JP2002110155A - Nonaqueous electrolyte secondary battery - Google Patents

Nonaqueous electrolyte secondary battery

Info

Publication number
JP2002110155A
JP2002110155A JP2000293818A JP2000293818A JP2002110155A JP 2002110155 A JP2002110155 A JP 2002110155A JP 2000293818 A JP2000293818 A JP 2000293818A JP 2000293818 A JP2000293818 A JP 2000293818A JP 2002110155 A JP2002110155 A JP 2002110155A
Authority
JP
Japan
Prior art keywords
negative electrode
secondary battery
carbon material
electrolyte secondary
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000293818A
Other languages
Japanese (ja)
Inventor
Yoshiyuki Ozaki
義幸 尾崎
Tetsushi Kajikawa
哲志 梶川
Keisuke Omori
敬介 大森
Takafumi Fujii
隆文 藤井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Panasonic Holdings Corp
Original Assignee
Matsushita Electric Industrial Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Matsushita Electric Industrial Co Ltd filed Critical Matsushita Electric Industrial Co Ltd
Priority to JP2000293818A priority Critical patent/JP2002110155A/en
Publication of JP2002110155A publication Critical patent/JP2002110155A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Carbon And Carbon Compounds (AREA)
  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

PROBLEM TO BE SOLVED: To control capacity deterioration in a nonaqueous electrolyte secondary battery composed of lithium manganese composite oxide for a positive pole and carbon material for a negative pole, which is caused when it is full- charged and left under high temperature circumstance. SOLUTION: This nonaqueous electrolyte secondary battery comprises the positive pole composed of lithium manganese composite oxide with spinel structure, a nonaqueous electrolyte and the negative pole composed of carbon material which is enabled to electrochemically dope and dedope lithium. In this case, carbon material is low crystal carbon in which lattice spacing (d002) of 002 plane is >=0.360 nm and <=0.390 nm, and capacity density of the negative pole in full-charged is >=150 Ah/kg and <=250 Ah/kg. It enables obtaining the nonaqueous electrolyte secondary battery which is superior in high temperature stability.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は非水電解液二次電
池、特にマンガン酸化物を正極とするリチウムイオン二
次電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a lithium ion secondary battery having manganese oxide as a positive electrode.

【0002】[0002]

【従来の技術】近年、リチウムイオン二次電池は高い作
動電圧と高エネルギー密度を有する二次電池として携帯
電話やノート型パソコン、ビデオカムコーダーなどのポ
ータブル電子機器の駆動用電源として実用化され、急速
な成長を遂げ、小型二次電池をリードする電池系として
生産量は増え続けている。しかしながらこれらリチウム
イオン二次電池の正極材料には、そのほとんどがリチウ
ムとコバルトの複合酸化物(LiCoO2)が用いられ
ている。LiCoO2正極は高電圧、高エネルギー密度
であり、高温安定性やサイクル寿命特性に優れるなど高
性能な正極材料であるが、コバルトは資源的に希少であ
り、産地が限られるなど高価であり供給安定性に不安が
ある。
2. Description of the Related Art In recent years, lithium-ion secondary batteries have been put into practical use as power sources for driving portable electronic devices such as mobile phones, notebook computers, and video camcorders as secondary batteries having a high operating voltage and a high energy density. The production volume has continued to increase as a battery system leading small secondary batteries. However, most of the positive electrode materials of these lithium ion secondary batteries use a composite oxide of lithium and cobalt (LiCoO 2 ). LiCoO 2 cathode is a high-performance cathode material with high voltage, high energy density, and excellent high-temperature stability and cycle life characteristics. However, cobalt is scarce in resources and expensive because of limited production areas. I am worried about stability.

【0003】最近になって、電力貯蔵用や電気自動車用
途の大型リチウムイオン二次電池の開発が進められてお
り、正極材料としてはより安価で資源量が豊富なスピネ
ル構造を有するリチウムマンガン複合酸化物(LiMn
24)が有望視されている。LiMn24は4V級の放
電を示す材料として古くから知られており(特公昭58
−34414号公報)、一部実用化はされているが、サ
イクル寿命特性や高温安定性などにおいてLiCoO2
正極に比べて劣っており、それら性能向上に対する様々
な取り組みがなされている。一例を挙げると、マンガン
原子の一部をコバルト、クロム、ニッケルなど他の遷移
金属元素で置換することによって充放電時の結晶構造の
安定化を図る試みが報告されているが、サイクル寿命特
性は向上するものの、高温安定性に関しては充分な改良
には至っていない。
Recently, large-sized lithium ion secondary batteries for power storage and electric vehicles have been developed, and a lithium manganese composite oxide having a spinel structure which is cheaper and has abundant resources as a cathode material. (LiMn
2 O 4 ) is promising. LiMn 2 O 4 has been known for a long time as a material exhibiting 4V-class discharge (Japanese Patent Publication No. 58-58).
Japanese Patent Application Laid-Open No. 34414/1989), which has been partially put into practical use, but has a cycle life characteristic and high-temperature stability in which LiCoO 2 is used.
It is inferior to the positive electrode, and various efforts have been made to improve their performance. For example, attempts have been made to stabilize the crystal structure during charge and discharge by replacing some of the manganese atoms with other transition metal elements such as cobalt, chromium, and nickel. Although improved, high temperature stability has not yet been sufficiently improved.

