using it
JP2001093571A (en) * 1999-09-22 2001-04-06 Sony Corp Non-aqueous electrolyte battery
JP2002110155A (en) * 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2002231312A (en) * 2001-01-29 2002-08-16 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
US6506518B1 (en) 1999-04-27 2003-01-14 Shin-Kobe Electric Machinery Co., Ltd. Lithium secondary battery

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000077102A (en) * 1998-08-28 2000-03-14 Sony Corp Nonaqueous electrolyte secondary battery
US6506518B1 (en) 1999-04-27 2003-01-14 Shin-Kobe Electric Machinery Co., Ltd. Lithium secondary battery
JP2001023614A (en) * 1999-07-09 2001-01-26 Sony Corp Positive electrode and secondary battery using it
JP2001093571A (en) * 1999-09-22 2001-04-06 Sony Corp Non-aqueous electrolyte battery
JP4560854B2 (en) * 1999-09-22 2010-10-13 ソニー株式会社 Nonaqueous electrolyte secondary battery
JP2002110155A (en) * 2000-09-27 2002-04-12 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery
JP2002231312A (en) * 2001-01-29 2002-08-16 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
JP2009048981A (en) Nonaqueous electrolyte secondary battery
JPH0935715A (en) Manufacture of positive electrode active material and nonaqueous electrolyte secondary battery
JP3436600B2 (en) Rechargeable battery
JP2009123605A (en) Nonaqueous electrolyte battery
JP2009176448A (en) Nonaqueous electrolyte secondary battery
JP2022189954A (en) Nonaqueous electrolyte battery and manufacturing method thereof
JP2001345101A (en) Secondary battery
JP4994628B2 (en) Nonaqueous electrolyte secondary battery
JP2009277395A (en) Nonaqueous secondary battery, and nonaqueous secondary battery system
JP3140977B2 (en) Lithium secondary battery
JP3396696B2 (en) Rechargeable battery
JP2004031131A (en) Nonaqueous electrolyte liquid secondary battery
JP2010186689A (en) Nonaqueous electrolyte secondary battery
JPH06349493A (en) Secondary battery
JP2004335439A (en) Nonaqueous electrolyte secondary battery
JPH07153496A (en) Secondary battery
JP4849291B2 (en) Secondary battery
JPH11185822A (en) Nonaqueous electrolyte secondary battery
JP4161396B2 (en) Non-aqueous electrolyte secondary battery
JP2002203606A (en) Nonaqueous electrolyte solution battery
JP2003217568A (en) Positive electrode for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP2002203555A (en) Non-aqueous electrolyte secondary battery
JP2002110155A (en) Nonaqueous electrolyte secondary battery
JP2004022239A (en) Positive electrode active material and nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20040420

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20060911

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20061024

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20070306