【0004】このような高温での電池の容量劣化機構に
ついては完全に解明された訳ではないが、ひとつには高
温で正極活物質からのマンガンの溶解が容量劣化を引き
起こしているといわれている。そこで、LiMn24
製造条件や物性の制御、電解液組成の最適な組み合わせ
により、マンガンの溶解量を抑制することが特開平11
−297322号公報に開示され、また高温時にはLi
Mn24正極の電圧を高電圧部に保ったままで充放電を
行うことにより容量劣化を抑制する電池の使用方法が特
開2000−58134号公報に開示されている。
Although the mechanism of capacity deterioration of a battery at such a high temperature has not been completely elucidated, it is said that one of the causes is that the dissolution of manganese from a positive electrode active material at a high temperature causes capacity deterioration. . Therefore, it is disclosed in Japanese Patent Application Laid-Open No. HEI 11-112400 that the control of the production conditions and physical properties of LiMn 2 O 4 and the optimal combination of the composition of the electrolytic solution suppress the amount of manganese dissolved.
-297322, and at high temperature, Li
Japanese Patent Application Laid-Open No. 2000-58134 discloses a method of using a battery that suppresses capacity deterioration by performing charging and discharging while maintaining the voltage of the positive electrode of Mn 2 O 4 at a high voltage portion.

【0005】[0005]

【発明が解決しようとする課題】一方、負極材料として
は、炭素材料が最も一般的であり、その種類、物性が詳
細に検討されているが、大きくはリチウムのインターカ
レート/デインターカレート反応を利用した黒鉛材料を
用いる場合と、黒鉛層構造をほとんど持たない低結晶性
の炭素材料を用いる場合に大別され、充電時に負極炭素
材料中に吸蔵されるリチウムの状態によって、高温環境
下における電解液とリチウムの副反応の度合いが異な
る。
On the other hand, as a negative electrode material, a carbon material is the most common, and its type and physical properties have been studied in detail. It is roughly classified into a case where a graphite material utilizing a reaction is used and a case where a low-crystalline carbon material having almost no graphite layer structure is used. Are different in the degree of side reaction between the electrolyte and lithium.

【0006】黒鉛のような層構造の発達した炭素材料で
は、リチウムはインターカレーション反応によって黒鉛
層間にインターカレートされ、ステージ構造と呼ばれる
極めて異方性が大きい状態でリチウムがイオン状態で格
納されている。このような系においては、リチウムマン
ガン複合酸化物正極系では高温環境下においてリチウム
が出入りする黒鉛結晶のエッジ部分で電解液とリチウム
との副反応が選択的に進行し電池の容量劣化が大きくな
る。
In a carbon material having a developed layer structure such as graphite, lithium is intercalated between graphite layers by an intercalation reaction, and lithium is stored in an ion state in an extremely anisotropic state called a stage structure. ing. In such a system, in the lithium manganese composite oxide positive electrode system, the side reaction between the electrolyte and lithium selectively proceeds at the edge portion of the graphite crystal where lithium enters and exits under a high temperature environment, and the capacity deterioration of the battery increases. .

【0007】それに対して、低結晶性炭素を負極に用い
た場合では、リチウムはインターカレーション反応によ
る層間への格納よりも炭素結晶構造の空隙部分へ格納さ
れる割合が圧倒的に多く、リチウムは等方的に均一にイ
オン状態で格納されているために高温環境下においても
副反応が選択的に進行することは無い。
On the other hand, when low-crystalline carbon is used for the negative electrode, the proportion of lithium stored in the void portion of the carbon crystal structure is much larger than that stored in the interlayer due to the intercalation reaction. Is stored uniformly in the ion state isotropically, so that side reactions do not proceed selectively even in a high temperature environment.

【0008】しかし、負極中のリチウムの濃度、つまり
負極容量密度がこの副反応に対して重要であり、リチウ
ムの濃度が高くなると炭素中でのリチウムーリチウム間
の相互作用が強くなる。すなわち金属リチウム対極に対
して充電が浅い部分では非常に貴な電位を示すが、充電
が深い部分では非常に卑な電位を示し金属リチウムの電
位に極めて近くなるため、リチウムがイオン性から金属
状態に近づき電解液の分解を促し副反応が生じやすくな
るという課題を有している。
However, the concentration of lithium in the negative electrode, that is, the negative electrode capacity density is important for this side reaction, and the higher the concentration of lithium, the stronger the interaction between lithium and lithium in carbon. In other words, a portion of the charge that is shallow with respect to the metallic lithium counter electrode shows a very noble potential, but a portion of the charge that is deeply charged exhibits a very low potential, which is extremely close to the potential of metallic lithium. , The decomposition of the electrolyte solution is promoted, and a side reaction is likely to occur.

【0009】本発明は上記のような問題点に省みてなさ
れたものであって、電池が高温環境下においてフル充放
電されたり、放置された場合においても容量劣化を最小
限に抑制し長期耐久性、高温安定性に優れた非水電解液
二次電池を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made in consideration of the above-described problems, and minimizes capacity deterioration even when a battery is fully charged or discharged in a high-temperature environment or left unattended. It is an object of the present invention to provide a non-aqueous electrolyte secondary battery excellent in stability and high-temperature stability.

【0010】[0010]

【課題を解決するための手段】上記の目的を達成するた
めに本発明は、スピネル構造を有するリチウムマンガン
複合酸化物からなる正極と、非水電解液と、リチウムを
吸蔵、放出し得る炭素材料からなる負極とを備えた非水
電解液二次電池であって、前記炭素材料は002面の格
子面間隔(d002)が0.360nm以上0.390
nm以下である低結晶性炭素であり、且つ満充電時の負
極の容量密度が150Ah/kg以上250Ah/kg
以下とすることを特徴とする非水電解液二次電池とした
ものである。
In order to achieve the above object, the present invention provides a positive electrode comprising a lithium manganese composite oxide having a spinel structure, a non-aqueous electrolyte, and a carbon material capable of occluding and releasing lithium. Wherein the carbon material has a lattice spacing (d002) of 002 planes of 0.360 nm or more and 0.390 nm or more.
nm or less and the capacity density of the negative electrode when fully charged is 150 Ah / kg or more and 250 Ah / kg or less.
A non-aqueous electrolyte secondary battery is characterized by the following.

【0011】本発明者らは、前記リチウムマンガン複合
酸化物正極と炭素材料負極からなる非水電解液二次電池
の高温での容量劣化機構の解析を行った結果、高温環境
下において正極からのマンガンの溶解は起こるものの、
正極活物質自体の容量劣化はさほど大きいものではな
く、むしろマンガン系正極あるいは溶解したマンガンの
影響を受けて負極炭素材料に吸蔵されているリチウムが
高温環境下において副反応を起こし不活性なリチウム化
合物に変化し、充放電反応に関与できなくなることで容
量劣化が支配されることを見出したものである。
The inventors of the present invention have analyzed the capacity degradation mechanism at high temperature of a nonaqueous electrolyte secondary battery comprising the above-mentioned lithium manganese composite oxide cathode and a carbon material anode. Although manganese dissolution occurs,
The capacity deterioration of the positive electrode active material itself is not so large. Rather, the lithium stored in the negative electrode carbon material under the influence of the manganese-based positive electrode or dissolved manganese causes a side reaction in a high-temperature environment and is an inactive lithium compound. And it is found that capacity deterioration is dominated by being unable to participate in the charge / discharge reaction.

【0012】本発明によれば、電池を高温環境下におい
てフル充放電を行ったり、長期間放置した場合において
も容量劣化を最小限に抑えることができ、長期耐久性、
高温安定性に優れ、実使用に耐え得る非水電解液二次電
池が得られる。
According to the present invention, the battery can be fully charged / discharged in a high-temperature environment, or even when left for a long period of time, the capacity degradation can be minimized, and long-term durability,
A non-aqueous electrolyte secondary battery having excellent high-temperature stability and enduring practical use can be obtained.

【0013】[0013]

【発明の実施の形態】本発明の請求項1に記載の発明
は、スピネル構造を有するリチウムマンガン複合酸化物
からなる正極と、非水電解液と、リチウムを吸蔵、放出
し得る炭素材料からなる負極とを備えた非水電解液二次
電池であって、前記炭素材料は002面の格子面間隔
(d002)が0.360nm以上0.390nm以下
である低結晶性炭素であり、且つ満充電時の負極の容量
密度が150Ah/kg以上250Ah/kg以下とす
ることを特徴とする非水電解液二次電池としたものであ
る。
DESCRIPTION OF THE PREFERRED EMBODIMENTS The invention according to claim 1 of the present invention comprises a positive electrode comprising a lithium manganese composite oxide having a spinel structure, a non-aqueous electrolyte, and a carbon material capable of occluding and releasing lithium. A non-aqueous electrolyte secondary battery comprising a negative electrode, wherein the carbon material is low-crystalline carbon having a lattice spacing (d002) of 002 planes of 0.360 nm or more and 0.390 nm or less, and is fully charged. A non-aqueous electrolyte secondary battery characterized in that the capacity density of the negative electrode at that time is 150 Ah / kg or more and 250 Ah / kg or less.

【0014】本発明の非水電解液二次電池に用いる負極
炭素材料はその黒鉛化度が低いものであり、002面の
面間隔(d002)の値が0.360nm以上0.39
0nm以下である。(d002)の値は炭素材料粉末の
X線回折測定によって容易に調べることができ、CuK
α線をターゲットとした場合、2θが23度から27度
付近に002回折線が得られる。高純度ケイ素粉末を内
部標準試料として加え、角度を補正することでより精密
な値が得られる。(d002)の値が0.360nm未
満では幾分黒鉛層構造が発達するために高温環境下での
容量劣化が大きくなる。逆に0.390nmを越える炭
素材料では炭素化が未発達であり、不純物成分が多く残
っており、容量低下を招くと共に高温安定性も低下する
という特性を有する。このような炭素材料を用いた場
合、満充電時の負極の容量密度が容量劣化に対して非常
に影響が大きく、150Ah/kg以上250Ah/k
g以下である必要がある。150Ah/kg未満では、
高温安定性は確保できても電池容量が大幅に減少するこ
とが明白であり、リチウムイオン二次電池の特長を生か
すことができない。一方、250Ah/kgを越える
と、負極中のリチウム濃度が高くなり、リチウムの存在
状態が金属状態に近づき、高温環境下で放置されると電
解液との副反応が起こりやすくなり容量劣化が大きくな
る。負極容量密度の算出は、電池の放電容量を正極と対
向する負極の面積部分の炭素材料重量で除した値であ
る。
The negative electrode carbon material used in the non-aqueous electrolyte secondary battery of the present invention has a low degree of graphitization, and the value of the 002 plane distance (d002) is 0.360 nm or more and 0.39 nm or more.
0 nm or less. The value of (d002) can be easily checked by X-ray diffraction measurement of the carbon material powder.
When α-ray is used as a target, a 002 diffraction line is obtained when 2θ is around 23 ° to 27 °. A more precise value can be obtained by adding high-purity silicon powder as an internal standard sample and correcting the angle. If the value of (d002) is less than 0.360 nm, the graphite layer structure develops somewhat, so that the capacity degradation under a high temperature environment becomes large. Conversely, a carbon material exceeding 0.390 nm has not yet developed carbonization, has a large amount of impurity components remaining, and has a property of causing a decrease in capacity and a decrease in high-temperature stability. When such a carbon material is used, the capacity density of the negative electrode at the time of full charge greatly affects the capacity deterioration, and is 150 Ah / kg or more and 250 Ah / k or more.
g. At less than 150 Ah / kg,
It is clear that the battery capacity is greatly reduced even if high-temperature stability can be ensured, and the features of the lithium ion secondary battery cannot be utilized. On the other hand, if it exceeds 250 Ah / kg, the lithium concentration in the negative electrode increases, the state of lithium approaches the metallic state, and when left in a high-temperature environment, a side reaction with the electrolytic solution easily occurs and the capacity deterioration is large. Become. The calculation of the negative electrode capacity density is a value obtained by dividing the discharge capacity of the battery by the weight of the carbon material in the area of the negative electrode facing the positive electrode.

【0015】なお、本発明の非水電解液二次電池に用い
る負極炭素材料の真密度は通常黒鉛材料であれば2.2
g/cm3程度の高密度であるが、結晶構造がほとんど
発達していない低結晶性炭素であるために真密度として
は1.5g/cm3以上1.8g/cm3以下であること
が好ましい。また、(d002)の値は0.360nm
以上0.390nm以下が要求されるが、好ましくは
0.370nm以上0.385nm以下において、特に
本発明の効果が得られる。また、炭素材料の種類として
は、その原料、製造方法において、物性が大きく異な
り、低結晶性炭素の中にも高温下で熱処理を施すことに
より容易に黒鉛化が進行する易黒鉛化性炭素と高温熱処
理を施してもそれほど黒鉛化が進行しない難黒鉛化性炭
素の2種に大別されるが、本発明で特に効果が得られる
のは、難黒鉛化性炭素である。
The true density of the negative electrode carbon material used in the nonaqueous electrolyte secondary battery of the present invention is usually 2.2 if it is a graphite material.
Although the density is as high as about g / cm 3 , it is a low-crystalline carbon in which the crystal structure is hardly developed, so that the true density may be 1.5 g / cm 3 or more and 1.8 g / cm 3 or less. preferable. The value of (d002) is 0.360 nm
The thickness is required to be not less than 0.390 nm and preferably not more than 0.370 nm and not more than 0.385 nm, in particular, the effects of the present invention can be obtained. In addition, as the type of carbon material, its raw material, in the manufacturing method, the physical properties are greatly different, and even in low crystalline carbon, the graphitization easily proceeds by performing heat treatment at high temperature and easily graphitizable carbon. Although it is roughly classified into two types of non-graphitizable carbon, the graphitization of which does not progress so much even when subjected to a high-temperature heat treatment, non-graphitizable carbon is particularly effective in the present invention.

【0016】[0016]

【実施例】以下、実施例により本発明を詳しく述べる。The present invention will be described below in detail with reference to examples.

【0017】(実施例1)図1に本実施例で用いた円筒
形電池の断面切欠斜視図を示す。図1において、1は負
極リード板2を取り付けた負極板で、3は正極リード板
4を取り付けた正極板である。負極板1と正極板3はセ
パレータ5を介して渦巻き状に捲回された極板群をその
上下に絶縁板6を配置した状態で負極端子を兼ねる電池
ケース7内に収納されている。電池ケース7の上縁は絶
縁パッキング8を介して、安全弁を設けた正極端子を兼
ねる封口板9で密封口されている。以下、正、負極板の
製造方法等について詳しく説明する。
(Example 1) FIG. 1 shows a cutaway perspective view of a cylindrical battery used in this example. In FIG. 1, reference numeral 1 denotes a negative electrode plate to which a negative electrode lead plate 2 is attached, and 3 denotes a positive electrode plate to which a positive electrode lead plate 4 is attached. The negative electrode plate 1 and the positive electrode plate 3 are housed in a battery case 7 serving also as a negative electrode terminal, with an electrode plate group spirally wound via a separator 5 with insulating plates 6 arranged above and below the electrode plate group. The upper edge of the battery case 7 is hermetically sealed via an insulating packing 8 with a sealing plate 9 also serving as a positive electrode terminal provided with a safety valve. Hereinafter, a method for manufacturing the positive and negative electrode plates will be described in detail.

【0018】正極活物質には電解二酸化マンガン(Mn
2)と炭酸リチウム(Li2CO3)とをLi/Mnの
モル比が0.54になるように混合し、大気中850℃
の熱処理によりリチウムマンガン複合酸化物を合成し
た。得られた酸化物の結晶構造は粉末X線回折によりス
ピネル型の構造であることを確認し、粉砕、分級の処理
を経て平均粒径約15μmの正極活物質粉末とした。こ
の活物質100重量部に導電材としてのアセチレンブラ
ック3重量部を加え、この混合物にN―メチルピロリド
ン(NMP)40重量部の溶剤に結着剤としてのポリフ
ッ化ビニリデン(PVdF)4重量部を溶解した溶液を
混練してペースト状にした。次いでこのペーストをアル
ミニウム箔の両面に塗工し、乾燥後、圧延して厚み0.
20mm、幅37mm、長さ350mmの正極板とし
た。
The positive electrode active material includes electrolytic manganese dioxide (Mn)
O 2 ) and lithium carbonate (Li 2 CO 3 ) were mixed at a Li / Mn molar ratio of 0.54, and then 850 ° C.
Lithium manganese composite oxide was synthesized by heat treatment. The crystal structure of the obtained oxide was confirmed to be a spinel-type structure by powder X-ray diffraction, and was then pulverized and classified to obtain a positive electrode active material powder having an average particle size of about 15 μm. To 100 parts by weight of the active material, 3 parts by weight of acetylene black as a conductive material was added, and to this mixture, 40 parts by weight of N-methylpyrrolidone (NMP) and 4 parts by weight of polyvinylidene fluoride (PVdF) as a binder were added. The dissolved solution was kneaded to form a paste. Next, this paste was applied to both sides of an aluminum foil, dried, and then rolled to a thickness of 0.1 mm.
A positive electrode plate having a size of 20 mm, a width of 37 mm, and a length of 350 mm was used.

【0019】負極には異方性ピッチあるいは等方性ピッ
チを原料として種々の熱処理温度で炭素化を施した炭素
材料を用いた。いずれの炭素材料も粉砕、分級処理を施
し、平均粒径10μm〜15μmの粉末状態とした。異
方性ピッチを原料とした場合は高温での熱処理を施すこ
とで容易に黒鉛化が進む易黒鉛化性炭素であり、等方性
ピッチを原料とした場合は高温熱処理によっても黒鉛化
が進行しにくい構造であり難黒鉛化性炭素に分類され
る。表1に用いた炭素材料の物性とこれらの炭素負極を
使用した電池を示す。負極板の作製は正極板の作製とほ
ぼ同様に各炭素粉末100重量部にNMP40重量部の
溶剤に結着剤としてのPVdF8重量部を溶解した溶液
を混練してペースト状にした。次いでこのペーストを銅
箔の両面に塗工し、乾燥後、圧延して厚み0.13〜
0.16mm、幅39mm、長さ420mmの負極板と
した。
For the negative electrode, a carbon material obtained by performing carbonization at various heat treatment temperatures using an anisotropic pitch or an isotropic pitch as a raw material was used. Each carbon material was pulverized and classified to obtain a powder having an average particle size of 10 μm to 15 μm. When anisotropic pitch is used as the raw material, it is easily graphitizable carbon that can be easily graphitized by heat treatment at high temperature. When isotropic pitch is used as the raw material, graphitization proceeds even by high temperature heat treatment. It is difficult to graphitize and is classified as non-graphitizable carbon. Table 1 shows the physical properties of the carbon materials used and batteries using these carbon anodes. The production of the negative electrode plate was substantially the same as the production of the positive electrode plate, and a solution in which 8 parts by weight of PVdF as a binder was dissolved in 40 parts by weight of NMP and 100 parts by weight of each carbon powder was kneaded to form a paste. Next, this paste is coated on both sides of the copper foil, dried, and rolled to a thickness of 0.13 to
The negative electrode plate was 0.16 mm, width 39 mm, and length 420 mm.

【0020】用いた炭素材料の種類によって圧延後の負
極合剤密度、不可逆容量、可逆容量が異なるために、負
極板の厚みを変化させることで正、負極板の容量バラン
スを考慮し、満充電時の負極の容量密度がいずれの電池
においても200Ah/kgになるような電池設計とし
た。
Since the negative electrode mixture density, irreversible capacity, and reversible capacity after rolling differ depending on the type of carbon material used, full charge is performed by changing the thickness of the negative electrode plate in consideration of the capacity balance between the positive and negative electrodes. The battery was designed such that the capacity density of the negative electrode at that time was 200 Ah / kg in each of the batteries.

【0021】そして正、負極板にそれぞれリードを取り
付け、厚み0.025mm、幅45mm、長さ約100
0mmのポリエチレン製の微多孔膜からなるセパレータ
を介して渦巻き状に捲回し、直径17mm、高さ50m
mの電池ケース7に収納した。
Then, leads were attached to the positive and negative plates, respectively, to have a thickness of 0.025 mm, a width of 45 mm, and a length of about 100 mm.
It is spirally wound through a separator made of a microporous membrane made of 0 mm polyethylene and has a diameter of 17 mm and a height of 50 m.
m in a battery case 7.

【0022】電解液にはエチレンカーボネート(EC)
とエチルメチルカーボネート(EMC)とジメチルカー
ボネート(DMC)とを30:30:40の体積比で混
合した溶媒に電解質として1モル/lのLiPF6を溶
解したものを注液した。そして電池ケースの開口部を封
口板を用いて封口し完成電池とした。これらの電池を各
5セル作製し充放電を行った。充電電流、放電電流共に
100mAとし、充電終止電圧4.3V、放電終止電圧
2.5Vとした定電流充放電を25℃環境下で10サイ
クル行い、9サイクル目の放電容量を初期容量とした。
そして満充電状態において全セルを60℃の環境下に2
0日間放置した。その後25℃環境下に戻し5サイクル
の充放電を行いその4サイクル目の放電容量を回復容量
とした。それぞれの電池について容量回復率(%)=
(回復容量)/(初期容量)×100を求めた。表1に
示した値は各5セルの容量回復率の平均値を示す。
The electrolyte is ethylene carbonate (EC)
A solution obtained by dissolving 1 mol / l of LiPF 6 as an electrolyte in a solvent in which dimethyl carbonate (EMC) and dimethyl carbonate (DMC) were mixed at a volume ratio of 30:30:40 was injected. Then, the opening of the battery case was sealed with a sealing plate to obtain a completed battery. Each of these batteries was prepared for 5 cells and charged and discharged. The charge current and the discharge current were both set to 100 mA, and a constant current charge / discharge at a charge end voltage of 4.3 V and a discharge end voltage of 2.5 V was performed for 10 cycles in an environment of 25 ° C., and the discharge capacity at the 9th cycle was defined as the initial capacity.
Then, in a fully charged state, all cells are exposed to
Left for 0 days. Thereafter, the battery was returned to an environment of 25 ° C. and charged and discharged for 5 cycles. Capacity recovery rate (%) for each battery =
(Recovery capacity) / (initial capacity) × 100 was determined. The values shown in Table 1 indicate the average values of the capacity recovery rates of the five cells.

【0023】[0023]

【表1】 [Table 1]

【0024】表1より、高温放置での容量回復率が高い
のは002面の面間隔が0.360nm以上で真密度が
1.8g/cm3以下の低結晶性炭素材料を負極に使用
した電池であり、黒鉛化が発達した材料を用いた電池
G、電池Hでは極端に容量回復率が低下することがわか
る。また、低結晶性炭素負極の中でも極端に炭素化度合
いが低い電池Aでは高温安定性が劣る傾向にあり、(d
002)の値が0.370nm以上0.385nm以下
の範囲にある電池C、電池D、電池Eが容量回復率90
%を越えており、最も好ましい負極材料であることがわ
かる。
From Table 1, it can be seen that the capacity recovery rate at high temperature was high because the low crystallinity carbon material having a 002 plane spacing of 0.360 nm or more and a true density of 1.8 g / cm 3 or less was used for the negative electrode. It can be seen that in the batteries G and H, which are batteries and use a material with advanced graphitization, the capacity recovery rate is extremely reduced. Also, among the low-crystalline carbon anodes, Battery A, which has an extremely low degree of carbonization, tends to have poor high-temperature stability, and (d)
The battery C, the battery D, and the battery E whose values of 002) are in the range of 0.370 nm or more and 0.385 nm or less have a capacity recovery rate of 90%.
%, Which is the most preferable negative electrode material.

【0025】(実施例2)実施例1において、高温安定
性が最も優れていた電池Cで使用した負極炭素材料を用
いて、満充電時の負極容量密度を変化させた電池I〜電
池Oを作製した。正極板、負極板の作製方法、電池の製
造方法は全て実施例1と同様の方法で行い、唯一負極板
の作製において、負極合剤ペーストを銅箔に塗工する際
の塗工重量、負極板の圧延後の厚みを変化させること
で、満充電時の負極容量密度を変化させた。そして実施
例1と同様の充放電を行い、同様に60℃環境下での高
温放置試験を行った。表2に各電池の負極容量密度と容
量回復率の関係を示す。
(Example 2) In Example 1, the batteries I to O in which the negative electrode capacity density at full charge was changed using the negative electrode carbon material used in the battery C having the highest temperature stability were used. Produced. The method for producing the positive electrode plate, the negative electrode plate, and the method for producing the battery were all performed in the same manner as in Example 1. Only in the production of the negative electrode plate, the coating weight when the negative electrode mixture paste was applied to the copper foil, the negative electrode The capacity of the negative electrode at full charge was changed by changing the thickness of the sheet after rolling. Then, the same charge and discharge as in Example 1 were performed, and a high-temperature storage test in a 60 ° C. environment was similarly performed. Table 2 shows the relationship between the negative electrode capacity density and the capacity recovery rate of each battery.

【0026】[0026]

【表2】 [Table 2]

【0027】表2より、容量回復率は負極容量密度に大
きく依存することが明らかであり、負極容量密度が25
0Ah/kgまでは90%を越える容量回復率を維持し
ており、負極容量密度の増加と共に更に容量回復率は大
幅に低下する。このことは、負極炭素中のリチウム濃度
が高くなることでリチウム間の相互作用が強くなり金属
状態に近づくことで、高温環境下において電解液との副
反応を起こしやすくなることに起因するものである。負
極容量密度としては満充電時に250Ah/kg以下で
あればそのような副反応は最小限に抑えられ良好な容量
回復特性を示す。
It is apparent from Table 2 that the capacity recovery rate greatly depends on the negative electrode capacity density.
The capacity recovery rate exceeding 90% is maintained up to 0 Ah / kg, and the capacity recovery rate further decreases significantly as the negative electrode capacity density increases. This is due to the fact that the lithium concentration in the negative electrode carbon increases and the interaction between lithium becomes stronger and approaches the metallic state, which tends to cause a side reaction with the electrolyte under a high temperature environment. is there. If the negative electrode capacity density is 250 Ah / kg or less at the time of full charge, such a side reaction is minimized and good capacity recovery characteristics are exhibited.

【0028】本実施例2ではいずれの電池も同仕様の正
極板を使用したために、電池容量には大きな差は認めら
れなかったが、特に低結晶性炭素を負極に用いた場合
は、150Ah/kg程度までの充電では負極電位が非
常に貴な電位にあることから、正極の電位挙動が変化
し、同じ充放電条件下では電池容量の低下が著しくな
る。これらのことから、負極容量密度としては150A
h/kg以上250Ah/kg以下とすることが望まし
い。
In Example 2, since no difference was found in the battery capacity because the same positive electrode plate was used for all the batteries, especially when low crystalline carbon was used for the negative electrode, 150 Ah / In charging up to about kg, the negative electrode potential is at a very noble potential, so that the potential behavior of the positive electrode changes, and under the same charge / discharge conditions, the battery capacity is significantly reduced. From these facts, the negative electrode capacity density is 150 A
It is desirable to set it to h / kg or more and 250 Ah / kg or less.

【0029】なお、本実施例1および2では電解液の溶
媒にEC、EMC、DMCの混合溶媒を使用したが、プ
ロピレンカーボネートなど従来より公知な他のカーボネ
ート系溶媒をはじめ、4V級の耐酸化還元電位を有する
溶媒が単独あるいは混合溶媒として使用可能である。同
じく電解質についてもLiBF4、LiClO4など従来
より公知な電解質が使用可能である。
In Examples 1 and 2, a mixed solvent of EC, EMC, and DMC was used as a solvent for the electrolytic solution. However, other known carbonate-based solvents such as propylene carbonate and the like, and a 4V-class oxidation-resistant solvent were used. A solvent having a reduction potential can be used alone or as a mixed solvent. Similarly, conventionally known electrolytes such as LiBF 4 and LiClO 4 can be used as the electrolyte.

【0030】また、本実施例1および2では小型の円筒
形電池を用いて説明したが、電池形状については、電極
を楕円体状に捲回し角形の電池ケースに収納した角形電
池や薄型の電極を複数枚積層して角形の電池ケースに収
納した角形電池を用いても同様な効果が得られる。電池
サイズに関しては、小型電子機器を想定した小型電池だ
けではなく、電力貯蔵用や電気自動車、ハイブリッド電
気自動車用途として想定される大型電池についても同様
な効果が得られることは言うまでもなく、これら大型電
池が複数個搭載されたモジュール電池、組電池について
も同様である。
In the first and second embodiments, a small cylindrical battery has been described. However, as for the battery shape, a rectangular battery in which electrodes are wound in an elliptical shape and accommodated in a rectangular battery case, or a thin electrode is used. A similar effect can be obtained by using a prismatic battery in which a plurality of are stacked and stored in a prismatic battery case. Regarding the battery size, it is needless to say that the same effects can be obtained not only for small batteries assumed for small electronic devices, but also for large batteries assumed for power storage, electric vehicles, and hybrid electric vehicles. The same applies to module batteries and battery packs in which a plurality of are mounted.

【0031】[0031]

【発明の効果】以上のように本発明によれば、リチウム
マンガン複合酸化物を正極に、炭素材料を負極に用いた
系において、高温安定性に優れた非水電解液二次電池が
得られる。
As described above, according to the present invention, a nonaqueous electrolyte secondary battery excellent in high-temperature stability can be obtained in a system using a lithium manganese composite oxide as a positive electrode and a carbon material as a negative electrode. .

【図面の簡単な説明】[Brief description of the drawings]

【図1】本実施例で用いた円筒形電池の断面切欠斜視図FIG. 1 is a cutaway perspective view of a cylindrical battery used in the present embodiment.

【符号の説明】[Explanation of symbols]

1 負極板 2 負極リード板 3 正極板 4 正極リード板 5 セパレータ 6 絶縁板 7 電池ケース 8 絶縁パッキング 9 封口板 Reference Signs List 1 negative electrode plate 2 negative electrode lead plate 3 positive electrode plate 4 positive electrode lead plate 5 separator 6 insulating plate 7 battery case 8 insulating packing 9 sealing plate

───────────────────────────────────────────────────── フロントページの続き (72)発明者 大森 敬介 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 (72)発明者 藤井 隆文 大阪府門真市大字門真1006番地 松下電器 産業株式会社内 Fターム(参考) 5H029 AJ04 AK03 AL06 AL07 AM03 AM05 AM07 BJ02 BJ14 DJ17 HJ08 HJ13 HJ19 5H050 AA10 BA17 CA09 CB07 CB08 DA03 FA19 HA08 HA13 HA19 ──────────────────────────────────────────────────の Continued on the front page (72) Inventor Keisuke Omori 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Inside Matsushita Electric Industrial Co., Ltd. (72) Takashi Fujii 1006 Kadoma Kadoma, Kadoma City, Osaka Prefecture Matsushita Electric Industrial Co., Ltd. Terms (reference) 5H029 AJ04 AK03 AL06 AL07 AM03 AM05 AM07 BJ02 BJ14 DJ17 HJ08 HJ13 HJ19 5H050 AA10 BA17 CA09 CB07 CB08 DA03 FA19 HA08 HA13 HA19

Claims (2)

【特許請求の範囲】[Claims] 【請求項1】 スピネル構造を有するリチウムマンガン
複合酸化物からなる正極と、非水電解液と、リチウムを
吸蔵、放出し得る炭素材料からなる負極とを備えた非水
電解液二次電池であって、前記炭素材料は002面の格
子面間隔(d002)が0.360nm以上0.390
nm以下である低結晶性炭素であり、且つ満充電時の負
極の容量密度が150Ah/kg以上250Ah/kg
以下とすることを特徴とする非水電解液二次電池。
1. A non-aqueous electrolyte secondary battery comprising a positive electrode made of a lithium manganese composite oxide having a spinel structure, a non-aqueous electrolyte, and a negative electrode made of a carbon material capable of occluding and releasing lithium. The carbon material has a lattice spacing (d002) of 002 planes of 0.360 nm or more and 0.390.
nm or less and the capacity density of the negative electrode when fully charged is 150 Ah / kg or more and 250 Ah / kg or less.
A nonaqueous electrolyte secondary battery characterized by the following.
【請求項2】 上記炭素材料の真密度が1.5g/cm
3以上1.8g/cm3以下であり(d002)が0.3
70nm以上0.385nm以下である難黒鉛化性炭素
材料である請求項1記載の非水電解液二次電池。
2. The true density of the carbon material is 1.5 g / cm.
3 or more and 1.8 g / cm 3 or less and (d002) is 0.3
The non-aqueous electrolyte secondary battery according to claim 1, wherein the non-aqueous electrolyte secondary battery is a non-graphitizable carbon material having a thickness of 70 nm or more and 0.385 nm or less.
JP2000293818A 2000-09-27 2000-09-27 Nonaqueous electrolyte secondary battery Pending JP2002110155A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000293818A JP2002110155A (en) 2000-09-27 2000-09-27 Nonaqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000293818A JP2002110155A (en) 2000-09-27 2000-09-27 Nonaqueous electrolyte secondary battery

Publications (1)

Publication Number Publication Date
JP2002110155A true JP2002110155A (en) 2002-04-12

Family

ID=18776538

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000293818A Pending JP2002110155A (en) 2000-09-27 2000-09-27 Nonaqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP2002110155A (en)

Cited By (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243448A (en) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006338977A (en) * 2005-06-01 2006-12-14 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JP2021099970A (en) * 2019-12-23 2021-07-01 株式会社Gsユアサ Power storage element
JP2021099971A (en) * 2019-12-23 2021-07-01 株式会社Gsユアサ Power storage element
JP2021099969A (en) * 2019-12-23 2021-07-01 株式会社Gsユアサ Power storage element
WO2022181516A1 (en) * 2021-02-25 2022-09-01 株式会社Gsユアサ Nonaqueous electrolyte power storage element

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927317A (en) * 1994-06-24 1997-01-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacture of its negative electrode
JPH0963564A (en) * 1995-08-28 1997-03-07 Furukawa Electric Co Ltd:The Electrode for li battery, and li battery using same
JPH11185822A (en) * 1997-12-19 1999-07-09 Sony Corp Nonaqueous electrolyte secondary battery
JPH11233140A (en) * 1998-02-13 1999-08-27 Sony Corp Nonaqueous electrolyte secondary battery
JP2001176512A (en) * 1999-12-20 2001-06-29 Hitachi Ltd Lithium secondary battery

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0927317A (en) * 1994-06-24 1997-01-28 Matsushita Electric Ind Co Ltd Nonaqueous electrolyte secondary battery and manufacture of its negative electrode
JPH0963564A (en) * 1995-08-28 1997-03-07 Furukawa Electric Co Ltd:The Electrode for li battery, and li battery using same
JPH11185822A (en) * 1997-12-19 1999-07-09 Sony Corp Nonaqueous electrolyte secondary battery
JPH11233140A (en) * 1998-02-13 1999-08-27 Sony Corp Nonaqueous electrolyte secondary battery
JP2001176512A (en) * 1999-12-20 2001-06-29 Hitachi Ltd Lithium secondary battery

Cited By (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2005243448A (en) * 2004-02-26 2005-09-08 Japan Storage Battery Co Ltd Nonaqueous electrolyte secondary battery
JP2006338977A (en) * 2005-06-01 2006-12-14 Shin Kobe Electric Mach Co Ltd Lithium secondary battery
JP2021099970A (en) * 2019-12-23 2021-07-01 株式会社Gsユアサ Power storage element
JP2021099971A (en) * 2019-12-23 2021-07-01 株式会社Gsユアサ Power storage element
JP2021099969A (en) * 2019-12-23 2021-07-01 株式会社Gsユアサ Power storage element
JP7451996B2 (en) 2019-12-23 2024-03-19 株式会社Gsユアサ Energy storage element
JP7451994B2 (en) 2019-12-23 2024-03-19 株式会社Gsユアサ Energy storage element
JP7451995B2 (en) 2019-12-23 2024-03-19 株式会社Gsユアサ Energy storage element
WO2022181516A1 (en) * 2021-02-25 2022-09-01 株式会社Gsユアサ Nonaqueous electrolyte power storage element

Similar Documents

Publication Publication Date Title
JP3844733B2 (en) Nonaqueous electrolyte secondary battery
KR100533095B1 (en) The cathode active material comprising the overdischarge retardant and the lithium secondary battery using the same
US9099743B2 (en) Anode and secondary battery
JP5066798B2 (en) Secondary battery
KR20070100957A (en) Lithium-ion secondary battery
JP2009048981A (en) Nonaqueous electrolyte secondary battery
JP2005123183A (en) Non-aqueous electrolyte secondary battery and composite batteries
JP2010153258A (en) Nonaqueous electrolyte battery
US9337508B2 (en) Electrochemical lithium accumulator with a bipolar architecture comprising a specific electrolyte additive
US11626583B2 (en) 3-D composite anodes for Li-ion batteries with high capacity and fast charging capability
EP2284934B1 (en) Electrode assembly and lithium secondary battery including the same
JP4994628B2 (en) Nonaqueous electrolyte secondary battery
KR20040080932A (en) Production methods for positive electrode active matter and non-aqueous electrolytic battery
JP2001338639A (en) Non-aqueous electrolyte battery
KR20170107368A (en) Non-aqueous electrolyte battery, battery pack and vehicle
US6627351B1 (en) Non-aqueous electrolyte battery
JPH06349493A (en) Secondary battery
JP2010186689A (en) Nonaqueous electrolyte secondary battery
JPH10255844A (en) Nonaqueous electrolyte secondary battery
JPH11120993A (en) Nonaqueous electrolyte secondary battery
JP2002110155A (en) Nonaqueous electrolyte secondary battery
JP2007157538A (en) Battery
JP3079613B2 (en) Non-aqueous electrolyte secondary battery
JP2005243448A (en) Nonaqueous electrolyte secondary battery
JP3775107B2 (en) Lithium secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070604

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20070712

RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100621

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20100629

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20101102